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Abstract
In order to assess computational thinking (CT) modules embedded into multiple 
STEM courses for educators, we created a CT rubric which incorporates key CT 
components using Bloom’s Taxonomy. We implemented the rubric in four different 
courses in our pre-service STEM education program for elementary and middle 
school teachers. We analyzed our rubric results in addition to a pre- and post-survey 
gauging students’ CT skills using the same rubric items. Our rubric results show that 
students scored well after completing our modules with over 90% in proficiency or 
high proficiency in all areas in our rubric. We also report on improvements in our 
CT assignments and scores based on the rubric. In addition, students’ self-efficacy 
in each CT item improved significantly from the beginning to end of the semester. 
Using the newly developed CT rubric allowed us to assess students’ CT skills with 
a single method across a variety of STEM education courses.

Keywords  Computational thinking · Bloom’s taxonomy · Assessment · Pre-
service teachers · Rubric

1  Introduction

The ubiquity of computing in today’s society underscores the argument that compu-
tational thinking (CT) should be a core component of education for everyone, not just 
for future computer scientists (Wing, 2008). While studies have discussed incorporat-
ing CT into pre-service teachers’ STEM curricula (Adler & Kim, 2018; Jaipal-Jamani 
& Angeli, 2017; Kim et al., 2018; Yadav et al., 2017) as well as directly into K-12 
classrooms (Grover et al., 2015, 2014; Meerbaum-Salant et al., 2010), assessing CT 
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can be challenging (Brennan & Resnick, 2012), particularly that of assessing it in a 
consistent manner, and across different disciplines.

Another aspect that adds to the challenge of assessing CT is that some research-
ers assess CT solely through the examination of student projects or quizzes, many of 
which are based on a single (and specific) programming platform (Boe et al., 2013; 
Brennan & Resnick, 2012; Grover et al., 2015; Moskal et al., 2004; Werner et al., 
2012). Based on previous literature that defined CT and Bloom’s Taxonomy to assess 
educational learning into cognitive levels, we developed a CT rubric, with five main 
CT criteria, which can be used to assess students’ CT growth in different disciplines 
and with different programming platforms. The rubric was implemented in courses 
for future K-8 STEM teachers.

Our university has an undergraduate math and science content preparation pro-
gram for future elementary and middle school science and math teachers. In the last 
few years, we have added CT and coding into the curriculum through the incorpora-
tion of newly developed CT modules which are now integrated into the foundational-
level science and math courses in the program as well as the Science Methods course. 
In addition, we have created a new introductory Computer Science course that will 
be required for students in this program. After identifying a common set of themes or 
criteria of CT that we believed our students should become proficient at, we designed 
a rubric that incorporated enough flexibility so that it would be widely applicable 
to assess CT in the courses in our teacher preparation program. Our motivation in 
developing the CT rubric was to create an assessment instrument that could be used 
to assess the diverse CT modules embedded in the math and science courses, the Sci-
ence Methods course, and in the newly developed Computer Science course.

In this paper, we first define CT and determine its key components based on a 
survey of the literature. Next, we describe how others have assessed CT in order to 
formulate our own chosen method of assessment. Then we discuss Bloom’s Tax-
onomy and describe how it helped shape the creation of our CT rubric. Following 
this, we describe the implementation of CT in four different courses in our program 
and results of incorporating the CT rubric into those courses. Finally, we summarize 
the implications and lessons learned and next steps.

2  Background

2.1  Defining CT

While there have been many attempts to define CT, there is no consensus. In one defi-
nition, CT is explained as “the thought processes involved in formulating problems 
so their solutions can be represented as computational steps and algorithms” (Aho, 
2012). In order to properly assess CT in multiple disciplines it is important to under-
stand the key elements that are included in CT. Rose et al. (2017) examined seven 
existing definitions of CT (Angeli et al., 2016; Barr & Stephenson, 2011; Brennan & 
Resnick, 2012; Grover & Pea, 2013; Kalelioglu et al., 2016; Repenning et al., 2016; 
Seiter & Foreman, 2013) and found that recurring CT concepts include: abstraction 
and generalization; algorithms and procedures; data collection, analysis, and repre-
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sentation; decomposition; parallelism; debugging, testing, and analysis; and control 
structures. A CT guide for teachers in the U.K. breaks CT down into five main ele-
ments, which include algorithmic thinking, decomposition, generalization/patterns, 
abstraction, and evaluation (Csizmadia et al., 2015).

