

1  
2  
3 **Altered methionine metabolism impacts phenylpropanoid production and plant**  
4 **development in *Arabidopsis thaliana***

5  
6  
7 Doosan Shin<sup>1\*</sup>, Veronica C. Perez<sup>2\*</sup>, Gabriella K. Dickinson<sup>2</sup>, Haohao Zhao<sup>1</sup>, Ru Dai<sup>1</sup>,  
8 Breanna Tomiczek<sup>4</sup>, Keun Ho Cho<sup>1</sup>, Ning Zhu<sup>5</sup>, Jin Koh<sup>5</sup>, Alexander Grenning<sup>4</sup>, and  
9 Jeongim Kim<sup>1,2,3</sup>

10  
11 <sup>1</sup>Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611

12 <sup>2</sup>Plant Molecular and Cellular Biology Graduate Program, University of Florida,  
13 Gainesville, FL, USA

14 <sup>3</sup>Genetic Institute, University of Florida, Gainesville, FL, USA

15 <sup>4</sup>Department of Chemistry, University of Florida, Gainesville, FL, 32611

16 <sup>5</sup>Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville,  
17 FL, 32611

18  
19  
20 \* These authors contributed equally to this work.

21  
22 **Corresponding Author:** Jeongim Kim jkim6@ufl.edu

23  
24 **ORCID IDs:** 0000-0002-5618-3948 (J.K); 0000-0002-3526-2487 (V.P); 0000-0002-2040-  
25 7049 (R.D); 0000-0002-2969-9404 (H.Z); 0000-0003-1384-4192 (D.S); 0000-0002-  
26 8899-4657 (K.C); 0000-0001-5599-8849 (G.D)

30 **Abstract**

31 Phenylpropanoids are specialized metabolites derived from phenylalanine.  
32 Glucosinolates are defense compounds derived mainly from methionine and tryptophan  
33 in Arabidopsis. It was previously shown that the phenylpropanoid pathway and  
34 glucosinolate production are metabolically linked. The accumulation of indole-3-  
35 acetaldoxime (IAOx), the precursor of tryptophan-derived glucosinolates, represses  
36 phenylpropanoid biosynthesis through accelerated degradation of phenylalanine-  
37 ammonia lyase (PAL). As PAL functions at the entry point of the phenylpropanoid  
38 pathway which produces indispensable specialized metabolites such as lignin,  
39 aldoxime-mediated phenylpropanoid repression is detrimental to plant survival.  
40 Although methionine-derived glucosinolates in Arabidopsis are abundant, any impact of  
41 aliphatic aldoximes (AAOx) derived from aliphatic amino acids such as methionine on  
42 phenylpropanoid production remains unclear.

43 Here, we investigate the impact of AAOx accumulation on phenylpropanoid  
44 production using Arabidopsis aldoxime mutants, *ref2* and *ref5*. REF2 and REF5  
45 metabolize aldoximes to respective nitrile oxides redundantly, but with different  
46 substrate specificities. *ref2* and *ref5* mutants have decreased phenylpropanoid contents  
47 due to the accumulation of aldoximes. As REF2 and REF5 have high substrate  
48 specificity toward AAOx and IAOx respectively, it was assumed that *ref2* accumulates  
49 AAOx, not IAOx. Our study indicates that *ref2* accumulates both AAOx and IAOx.  
50 Removing IAOx partially restored phenylpropanoid production in *ref2*, but not to the  
51 wild-type level. However, when AAOx biosynthesis was silenced, phenylpropanoid  
52 production and PAL activity in *ref2* were completely restored, suggesting an inhibitory  
53 effect of AAOx on phenylpropanoid production. Further feeding studies revealed that the  
54 abnormal growth phenotype commonly observed in Arabidopsis mutants lacking AAOx  
55 production is a consequence of methionine accumulation.

56

57

58 **Keywords**

59        Aldoximes, Phenylpropanoids, Aliphatic glucosinolates, Aliphatic aldoximes,  
60    Methionine, Growth and Development, *Arabidopsis thaliana*

61

62

63

64

65 **Significance Statement**

66        Aliphatic aldoximes are precursors of various specialized metabolites including  
67    defense compounds. This study reveals that aliphatic aldoximes repress  
68    phenylpropanoid production and that altered methionine metabolism affects plant  
69    growth and development. As phenylpropanoids include vital metabolites such as lignin,  
70    a major sink of fixed carbon, this metabolic link may contribute to available resource  
71    allocation during defense.

72

73 **Introduction**

74 Plants produce diverse specialized metabolites that play roles in plant stress  
75 adaptation (Pourcel et al., 2007; Chong et al., 2009; Luu et al., 2017; Sørensen et al.,  
76 2018; Sugiyama and Hirai, 2019). These specialized metabolites are synthesized  
77 through their own biosynthesis pathways. Oftentimes, however, metabolic pathways are  
78 interconnected; the alteration of one metabolic pathway can affect the biosynthesis or  
79 regulation of other metabolic pathways (Kim et al., 2015; Guo et al., 2016; Mostafa et  
80 al., 2016; Nintemann et al., 2017; Xu et al., 2018; Kim et al., 2020; Yang et al., 2020).  
81 Analysis of this interconnected nature of plant metabolism is essential for expanding our  
82 understanding of how plants coordinate diverse specialized metabolites to adapt to a  
83 rapidly changing environment. One example of a metabolic network in specialized  
84 metabolism is found in Brassicales, which links together the biosynthesis of  
85 glucosinolates and phenylpropanoids (Hemm et al., 2003; Kim et al., 2015; Zhang et al.,  
86 2020; Perez et al., 2021). Glucosinolates are Brassicales-specific and structurally  
87 diverse defense metabolites (Brader et al., 2006; Halkier and Gershenzon, 2006;  
88 Blažević et al., 2020). Glucosinolates are derived from various amino acids; for  
89 example, *Arabidopsis* accumulates glucosinolates derived from tryptophan,  
90 phenylalanine and chain-elongated methionine (Kliebenstein et al., 2001; Harun et al.,  
91 2020). Phenylpropanoids refer to a class of specialized metabolites mainly derived from  
92 phenylalanine and include lignin, flavonoids, and hydroxycinnamates that are crucial for  
93 plant growth, defense, and plant-environment interactions (Bonawitz and Chapple,  
94 2010; Pascual et al., 2016; Muro-Villanueva et al., 2019; Dong and Lin, 2021).

95 While glucosinolates and phenylpropanoids are synthesized through their  
96 respective biosynthetic pathways, recent findings have demonstrated that  
97 phenylpropanoid biosynthesis can be altered by the glucosinolate intermediate  
98 aldoximes (Kim et al., 2015; Kim et al., 2020; Perez et al., 2021). Aldoximes are amino  
99 acid derivatives that serve as precursors for various specialized metabolites including  
100 glucosinolates and camalexin in Brassicales and cyanogenic glycosides and  
101 nitrogenous volatiles throughout the plant kingdom (Glawischnig et al., 2004; Luck et al.,  
102 2016; Yamaguchi et al., 2016; Sørensen et al., 2018; Dhandapani et al., 2019).  
103 Aldoximes are mainly formed by the action of cytochrome P450 monooxygenases

104 belonging to the 79 family (CYP79) or flavin-containing monooxygenases ((Hansen et  
105 al., 2018; Thodberg et al., 2018; Dhandapani et al., 2019; Lai et al., 2020; Liao et al.,  
106 2020; Thodberg et al., 2020; Yamaguchi et al., 2021). In *Arabidopsis* the major  
107 aldoxime-forming enzymes are CYP79B2 and CYP79B3 which convert tryptophan to  
108 indole-3-acetaldoxime (IAOx) (Hull et al., 2000; Mikkelsen et al., 2000; Zhao et al.,  
109 2002); CYP79A2 which converts phenylalanine to phenylacetaldoxime (PAOx)  
110 (Wittstock and Halkier, 2000); CYP79F1 and CYP79F2 which generate aliphatic  
111 aldoximes (AAOx) from chain-elongated methionine (Chen et al., 2003); and CYP79C1  
112 and CYP79C2 which are promiscuous aldoxime formation enzymes based on a  
113 heterologous expression study (Wang et al., 2020) that are barely detected in any  
114 organs (Klepikova et al., 2016).

115 A link among glucosinolates, phenylpropanoids, and aldoximes was first hinted  
116 with the isolation of two glucosinolate biosynthesis mutants *reduced epidermal*  
117 *fluorescence 2* (*ref2*) and *ref5* from phenylpropanoid deficient mutant screens (Hemm et  
118 al., 2003; Kim et al., 2015). *ref2* mutants contain nonsense mutations in  
119 *CYP83A1/REF2* and *ref5* has a missense mutation in *CYP83B1/REF5*. *REF2* and *REF5*  
120 convert aldoximes to their corresponding nitrile oxides in glucosinolate biosynthesis.  
121 Although both *REF2* and *REF5* have affinity for all aldoximes produced in *Arabidopsis*,  
122 these enzymes have different substrate preferences with *REF2* having greater affinity  
123 for aliphatic aldoximes while *REF5* preferentially acts upon aromatic aldoximes (Bak  
124 and Feyereisen, 2001; Naur et al., 2003). Consistently, *ref2* mutants accumulate lower  
125 levels of aliphatic glucosinolates (Hemm et al., 2003), while *ref5* mutants have reduced  
126 indole glucosinolates (Kim et al., 2015). In addition, *ref2* and *ref5* mutants contain  
127 reduced levels of phenylpropanoids such as sinapoylmalate, a phenylpropanoid that  
128 accumulates in the leaves of *Arabidopsis* (Hemm et al., 2003; Kim et al., 2015). Further  
129 studies have shown that the phenylpropanoid repression in *ref5* is caused not by  
130 reduced glucosinolate contents but instead by the accumulation of IAOx or its  
131 derivatives since blocking IAOx production rescues phenylpropanoid repression in *ref5*  
132 (Kim et al., 2015) and the overproduction of IAOx by *CYP79B2* overexpression reduces  
133 phenylpropanoids in *Arabidopsis* and *Camelina sativa* (Kim et al., 2015; Zhang et al.,  
134 2020). Recently it was shown that PAOx accumulation also represses phenylpropanoid

135 production (Perez et al., 2021). One mechanism underlying this glucosinolate-  
136 phenylpropanoid crosstalk is increased degradation of phenylalanine ammonia lyase  
137 (PAL), the first enzyme of phenylpropanoid biosynthesis, through the transcriptional  
138 activation of *Kelch-domain containing F-Box (KFB)* genes that target the PAL enzyme  
139 for ubiquitination and degradation (Zhang et al., 2013; Zhang and Liu, 2015; Yu et al.,  
140 2019; Kim et al., 2020; Perez et al., 2021).

141 Aliphatic amino acid-derived aldoximes are found widely in the plant kingdom  
142 (Sørensen et al., 2018), yet it is unclear if aliphatic aldoximes (AAOx) can repress  
143 phenylpropanoid production. Due to high substrate specificity of REF2 toward AAOx  
144 (Hemm et al., 2003; Kim et al., 2015; Kim et al., 2020), it was assumed that the reduced  
145 phenylpropanoid phenotype of *ref2* is due to the accumulation of AAOx (Hemm et al.,  
146 2003). However, given the range of substrates for REF2, it is possible that other  
147 aldoximes such as IAOx may fully or partially contribute to phenylpropanoid repression  
148 in *ref2*. Indeed, Bak and Feyereisen (2001) demonstrated that *REF2* overexpression  
149 can rescue the high auxin phenotype of the *REF5* null mutant *rnt1-1*, implying that  
150 *REF2* can act upon IAOx *in vivo*. IAOx and PAOx are single molecules derived from  
151 tryptophan and phenylalanine respectively and they are precursors of the natural auxins  
152 IAA and PAA respectively (Zhao et al., 2002; Perez et al., 2021; Perez et al., 2022). On  
153 the other hand, AAOx structure varies depending on the length of chain-elongated  
154 methionine. In *Arabidopsis*, CYP79F1 and CYP79F2 produce all AAOx from diverse  
155 chain-elongated methione (Chen et al., 2003; Tantikanjana et al., 2004). The impact of  
156 AAOx on phenylpropanoid production can be tested through the overexpression of  
157 *CYP79F1/F2* or by removing *CYP79F1/F2* activities. However, several studies have  
158 shown that overexpression of either *CYP79F1* or *CYP79F2* co-suppresses both  
159 *CYP79F1* and *CYP79F2*, which leads to reduced rather than increased *CYP79F1/F2*  
160 activities (Hansen et al., 2001; Reintanz et al., 2001; Chen et al., 2003). On the other  
161 hand, elimination of AAOx production by knockout or silencing of *CYP79F1* and  
162 *CYP79F2* results in severe growth defects such as cup-shaped rosette leaves, loss of  
163 apical dominance and sterility (Hansen et al., 2001; Reintanz et al., 2001; Tantikanjana  
164 et al., 2001; Chen et al., 2003; Tantikanjana et al., 2004; Chen et al., 2012). Foremost,  
165 *CYP79F1* (At1g16410) and *CYP79F2* (At1g16400) are physically linked. While several

166 hypotheses have been made attempting to explain how this altered growth and  
167 development come about, including ones which attribute the bushy phenotype to  
168 perturbed auxin or cytokinin homeostasis, the mechanism behind this growth phenotype  
169 remains elusive (Reintanz et al., 2001; Tantikanjana et al., 2004; Chen et al., 2012).

170 In this study, we examined the impact of AAOx metabolism on phenylpropanoid  
171 production in *Arabidopsis* using various glucosinolate biosynthesis mutants.

172 Additionally, upstream elements of AAOx production were examined to further elucidate  
173 the mechanism of altered growth in plants lacking AAOx production. Our metabolic  
174 profiling and genetic study demonstrated the impact of altered AAOx metabolism on  
175 phenylpropanoid production and revealed that the abnormal developmental phenotypes  
176 of *CYP79F1/CYP79F2* silenced plants is due to a disruption in methionine homeostasis.

