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STRUCTURE DETECTION METHOD FOR SOLVING STATE
VARIABLE INEQUALITY PATH CONSTRAINED OPTIMAL
CONTROL PROBLEMS

Cale A. Byczkowski* and Anil V. Rao’

A structure detection method is developed for solving state-variable inequality path con-
strained optimal control problems. The method obtains estimates of activation and deactiva-
tion times of active state-variable inequality path constraints (SVICs), and subsequently al-
lows for the times to be included as decision variables in the optimization process. Once the
identification step is completed, the method partitions the problem into a multiple-domain
formulation consisting of constrained and unconstrained domains. Within each domain,
Legendre-Gauss-Radau (LGR) orthogonal direct collocation is used to transcribe the infinite-
dimensional optimal control problem into a finite-dimensional nonlinear programming (NLP)
problem. Within constrained domains, the corresponding time derivative of the active SVICs
that are explicit in the control are enforced as equality path constraints, and at the beginning
of the constrained domains, the necessary tangency conditions are enforced. The accuracy
of the proposed method is demonstrated on a well-known optimal control problem where the
analytical solution contains a state constrained arc.

INTRODUCTION

In the past two decades, direct collocation methods have become increasingly popular for obtaining nu-
merical solutions to optimal control problems.l In a direct collocation method, the state and control are
approximated by a set of basis functions, and the constraints are enforced at selected collocation points on
the time interval of interest. The original infinite-dimensional optimal control problem is then transcribed into
a large sparse nonlinear programming problem (NLP), and the NLP is solved using well-known software.>3
A particular class of collocation methods that have been developed in the past decade is the class of Gaussian
quadrature orthogonal collocation. The most well developed Gaussian quadrature collocation methods use
either Legendre-Gauss (LG) points,* Legendre-Gauss-Radau (LGR) points,>® or Legendre-Gauss-Lobatto
(LGL) points.” It has been shown that when the solution of an optimal control problem is smooth, Gauss
quadrature methods converge at an exponential rate.® Conversely, when the solution of an optimal control
problem is either nonsmooth or singular, more involved adaptations of Gaussian quadrature collocation must
be considered in order to obtain an accurate solution in a computationally efficient manner. In the past decade,
a class of so called hp-adaptive mesh refinement methods have been developed to improve the solution ac-
curacy to problems whose solutions are nonsmooth.’~!3 Although these techniques greatly improve accuracy
and computational efficiency when solving an optimal control problem whose solution is nonsmooth, it still
may be the case that these techniques place an unnecessarily large number of collocation points near any
discontinuity in the solution. One particular class of optimal control problems whose solution may be nons-
mooth and for which these previous techniques may produce an unnecessarily large mesh is a state-variable
inequality constrained (SVIC) optimal control problem. This paper focuses on developing a strategy for
accurately solving SVIC optimal control problems.

Pure state-variable inequality constraints have routinely caused difficulty in solving optimal control prob-
lems. Since the early 1960s, various necessary conditions have been derived to provide guidelines for han-
dling such constraints.'*!7 Since then, a variety of methods have been developed to solve SVIC problems,
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all falling within the framework of either an indirect or direct approach. Two of the most common indirect
methods for solving SVIC optimal control problems are penalty function techniques'®2° and transcription
techniques.?’?* In a penalty function method, the original inequality constrained optimal control problem
is approximated by augmenting any inequality constraints to the cost functional through the use of a penalty
term. This approximation, which is now unconstrained, is iteratively solved until the solution approaches the
solution of the original problem. In a transcription method, the dimension of the state is increased through
the inclusion of parametric variables (often referred to as “slack variables"). If the order of the inequality
constraint is ¢, then the dimension of the state is also increased by ¢, and the additional state variables are
defined such that the inequality constraint is satisfied at every point along the trajectory. Both methods ben-
efit from the fact that no a priori knowledge of when the constraint becomes active is necessary, but suffer
computationally as each need to employ some form of iterative process to obtain an accurate approximation
of the solution. Note, the aforementioned methods are referred to as "indirect" since they typically involve
an iterative procedure to approximate the solution. In a direct approach, the SVIC (or an appropriate time
derivative) are directly adjoined to the problem.?*2” Specifically, the SVIC and its ¢ — 1 time derivatives are
enforced as equality constraints at the entry of a constrained arc, while the g-th time derivative is enforced as
a mixed state/control equality constraint. A pitfall in using a direct approach is that the number and location
of constraint activation/deactivation (A/D) points must be guessed.