The International Society for Technology in Education (ISTE) describe CT as 
“knowing what steps to take to solve a problem and to apply that skill across disci-
plines” (Sykora, 2021). The ISTE and the Computer Science Teachers Association 
(CSTA) developed their own characteristics of CT, which include (ISTE and CSTA, 
2011):

	● “Formulating problems in a way that enables us to use a computer and other tools 
to help solve them.

	● Logically organizing and analyzing data.
	● Representing data through abstractions such as models and simulations.
	● Automating solutions through algorithmic thinking (a series of ordered steps).
	● Identifying, analyzing, and implementing possible solutions with the goal of 

achieving the most efficient and effective combination of steps and resources.
	● Generalizing and transferring this problem solving process to a wide variety of 

problems”.

Brennan and Resnick’s (2012) computational practices include being incremental 
and iterative, abstracting and modularizing, testing and debugging, or reusing and 
remixing, while Weintrop et al. (2016) include data practices, modeling and simula-
tion practices, computational problem solving practices, and systems thinking prac-
tices in their definition.

Our aim was to incorporate the CT elements, from the works described above, into 
our pre-service STEM education courses. We argue that looking at the key terms that 
appear in many definitions of CT can help clarify what CT really is. Based on the 
literature, we have identified the major components of CT as decomposition, abstrac-
tion, models and simulations, analyzing data, algorithmic thinking, finding patterns, 
and generalization.

Decomposition involves breaking a complex problem into more manageable 
and solvable components, which can have particular relevance in scientific model-
ing (Sengupta et al., 2013). Abstraction can make problem solving easier by hiding 
unnecessary details (Csizmadia et al., 2015). When scientific concepts are modeled 
with a computer, students can repeatedly conduct experiments as well as visualize the 
data (Ornek, 2008).

The concept of algorithmic thinking is at the heart of CT. Ultimately, every multi-
step task, whether scientific or non-scientific, needs to be broken down into a series 
of discrete steps through which the task is accomplished (Csizmadia et al., 2015). 
Solutions for one problem may contain patterns and similarities with others, thereby 
allowing one to generalize a problem to a different one (Csizmadia et al., 2015).
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2.2  Assessing CT

To determine whether the integration of CT into courses is successful, it is impor-
tant to assess the growth of students perceived and actual CT skills. While there is a 
growing emphasis on incorporating CT and coding into K-12 classrooms, properly 
assessing CT is quite difficult (Alves et al., 2019).

Manually assessing assignments may work well for an individual course, but there 
is no consistent, objective standard across different instructors and courses which is 
present when using automated assessment tools (Ala-Mutka, 2005; Von Wangenheim 
et al., 2018). Grading Scratch projects is more time-consuming than text-based pro-
gramming which can often be graded using a script (Boe et al., 2013). Some stud-
ies have used assessment tools which evaluate a specific block-based programming 
platform. For example, to assess CT in after-school and elective technology classes 
for middle school, Werner et al., (2012) used Alice, a visual programming environ-
ment. Using the Fairy Assessment, students needed to modify code to solve tasks 
which related to two components of CT: thinking algorithmically and abstraction 
and modeling. Their results showed this to be a promising form of assessment. This 
assessment, however, is specific to the Alice programming environment. Scratch, 
another block-based programming language, also has assessment tools, such as Dr. 
Scratch, Hairball, and Scrape, which assess work after students submit their code. 
Brennan & Resnick (2012) used Scrape, which, based on Scratch’s color coding of 
blocks, determines which blocks were used more frequently. While Scrape can check 
how many loops there are and whether nesting of loops occurs in a program, Hairball 
can also answer questions related to whether programs have unmatched broadcast/
receive blocks, result in infinite loops, and do not initialize values properly (Boe et 
al., 2013). Dr. Scratch extends Hairball and Scrape to provide a free user-friendly 
web application for teachers which assigns a CT score based on abstraction, logi-
cal thinking, synchronization, parallelism, flow control, user interactivity, and data 
representation (Moreno-León & Robles, 2015). While these tools are useful to assess 
one programming platform, they are limited to that programming platform and would 
not be applicable to other programming environments.