177

## 178 **Results**

### 179 **IAOx Accumulates in *ref2***

180 *REF2* has high affinity for AAOx while *REF5* has greater affinity for IAOx than  
181 *REF2* (Figure 1a) (Bak and Feyereisen, 2001; Naur et al., 2003). Consistently, *ref5*  
182 mutants have decreased indole glucosinolates and display high auxin morphological  
183 phenotypes due to increased IAA which is redirected from accumulated IAOx (Delarue  
184 et al., 1998; Barlier et al., 2000; Bak and Feyereisen, 2001; Hoecker et al., 2004). On  
185 the other hand, *ref2* mutants have decreased aliphatic glucosinolates and look similar to  
186 wild type (Hemm et al., 2003; Kim et al., 2015; Kim et al., 2020). Surprisingly, we  
187 detected a significant level of IAOx in the *ref2* mutant (Figure 1b, 1c). This result is  
188 unexpected because *REF5*, the major IAOx catabolic enzyme, is still functional in *ref2*  
189 and the *ref2* mutant does not display high auxin phenotypes which **was** observed in  
190 other IAOx accumulation mutants such as *ref5* or *sur1* (Delarue et al., 1998; Barlier et  
191 al., 2000; Mikkelsen et al., 2004; Kim et al., 2015). As IAOx accumulation represses  
192 phenylpropanoid biosynthesis (Kim et al., 2015; Zhang et al., 2020), all or part of the  
193 reduction in phenylpropanoid content seen in *ref2* is likely due to this IAOx  
194 accumulation, which leaves the question whether AAOx has any impact on  
195 phenylpropanoid metabolism.

196 To examine the impact of AAOx on phenylpropanoid production, we first tested if  
197 accumulated IAOx in *ref2* is entirely responsible for phenylpropanoid repression by  
198 removing IAOx production in *ref2*. As *cyp79b2 cyp79b3 (b2b3)* double mutants do not  
199 produce IAOx (Zhao et al., 2002), *ref2* and *b2b3* were crossed to generate the *b2b3ref2*  
200 triple mutant (Figure 2a). As expected, the *b2b3ref2* triple mutant was unable to  
201 generate IAOx and IAOx-derived glucosinolates (I3M) while it still produces aliphatic  
202 glucosinolates (Figure 2b-d). The level of sinapoylmalate was increased significantly in  
203 the *b2b3ref2* compared to *ref2* but was not returned to wild-type levels (Figure 2e).  
204 These results confirm an inhibitory effect of IAOx accumulation on phenylpropanoid  
205 production but suggest that IAOx accumulation only partially contributes to the  
206 repression of phenylpropanoid production in *ref2*.

207

## 208 **AAOx Accumulation Represses Phenylpropanoid Production**

209 The metabolic profile of the *b2b3ref2* triple mutant (Figure 2) implies that another  
210 mechanism besides IAOx accumulation in *ref2* results in phenylpropanoid repression.  
211 As REF2 is considered the major enzyme for aliphatic glucosinolate biosynthesis, we  
212 hypothesized that *ref2* accumulates AAOx, which represses phenylpropanoid  
213 production. To test our hypothesis, we chose to reduce all AAOx production in *ref2* by  
214 disrupting both CYP79F1 and CYP79F2 simultaneously. Due to the tandem position of  
215 the *CYP79F1 (At1g16410)* and *CYP79F2 (At1g16400)* genes, removal of AAOx by  
216 generating a *cyp79f1 cyp79f2* double mutant is challenging. However, several studies  
217 have shown that overexpression of either *CYP79F1* or *CYP79F2* using a strong  
218 promoter results in cosuppression of both *CYP79F1* and *CYP79F2*, which leads to  
219 display characteristic *cyp79f1* or *cyp79f2* loss-of function mutant phenotypes such as  
220 curled-up leaf morphology and bushy stems (Hansen et al., 2001; Reintanz et al., 2001;  
221 Chen et al., 2003; Tantikanjana et al., 2004). Thus, we decided to remove AAOx  
222 production via expressing *CYP79F1* using the CaMV35S promoter in wild type and *ref2*  
223 and examined how silencing of *CYP79F1* and *CYP79F2* affects phenylpropanoid  
224 production.

225 A majority of T1 transgenic plants displayed the atypical growth and  
226 developmental phenotypes associated with *CYP79F1/CYP79F2* co-suppression (Figure

227 3a), which is consistent with previous reports (Hansen et al., 2001; Reintanz et al.,  
228 2001; Chen et al., 2003; Tantikanjana et al., 2004). The rosette leaves were curled-up  
229 (or cup-shaped) (Figure 3a) and mature plants produced multiple stems leading to a  
230 “bushy” phenotype (Figure 3a); most plants did not produce seeds under our growth  
231 conditions. As reported previously, *CYP79F1* and *CYP79F2* expression was found to be  
232 reduced in the “bushy” transgenic lines compared to their controls (Figure 3a). We  
233 named these “bushy” *CYP79F1/CYP79F2* cosuppression plants *F1-cos/WT* and *F1-*  
234 *cos/ref2*, which are *F1*-cosuppression lines in wild type and *ref2* backgrounds  
235 respectively. About ten percent of T1 transgenic plants did not display the characteristic  
236 “bushy” and “cup-shaped” phenotype (Figure 3a), which is consistent with a previous  
237 study (Hansen et al., 2001; Reintanz et al., 2001; Chen et al., 2003). Thus, we named  
238 these plants *F1-OX/WT* and *F1-OX/ref2*.

239 To confirm disruption of *CYP79F1* and *CYP79F2* activities in *F1-cos* lines, the  
240 glucosinolate profiles of mature T1 *F1-cos* lines in the wild type (*F1-cos/WT*) and *ref2*  
241 genetic backgrounds (*F1-cos/ref2*) were determined. In *F1-cos* lines of both genetic  
242 backgrounds, production of short-chain and long-chain AAOx-derived glucosinolates (4-  
243 methylsulfinylbutyl glucosinolate [4MSOB] and 8-methylsulfinyloctyl glucosinolate  
244 [8MSOO] respectively) was almost completely eliminated while it accumulates indole  
245 glucosinolates, indicating the lack of *CYP79F1* and *CYP79F2* activities (Figure 3b-d).  
246 Although the levels of aliphatic glucosinolates (4MSOB and 8MSOO) in *F1-cos/ref2* are  
247 comparable to that in *ref2*, *ref2* has decreased aliphatic glucosinolates because of its  
248 defect in the conversion of AAOx to their respective nitrile oxides whereas decreased  
249 aliphatic glucosinolates in *F1-cos/ref2* plants are due to a reduction in AAOx production.  
250 Interestingly, IAOx content in *F1-cos/ref2* is under the detection limit (Figure 3e). We  
251 then compared phenylpropanoid contents in *ref2* and *F1-cos/ref2* and found that *F1-*  
252 *cos/ref2* lines produce wild-type levels of sinapoylmalate (Figure 3f). The fact that  
253 disruption of *CYP79F1/F2* restored phenylpropanoid production in *ref2* suggests that  
254 AAOx accumulation exerts a repression effect on phenylpropanoid production.

255 Regarding IAOx-mediated and PAOx-mediated phenylpropanoid repression, the  
256 mechanism underlying this metabolic interaction includes increased PAL degradation,  
257 which ultimately reduces PAL activity and total phenylpropanoid production (Kim et al.,

258 2020; Zhang et al., 2020; Perez et al., 2021). To test if *F1*-cosuppression has any  
259 impact on PAL activity, we measured PAL activity in *F1*-cos lines. In line with previous  
260 reports, *ref2* showed reduced PAL activity compared to wild type (Figure 4). In *F1*-  
261 *cos/ref2* lines, however, PAL activity was restored to the wild-type level (Figure 4).  
262 Ultimately these results demonstrate that depletion of AAOx production restores  
263 decreased PAL activity in *ref2*.

264 We also generated *F1*-cos lines in *ref5* background (*F1*-cos/*ref5*). They  
265 consistently displayed characteristic abnormal morphological phenotypes resulting from  
266 *CYP79F1/F2* cosuppression and contained significantly reduced aliphatic glucosinolate  
267 contents and increased indole glucosinolate contents compared to wild type and *ref5*  
268 (Figure 5a-d). Notably, *F1*-cos/*ref5* accumulates more sinapoylmalate than *ref5*,  
269 suggesting redundant function of REF5 in AAOx conversion (Figure 5e).  
270

### 271 **IAA Content is Unaffected in *F1*-cos Lines**

272 Although the unique growth and developmental changes of *CYP79F1/CYP79F2*  
273 knockout or silenced plants were observed in several studies, how the removal of  
274 *CYP79F1* or *CYP79F2* activity results in unique growth alteration remains unanswered.  
275 It was proposed that misregulation of auxin homeostasis may play a role in this  
276 alteration (Reintanz et al., 2001; Tantikanjana et al., 2001). However, a more recent  
277 report by Chen et al. (2012) found that IAA levels were unchanged or slightly reduced in  
278 *CYP79F1* RNAi lines.

279 To determine how *CYP79F1/CYP79F2* cosuppression impacts IAA biosynthesis,  
280 we quantified IAA content in wild-type, *ref2* and *F1*-cos/*ref2* plants. Despite  
281 accumulating significant levels of IAOx (Figure 1b), *ref2* plants were found to contain  
282 wild-type levels of IAA (Figure 6), an observation which explains why *ref2* mutants do  
283 not display a high auxin growth morphology. Similar to *ref2* plants, IAA content in the  
284 leaves of 3-week-old *F1*-cos/*ref2* lines was not different from that in wild type under our  
285 growth conditions (Figure 6). It is noteworthy that *ref5* contains increased auxin and  
286 displays high auxin morphology including hyponasty (curled-down) leaf morphology  
287 (Kim et al., 2015), but *F1*-cos/*ref5* showed curled-up leaf morphology (Figure 5a). It is

288 unlikely that the growth phenotype of our *F1-cos* line or of *cyp79f1* and *cyp79f2* mutants  
289 is the result of abnormal auxin metabolism.

290

291 **Methionine Feeding Phenocopies Growth Morphology of *F1-cos* Lines**

292 It was previously shown that methionine content is increased in some aliphatic  
293 glucosinolate-deficient mutants including *CYP79F1*-silenced plants (Sawada et al.,  
294 2009; Chen et al., 2012). Consistently, *F1-cos/ref2* contains increased methionine  
295 compared to *ref2* (Figure 7). Since *ref2* mutants downstream of *CYP79F1/F2* do not  
296 show the altered growth phenotypes observed in *cyp79f1/cyp79f2* mutants or *F1-cos*  
297 lines, we hypothesized that the accumulation of methionine or a methionine-derived  
298 metabolite (barring AAOx) might be responsible for the altered growth of our *F1-cos*  
299 lines and other *cyp79f1/cyp79f2* mutants.

300 To examine any impact of methionine accumulation on plants growth, wild type  
301 and *ref2* plants were grown on growth media with or without methionine. After three  
302 weeks, plants of both genetic backgrounds grown on plates supplemented with 300  $\mu$ M  
303 of methionine began displaying the cup-shaped leaf morphology associated with loss of  
304 *CYP79F1/CYP79F2* activity (Figure 8a, 8b). While control plants and methionine-treated  
305 plants accumulated similar levels of sinapoylmalate (Figure 8c), methionine-treated  
306 wild-type plants contained increased aliphatic glucosinolates, but not indole  
307 glucosinolates (Figure 8d-f). S-adenosyl methionine (SAM) is a methionine derivative  
308 and a precursor of both the plant hormone ethylene and polyamines (Figure 9). To  
309 determine if the accumulation of these metabolites causes the altered growth  
310 morphology, we fed three polyamines (putrescine, spermidine, and spermine) and the  
311 ethylene precursor ACC (1-aminocyclopropane-1-carboxylate) to wild type and *ref2*  
312 plants, but none of them phenocopied *F1-cos* lines (Figure S2).

313 Taken together, our results suggest that the accumulation of AAOx or its  
314 derivatives specifically affects phenylpropanoid metabolism partially through repression  
315 of PAL activity, while the accumulation of methionine or a non-aldoxime derivative  
316 exerts additional effects on plant growth that ultimately results in the curled-up leaf  
317 morphology and bushy phenotype.

318 **Discussion**

319 In this study, we identified a metabolic network whereby methionine and  
320 methionine-derived AAOx were shown to significantly impact phenylpropanoid  
321 production and overall plant growth (Figure 9). It was demonstrated previously that  
322 IAOx-mediated phenylpropanoid repression is the result of the accumulation of IAOx or  
323 its derivatives but not IAA or indolic glucosinolates (Kim et al., 2015). Partial restoration  
324 of sinapoylmalate content in *ref2* through blockage of IAOx production further confirms  
325 the repressive effect of IAOx on phenylpropanoid production (Figure 2). Similarly, the  
326 accumulation of AAOx represses phenylpropanoid production, as disruption of  
327 *CYP79F1/CYP79F2* increases levels of sinapoylmalate in both *ref2* and *ref5* (Figure 3,  
328 5). Apparently, phenylpropanoid repression in *ref2* and *ref5* appears to be a  
329 consequence of both IAOx and AAOx accumulation (Figure 2, 3, 5)(Kim et al., 2015). A  
330 recent work has shown that PAOx accumulation also represses phenylpropanoid  
331 production (Perez et al., 2021). Given the similar structures of IAOx and PAOx, their  
332 repressive effect is not surprising. Unlike IAOx and PAOx, though, AAOx refers to  
333 several aldoximes derived from various chain-elongated methionine derivatives  
334 including 5-methylthiopentanaldoxime, 6-methylthiohexanaldoxime, and 4-  
335 methylthiobutyraldoxime (Matsuo, 1968; Hansen et al., 2001; Tantikanjana et al., 2004).  
336 It remains unknown how these and other aldoximes aldoximes are sensed and how  
337 these signals are transduced to alter phenylpropanoid metabolism. Nevertheless, it  
338 seems that alternative aldoxime-derived compounds or perhaps aldoximes themselves  
339 serve as signals to alter phenylpropanoid production. Aliphatic glucosinolates make up  
340 a significant portion of the *Arabidopsis* glucosinolate profile in many tissues including  
341 inflorescences (Brown et al., 2003). Various aliphatic aldoximes derived from valine,  
342 isoleucine, and leucine are found widely in plants and their production increases under  
343 biotic stresses (Sørensen et al., 2018). Given that the altered AAOx production affects  
344 the phenylpropanoid pathway which produces an array of specialized metabolites,  
345 including lignin, a major sink of fixed carbon, this metabolic link may contribute to the  
346 allocation of available resources under stress.