This paper uses a direct approach for solving SVIC optimal control problems. The method alleviates the
need to guess the number and location of A/D points. Specifically, a detection method is developed to obtain
estimates of A/D times in the SVIC optimal control problem. The locations of A/D of the state inequality
constraints are then used to partition the original time domain into multiple domains, and the estimated
locations of the A/D points are included as additional decision variables in the NLP to be optimized when
solving the partitioned problem. The method developed in this paper constructs the NLP through the use of
a multiple-domain LGR collocation method,?® which significantly improves the accuracy of the computed
approximation to the SVIC optimal control problem as compared with advanced direct collocation methods.

The remainder of the paper is organized as follows. First, the general form of an optimal control problem in
Bolza form is presented along with the necessary conditions for optimality when SVICs are present. Next, an
overview of the multiple-domain LGR collocation method used in this research is shown, then the structure
detection method developed in this research that is used for directly solving SVIC optimal control problems
is described. Finally, the accuracy of the method developed in this research is demonstrated on a well known
SVIC problem whose solution is known followed by concluding remarks and future work.

PROBLEM FORMULATION
Bolza Optimal Control Problem

Without loss of generality, consider the following general optimal control problem in Bolza form on the
time interval 7 € [—1, 4+1]; determine the state, x(7) € R"=, the control, u € R™«, the initial time, ¢, and
the terminal time, ¢ ¢, that minimize the objective functional,

te —1t +1
T = M(x(-1),t0,x(+1),t5) + F—0 L(x(7),u(r),T;to, ty)dT, (D
-1
subject to the dynamic constraints,
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Note, the independent variable 7 € [—1, +1] can be mapped back to the independent variable of the original
optimal control problem ¢ € [to, ¢ ] using the affine transformation,
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Next, suppose that the domain 7 € [—1,+1] is partitioned into a mesh consisting of K mesh intervals
Sk = [m_1,7], k € [1,..., K], where (70, ..., Txc) are the mesh points. Let x(*)(7) and u(*)(7) be the
state and control, respectively, in the mesh interval S, k € [1,...K]. The Bolza optimal control problem of
Eqs.(1)-(4) can then be rewritten as follows; determine the state, x(*) (1) € R™=, the control, u) (1) € R,
the initial time, %o, and the final time, ¢ ¢, on the interval 7 € [—1, +1] that minimizes the objective functional,

K
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subject to the dynamic constraints,

dX(dki(T) = D (1), a5, 7310, 1), )
the inequality path constraints,
Crin < c(x(k) (1), u(k)(T),T;to,tf) < Cmax, (8)
and the boundary conditions,
buin < b(xM (1), 20, x") (+1), 1) < buax. 9)

Since it is necessary that the state be continuous at the interior mesh points, the condition x(7;,) = x(7;")

holds for k = (1,..., K — 1).