Other studies used coding-specific assessments, with quizzes and tests using 
Scratch code (Grover et al., 2015; Grover & Basu, 2017). However, while that is use-
ful for assessment of CT in a particular course, they are not reusable across other plat-
forms as they are tied to specific programming languages (Basu et al., 2021). Tang et 
al. (2020) has called for more CT assessments that are applicable across platforms.

Using open-ended questionnaires (Yadav et al., 2014, 2018), problem-solving sce-
narios (Dagiene & Futschek, 2008; Snow et al., 2017), or multiple choice style quiz-
zes (Chen et al., 2017; Román-González et al., 2017) to assess CT skills are useful in 
that they are not dependent on specific platforms and can test students’ CT abilities 
(Basu et al., 2021). However, they would not be suitable for grading a specific coding 
assignment or project.

Rubrics can be an effective way to assess CT across multiple platforms and courses 
in a consistent manner (Bort & Brylow, 2013; Cateté et al., 2016; Grover et al., 2018; 
Seiter & Foreman, 2013; Sherman & Martin, 2015), though they can be more time-
consuming to grade (Rochford & Borchert, 2011). Rubrics are effective in measuring 
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many components of a topic and can include specific standards which leads to con-
sistent CT scores across various assignments and instructors (Docktor et al., 2016). 
This can minimize some of the subjectivity that arises when multiple instructors are 
looking at similar skills. In addition, rubrics can be used effectively to evaluate crite-
ria even when handed to someone who is not an expert in that field (Becker, 2003).

Table 1 summarizes the above CT assessment methods with benefits and draw-
backs of each assessment method. While interviewing students about their final 
projects and code can assess students’ CT and programming knowledge (Brennan & 
Resnick, 2012; Grover et al., 2014), in practice, it is time-consuming and often not 
feasible or scalable to interview every student in order to determine their CT skills 
(Basu et al., 2021). In fact in some studies only a sample of students in a course were 
interviewed (Bagley & Rabin, 2016; Cetin & Andrews-Larson, 2016).

While many studies have used one form of assessment, others have found that, 
rather than relying solely on one approach, a combination of approaches is prefer-
able. Brennan & Resnick (2012) used three methods for assessment: Scrape to assess 
Scratch projects, interviews regarding the Scratch projects they created, and the use 
of design scenarios where students need to understand and remix an existing project. 
Grover et al. (2014) used multiple methods to assess Scratch programming through 
quizzes which include Scratch code snippets, pre- and post-tests, Scratch assign-
ments, and final project interviews.

2.3  Developing a CT rubric with Bloom’s Taxonomy Framework

While there are benefits and drawbacks to the different methods of assessments, for 
our purposes a rubric was the best option to examine CT skills across different courses 
and programming environments. To determine appropriate items for our rubric we 
used Bloom’s Taxonomy as our framework. Researchers have used Bloom’s Tax-
onomy in relation to programming and CT (Gouws et al., 2013; Lister & Leaney, 
2003; Meerbaum-Salant et al., 2010; Selby, 2015). Bloom’s Taxonomy is a tool often 
used for assessment through rubrics (Crowe et al., 2008).

Bloom’s Taxonomy was developed to help articulate definitions and classifica-
tions of terms in education such as “thinking” and “problem solving” (Bloom et al., 
1956). This framework helps determine whether students learned what was expected 
of them (Bloom et al., 1956). In 2001, an updated version of Bloom’s Taxonomy was 
created using more verbs as terms to describe the categories and their subcategories 

Assess 
CT 
Skills

Assess Student 
Coding 
Assignment

Consistent 
Across Different 
Programming 
Environments

Manual Program 
Analysis

Yes Yes No

Program Assessment 
Tool

Yes Yes No

Coding-Specific 
Assessment

Yes No No

General CT Quiz Yes No Yes
CT Rubric Yes Yes Yes

Table 1  CT Assessment Tools 
and Features
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(Anderson & Krathwohl, 2001), see Table 2. Note that in the revised Bloom’s Tax-
onomy, “create” is listed as the highest order in the taxonomy, though in the original 
the highest was “evaluation”. We use evaluate as the highest in the taxonomy in our 
rubric.