347 The discovery of IAOx accumulation in *ref2* (Figure 1b, 1c) is surprising in and of  
348 itself as *ref2* does not accumulate IAA in the same way as removal of REF5 activity,

349 where IAOx accumulation results in increased IAA production (Delarue et al., 1998;  
350 Barlier et al., 2000; Bak and Feyereisen, 2001; Hoecker et al., 2004). Since *ref2*  
351 mutants contain higher levels of indolic glucosinolates compared to wild-type plants  
352 (Figure 2b) (Hemm et al., 2003), this IAOx accumulation is likely from increased flux  
353 towards indole glucosinolates in *ref2*. It remains unclear why the excess IAOx in *ref2*  
354 does not lead to increase IAA.

355 In terms of the unique growth morphology of *F1-cos* lines, several studies  
356 suggest that alterations in auxin and cytokinin homeostasis may be the causal agent as  
357 increased levels of IAA and cytokinins have been detected in *F1-cos* lines previously  
358 (Tantikanjana et al., 2001; Tantikanjana et al., 2004). On the other hand, Chen et al.  
359 (2012) demonstrated that free auxin was unchanged in *CYP79F1*-silenced plants, and a  
360 similar result was observed in this study (Figure 6). Discrepancy of auxin contents might  
361 be from sample variation or growth conditions, given pleotropic morphological changes  
362 in *CYP79F1-cos* lines. *Arabidopsis* plants having increased auxins such as YUC  
363 overexpression lines and *ref5* often display epinasty leaf morphology (curled-  
364 down)(Zhao et al., 2001; Kim et al., 2007; Kim et al., 2015). It is noteworthy that  
365 cosuppression of *F1/F2* reverses epinasty leaves of *ref5* to be curled-up (Figure 5a).  
366 Nonetheless, auxin is unlikely the main player in these developmental changes  
367 particularly the cup-shaped leaf morphology in *CYP79F1-cos* lines. We showed that an  
368 increase in methionine or methionine-derived metabolite(s) results in cup-shaped leaves  
369 in both the wild type and *ref2* genetic backgrounds (Figure 8), suggesting that the  
370 metabolite responsible for this morphology is upstream of or unrelated to aliphatic  
371 glucosinolate biosynthesis. Methionine is an essential amino acid that serves as a  
372 precursor of S-adenosyl-methionine, which serves as both a major methyl donor as well  
373 as an intermediate in the biosynthesis of the phytohormones ethylene and polyamines  
374 (Wang et al., 2002; Handa et al., 2018). It is therefore possible that elimination of AAOx  
375 production in *Arabidopsis* results in accumulation of methionine which in turn affects flux  
376 towards the biosynthesis of these methionine-derived metabolites. Although none of the  
377 plants grown on growth media supplemented with polyamines and the ethylene  
378 precursor ACC phenocopied *F1-cos* lines under our growth conditions (Figure S2),  
379 further study is necessary to rule out the effect of any hormonal interactions on the

380 characteristic growth alteration. It is also possible that the *F1-cos* growth phenotype  
381 may be more generally the result of misregulated amino acid metabolism, as it was  
382 recently shown that feeding of *Arabidopsis* with tyrosine causes cup-shaped leaf  
383 morphology (Yokoyama et al., 2021).

384 In summary, this study demonstrated that primary and specialized metabolism  
385 related to methionine can significantly impact plant growth in *Arabidopsis* through  
386 AAOx-mediated phenylpropanoid repression as well as through other processes or  
387 metabolites. While these results have currently only been uncovered in *Arabidopsis*,  
388 methionine and phenylpropanoid metabolism are universally distributed throughout the  
389 plant kingdom, and regulatory mechanisms governing activity or flux through these  
390 pathways are oftentimes conserved among many species. Additionally, aldoxime  
391 metabolism and particularly AAOx production is widespread throughout the plant  
392 kingdom, and recent findings demonstrating the conservation of other aspects of  
393 aldoxime metabolism such as auxin production outside of the Brassicales family (Perez  
394 et al., 2021; Perez et al., 2022) hint at the conservation of these alternative outcomes of  
395 aldoxime metabolism in many plant species. Ultimately, these results suggest an  
396 interconnection between methionine metabolism, specialized metabolism, and plant  
397 growth which allows plants to integrate fine details of numerous metabolic pathways into  
398 their growth and developmental programs.

399

#### 400 **Experimental Procedures**

##### 401 **Growth Conditions and Genetic Material**

402 *Arabidopsis thaliana* Col-0 was used as wild-type plants. Plants were grown at  
403 22°C ± 1°C with 16-h light/8-h dark photoperiod with fluorescent lighting intensity of 140  
404 µE m<sup>-2</sup> s<sup>-1</sup>. For seedlings grown on Murashige and Skoog (MS) growth medium plates,  
405 seeds were sterilized with 20% (v/v) bleach containing 0.005% triton X-100 (Sigma-  
406 Aldrich, MO) for 10 min. After being washed with water four times, the seeds were cold  
407 treated at 4°C for three days before being planted on MS media containing 2% sucrose  
408 and 0.7% agar with or without supplementation of 300 µM methionine. For soil-grown  
409 plants, seeds were directly planted on soil after three days of cold treatment at 4°C. The  
410 *ref2* (*ref2-1*), *ref5* (*ref5-1*), and *cyp79b2 cyp79b3* (*b2b3*) mutants were genotyped

411 following previously defined methods (Zhao et al., 2002; Hemm et al., 2003; Kim et al.,  
412 2015). The *b2b3ref2* triple mutant was generated by crossing *b2b3* and *ref2* plants and  
413 genotyping of the F2 progeny was done by following published methods (Zhao et al.,  
414 2002; Hemm et al., 2003).

415

#### 416 **Plasmid Construction and Transgenic Plant Generation**

417 To generate the *Arabidopsis CYP79F1* overexpression construct, the open  
418 reading frame of *CYP79F1* with attB sequence was synthesized from GenScript  
419 (Piscataway, NJ, USA). The synthesized DNA fragment was cloned into Gateway entry  
420 vector pCC1155 by BP cloning and subsequently recombined with the destination  
421 vector pCC0995 by LR cloning, generating the 35S:*CYP79F1* construct. The  
422 35S:*CYP79F1* construct was confirmed by sequencing and was introduced into  
423 *Agrobacterium tumefaciens* (GV3101). The construct was introduced into *Arabidopsis*  
424 wild type or *ref2* plants via *A. tumefaciens*-mediated floral dipping method showed in  
425 Zhang et al. (2020). More than ten T1 plants were screened by application of 0.2%  
426 Basta (Rely 280, BASF, NJ).

427

#### 428 **IAA and IAOx Purification and Quantification**

429 IAA and IAOx purification from two-week old whole aerial parts were performed  
430 using methods described previously in Perez et al. (2021). Samples were resuspended  
431 in water and analyzed using methods and machinery described previously (Perez et al.,  
432 2021). MRM parameters of the standards (precursor m/z, fragment m/z, radio frequency  
433 (RF) lens, and collision energy) of each compound was optimized on the machine using  
434 direct infusion of the authentic standards. IAA and [<sup>13</sup>C<sub>6</sub>]-IAA were purchased from  
435 Cambridge Isotope Laboratories, and IAOx was synthesized as described previously in  
436 Perez et al. (2021). For IAA and IAOx quantification, the mass spectrometer was  
437 operated in positive ionization mode at ion spray voltage 4800V. Formic acid (0.1%) in  
438 water and 100% acetonitrile were employed as mobile phases A and B respectively with  
439 a gradient program (0-95% solvent B over 4 min) at a flow rate of 0.4 mL/min. The  
440 sheath gas, aux gas, and sweep gas were set at 50, 9, and 1 (arb unit), respectively.  
441 Ion transfer tube and vaporizer temperatures were set at 325°C and 350°C,

442 respectively. For MRM monitoring, both Q1 and Q3 resolutions were set at 0.7 FWHM  
443 with CID gas at 1.5 mTorr. The scan cycle time was 0.8 s. MRM for IAA and IAOx was  
444 used to monitor parent ion→ product ion reactions for each analyte as follows: m/z  
445 175.983 → 130.071 (CE, 18V) for IAA; m/z 182.091→ 136 (CE, 18V) for [<sup>13</sup>C<sub>6</sub>]-IAA; m/z  
446 175.087→ 158 (CE, 16V) for IAOx. IAA and IAOx quantifications were conducted with  
447 four biological replicates for controls and mutants and five individual T1 plants for *F1*-  
448 cos lines.

449

#### 450 **HPLC Analysis of Soluble Metabolites**

451 Soluble metabolites were extracted from *Arabidopsis* samples using 50%  
452 methanol (v/v) incubated at 65 °C for 1 hour, with a tissue concentration of 200 mg/mL.  
453 Samples were centrifuged at 10,000 g for 10 min, and the supernatant was collected.  
454 The High-performance liquid chromatography (HPLC) analysis of metabolites was  
455 performed using an UltiMate 3000 HPLC system (ThermoFisher Scientific, MA). The  
456 system was equipped with an autosampler that was cooled to 10 °C and a diode array  
457 detector (DAD). Two columns and running methods were used to analyze different  
458 metabolites as per the specific requirements of each compound. To detect  
459 sinapoylmalate and intact indole-3-methyl glucosinolate (I3M) contents, an AcclaimTM  
460 RSLC120 C18 column (100 mm x 3 mm, 2.2 µm) (ThermoFisher Scientific, MA) was  
461 used in conjunction with mobile phases consisting of solvent A (0.1% formic acid (v/v) in  
462 water) and solvent B (100% acetonitrile) with a linear gradient of 14–18% solvent B for  
463 10 minutes. The flow rate was set at 0.5 mL/min, and the column temperature was  
464 maintained at 40 °C. For desulfoglucosinolate quantification, samples were extracted  
465 with 50% methanol containing 250 µM sinigrin (internal standard). 100 µL of the extract  
466 was incubated with 200 µL of QAE Sephadex solution (Sigma-Aldrich, MO) for 5  
467 minutes at room temperature. Then, the beads were washed twice with 50% methanol  
468 and twice with autoclaved MilliQ water. After the final wash, 100 µL of MilliQ water  
469 containing sulfatase (Sigma-Aldrich, MO) were added to the samples, which were then  
470 incubated at 37 °C for 6 hours. 10 µL of desulfied samples were analyzed using the  
471 HPLC equipped with an AcclaimTM 120 C18 column (150 mm x 4.6 mm, 5 µm)  
472 (ThermoFisher Scientific, MA). Metabolites were separated by utilizing a mobile phase

473 composed of solvent A (water) and solvent B (100% acetonitrile), and a linear gradient  
474 program of solvent B 2-12% over 10 minutes, 12-15% over 15 minutes, 15-25% over  
475 17.5 minutes, and 95% for 2 minutes. The flow rate was set at 1 mL/min, and the  
476 column temperature was maintained at 40 °C. The content of sinapoylmalate was  
477 quantified by measuring the peak area at 328 nm and comparing it to that of sinapic  
478 acid (Sigma-Aldrich, MO) equivalents. The content of desulfo-glucosinolates was  
479 quantified using the peak area at 220 nm and response factors (Brown et al., 2003).

480

#### 481 **Gene Expression Analysis**

482 Total RNA was extracted from young rosette leaves and inflorescence stem of  
483 four-week-old plants using the TRIzol method as per the manufacturer's protocol  
484 (ThermoFisher Scientific, MA). Two µg of total RNA were subjected to reverse  
485 transcription using the High-Capacity cDNA Reverse Transcription Kit (ThermoFisher  
486 Scientific, MA) with oligo(dT) at 65°C for 2 hr. PCR was performed as described  
487 previously (Hansen et al., 2001, Chen et al., 2003). The following specific conditions  
488 were used: *CYP79F1* experiment performed with 53 °C and 35 cycles, *CYP79F2*  
489 experiment performed with 53 °C and 40 cycles, and *TUB3* experiment performed with  
490 55 °C and 35 cycles. The sequences of the primers are included in Table S1. The PCR  
491 products were analyzed by agarose gel electrophoresis.

492

#### 493 **PAL Activity Test**

494 The PAL activity was measured using the protocol outlined in Kim et al., (2015)  
495 with certain modifications. Crude proteins were extracted from the frozen 5<sup>th</sup> to 7<sup>th</sup> true  
496 leaves of four-week-old *Arabidopsis* plants by grinding them completely using a  
497 Benchmark BeadBlaster 24 homogenizer (Benchmark Scientific, NJ) and then mixing  
498 the powder with an extraction buffer (0.1 M Tris-HCl (pH 8.3), 10% glycerol, and 5 mM  
499 DTT). Crude protein concentration was determined using the Bradford Reagent (Sigma-  
500 Aldrich, MO), following manufacturer's instructions. The enzyme reaction of PAL was  
501 started by adding 150 µL of crude protein to 400 µL of reaction buffer containing 5 mM  
502 phenylalanine. The reaction mixture was then incubated at 37 °C for 90 minutes. The  
503 reaction was terminated by adding 40 µL of 30% (v/v) acetic acid. The reaction products

504 were extracted with 600  $\mu$ L of ethyl acetate, followed by evaporation of the extracts  
505 using an Eppendorf Vacufuge Plus (Eppendorf, Hamburg, Germany). The dried extract  
506 was then redissolved in 100  $\mu$ L of 50% methanol and 10  $\mu$ L of extract was analyzed  
507 using the HPLC with a linear gradient of solvent B 12–30% for 2.6 minutes, 30–95% for  
508 4 minutes, and 95% for 3 minutes. The flow rate was set at 0.7 mL/min, and the column  
509 temperature was maintained at 40 °C. The content of *trans*-cinnamic acid, the reaction  
510 product, was quantified by measuring the peak area at 270 nm and comparing it to that  
511 of authentic standard *trans*-cinnamic acid (Sigma-Aldrich, MO). PAL activity assays  
512 were performed with four biological replicates for *ref2*, *F1-OX/ref2*, and *F1-cos/ref2*, and  
513 two biological replicates for wild type. The statistical significance of the results was  
514 tested by one-way ANOVA.