Necessary Conditions for Optimality

The method developed in this research is based on the necessary conditions derived by Bryson, et. al.'#
and are given as follows. Suppose that the inequality path constraints given by Eq.(8) take on the following
form,

c(x® (1), 750, tf) < 0. (10)

In order to determine a condition for the control when the equality in Eq.(10) holds, successive time deriva-
tives of Eq.(10) are taken, and the dynamics a(x(7),u(7), 7;to,ty) is substituted for %(7) until and ex-
pression explicit in the control is obtained. If g-derivatives are required, the state-variable inequality path
constraints (SVICs) are deemed to be of g-th order. The Hamiltonian for the system then becomes,

H=L+ATa+pu"c, an

where A are the costate variables, and g is a set of Lagrange multipliers associated with the path constraints,
c, that satisfy the following necessary conditions,

i > 0, on the constraint boundary (¢ = 0 = ¢(9 = 0), (12)
p = 0, off the constraint boundary (c < 0),
where ¢(@ = d@¢ /dt(@) . Then, the first-order optimality conditions resulting from the calculus of variations
give,
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In order to compute a finite control to keep the system on the constraint boundary, the path entering the
constraint must satisfy the following tangency constraints:'*

c(x,tq)

c(l)(x7 ta)
N(X(ta),ta) = ) =0, g=1,2,.. (14)

c(q_l)(x, ta)

where t, is the time at which the constraint becomes active. It has been shown in?® that when a constraint
is active, the index of the original system of differential algebraic equations (DAESs) increases. In a direct
method, enforcing Eq.(14) is analogous to performing index reduction. Specifically, the tangency constraints
provide a set of necessary conditions that reduce the index of the constrained system of DAE:s to the index of
the unconstrained system.

MULTIPLE-DOMAIN LEGENDRE-GAUSS-RADAU COLLOCATION

The method developed in this paper utilizes Legendre-Gauss-Radau (LGR) collocation to discretize the
continuous Bolza optimal control problem. The LGR collocation method is chosen due to its ability to
converge to a solution at an exponential rate when the solution is smooth.® However, for the problems studied
in this research, the solution may be nonsmooth due to active state-constrained arcs. Consequently, in order
to be able to correctly enforce the tangency constraints and handle potential nonsmooth behavior, the method
developed in this research utilizes a multiple-domain LGR collocation method (similar to Pager, et. al.?®)
described below,

Multiple-Domain Formulation

Let the horizon t € [ty, ] of the Bolza optimal control problem be partitioned into D domains, Py =
[t ) C [to, t4]. d € [1,..., D], such that,

D
UsziPa = [to, 17, as)
D 1 D-1
N Py = [t P71,
where tid} , are the domain interface variables, tio} = to, tiD} = ty, are the initial and final times, re-
spectively, d is the domain index, and s is signifies a switch between a constrained or unconstrained arc.

Specifically, for the method developed in this research, tid} correspond to switches in activation and deacti-
vation of the state-variable inequality constraint, whereas in Pager, et. al.,’® these variables serve as switch
points in bang-bang and/or singular control structures. It is noted that the domain interface variables become
additional decision variables in the resulting nonlinear programming problem (NLP) and are not collocation

points.
tidﬂ}’ tgs)}

Similar to the formulation presented before, each domain Py = | is mapped to 7 € [—1,+1]

using the affine transformation,
$@ _4d=1) #@ _ 4=

> T+ 5 (16)

Next, the time interval 7 € [—1,+1] on each domain is divided into K mesh intervals, Sy, = [Tj—1,Tx] C
[-1,+1], for k = [1, ..., K], such that,
Uizt Se = [ro,75);
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Legendre-Gauss-Radau Collocation

Once the multiple-domain formulation is complete, LGR collocation is used to discretize the continuous
time problem on each mesh interval. Specifically, for each mesh interval, the LGR points are defined on
[Tk-1,Tx] C [-1,41], & = [1..., K]. The state of the continuous time optimal control problem is then
approximated within each mesh interval Sy, by,

k) p(k
xF) (1)~ XF) (r) = Z X§- )55- )(7), (18)
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where K(k)( ), 7 =1[1,...,; Ny + 1], is a basis of Lagrange polynomials on Sy, given by,
TR
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where (Tl(k), 1(& )) are the Ny, set of LGR collocation points in the interval [T},_1, T), with 7n, +1 = T}

being a non- collocated support point. Differentiating Eq.(18) with respect to 7 leads to,
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The dynamic constraints given in Eq.(7) are then approximated at the N;-LGR points in mesh interval Sk,
k=11,..., K] ondomain d = [1, ..., D] by,
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are the elements of the Ny, x (Nj + 1) Legendre-Gauss-Radau differentiation matrix in the mesh interval Sy,