When designing the rubric, we did not use the lowest level (remember), since 
we were testing students’ ability to incorporate and apply CT. While “remember” 
could have worked well for our Computer Science course, in the other three courses 
these modules were embedded into the content and our focus was on having the stu-
dents use CT, without necessarily recalling facts for each of those courses. Table 3 
shows our CT rubric. We limited it to five main CT elements: Decomposition, Vari-
able manipulation, Analysis of program output or data, Algorithmic thinking, and 
Generalizability to other problems and areas, based upon discussion of CT in the 
literature (ISTE and CSTA, 2011; Sengupta et al., 2013; Weintrop et al., 2016; Wing, 
2008). We removed jargon that could confuse instructors who may not be proficient 
in technical CT terms.

While focusing on characteristics of our assignments, we tried to ensure that these 
categories would be applicable for CT assignments in other topics and disciplines. In 
order to score well on the CT rubric, students need to decompose a problem into its 
components, use and modify variables or parameters in programs and simulations, 
explain program output and/or data, develop a series of steps to create or modify 
code, and describe broader applications of the program for other topics or disciplines.

In Table 4 we show how each item in our rubric corresponds with the higher order 
elements in Bloom’s Taxonomy as well as the CT skills used for each item.

Below we outline each of the CT criteria and how they relate to one of the levels 
in the taxonomy.

Table 2  Revised Bloom’s Taxonomy (Anderson & Krathwohl, 2001)
Revised Bloom’s Taxonomy Explanation Subcategories
Remember Retrieve relevant knowledge from long-term 

memory
Recognizing
Recalling

Understand Construct meaning from instructional mes-
sages, including oral, written, and graphic 
communication

Interpreting
Exemplifying
Classifying
Summarizing
Inferring
Comparing
Explaining

Apply Carry out or use a procedure in a given situation Executing
Implementing

Analyze Break material into constituent parts and deter-
mine how parts relate to one another and to an 
overall structure or purpose

Differentiating
Organizing
Attributing

Evaluate Make judgements based on criteria and standards Checking
Critiquing

Create Put elements together to form a coherent or 
functional whole; reorganize elements into a new 
pattern or structure

Generating
Planning
Producing
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Table 3  CT Rubric
\    Quality
Criteria   \

No/Limited Pro-
ficiency (1 pt.)

Some Proficiency
(2 pts.)

Proficiency
(3 pts.)

High Proficiency
(4 pts.)

Deconstruct a 
problem into 
smaller, more 
manageable 
parts

Not able to 
break down the 
problem

Recognizes some 
parts of the problem 
but unable to iden-
tify key contributing 
components

Identifies the key 
components that 
contribute to the 
problem

Identifies the key 
components that con-
tribute to the problem 
and describes their 
significance

Ability to 
manipulate 
variables/
parameters for 
desired result

Unable to 
differentiate 
between differ-
ent variables/
parameters or 
determine their 
effect upon the 
model

Understands signifi-
cance of variables/pa-
rameters, but cannot 
properly change them 
to cause variations in 
the model

Has good grasp of 
significance of vari-
ables/parameters; is 
able to manipulate 
models accord-
ingly after initial 
instruction

Has excellent grasp of 
variables/parameters; 
is able to change 
models correctly with 
little guidance

Analyze and 
interpret pro-
gram output or 
data

Unable to de-
scribe program 
output or data

Describes program 
output or data, but 
incorrectly interprets 
the meaning

Correctly interprets 
the meaning of the 
program output or 
data

Correctly interprets 
the meaning of the 
program output or data 
and draws conclusions 
within context of the 
program’s limitations