515

#### 516 **Methionine extraction and detection**

517 Whole aerial parts of 3-week-old plants were used for methionine quantification  
518 using the extraction method slightly modified from the previously described method  
519 (Cao et al., 2019). The plant materials were extracted with the extraction buffer  
520 containing 2  $\mu$ M labeled Met (13C, 15N, Cambridge Isotope Laboratories), 10  $\mu$ M DL-  
521 dithiothreitol (DTT, Gold Biotechnology), and 10 mM perfluoroheptanoic acid (PFHA,  
522 Sigma-Aldrich) at 90°C for 10 min at a tissue concentration of 100 mg/mL. Then, the  
523 extracts were centrifuged at 13,000 g at 4°C for 10 min. 100  $\mu$ L of extracts were filtered  
524 on polytetrafluoroethylene (PTFE) filter (Millipore) and the final elutes were fully dried in  
525 the vacuo and stored at –20°C until further analysis. All samples were resuspended in  
526 500  $\mu$ L of water.

527 The compounds were analyzed using the triple quadrupole TSQ Altis mass  
528 spectrometers (Thermo Fisher Scientific, San Jose, CA, USA) coupled with the  
529 Vanquish Horizon UHPLC (Thermo Fisher Scientific). The TSQ Altis was housed with a  
530 heated-electrospray ionization (HESI) source using the following source settings with  
531 sheath gas flow with 50 Arb, auxiliary gas flow with 10 Arb, sweep gas flow with 1 Arb,  
532 ion transfer tube temperature at 325 °C, and vaporizer temperature at 350 °C. The  
533 spray voltage was 4.0 kV under the positive polarity. A scan time was set at 1 sec and  
534 the Q1 and Q3 resolutions of full width at half maximum (FWHM) were both 0.7. For the

535 CID gas pressure, 1.5 mTorr was used. To determine the optimal fragments and  
536 collision energies (CE) for MRM transitions, we utilized the Xcalibur 4.1 software from  
537 Thermo Fisher Scientific for optimization. The selected fragment ions of the methionine  
538 precursor ion (150 m/z) were observed at 56, 104, and 132.917 m/z, with collision  
539 energies set at 19, 12, and 11 V, respectively. The corresponding fragment ions of the  
540 isotopically labeled form for L-methionine-13C5,15N (156 m/z) were detected at 60,  
541 109, and 138 m/z with the collision energies set at 20, 13, and 11 V, respectively. The  
542 optimal quantification optimization method of methionine was best achieved using the  
543 fragment ion at 132.917 m/z, while for 13C5 methionine, the optimal fragment ion was  
544 also observed at 138 m/z. The compounds were separated using Atlantis T3 3  $\mu$ m, 2.1  
545 mm X 100 mm (P/N 186003718; Waters, Milford, MA, USA). To accomplish LC  
546 separation, a Vanquish UHPLC system was set for the column compartment  
547 temperature at 40 °C, and the flow rate was set to 125  $\mu$ L/min. The mobile phases  
548 consisted of the mobile phase A (99.9% water (v/v), and 0.1% formic acid (v/v)) and the  
549 mobile phase B (99.9% acetonitrile (v/v), and 0.1% formic acid (v/v)). The following  
550 linear gradient was applied from 0% to 10% solvent B in 3.6 min, ramping up to 80% in  
551 4 min, holding 80 % solvent B in 1 min, and ramping down 0% solvent B in 0.2 min, and  
552 staying 0% solvent B for 7 min as a re-equilibration. The samples were kept at 6 °C in  
553 the autosampler. The injection volume was 1  $\mu$ L.

554 Xcalibur 4.1 software (Thermo Fisher Scientific) was used to determine the  
555 compounds and processed the quantification using the Quant Brower. To obtain the  
556 absolute expression value of the metabolite, the peak area of the compound is  
557 normalized by the initial amount of sample and the input amount of the isotopic  
558 methionine. This normalized peak area is then compared to the standard curve of the  
559 metabolite standards, allowing for the determination of its quantitative value.

560  
561

562 **Accession Numbers**

563 *CYP79F1* (At1g16410)

564 *CYP79F2* (At1g16400)

565 *CYP79B2* (At4g39950)

566 *CYP79B3* (At2g22330)

567 *CYP83A1/REF2* (At4g13770)

568 *CYP83B1/REF5* (At4g31500)

569 **Author Contributions**

570 D.S., V.C.P, and J.K. designed the research project; G.K.D., D.S., V.C.P, R.D., H.Z.,  
571 N.Z., J.K., and K.H.C. performed the experiments; B.T. and A.G. synthesized  
572 aldoximes; and analyzed the data; D.S., V.C.P., and J.K. wrote the manuscript. All  
573 authors read and agreed with the manuscript.

574

575 **Acknowledgments**

576 This work was supported by National Science Foundation CAREER Grant (IOS-  
577 2142898), and a startup fund from the Horticultural Sciences Department and Institute  
578 of Food and Agricultural Sciences at the University of Florida to J.K. National Institutes  
579 of Health (NIH)- 5R35GM137893-03 to AG.

580 **Conflict of Interest**

581 The authors declare no conflict of interest.

582

583

584

585 **The List of Supporting Information.**

586 **Figure S1.** Expression of *CYP79F1* and *CYP79F2* in wild type, *ref2*, *F1-cos* plants and  
587 non-bushy *CYP79F1* overexpression plants in the wild-type and *ref2* genetic  
588 backgrounds.

589

590

591 **Figure S2.** Polyamine and ACC treatment did not phenocopy morphology of *F1-cos*  
592 lines.

593

594 **Table S1.** List of primers

595 **References**

596 **Bak S, Feyereisen R** (2001) The Involvement of Two P450 Enzymes, CYP83B1 and  
597 CYP83A1, in Auxin Homeostasis and Glucosinolate Biosynthesis. *Plant Physiology* **127**:  
598 108–118

599 **Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G,**  
600 **Bellini C** (2000) The SUR2 gene of *Arabidopsis thaliana* encodes the cytochrome P450  
601 CYP83B1, a modulator of auxin homeostasis. *PNAS* **97**: 14819–14824

602 **Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, Agerbirk N** (2020)  
603 Glucosinolate structural diversity, identification, chemical synthesis and metabolism in  
604 plants. *Phytochemistry* **169**: 112100

605 **Bonawitz ND, Chapple C** (2010) The Genetics of Lignin Biosynthesis: Connecting Genotype to  
606 Phenotype. *Annu Rev Genet* **44**: 337–363

607 **Brader G, Mikkelsen MD, Halkier BA, Tapiro Palva E** (2006) Altering glucosinolate profiles  
608 modulates disease resistance in plants. *The Plant Journal* **46**: 758–767

609 **Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J** (2003) Variation of glucosinolate  
610 accumulation among different organs and developmental stages of *Arabidopsis thaliana*.  
611 *Phytochemistry* **62**: 471–481

612 **Cao P, Kim S-J, Xing A, Schenck CA, Liu L, Jiang N, Wang J, Last RL, Brandizzi F** (2019)  
613 Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling  
614 in *Arabidopsis*. *eLife* **8**: e50747

615 **Chen S, Glawischnig E, Jørgensen K, Naur P, Jørgensen B, Olsen C-E, Hansen CH,**  
616 **Rasmussen H, Pickett JA, Halkier BA** (2003) CYP79F1 and CYP79F2 have distinct  
617 functions in the biosynthesis of aliphatic glucosinolates in *Arabidopsis*. *The Plant Journal*  
618 **33**: 923–937

619 **Chen Y, Pang Q-Y, He Y, Zhu N, Branstrom I, Yan X-F, Chen S** (2012) Proteomics and  
620 Metabolomics of *Arabidopsis* Responses to Perturbation of Glucosinolate Biosynthesis.  
621 *Molecular Plant* **5**: 1138–1150

622 **Chong J, Poutaraud A, Hugueney P** (2009) Metabolism and roles of stilbenes in plants. *Plant*  
623 *Science* **177**: 143–155

624 **Delarue M, Prinsen E, Va H, Onckelen, Caboche M, Bellini C** (1998) Sur2 mutations of  
625 *Arabidopsis thaliana* define a new locus involved in the control of auxin homeostasis.  
626 *The Plant Journal* **14**: 603–611

627 **Dhandapani S, Jin J, Sridhar V, Chua N-H, Jang I-C** (2019) CYP79D73 Participates in  
628 Biosynthesis of Floral Scent Compound 2-Phenylethanol in *Plumeria rubra*. *Plant*  
629 *Physiology* **180**: 171–184

630 **Dong N-Q, Lin H-X** (2021) Contribution of phenylpropanoid metabolism to plant development  
631 and plant–environment interactions. *Journal of integrative plant biology* **63**: 180–209

632 **Glawischnig E, Hansen BG, Olsen CE, Halkier BA** (2004) Camalexin is synthesized from  
633 indole-3-acetaldoxime, a key branching point between primary and secondary  
634 metabolism in *Arabidopsis*. *Proceedings of the National Academy of Sciences* **101**:  
635 8245–8250

636 **Guo L, Yang R, Gu Z** (2016) Cloning of genes related to aliphatic glucosinolate metabolism  
637 and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid  
638 treatment: Sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment.  
639 *J Sci Food Agric* **96**: 4329–4336

640 **Halkier BA, Gershenzon J** (2006) Biology and Biochemistry of Glucosinolates. *Annu Rev*  
641 *Plant Biol* **57**: 303–333

642 **Handa AK, Fatima T, Mattoo AK** (2018) Polyamines: Bio-Molecules with Diverse Functions  
643 in Plant and Human Health and Disease. *Frontiers in Chemistry* **6**:

644 **Hansen CC, Sørensen M, Veiga TAM, Zibrandtsen JFS, Heskes AM, Olsen CE, Boughton**

645 **BA, Møller BL, Neilson EHJ** (2018) Reconfigured Cyanogenic Glucoside Biosynthesis  
646 in *Eucalyptus cladocalyx* Involves a Cytochrome P450 CYP706C55. *Plant Physiol* **178**:  
647 1081–1095

648 **Hansen CH, Wittstock U, Olsen CE, Hick AJ, Pickett JA, Halkier BA** (2001) Cytochrome  
649 P450 CYP79F1 from *Arabidopsis* Catalyzes the Conversion of Dihomomethionine and  
650 Trihomomethionine to the Corresponding Aldoximes in the Biosynthesis of Aliphatic  
651 Glucosinolates. *J Biol Chem* **276**: 11078–11085

652 **Harun S, Abdullah-Zawawi M-R, Goh H-H, Mohamed-Hussein Z-A** (2020) A  
653 Comprehensive Gene Inventory for Glucosinolate Biosynthetic Pathway in *Arabidopsis*  
654 *thaliana*. *J Agric Food Chem* **68**: 7281–7297

655 **Hemm MR, Ruegger MO, Chapple C** (2003) The *Arabidopsis* ref2 Mutant Is Defective in the  
656 Gene Encoding CYP83A1 and Shows Both Phenylpropanoid and Glucosinolate  
657 Phenotypes. *Plant Cell* **15**: 179–194

658 **Hoecker U, Toledo-Ortiz G, Bender J, Quail PH** (2004) The photomorphogenesis-related  
659 mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome  
660 P450 required for normal auxin homeostasis. *Planta* **219**: 195–200

661 **Hull AK, Vij R, Celenza JL** (2000) *Arabidopsis* cytochrome P450s that catalyze the first step of  
662 tryptophan-dependent indole-3-acetic acid biosynthesis. *Proc Natl Acad Sci USA* **97**:  
663 2379–2384

664 **Kim JI, Dolan WL, Anderson NA, Chapple C** (2015) Indole Glucosinolate Biosynthesis  
665 Limits Phenylpropanoid Accumulation in *Arabidopsis thaliana*. *Plant Cell* **27**: 1529–1546

666 **Kim JI, Sharkhuu A, Jin JB, Li P, Jeong JC, Baek D, Lee SY, Blakeslee JJ, Murphy AS,**  
667 **Bohnert HJ, et al** (2007) *yucca6*, a Dominant Mutation in *Arabidopsis*, Affects Auxin  
668 Accumulation and Auxin-Related Phenotypes. *Plant Physiology* **145**: 722–735

669 **Kim JI, Zhang X, Pascuzzi PE, Liu C, Chapple C** (2020) Glucosinolate and phenylpropanoid  
670 biosynthesis are linked by proteasome-dependent degradation of PAL. *New Phytologist*  
671 **225**: 154–168

672 **Klepikova AV, Kasianov AS, Gerasimov ES, Logacheva MD, Penin AA** (2016) A high  
673 resolution map of the *Arabidopsis thaliana* developmental transcriptome based on RNA-  
674 seq profiling. *The Plant Journal* **88**: 1058–1070

675 **Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenson J, Mitchell-  
676 Olds T** (2001) Genetic Control of Natural Variation in *Arabidopsis* Glucosinolate  
677 Accumulation. *Plant Physiology* **126**: 811–825

678 **Lai D, Maimann AB, Macea E, Ocampo CH, Cardona G, Pičmanová M, Darbani B, Olsen  
679 CE, Debouck D, Raatz B, et al** (2020) Biosynthesis of cyanogenic glucosides in  
680 *Phaseolus lunatus* and the evolution of oxime-based defenses. *Plant Direct* **4**: e00244

681 **Liao Y, Zeng L, Tan H, Cheng S, Dong F, Yang Z** (2020) Biochemical Pathway of Benzyl  
682 Nitrile Derived from l-Phenylalanine in Tea (*Camellia sinensis*) and Its Formation in  
683 Response to Postharvest Stresses. *J Agric Food Chem* **68**: 1397–1404

684 **Luck K, Jirschitzka J, Irmisch S, Huber M, Gershenson J, Köllner TG** (2016) CYP79D  
685 enzymes contribute to jasmonic acid-induced formation of aldoximes and other  
686 nitrogenous volatiles in two *Erythroxylum* species. *BMC Plant Biology* **16**: 215