, Vie{l,..,Np},Vje{l,... Ny +1} (22)

and ng) is the approximation of the control at the i-th collocation point in mesh interval S;. Continuity in
the state across mesh intervals Si_1, S and time domains Py_1, Py is achieved by using the same variable

to represent X’f\fkfl 1= ng) and X{d{ dl}l} 41 Xid}, respectively. Lastly, it is noted that N {9} is the total
number of collocation points in the time domain P, and can be computed by,
Ktdr
d
Nid = N N (23)
k=1

where K {4} is the total number of mesh intervals in time domain Py, d = {1, ..., D}.

Nonlinear Programming Problem

The multiple-domain Legendre-Gauss-Radau (LGR) discretization of the continuous time multiple-domain
Bolza optimal control problem results in a large sparse nonlinear programming (NLP) which is given as
follows. Minimize the objective functional,

(1 (D} N
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subject to the dynamic constraints,

fdr _ ld=1}
At —pladxid =2 =2 Aldt—o, vde{1,.., D}, (25)
the inequality path constraints,
Cmin < C1V < ey, Wj € {1,.., N1}, vde {1,..., D}, (26)
the boundary conditions,
buin < b (X[ t0, X)L t7) < b, 27
and the continuity conditions,
d—1 d
X}{V{d7}1}+1 = Xi }a (28)

where D{% ¢ RN (W " +1) i< the LGR differentiation matrix in the time domain Pa,d=11,...,D], and

wi? € RV %1 gre the LGR weights at each collocation point in the time domain P,. Note, the continuity

{d—1}

conditions in Eq. (28) are implicitly enforced by using the same decision variable in the NLP for Y 7, 41

and de}.

STRUCTURE DETECTION METHOD

The overall method used in this research aims to automatically decompose the original inequality con-
strained optimal control problem into a multiple-domain optimal control problem consisting of state con-
strained and unconstrained domains. Partitioning the problem into multiple domains provides the ability to
apply the higher order necessary tangency conditions at the beginning of constrained domains. The multiple-
domain formulation also allows the resulting mixed state-control equality constraint (highest time derivative
of the path constraint that contains the control) to be enforced throughout constrained domains. Applying the
higher order necessary conditions reduces the high-index system of differential algebraic equations (DAEs),
and provides the capability to accurately approximate the control while any state-variable inequality con-
straints (SVICs) are active.

The first step in partitioning the problem is to obtain an estimate of the domain interface variables, which
are analogous to activation/deactivation (A/D) times of any SVICs. Before presenting the structure detection
method (SDM) for estimating the domain interface variables, the following assumptions are made in the
development of the algorithm:

Assumption 1: The SVICs are not active at the start of the trajectory: c(x(to), o) < O.

Assumption 2: The SVICs are not active at the end of the trajectory: c(x(ty),ts) < 0.

The above assumptions are in place to be able to inspect neighboring collocation points to determine the
activation or deactivation of constrained arcs. It is noted that in Jacobson, et. al.,’ a set of new necessary
conditions were derived which show that, in certain cases, for SVICs of odd order (¢ > 1), the state may
not be constrained over a non-zero interval of time, but instead only touch the constraint boundary at a single
point. This occurrence is often referred to as a fouch point. It is mentioned here that the structure detection
method developed in this research is for SVICs that contain constrained arcs over non-zero intervals of time.
That is, the potential existence of touch points are not studied in this research. The SDM begins by computing
an approximate solution on a single domain P; = [to,¢s] using standard Legendre-Gauss-Radau (LGR)
collocation on a fixed mesh consisting of Sy, k& = [1,...K] mesh intervals with N number of collocation

points within each mesh interval. Next, let X(T;k)
obtained on the initial domain at the j*" collocation point in the k" mesh interval, then the following relative