Use algorith-
mic thinking 
to modify or 
construct com-
puter code

Cannot develop 
steps to modify 
or construct 
computer code

Begins to develop 
steps to modify or 
construct computer 
code, but some steps 
are missing or not in 
a logical order

Series of steps to 
modify or construct 
computer code is 
complete and in 
logical order

Series of steps to 
modify or construct 
computer code is com-
plete, in logical order, 
and efficient

Generalize 
to another 
problem or 
real-world 
situation

Cannot 
describe how 
the program 
could relate to 
another problem 
or situation

Can relate the 
program to another 
problem or situation, 
but cannot identify 
underlying pattern(s)

Identifies pattern(s) 
in the problem 
solving process 
and relates the 
pattern(s) to 
another problem or 
situation

Identifies and analyzes 
pattern(s) in the prob-
lem solving process 
and can justify gen-
eralization to another 
problem or situation

CT Criteria Revised 
Bloom’s 
Taxonomy

CT Skills

Deconstruct a problem into 
smaller, more manageable parts

Understand Abstraction; 
Decomposition

Ability to manipulate variables/
parameters for desired result

Apply Models and 
Simulations

Analyze and interpret program 
output or data

Analyze Data analysis

Use algorithmic thinking to 
modify or construct computer 
code

Create Algorithmic 
Thinking

Generalize to another problem or 
real-world situation

Evaluate Generaliza-
tion; Finding 
Patterns

Table 4  CT Rubric Items with 
Corresponding Revised Bloom’s 
Taxonomy Elements
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2.3.1  Deconstruct a problem into smaller, more manageable parts (decomposition)

Our first level follows the Revised Bloom’s understand level. At this level, we ask 
our students to identify the key components of a problem and to explain their signifi-
cance. In order to deconstruct a problem into its components, students need to use CT 
techniques such as abstraction and decomposition. This moves students beyond the 
ability to recall information, instead requiring that they understand how to classify 
and explain why they chose these components.

2.3.2  Ability to manipulate variables/parameters for desired result (variables)

Next, we expect our students to reach the apply level in the Revised Bloom’s Tax-
onomy. In order for students to be able to manipulate parameters and variables, they 
will need to use the information they have learned and execute problems through the 
manipulation of parameters and variables.

2.3.3  Analyze and interpret program output or data (data)

This item corresponds to the analyze level in the Revised Bloom’s Taxonomy. At this 
level we ask our students to make a connection between what they did and the results 
they see. They will need to differentiate what is relevant to them. Depending on the 
model, results may either be in the form of program output or data.

2.3.4  Use algorithmic thinking to modify or construct computer code (algorithmic 
thinking)

Create is one of the higher levels of the Revised Bloom’s Taxonomy. At this point, 
students are asked to construct and produce something new. This may involve adding 
or modifying code to form a new creation.

2.3.5  Generalize to another problem or real-world situation (generalization)

Our last level corresponds to the evaluate level in the Revised Bloom’s Taxonomy. 
At this level we want students to defend and justify how they could generalize their 
solution in order for it to be transferable to problems in other disciplines. They need 
to check what is consistent between the different applications. To do this, they need 
to find patterns that are similar to other problems or situations.

Note that the same CT skills may appear in more than one element of the rubric. 
While we distinguish them in different places, many of the CT skills are relevant in 
multiple places and recur at multiple levels. For example, abstraction is listed under 
deconstructing a problem into smaller problems but it can also be used when general-
izing to another problem and when creating unique code or algorithms.

In order to test this rubric, we implemented it in assignments across multiple 
courses and disciplines: Physics, Mathematics, Science Methods, and a Computer 
Science course for pre-service teachers.
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3  Research Methods

In order to assess students’ CT skills, we used a combination of methods: (1) a CT 
rubric and (2) pre- and post-surveys containing items similar to our rubric gauging 
participants’ views on their CT skills. The CT rubric allowed us to analyze student 
artifacts and answers to assignment questions while also comparing and contrasting 
the CT skills across disciplines using different programming platforms. Examining 
artifacts after the fact is not enough to gauge students’ understanding of the code 
(Brennan & Resnick, 2012). Therefore, in addition to using submitted programming 
projects, our courses incorporated answers to questions relating to the development 
of code, or classroom observation and instructor notes, into the CT rubric scores.