687 **Luu VT, Weinhold A, Ullah C, Dressel S, Schoettner M, Gase K, Gaquerel E, Xu S,  
688 Baldwin IT** (2017) *O*-Acyl Sugars Protect a Wild Tobacco from Both Native Fungal  
689 Pathogens and a Specialist Herbivore. *Plant Physiol* **174**: 370–386

690 **Matsuo M** (1968) Biosynthesis of sinigrin VII. Incorporation of 4-methylthiobutyryraldoxime-1-  
691 14C, 15N into sinigrin. *Tetrahedron Letters* **9**: 1034–1039

692 **Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA** (2000) Cytochrome P450 CYP79B2  
693 from *Arabidopsis* Catalyzes the Conversion of Tryptophan to Indole-3-acetaldoxime, a  
694 Precursor of Indole Glucosinolates and Indole-3-acetic Acid. *J Biol Chem* **275**: 33712–  
695 33717

696 **Mikkelsen MD, Naur P, Halkier BA** (2004) *Arabidopsis* mutants in the C–S lyase of  
697 glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin  
698 homeostasis. *The Plant Journal* **37**: 770–777

699 **Mostafa I, Zhu N, Yoo M-J, Balmant KM, Misra BB, Dufresne C, Abou-Hashem M, Chen  
700 S, El-Domiati M** (2016) New nodes and edges in the glucosinolate molecular network  
701 revealed by proteomics and metabolomics of *Arabidopsis* *myb28/29* and *cyp79B2/B3*  
702 glucosinolate mutants. *J Proteomics* **138**: 1–19

703 **Muro-Villanueva F, Mao X, Chapple C** (2019) Linking phenylpropanoid metabolism, lignin  
704 deposition, and plant growth inhibition. *Current Opinion in Biotechnology* **56**: 202–208

705 **Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA** (2003)  
706 CYP83A1 and CYP83B1, Two Nonredundant Cytochrome P450 Enzymes Metabolizing  
707 Oximes in the Biosynthesis of Glucosinolates in *Arabidopsis*. *Plant Physiology* **133**: 63–  
708 72

709 **Nintemann SJ, Vik D, Svozil J, Bak M, Baerenfaller K, Burow M, Halkier BA** (2017)  
710 Unravelling Protein-Protein Interaction Networks Linked to Aliphatic and Indole  
711 Glucosinolate Biosynthetic Pathways in *Arabidopsis*. *Front Plant Sci* **8**: 2028

712 **Pascual MB, El-Azaz J, de la Torre FN, Cañas RA, Avila C, Cánovas FM** (2016)  
713 Biosynthesis and Metabolic Fate of Phenylalanine in Conifers. *Frontiers in Plant Science*  
714 7:

715 **Perez VC, Dai R, Bai B, Tomiczek B, Askey BC, Zhang Y, Rubin GM, Ding Y, Grenning  
716 A, Block AK, et al** (2021) Aldoximes are precursors of auxins in *Arabidopsis* and maize.  
717 *New Phytologist* **231**: 1449–1461

718 **Perez VC, Dai R, Tomiczek B, Mendoza J, Wolf ESA, Grenning A, Vermerris W, Block  
719 AK, Kim J** (2022) Metabolic link between auxin production and specialized metabolites  
720 in *Sorghum bicolor*. *Journal of Experimental Botany* **erac421**

721 **Pourcel L, Routaboul J, Cheynier V, Lepiniec L, Debeaujon I** (2007) Flavonoid oxidation in  
722 plants: from biochemical properties to physiological functions. *Trends in Plant Science*  
723 **12**: 29–36

724 **Reintanz B, Lehnert M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M,  
725 Uhl R, Palme K** (2001) bus, a Bushy *Arabidopsis* CYP79F1 Knockout Mutant with  
726 Abolished Synthesis of Short-Chain Aliphatic Glucosinolates. *The Plant Cell* **13**: 351–  
727 367

728 **Sawada Y, Akiyama K, Sakata A, Kuwahara A, Otsuki H, Sakurai T, Saito K, Hirai MY**  
729 (2009) Widely Targeted Metabolomics Based on Large-Scale MS/MS Data for  
730 Elucidating Metabolite Accumulation Patterns in Plants. *Plant and Cell Physiology* **50**:  
731 37–47

732 **Sørensen M, Neilson EHJ, Møller BL** (2018) Oximes: Unrecognized Chameleons in General  
733 and Specialized Plant Metabolism. *Molecular Plant* **11**: 95–117

734 **Sugiyama R, Hirai MY** (2019) Atypical Myrosinase as a Mediator of Glucosinolate Functions  
735 in Plants. *Frontiers in Plant Science* **10**:

736 **Tantikanjana T, Mikkelsen MD, Hussain M, Halkier BA, Sundaresan V** (2004) Functional  
737 Analysis of the Tandem-Duplicated P450 Genes *SPS/BUS/CYP79F1* and *CYP79F2* in  
738 Glucosinolate Biosynthesis and Plant Development by *Ds* Transposition-Generated  
739 Double Mutants. *Plant Physiology* **135**: 840–848

740 **Tantikanjana T, Yong JWH, Letham DS, Griffith M, Hussain M, Ljung K, Sandberg G, Sundaresan V** (2001) Control of axillary bud initiation and shoot architecture in  
741 Arabidopsis through the SUPERSHOOT gene. *Genes Dev* **15**: 1577–1588

742

743 **Thodberg S, Del Cueto J, Mazzeo R, Pavan S, Lotti C, Dicenta F, Jakobsen Neilson EH, Møller BL, Sánchez-Pérez R** (2018) Elucidation of the Amygdalin Pathway Reveals the  
744 Metabolic Basis of Bitter and Sweet Almonds (*Prunus dulcis*). *Plant Physiol* **178**: 1096–  
745 1111

746

747 **Thodberg S, Sørensen M, Bellucci M, Crocoll C, Bendtsen AK, Nelson DR, Motawia MS, Møller BL, Neilson EHJ** (2020) A flavin-dependent monooxygenase catalyzes the initial  
748 step in cyanogenic glycoside synthesis in ferns. *Commun Biol* **3**: 507

749

750 **Wang C, Dissing MM, Agerbirk N, Crocoll C, Halkier BA** (2020) Characterization of  
751 Arabidopsis CYP79C1 and CYP79C2 by Glucosinolate Pathway Engineering in  
752 *Nicotiana benthamiana* Shows Substrate Specificity Toward a Range of Aliphatic and  
753 Aromatic Amino Acids. *Frontiers in Plant Science* **11**:  
754 <https://doi.org/10.3389/fpls.2020.00057>

755 **Wang KL-C, Li H, Ecker JR** (2002) Ethylene Biosynthesis and Signaling Networks. *Plant Cell*  
756 **14**: s131–s151

757 **Wittstock U, Halkier BA** (2000) Cytochrome P450 CYP79A2 from *Arabidopsis thaliana* L.  
758 Catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of  
759 benzylglucosinolate. *J Biol Chem* **275**: 14659–14666

760 **Xu L, Yang H, Ren L, Chen W, Liu L, Liu F, Zeng L, Yan R, Chen K, Fang X** (2018)  
761 Jasmonic Acid-Mediated Aliphatic Glucosinolate Metabolism Is Involved in Clubroot  
762 Disease Development in *Brassica napus* L. *Front Plant Sci* **9**: 750

763 **Yamaguchi T, Matsui Y, Kitaoka N, Kuwahara Y, Asano Y, Matsuura H, Sunohara Y, Matsumoto H** (2021) A promiscuous fatty acid  $\omega$ -hydroxylase CYP94A90 is likely to be  
764 involved in biosynthesis of a floral nitro compound in loquat (*Eriobotrya japonica*). *New*  
765 *Phytologist*. doi: 10.1111/nph.17441

766

767 **Yamaguchi T, Noge K, Asano Y** (2016) Cytochrome P450 CYP71AT96 catalyses the final step  
768 of herbivore-induced phenylacetonitrile biosynthesis in the giant knotweed, *Fallopia*  
769 *sachalinensis*. *Plant Mol Biol* **91**: 229–239

770 **Yang L, Zhang Y, Guan R, Li S, Xu X, Zhang S, Xu J** (2020) Co-regulation of indole  
771 glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling  
772 pathways. *J Integr Plant Biol* **62**: 1780–1796

773 **Yokoyama R, de Oliveira MVV, Kleven B, Maeda HA** (2021) The entry reaction of the plant  
774 shikimate pathway is subjected to highly complex metabolite-mediated regulation. *The*  
775 *Plant Cell* **33**: 671–696

776 **Yu S, Kim H, Yun D-J, Suh MC, Lee B** (2019) Post-translational and transcriptional regulation  
777 of phenylpropanoid biosynthesis pathway by Kelch repeat F-box protein SAGL1. *Plant*  
778 *Mol Biol* **99**: 135–148

779 **Zhang D, Song YH, Dai R, Lee TG, Kim J** (2020) Aldoxime Metabolism Is Linked to  
780 Phenylpropanoid Production in *Camelina sativa*. *Front Plant Sci* **11**:  
781 10.3389/fpls.2020.00017

782 **Zhang X, Gou M, Liu C-J** (2013) *Arabidopsis* Kelch Repeat F-Box Proteins Regulate  
783 Phenylpropanoid Biosynthesis via Controlling the Turnover of Phenylalanine Ammonia-  
784 Lyase. *The Plant Cell* **25**: 4994–5010

785 **Zhang X, Liu C-J** (2015) Multifaceted regulations of gateway enzyme phenylalanine ammonia-  
786 lyase in the biosynthesis of phenylpropanoids. *Molecular plant* **8**: 17–27

787 **Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J**  
788 (2001) A Role for Flavin Monooxygenase-Like Enzymes in Auxin Biosynthesis. *Science*  
789 **291**: 306–309

790 **Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza**  
791 **JL** (2002) Trp-dependent auxin biosynthesis in *Arabidopsis*: involvement of cytochrome  
792 P450s CYP79B2 and CYP79B3. *Genes Dev* **16**: 3100–3112

793

794

795

796 **Figure Legends**

797 **Figure 1. A metabolic link between aldoxime metabolism and the**  
798 **phenylpropanoid pathway in *Arabidopsis*.** (a) A schematic diagram of a metabolic  
799 link between the phenylpropanoid pathway and glucosinolate production in *Arabidopsis*  
800 *thaliana*. It was previously shown that the accumulation of indole 3-acetaldoxime (IAOx),  
801 an indole glucosinolate intermediate, represses the phenylpropanoid pathway. The  
802 impact of aliphatic aldoximes (AAOx) on the phenylpropanoid pathway remains  
803 unknown. Although REF2 and REF5 function redundantly to metabolize all aldoximes,  
804 REF2 is the preferred enzyme for converting AAOx. (b) IAOx content in leaves of two-  
805 week-old wild type and *ref2*. Data represents mean  $\pm$  SD (n=4). The individual data  
806 points are shown on the bar graphs. The means were compared by Student's t-test and  
807 statistically significant differences ( $P<0.05$ ) are indicated by an asterisk (\*). (c) LC-MS  
808 chromatograms show accumulation of IAOx in *ref2*. *E*-IAOx and *Z*-IAOx standards  
809 (bottom) and extracts from wild type (top) and *ref2* (middle) are shown.

810

811 **Figure 2. Elimination of IAOx biosynthesis partially rescues phenylpropanoid**  
812 **production in *ref2*.** (a) Representative images of three-week-old wild type (WT), *b2b3*  
813 (*cyp79b2 cyp79b3*) double mutant, *ref2*, and *b2b3ref2* (*cyp79b2 cyp79b3 ref2*) triple  
814 mutant. (b-e) The levels of indole-3-acetaldoxime (IAOx) (b), desulfo-I3M (c), desulfo-4-  
815 methylsulfinylbutyl glucosinolate (4MSOB) (d), and sinapoylmalate (e) were measured  
816 from the leaves of three-week-old wild type, *b2b3*, *ref2*, and *b2b3ref2* plants. The box  
817 represents the interquartile range, spanning from the first quartile to the third quartile,  
818 with the median depicted by a line within the box. Whiskers extend to the minimum and  
819 maximum values. The individual data points are displayed on the bar graphs. Student's  
820 t-test was used to compare the means of IAOx and I3M, and statistically significant  
821 differences ( $P<0.05$ ) are denoted by an asterisk (\*) (n=3 for IAOx, n=4 for I3M). The  
822 statistical significance of 4MSOB and sinapoylmalate contents was determined using a  
823 one-way ANOVA, with a significance level set at  $P<0.05$ . Differences among groups  
824 were further analyzed using Tukey's post-hoc test, and significant differences (n=4) are  
825 indicated by letters. 'n.d.' is not detected.

826

827 **Figure 3. CYP79F1-cosuppression restores phenylpropanoid contents in ref2.** (a)  
828 Representative images of three-week-old and six-week-old plants. *F1-cos* lines exhibit  
829 distinctive morphological phenotypes such as curled-up leaves and “bushy”-like stems.  
830 (b-f) The levels of desulfo-4-methylsulfinylbutyl glucosinolate (4MSOB) (b), desulfo-8-  
831 methylsulfinyloctyl glucosinolate (8MSOO) (c), desulfo-I3M (d), indole-3-acetaldoxime  
832 (IAOx) (e) and sinapoylmalate (f) of wild type, *F1-cos*-suppression lines in four-week-old  
833 wild type (*F1-cos/WT*), *ref2*, and *F1-cos* lines in *ref2* (*F1-cos/ref2*). The box represents  
834 the interquartile range, spanning from the first quartile to the third quartile, with the  
835 median indicated by a line within the box. Whiskers extend to the minimum and  
836 maximum values. The individual data points are displayed on the bar graphs. The  
837 statistical significance of the glucosinolate and sinapoylmalate results was determined  
838 using a one-way ANOVA, with a significance level set at  $P<0.05$  ( $n=4$ ). Differences  
839 among groups were further analyzed using Tukey's post-hoc test and significant  
840 differences are indicated by letters. Student's t-test was used to compare the means of  
841 IAOx and statistically significant differences ( $P<0.05$ ) are denoted by an asterisk (\*)  
842 ( $n=3$ ). 'n.d.' is not detected.