), 3 =1[1,..., Ni + 1], be the approximated state solution



difference is computed at every collocation point plus the final non-collocated point for every SVIC in the
problem,

k k
CZ(X(T]( ))77-]( )) — Ci,max
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dei(r) = ,Vie{l,. . Ny +1},Vke{1,.., K} (29)
where ¢; is the i-th SVIC for all ¢ = [1, ..., n.] with n. being the total number of SVICs. Once the relative
difference in Eq.(29) is obtained at every collocation point plus the final non-collocated point, the structure
detection algorithm for estimating the activation/deactivation points is executed as follows:

Detection Method for State-Variable Inequality Constrained Optimal Control Problems I

Step 1: Set detection tolerance for which renders a constraint active: €.

Step 2: Check relative difference to determine activation/deactivation points: V j # {1, Ngi1}, Vk #
{1, K}
(a): If §ci(7'](k)) < ¢, and
@i): dc; (T,(E)l) > ¢, and 501-(7](_]:)1) < ¢, then T}k) is deemed an activation point.

(ii): dc; (T,(E)l) <'e, and 501-(7](_]:)1) > ¢, then T;k) is deemed a deactivation point.

+
Step 3: Compute bounds on estimated activation/deactivation points: (T](k))

The default detection tolerance (¢) that is used in the detection algorithm is chosen such that it follows a
process analogous to selecting the NLP solver tolerance. Specifically, the NLP tolerance is typically chosen
to be on the order of the square root of machine tolerance (~ O(10~8)), and so the default detection tolerance
is chosen similarly to be on the order of the square root of the NLP solver tolerance (~ O(10~%)) given the
solution on the initial mesh is governed by the accuracy at which the NLP solver can achieve. A graphical
example of step 2 in the detection algorithm is provided below in Fig. 1. Lastly, it is noted that the final step
in the detection algorithm is performed because the detected A/D times are included as additional decision
variables in the resulting nonlinear programming problem (NLP) and must be bounded to prevent overlapping
or collapsing of domains within the partitioned problem. The bounds are obtained by,

(T](k))’ _ TJ(k) Ty (T](ﬁ)l _ T](k)) ’

JF
(Tj@) — 04y (T]@l _ Tj(k)) ,

(30)

where v > 0 is a user defined parameter used to control the size of the allowable search space for the NLP
solver to determine the optimal A/D times. Once estimates of the domain interface variables are obtained,
the original optimal control problem is partitioned into a multiple-domain optimal control problem consist-
ing of constrained and unconstrained domains. Next, the multiple-domain continuous time optimal control
problem is transcribed into a large sparse NLP using the multiple-domain LGR collocation scheme presented
in the previous section. Also, it is noted here again for clarity, the estimated A/D times obtained from the
detection algorithm are appended to the NLP decision vector to be optimized when solving the resulting
NLP. At the start of each identified constrained domain, the necessary tangency conditions given by Eq.(14)
are enforced. Additionally, the g-th time derivative of any detected state-variable inequality constraints is
applied as an equality constraint throughout constrained domains, while throughout unconstrained domains,
the state-variable inequality constraints are applied in their original form.




6 c ( ,7_) = Activation point
@ = Deactivation point

Figure 1: Example for detecting activation/deactivation points in a SVIC.