Pre- and post-survey questions match our rubric criteria in order to gauge students’ 
perceptions of their CT knowledge and to determine whether they felt their CT skills 
increased. We also asked open-ended questions regarding their CT skills and ability 
to use it in their future classrooms. Approval for this research was obtained at our 
university’s Institutional Review Board, and we received informed consent from the 
students.

3.1  Participants

All participants were registered for one of four courses (Physics, Geometry, Science 
Methods, Computer Science) at an urban public university in the Midwest. In total, 
data for 125 students (80 female, 45 male) was analyzed using the CT rubric (45 in 
Fall 2018, 36 in Spring 2019, and 44 in Fall 2019; see Table 5). Students taking mul-
tiple courses in the same semester are included separately for each course.

3.2  CT tasks

In order to examine the validity of our rubric we tested it on four courses that future 
middle school math and science teachers enroll in: Physics, Geometry, Science Meth-
ods, and an introductory Computer Science course. The first three courses were mod-
ified to include CT/coding modules, while the Computer Science course was new and 
designed to provide education students with a strong foundation in CT and coding.

3.2.1  Geometry concepts for educators

Modules were developed for the Geometry Concepts for Educators course to rein-
force students’ skills by coding geometrical concepts in Scratch. In addition, a final 

Fall 
2018

Spring 
2019

Fall 
2019

Geometry Concepts for Educators 5 2 5
Physics Concepts for Educators 8 3 4
Science Methods 16 18 20
Computer Science for All 16 13 15
Total 45 36 44

Table 5  Participants 
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project had students: (a) choose a piece of art that is culturally or personally relevant 
to them and explore the geometry concepts in that work of art, (b) abstract the art-
work and geometry concepts using Scratch, and (c) collaborate with a classmate to 
merge their artworks into a collaborative work of art. At the end of the course, stu-
dents presented a poster of their individual and combined artworks (Fig. 1). Using the 
CT rubric, the instructor graded their final projects.

3.2.2  Physics concepts for educators

The Physics Concepts for Educators course used VPython, which operates the Python 
programming language using 3D graphics. We used trinket [https://trinket.io/], a 
web-based coding environment, so that students did not need to install software and 
could run code from any browser or device. Physics concepts such as the notion 
of vectors and vector addition, kinematics, and conservation of mechanical energy, 
were selected for further illustration through embedding computational simulations. 
In one project, we focused on assessing CT in a vector addition simulation. This 
represents one of the first exercises in this course involving the distinctions between 
distance and displacement, and likewise between speed and velocity, physical con-
cepts that students have difficulty differentiating. In order to learn about displacement 
and velocity vectors, students applied vectors in a real-world setting by placing the 
displacement vectors on top of a scaled map of the U.S. (Fig.  2). The simulation 
provided students with the components of the vector, allowing students to analyze 
and extract data from the map, while also providing a direct visual of the extracted 
information. The simulation was designed to allow students to import a map of their 
own choice so that they could utilize vectors within a personally relevant setting. 
One example of a student-selected assignment consisted of using a Marauder’s Map 
of Hogwarts and its surroundings from Harry Potter. Through the simulation the stu-
dent was able to visualize the net displacements as one travelled from Hogwarts to 
the Whomping Willow, Forbidden Forest, Hagrid’s hut, and finally when returning 
back to Hogwarts. In addition to using the simulation in various travel configurations, 
students were asked to learn about the code and make small edits to it, from adding 
comments to modifying actual code and parameters in it.

3.2.3  Science methods

In the Science Methods course, students learned about earthquakes, such as their 
causes and underlying mechanisms, and earthquake-related structural stability issues. 
Students constructed earthquake simulator robots (Fig. 3) using LEGO Mindstorms 
EV3 kits with custom-made building instructions. Students then programmed a 
robot, and by using a loop and variables they were able to see the power of the motor 
controlling the robot increase in intensity from 1 to 5, thus simulating the magnitude 
of an earthquake. By the end of the simulation, students had designed and built their 
own unique buildings using LEGO pieces in order to test if their structures were 
strong enough to withstand earthquakes of different magnitudes. This inquiry-based 
approach allowed pre-service teachers to generalize the problem to a real-world situ-
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ation, finding solutions based on the module, and allowing them to learn how to guide 
their future pupils in developing CT skills using robots.