843  
844 **Figure 4. PAL activity is restored in *F1-cos/ref2*.** PAL activity of wild type, *ref2* and  
845 *F1-cos/ref2*. PAL activities were measured using leaves from four-week-old soil grown  
846 plants. The box represents the interquartile range, spanning from the first quartile to the  
847 third quartile, with the median indicated by a line within the box. Whiskers extend to the  
848 minimum and maximum values. The individual data points are shown on the graphs.  
849 The statistical significance of the results was determined through a one-way ANOVA,  
850 with a significance level set at  $P<0.05$ . Differences among groups were further analyzed  
851 using Tukey's post-hoc test and significant differences ( $n=2$  for wild type,  $n=4$  for *ref2*  
852 and *F1-cos/ref2*) are indicated by letters.

853  
854 **Figure 5. Cosuppression of *CYP79F1* and *CYP79F2* partially rescue**  
855 **phenylpropanoid contents in *ref5*.** (a) Representative image of three-week-old wild  
856 type, *ref5*, and *F1-cos* lines in the *ref5* genetic background (*F1-cos/ref5*).

857 (b-e) The levels of desulfo-4-methylsulfinylbutyl glucosinolate (4MSOB) (b), desulfo-8-  
858 methylsulfinyloctyl glucosinolate (8MSOO) (c), desulfo-I3M (d) and sinapoylmalate (e) of  
859 wild type, *ref5*, and *F1-cos/ref5*. The box represents the interquartile, spanning from the  
860 first quartile to the third quartile, with the median indicated by a line within the box.  
861 Whiskers extend to the minimum and maximum values. The individual data points are  
862 shown on the graphs. The statistical significance of the results was determined through  
863 a one-way ANOVA, with a significance level set at  $P<0.05$ . Differences among groups  
864 were further analyzed using Tukey's post-hoc test and significant differences ( $n=4$ ) are  
865 indicated by letters.

866

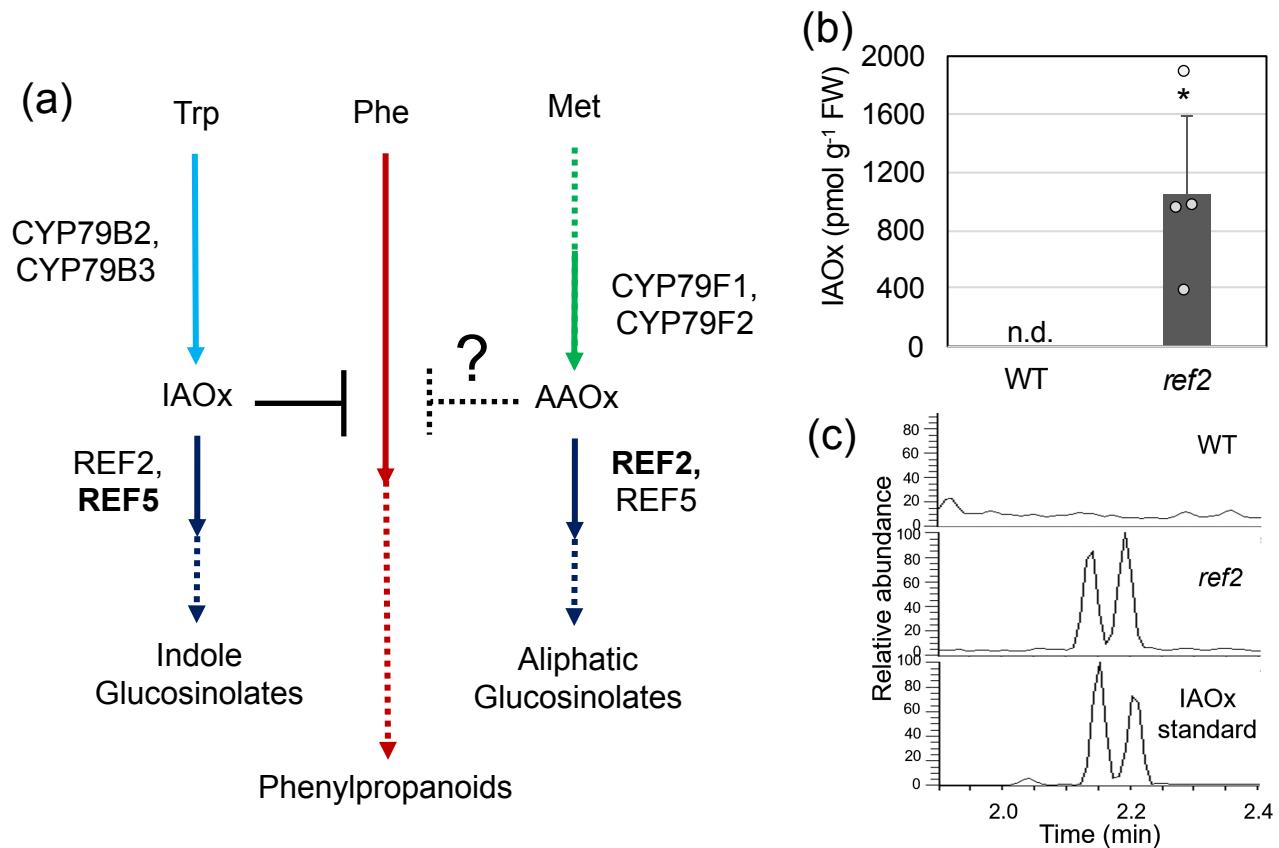
867 **Figure 6. IAA content is unaltered in *F1-cos/ref2* plants compared to wild type and**  
868 ***ref2*.** Free IAA content of three-week-old wild type, *ref2*, and *F1-cos/ref2* plants. Data  
869 represents mean  $\pm$  SD ( $n=4$ ). The individual data points are shown on the graph. The  
870 statistical significance of the results was determined through a one-way ANOVA.  
871 Differences among groups were further analyzed using Tukey's post-hoc test ( $P<0.05$ )  
872 and were identified by letters to indicate significance.

873

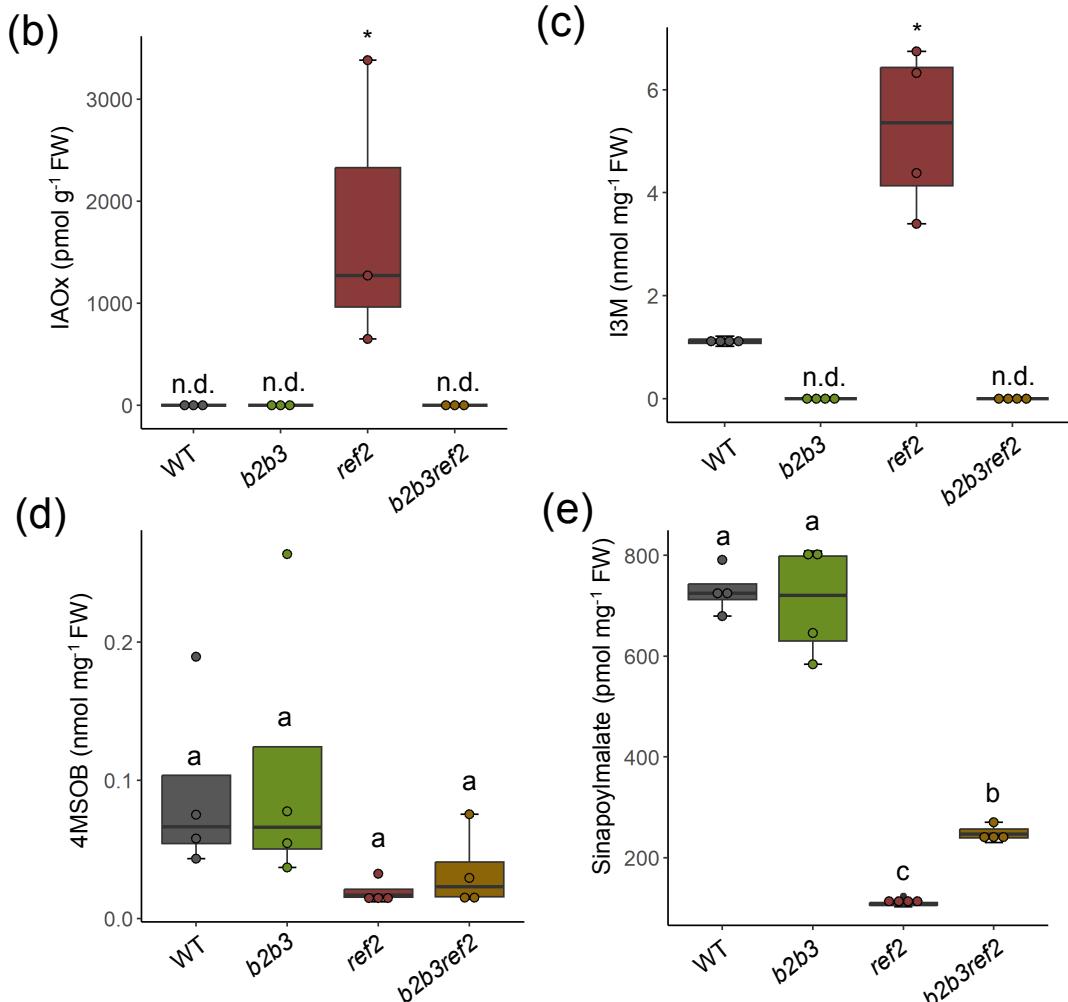
874 **Figure 7. The methionine content in *F1-cos/ref2* is higher than in wild type and**  
875 ***ref2*.** Methionine contents were measured with three-week-old wild type, *ref2*, and *F1-*  
876 *cos/ref2* plants. Data represents mean  $\pm$  SD ( $n=3$ ). The individual data points are shown  
877 on the bar graph. The statistical significance of the results was determined through a  
878 one-way ANOVA, with a level of significance set at  $P<0.05$ . Differences among groups  
879 were further analyzed using Tukey's post-hoc test and were identified by letters to  
880 indicate significance.

881

882 **Figure 8. Wild type and *ref2* grown on methionine-containing media show curled-**  
883 **up leaf morphology similar to those shown in *F1-cos* lines.** (a-b) Representative  
884 images of three-week-old wild type and *ref2* plants grown on MS plates (a) and MS  
885 plates supplemented with 300  $\mu$ M methionine (b). (c-f) The levels of sinapoylmalate (c),  
886 desulfo-4MSOB (d), desulfo-8MSOO (e), and desulfo-I3M (f) of three-week-old wild type  
887 and *ref2* grown on MS or methionine-supplemented MS plates. Data represents mean  $\pm$

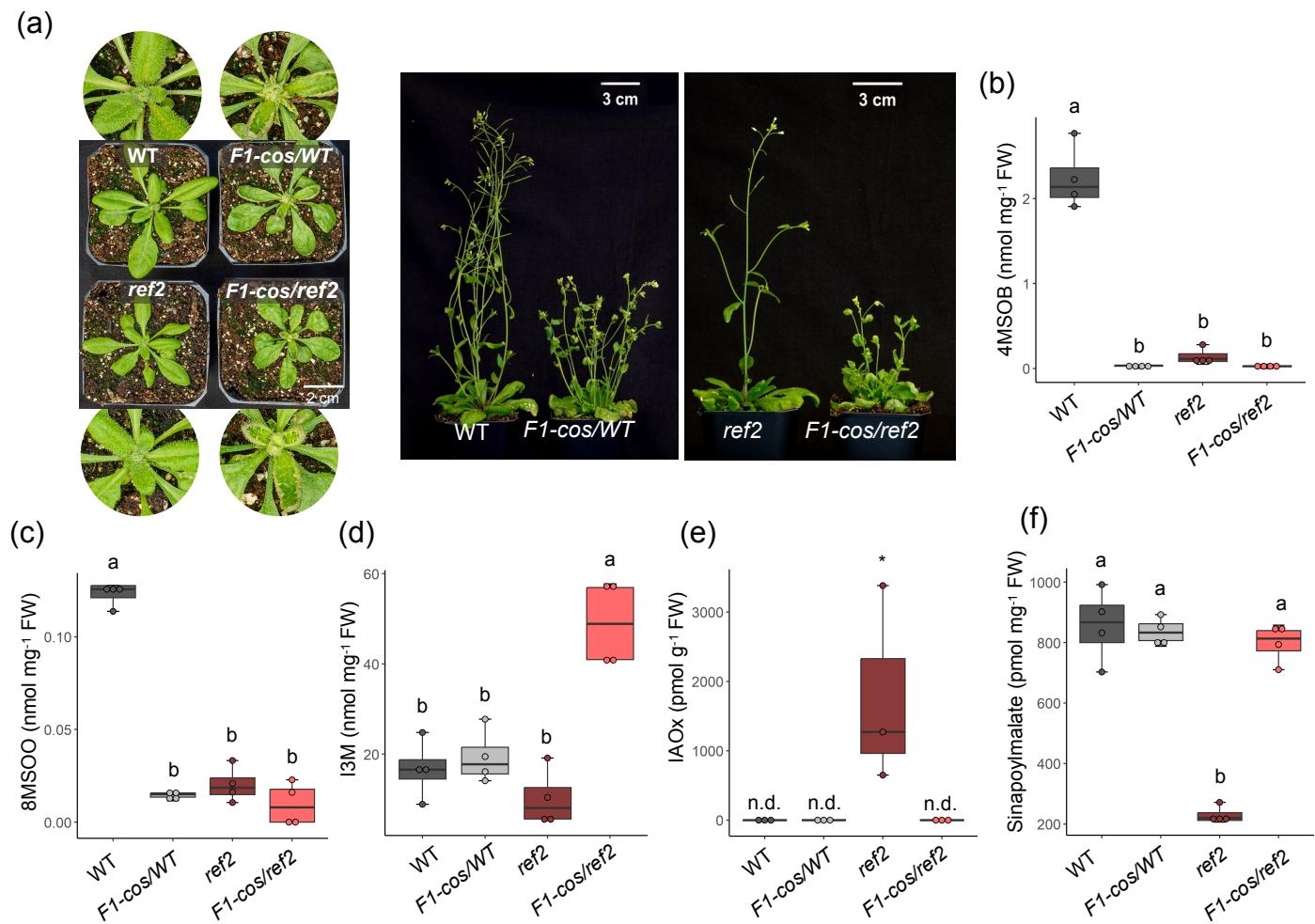

888 SD (n=4). The individual data points are shown on the graph. The statistical significance  
889 of the results was determined through a one-way ANOVA, with a level of significance  
890 set at P<0.05. Differences among groups were further analyzed using Tukey's post-hoc  
891 test and were identified by letters to indicate significance.