NUMERICAL EXAMPLE

To illustrate the accuracy of the method present in this paper, a benchmark optimal control problem with
a single state-variable inequality path constraint (SVIC) is solved. This example problem, often referred to
as the Bryson-Denham problem,'* was chosen due to the fact that it has a known analytical solution, which
provides a baseline to analyze the accuracy of the proposed method presented in this paper. The Bryson-
Denham problem is given as follows;'* minimize the objective functional,

1 1
J = 7/ u?(t)dt, (31)
0

subject to the dynamic constraints,

i) = o), )

the boundary conditions,

z(0) = (1) = 0,
v(0) = —v(l) = 1, (33)
and the pure state-variable inequality constraint,
z(t) < L, (34)

where L is the upper limit on the SVIC. Though the problem formulation may appear rudimentary, it is
challenging to obtain an accurate numerical approximation of the solution. For completeness, the analytical



solution to the above optimal control for 0 < L < 1/6 is found to be,

u*(t) =40, 3L<t<1-3L
2 1t
——(1-=—), 1-3L<t<1
3L( m;)’ sh=ts
t2
1—— <t<3L
( M)’ 0=t=3
v (t) =40, 3L<t<1-3L

4

T =5

1—t\?
(1), 1-3L<t<1

3
1—)1, 0<t<3L

3L<t<1-3L

., 1-3L<t<1

(35)

(36)

(37)

(38)

For the results to follow, the upper limit on the SVIC was chosen to be L = 1/9 = J* = 4. The resulting
nonlinear programming problem (NLP) was solved using the NLP solver /[POPT with a solver tolerance of
1 x 10~8. The NLP was solved in full-Newton mode, and the required derivatives to be provided to the NLP
solver were obtained using sparse central-differencing. All computations were performed on a 2.9 GHz Intel
Core 19 MacBook Pro running macOS Monterey Version 12.5 with 32 GB 2400 MHz DDR4 of RAM, us-
ing MATLAB version R2021a (build 9.10.0.1669831). The initial static mesh for obtaining an approximate
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Figure 2: Computed position, z(t), and control, «(t), on the initial static mesh with K = 10, N, = 4.

solution on a single domain (which is used to perform structure detection) was chosen to consist of K = 10
mesh intervals and N = 4 collocation points within each mesh. Figure 2 shows the computed position, x(t),
and control, u(t), on the initial static mesh. Upon zooming in on the portion of the solution which contains



the constrained arc, z(t) = L, it is observed that the computed position does not remain along the constraint
boundary (as shown in Fig 2a), and contains large "jumps" or "chattering" in the control (as shown in Fig. 2b).
Next, Fig 3 provides a comparison between the approximate solution obtained on the initial mesh and a solu-
tion obtained using an hp-adaptive direct collocation method!' implemented in the MATLAB optimal control
software GPOPS — II,% referred to as hp-LGR. Specifically, Fig 3 shows the computed position, z(t), and
control, u(t), using the Ap-LGR method alongside the solution on the initial mesh. Two observations can be
made from Fig. 3, first being that the hp-LGR method places more collocation points near the activation and
deactivation of the SVIC. Secondly, the 2p-LGR method is able to obtain a position which is tighter to the
constraint boundary, but still fails to remain on the boundary throughout the constrained arc. Additionally,
the hp-LGR method obtains a control profile which reduces the magnitude of the chattering behavior, but
still appears to be present near the activation and deactivation of the constraint. While in general advanced
hp-adaptive methods can improve accuracy when path constraints are present, they still may return poor so-
lutions when a pure state-variable inequality constraint is present.

Lastly, the solutions obtained on the initial mesh and with the Ap-LGR method are compared against the
solution computed using the structure detection method (SDM) developed in this paper. As previously men-
tioned, the SDM utilizes the solution on the initial mesh (shown in Fig. 2) to obtain estimates of the acti-
vation/deactivation (A/D) times of the SVIC before partitioning the problem into multiple domains. Using
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Figure 3: Computed position, x(t), and control, u(t), using an hp-adaptive direct collocation method.