3.2.4  Computer science for all

The Computer Science for All course was designed to provide students with a founda-
tion in Computer Science. The course primarily focuses on two visual-programming 
platforms: Scratch and Lego Mindstorms EV3 Robotics. This introductory Computer 
Science course is an important addition to our pre-service curriculum because it will 
help improve their CS skills so they can later use them in their future STEM and Sci-
ence Methods classrooms. The rubric was used for the final project at the end of the 
semester. For the project, students had to choose one of the two visual programming 
environments, then delve into a topic of their choice and present it to the class. One 
group created a math pong game targeted for third grade, in which each time a ball 
hits one of the colored blocks on top, the user needs to answer a different math prob-
lem “hidden” underneath (Fig. 4).

4  Results

4.1  Analysis of rubric results

In order to measure the reliability of our CT rubric we had two independent evalua-
tors complete the Fall 2018 rubrics for each course. Due to the small sample size for 
Geometry and Physics, interrater reliability results were only calculated for Science 
Methods and Computer Science for All. Evaluators were given student submissions 
and the assignment and rated each of five rubric items (decomposition, variables, 
data, algorithmic thinking, generalization) based on 1="No/Limited Proficiency” 
2="Some Proficiency” 3="Proficiency” 4="High Proficiency” for a given student. 
The evaluators independently rated two projects from each course with the rubric, 
discussed disagreements, repeated the process, and then independently calculated 
ratings for ten submissions from each course. The percentage of agreement from data 
from these two courses was 91%, and a weighted Cohen’s Kappa yielded a reliability 
of 90%. (Note that for the Science Methods course, while evaluators rated decom-
position, variables, data, and algorithmic thinking, generalization was omitted by the 
evaluators as this was observed during class discussions by the instructor and the rat-
ers did not have access to that data.) For Computer Science for All, all five categories 
were rated for each student, as, in addition to their code, students submitted a written 
assignment answering questions based on each rubric item (see Appendix A). We 
also examined reliability by calculating the Cronbach’s alpha of the five CT rubric 
items which was reliable at 0.80.

To address the construct validity of the rubric, we consulted experts who had a 
background in CT and/or CS pedagogy (face validity) and sought their feedback on 
each of the individual CT rubric rows and columns. The first implementation of the 
rubric during the Spring 2018 semester was treated as a pilot during which we sought 
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additional feedback from the instructors teaching the courses and modified the rubric 
accordingly. Our results report on the new data beginning Fall 2018.

Fig. 4  Sample Project of a Math 
Pong Game
 

Fig. 3  Robotic Earthquake 
Simulator
 

Fig. 2  Vector Simulation using a USA Map
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In order to assess CT proficiency in the students taking the courses, we examined 
the CT rubric scores completed by instructors in the four courses. In general, the 
results were high (Table 6). Over 90% of students exhibited proficiency or high pro-
ficiency in all five categories.

While not all of our instructors made strict use of the CT scoring to calculate stu-
dents’ grades for the assignments, the rubric helped them measure the CT strengths 
and weaknesses of their students in the given assignment. Similar to Bloom’s Tax-
onomy where students master lower levels before going on to the higher levels, our 
rubric’s higher levels require prerequisite knowledge from the lower levels. For 
example, there were eight students who had only some proficiency in decomposition 
(a lower level in the taxonomy) and these students generally performed poorly in 
the higher levels (mean total rubric score for these students was 12 out of 20 com-
pared to a mean of 17 for all students). In fact, all but one student who ranked in the 
lowest category (no/limited proficiency) on the other rubric items were from these 
eight students. If students were not able to proficiently decompose a problem into its 
components, they would be very unlikely to complete the higher levels of the rubric 
successfully.