892

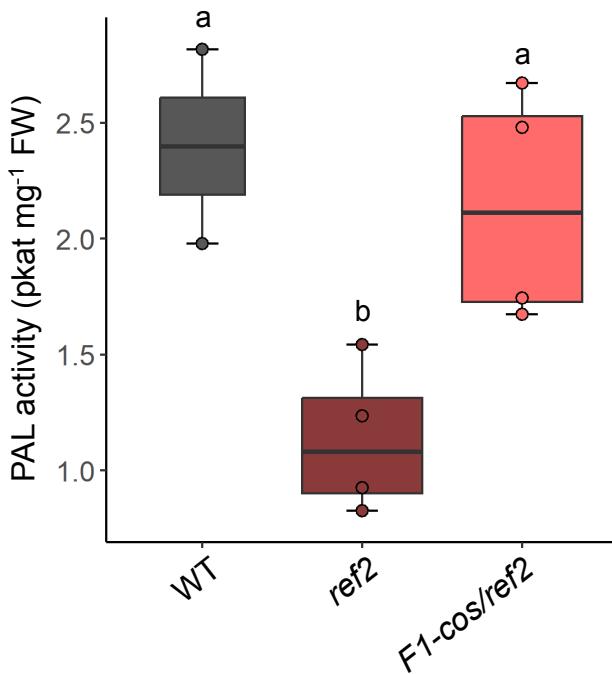

893 **Figure 9. Working model of the impact of methionine-derived aliphatic aldoximes**  
894 **(AAOx) on phenylpropanoid production.** A schematic detailing the metabolic  
895 interaction between methionine metabolism, glucosinolate biosynthesis, and  
896 phenylpropanoid production. Known inhibitory interaction of indole 3-acetaldoxime  
897 (IAOx) with the phenylpropanoid pathway is indicated. Production of aliphatic  
898 glucosinolates from methionine requires the biosynthesis of AAOx, which upon their  
899 accumulation represses phenylpropanoid production (red line in light purple box).  
900 Primary enzymes for indole versus aliphatic glucosinolate biosynthesis are bolded. This  
901 metabolic interconnection, along with other methionine-derived metabolites such as  
902 ethylene and polyamines, can influence plant growth by altering leaf morphology and  
903 axillary bud initiation or apical dominance. The metabolic intermediates of the  
904 methionine chain elongation pathway may also impact plant growth.

905

906

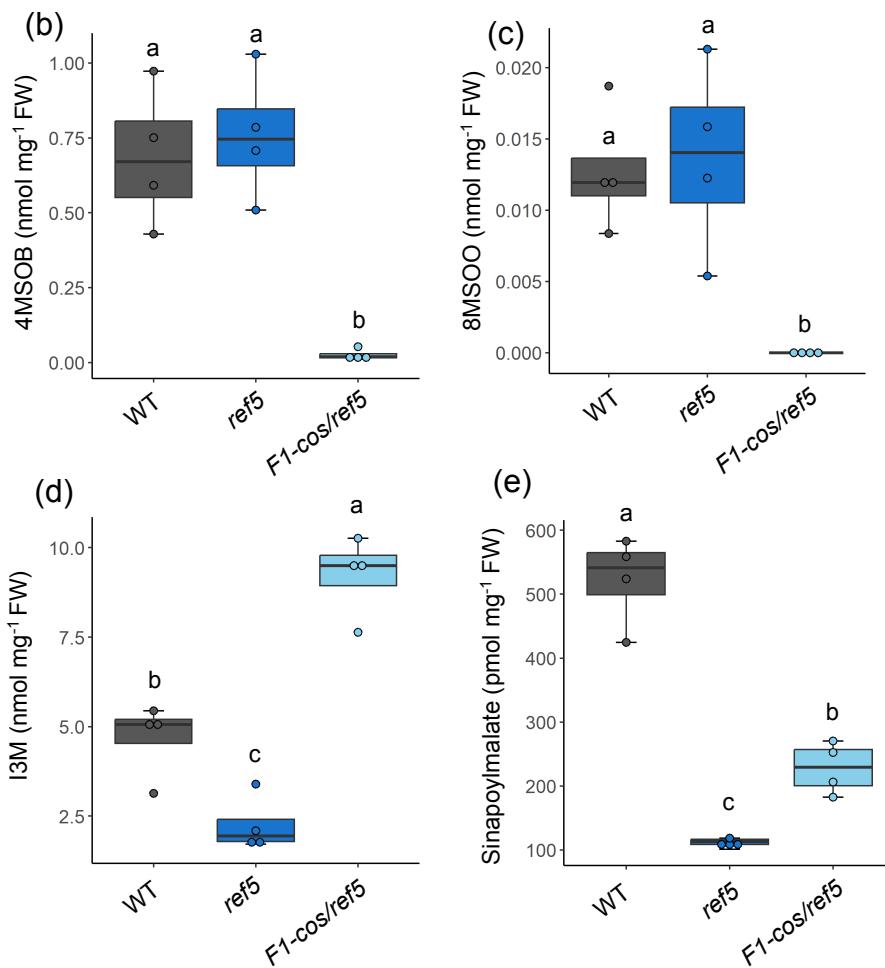



**Figure 1. A metabolic link between aldoxime metabolism and the phenylpropanoid pathway in *Arabidopsis*.** (a) A schematic diagram of a metabolic link between the phenylpropanoid pathway and glucosinolate production in *Arabidopsis thaliana*. It was previously shown that the accumulation of indole 3-acetaldoxime (IAOx), an indole glucosinolate intermediate, represses the phenylpropanoid pathway. The impact of aliphatic aldoximes (AAOx) on the phenylpropanoid pathway remains unknown. Although REF2 and REF5 function redundantly to metabolize all aldoximes, REF2 is the preferred enzyme for converting AAOx. (b) IAOx content in leaves of two-week-old wild type and *ref2*. Data represents mean  $\pm$  SD (n=4). The individual data points are shown on the bar graphs. The means were compared by Student's t-test and statistically significant differences ( $P<0.05$ ) are indicated by an asterisk (\*). (c) LC-MS chromatograms show accumulation of IAOx in *ref2*. E-IAOx and Z-IAOx standards (bottom) and extracts from wild type (top) and *ref2* (middle) are shown.

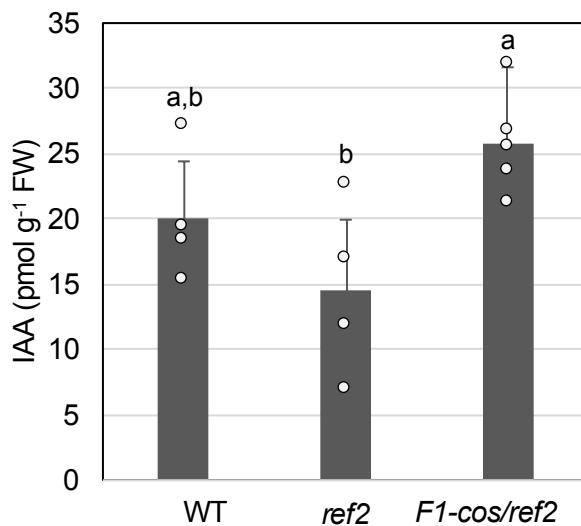



**Figure 2. Elimination of IAOx biosynthesis partially rescues phenylpropanoid production in ref2.**

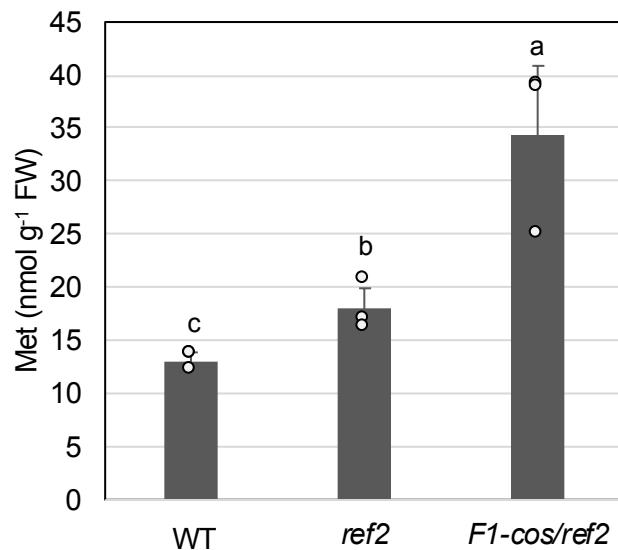
(a) Representative images of three-week-old wild type (WT), *b2b3* (*cyp79b2* *cyp79b3*) double mutant, *ref2*, and *b2b3ref2* (*cyp79b2* *cyp79b3* *ref2*) triple mutant. (b-e) The levels of indole-3-acetaldoxime (IAOx) (b), desulfo-I3M (c), desulfo-4-methylsulfinylbutyl glucosinolate (4MSOB) (d), and sinapoylmalate (e) were measured from the leaves of three-week-old wild type, *b2b3*, *ref2*, and *b2b3ref2* plants. The box represents the interquartile range, spanning from the first quartile to the third quartile, with the median depicted by a line within the box. Whiskers extend to the minimum and maximum values. The individual data points are displayed on the bar graphs. Student's t-test was used to compare the means of IAOx and I3M, and statistically significant differences ( $P < 0.05$ ) are denoted by an asterisk (\*) ( $n=3$  for IAOx,  $n=4$  for I3M). The statistical significance of 4MSOB and sinapoylmalate contents was determined using a one-way ANOVA, with a significance level set at  $P < 0.05$ . Differences among groups were further analyzed using Tukey's post-hoc test, and significant differences ( $n=4$ ) are indicated by letters. 'n.d.' is not detected.



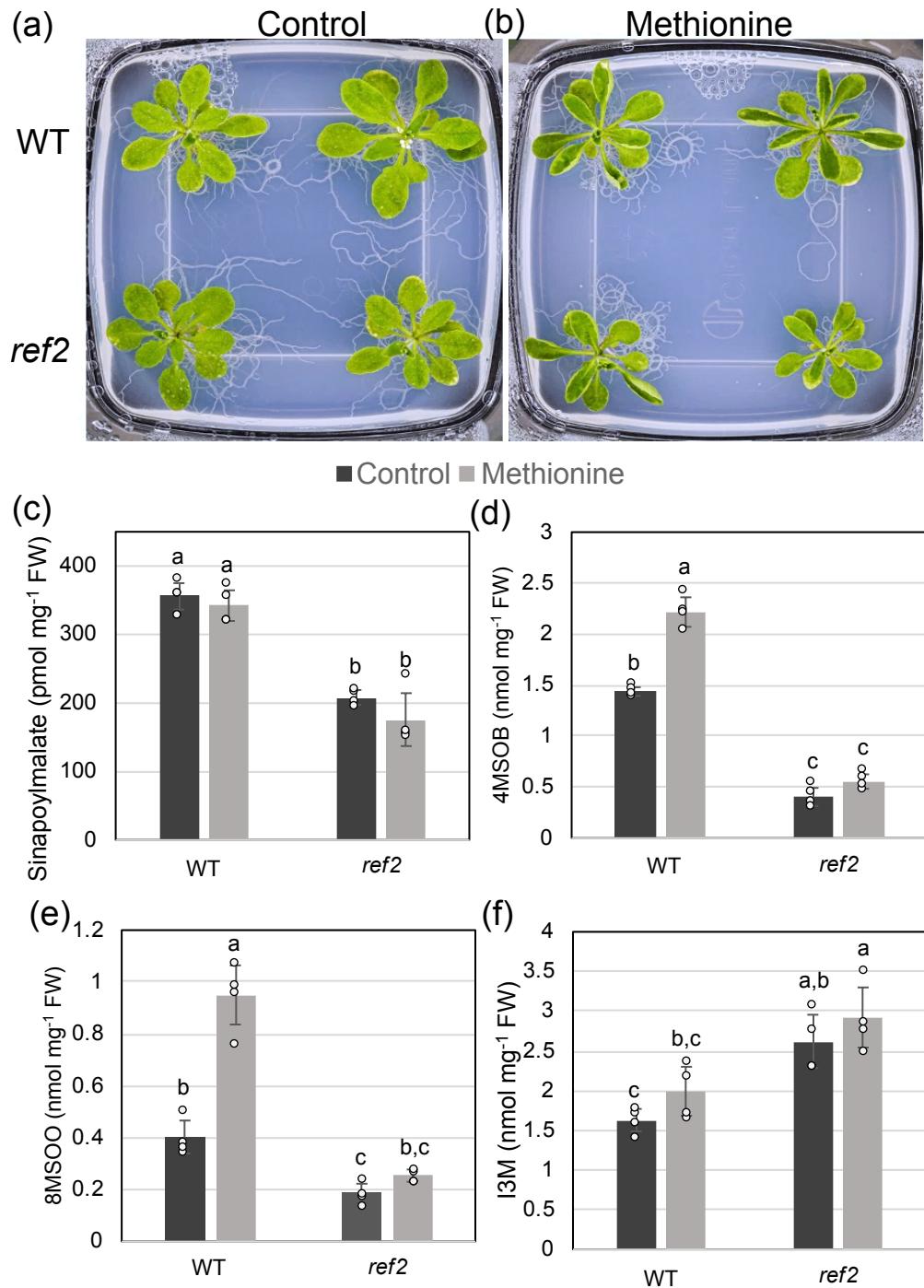

**Figure 3. CYP79F1-cosuppression restores phenylpropanoid contents in *ref2*.** (a) Representative images of three-week-old and six-week-old plants. *F1-cos* lines exhibit distinctive morphological phenotypes such as curled-up leaves and “bushy”-like stems. (b-f) The levels of desulfo-4-methylsulfinylbutyl glucosinolate (4MSOB) (b), desulfo-8-methylsulfinyloctyl glucosinolate (8MSOO) (c), desulfo-I3M (d), indole-3-acetaldoxime (IAOx) (e) and sinapoylmalate (f) of wild type, *F1-cos* suppression lines in four-week-old wild type (*F1-cos/WT*), *ref2*, and *F1-cos* lines in *ref2* (*F1-cos/ref2*). The box represents the interquartile range, spanning from the first quartile to the third quartile, with the median indicated by a line within the box. Whiskers extend to the minimum and maximum values. The individual data points are displayed on the bar graphs. The statistical significance of the glucosinolate and sinapoylmalate results was determined using a one-way ANOVA, with a significance level set at  $P<0.05$  ( $n=4$ ). Differences among groups were further analyzed using Tukey's post-hoc test and significant differences are indicated by letters. Student's t-test was used to compare the means of IAOx and statistically significant differences ( $P<0.05$ ) are denoted by an asterisk (\*). 'n.d.' is not detected.