a detection tolerance of ¢ ~ (9(10*4), Table 1 provides the estimated A/D times ts, the lower and upper
bounds #; i}, respectively, the optimized A/D times ¢, returned by the nonlinear programming problem
(NLP) solver, and the known analytic switch times. By comparing the estimated and optimized switch times
with the analytical switch times, it is observed that the optimizer is capable of selecting switch times closer to
the known A/D times. Figure 4 shows the solution obtained using the SDM alongside the solution obtained

on the initial mesh and that obtained using the Ap-LGR method. Note, the vertical dashed lines appearing in

Switch time is i t+ ts Analytic

S S

Activation 0.300000 0.255706 0.406170 0.333326 1/3

Deactivation  0.700000 0.655706 0.806170 0.666672 2/3

Table 1: Estimated activation/deactivation times, ¢, lower and upper bounds f;, fj (obtained with Eq.(30)
and v = 5), and optimized activation/deactivation times ¢,

Fig. 4 represent the optimized activation/deactivation times returned by the NLP solver. Figure 4a shows that
the SDM is capable of computing a position that is much tighter to the constraint boundary throughout the

10



constrained arc. Furthermore, Fig. 4b shows that the SDM returns a control profile which completely removes
any chattering behavior. Table 2 displays the computed relative errors with respect to the known analytical

0.12F

0.1F [

0.11115

I

|

|

0.08 X 0.1111 r

I

F 0.11105 |

r's 1

\g/ 0.06 - 0.111 i

0.04

0.02

0.11095 I I |

N o—_—
%

u
<o
—— e

-0.02
0.04 - f'[—A—Initial Mesh _4 | [~A—nitial Mesh
hp-LGR hp-LGR 0.04
—6—SDM —o—SDM
0.02 4 |—— Optimal Solution _5 ||— Optimal Control ]
W [
t ——t I
——f —— \
0 I I I L L -6 I I L L 1 L
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
t t
(a) Position, z(t) vs. time, t. (b) Control, u(t) vs. time, t.

Figure 4: Computed position, x(t), and control, u(t), using the structure detection method (SDM).

solution in the objective value, 7, the activation time, t[sl], and the deactivation time, t[s2], for each solution

studied. It is observed that the SDM is capable of computing an objective that is eight orders of magnitude
more accurate than the objective obtained using the Ap-LGR method. Additionally, an improvement of up to
four orders of magnitude in the computed A/D times is obtained when using the SDM.

Relative Error  Objective Value ((J) Activation Time (t[sl]) Deactivation Time (tE])

Initial Mesh 8.689017E-05 3.629784E-02 1.142003E-02
hp-LGR 1.245222E-05 2.884690E-02 1.785373E-02
SDM 1.494360E-13 4.535400E-05 5.579097E-06

Table 2: Relative error of the computed cost and activation/deactivation times with respect to the analytical
solution for the initial mesh, hp-LGR method, and structure detection method (SDM).

CONCLUSION

A structure detection method for solving state-variable inequality path constrained (SVIC) optimal control
problems using a multiple-domain Legendre-Gauss-Radau (LGR) collocation method has been developed.
The method obtains estimates of activation/deactivation times in SVICs, and introduces the detected times
as additional decision variables in the resulting nonlinear program (NLP). Based on the number of detected
times, the method automatically partitions the problem into constrained and unconstrained domains. Lastly,
the necessary tangency conditions are applied at the start of constrained domains, and the appropriate time
derivative of the SVICs are enforced as equality constraints. By analyzing a well-known SVIC optimal con-
trol problem, it has been shown that the structure detection method developed in this research computes an
approximation to the solution of much higher accuracy than that obtained with an hp-LGR adaptive colloca-
tion method. The results of this research show the benefit for including higher order necessary conditions in
the problem formulation as well as allowing the optimizer to select the best location for when the constraints
become active/deactive. Future work will aim towards solving more challenging SVIC optimal control prob-
lems, including those that may contain touch points and/or multiple state-variable inequality path constraints.
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