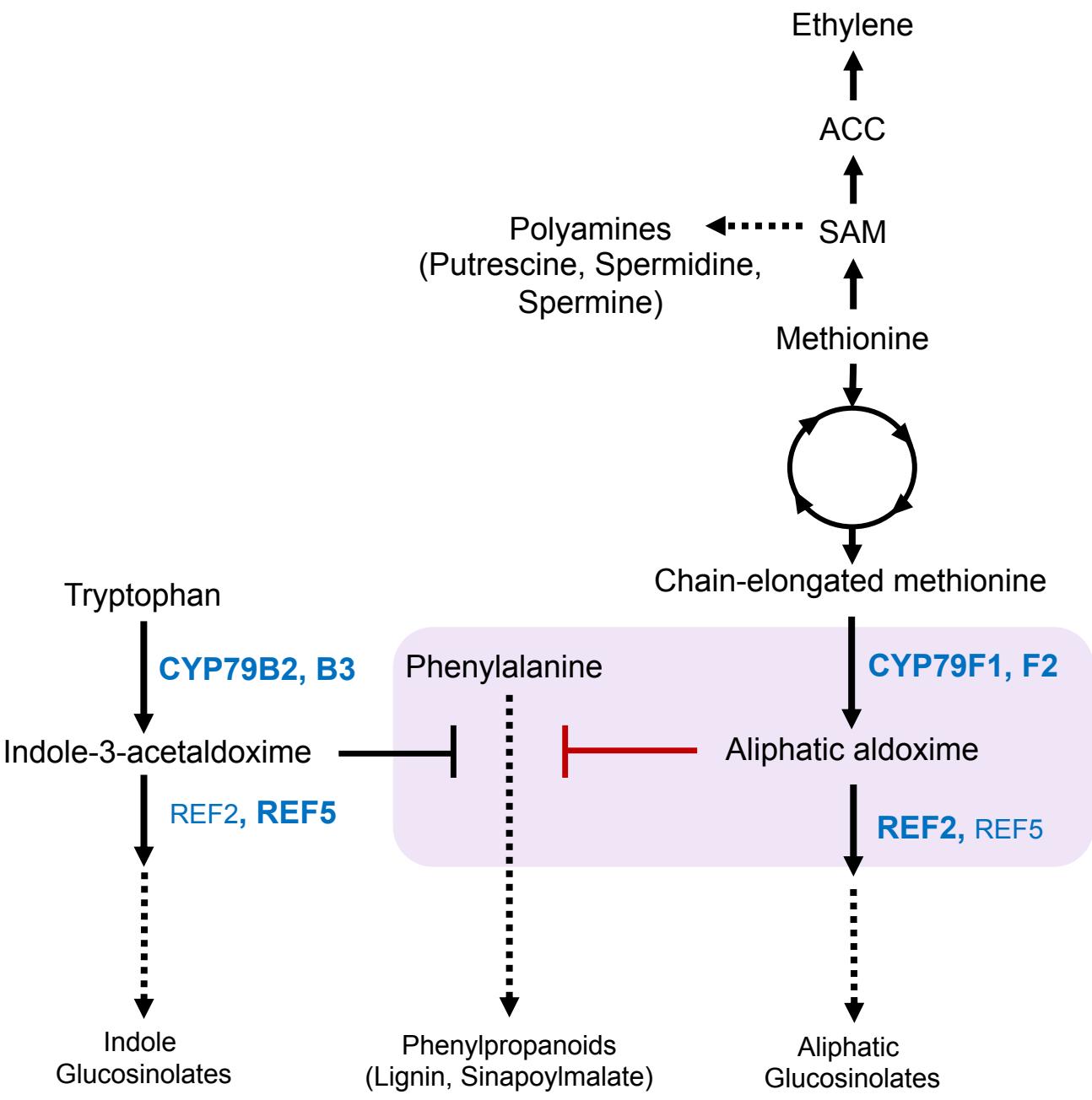

**Figure 4. PAL activity is restored in *F1-cos/ref2*.** PAL activity of wild type, *ref2* and *F1-cos/ref2*. PAL activities were measured using leaves from four-week-old soil grown plants. The box represents the interquartile range, spanning from the first quartile to the third quartile, with the median indicated by a line within the box. Whiskers extend to the minimum and maximum values. The individual data points are shown on the graphs. The statistical significance of the results was determined through a one-way ANOVA, with a significance level set at  $P<0.05$ . Differences among groups were further analyzed using Tukey's post-hoc test and significant differences ( $n=2$  for wild type,  $n=4$  for *ref2* and *F1-cos/ref2*) are indicated by letters.


(a)

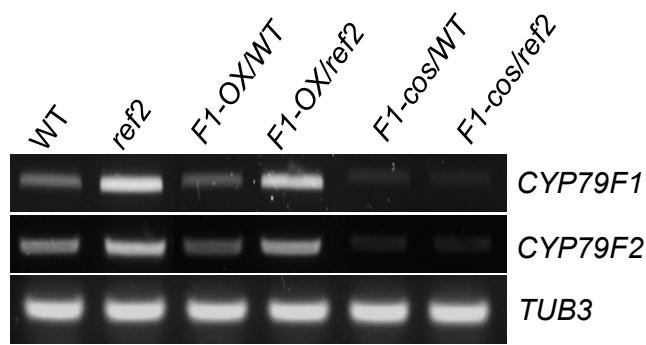



**Figure 5. Cosuppression of *CYP79F1* and *CYP79F2* partially rescue phenylpropanoid contents in *ref5*.** (a) Representative image of three-week-old wild type, *ref5*, and *F1-cos* lines in the *ref5* genetic background (*F1-cos/ref5*). (b-e) The levels of desulfo-4-methylsulfinylbutyl glucosinolate (4MSOB) (b), desulfo-8-methylsulfinyloctyl glucosinolate (8MSOO) (c), desulfo-I3M (d) and sinapoylmalate (e) of wild type, *ref5*, and *F1-cos/ref5*. The box represents the interquartile, spanning from the first quartile to the third quartile, with the median indicated by a line within the box. Whiskers extend to the minimum and maximum values. The individual data points are shown on the graphs. The statistical significance of the results was determined through a one-way ANOVA, with a significance level set at  $P < 0.05$ . Differences among groups were further analyzed using Tukey's post-hoc test and significant differences ( $n=4$ ) are indicated by letters.

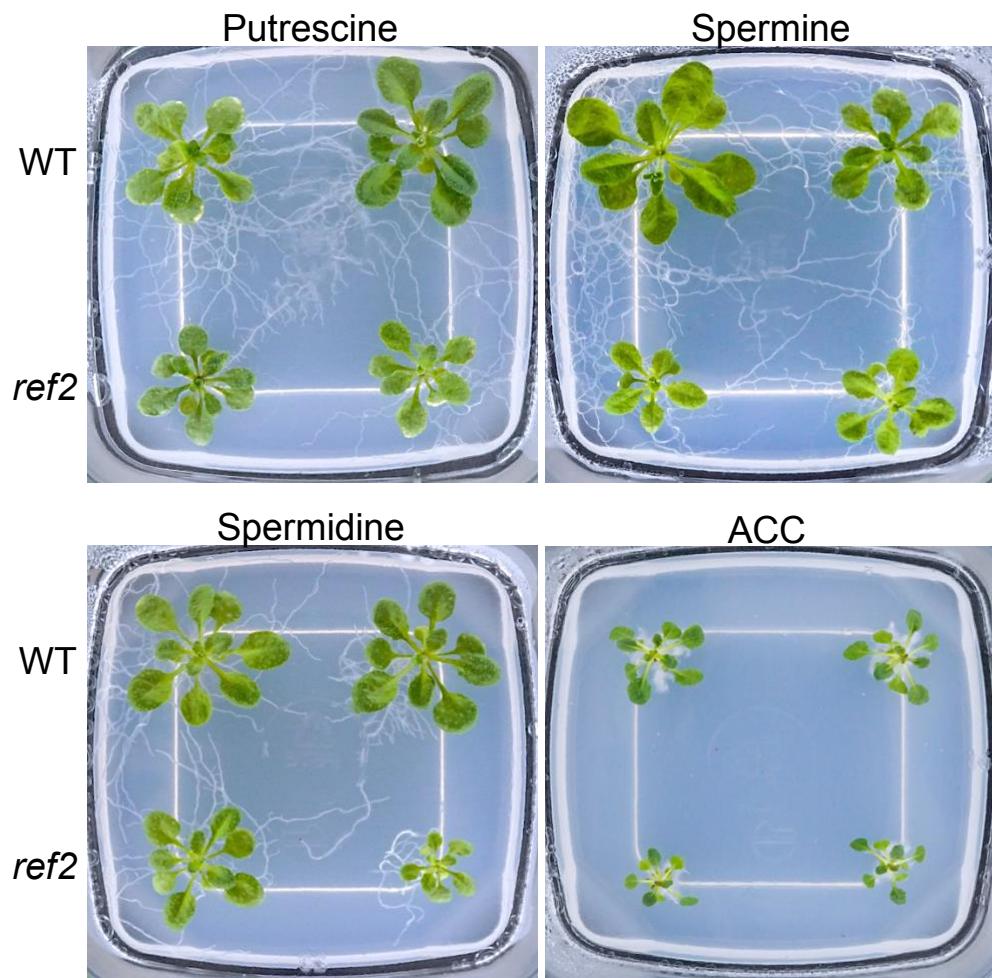



**Figure 6. IAA content is unaltered in *F1-cos/ref2* plants compared to wild type and *ref2*.** Free IAA content of three-week-old wild type, *ref2*, and *F1-cos/ref2* plants. Data represents mean  $\pm$  SD ( $n=4$ ). The individual data points are shown on the graph. The statistical significance of the results was determined through a one-way ANOVA. Differences among groups were further analyzed using Tukey's post-hoc test ( $P<0.05$ ) and were identified by letters to indicate significance.




**Figure 7. The methionine content in *F1-cos/ref2* is higher than in wild type and *ref2*.** Methionine contents were measured with three-week-old wild type, *ref2*, and *F1-cos/ref2* plants. Data represents mean  $\pm$  SD (n=3). The individual data points are shown on the bar graph. The statistical significance of the results was determined through a one-way ANOVA, with a level of significance set at P<0.05. Differences among groups were further analyzed using Tukey's post-hoc test and were identified by letters to indicate significance.




**Figure 8. Wild type and *ref2* grown on methionine-containing media show curled-up leaf morphology similar to those shown in *F1-cos* lines.** (a-b) Representative images of three-week-old wild type and *ref2* plants grown on MS plates (a) and MS plates supplemented with 300  $\mu$ M methionine (b). (c-f) The levels of sinapoylmalate (c), desulfo-4MSOB (d), desulfo-8MSOO (e), and desulfo-I3M (f) of three-week-old wild type and *ref2* grown on MS or methionine-supplemented MS plates. Data represents mean  $\pm$  SD (n=4). The individual data points are shown on the graph. The statistical significance of the results was determined through a one-way ANOVA, with a level of significance set at P<0.05. Differences among groups were further analyzed using Tukey's post-hoc test and were identified by letters to indicate significance.



**Figure 9. Working model of the impact of methionine-derived aliphatic aldoximes (AAOx) on phenylpropanoid production.** A schematic detailing the metabolic interaction between methionine metabolism, glucosinolate biosynthesis, and phenylpropanoid production. Known inhibitory interaction of indole 3-acetaldoxime (IAOx) with the phenylpropanoid pathway is indicated. Production of aliphatic glucosinolates from methionine requires the biosynthesis of AAOx, which upon their accumulation represses phenylpropanoid production (red line in light purple box). Primary enzymes for indole versus aliphatic glucosinolate biosynthesis are bolded. This metabolic interconnection, along with other methionine-derived metabolites such as ethylene and polyamines, can influence plant growth by altering leaf morphology and axillary bud initiation or apical dominance. The metabolic intermediates of the methionine chain elongation pathway may also impact plant growth.



**Figure S1.** Expression of *CYP79F1* and *CYP79F2* in wild type, *ref2*, *F1-cos* plants and non-bushy *CYP79F1* overexpression plants in the wild-type and *ref2* genetic backgrounds.



**Figure S2. Polyamine and ACC treatment did not phenocopy growth morphology of *F1-cos* lines.** Representative images of wild type and *ref2* grown on polyamines (putrescine, spermine, and spermidine) and the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) for three weeks. Plants grown with supplement of 500  $\mu$ M of polyamines or 30  $\mu$ M of ACC on growth media did not show any growth changes similar to those seen in *F1-cos* lines.

**Table S1.** List of primers

| Primer Name        | Sequence (5'->3')          |
|--------------------|----------------------------|
| TUB3-F             | TGGTGGAGCCTTACAACGCTACTT   |
| TUB3-R             | TTCACAGCAAGCTTACGGAGGTCA   |
| CYP79F1 RT-Forward | AAAGCTCAATGCGTAGAAT        |
| CYP79F1 RT-Reverse | TTTTAGACACCATCTGTTTCTTCTTC |
| CYP79F2 RT-Forward | AAAGCTCAATGCGTCGAAT        |
| CYP79F2 RT-Reverse | GCGTCGAAACACATCACAGAG      |