Furthermore, we noticed significant improvement in CT scores for students from 
Fall 2018 (our first semester implementing the rubric) compared to later semesters. 
Using the rubric enabled instructors to notice where their students were lacking and 
address that in subsequent semesters. A Kruskal-Wallis non-parametric test showed 
significant improvement in total CT scores χ2 (df = 2) = 14.04 (p = .0009) from Fall 
2018 (mean = 16 out of 20) to Spring 2019 (mean = 18 out of 20) and Fall 2019 
(mean = 18 out of 20). When examining the Fall 2018 data separately (Table 7), many 
of the lowest proficiency scores were from that semester.

Criteria No/Lim-
ited Pro-
ficiency 
(%)

Some Pro-
ficiency 
(%)

Proficien-
cy (%)

High 
Profi-
ciency 
(%)

Decomposition 0 (0%) 5 (11%) 25 (56%) 15 (33%)
Variables 1 (2%) 3 (7%) 26 (58%) 15 (33%)
Data 0 (0%) 2 (4%) 25 (56%) 18 (40%)
Algorithmic 
Thinking

1 (2%) 6 (13%) 20 (44%) 18 (40%)

Generalization 2 (4%) 4 (9%) 13 (29%) 26 (58%)

Table 7  Frequency Distribution 
for CT Rubric Items for Fall 
2018 (n = 45)

 

Criteria No/
Limited 
Proficiency 
(%)

Some 
Proficien-
cy (%)

Proficien-
cy (%)

High 
Profi-
ciency 
(%)

Decomposition 0 (0%) 8 (6%) 38 (30%) 79 (63%)
Variables 1 (1%) 4 (3%) 46 (37%) 73 (59%)
Data 2 (2%) 4 (3%) 53 (42%) 66 (53%)
Algorithmic 
Thinking

1 (1%) 11 (9%) 27 (22%) 86 (69%)

Generalization 3 (2%) 4 (3%) 62 (50%) 56 (45%)

Table 6  Frequency Distribution 
for CT Rubric Items from Fall 
2018, Spring 2019, and Fall 
2019 (n = 125)
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Spearman’s correlation was also computed to assess the relationship between each 
of the rubric items. Table 8 shows a significant and positive correlation between most 
of our CT criteria. In most cases, students’ scores in one CT criteria, correlated with 
the other CT areas. The exception was generalization, which was not significantly 
correlated in most cases.

4.2  Analysis of surveys

We conducted pre- and post-surveys for all of the students in the four courses for 
three semesters. Students in multiple courses in a given semester only completed the 
survey once. A total of 80 students (46 female and 34 male) completed both pre- and 
post-semester surveys (28 in Fall 2018, 30 in Spring 2019, and 21 in Fall 2019).

Using a 5-point Likert scale (1 = Strongly Disagree; 5 = Strongly Agree), we mea-
sured students’ perception of their CT skills through items derived from our CT rubric 
(Table 9). Since our data was non-parametric, we used a two-tailed Wilcoxon signed-
rank test, with α = 0.05, in order to determine whether there were positive or negative 
changes. We found that students’ overall perception of their CT skills increased from 
the beginning to end of the semester. In addition, our survey results revealed signifi-
cant gains for students in all individual CT components. Participants felt they had 
gained in breaking down complex problems (decomposition), manipulating variables 
(variables), creating and modifying computer code (algorithmic thinking), analyzing 
program output and data (data), and applying what they learned to other problems/
disciplines (generalization). Although our data showed significant increases in these 
items, it is important to examine whether that was practically significant. While gen-
eralization had a medium, or moderate, effect size according to Cohen’s classification 
of effect sizes which is 0.10 - < 0.3 (small effect), 0.30 - < 0.5 (medium effect) and 
> = 0.5 (large effect) (Cohen, 1988, 1992), there were high effect sizes for all other 
CT items. A power analysis post hoc using G*Power 3.1 (Faul et al., 2009) showed 
that for our medium effects size (0.44), a sample size of 80, and α = 0.05, the power is 
0.9668, and for the highest effect size of 0.78 power was 0.9999991.

Our survey also asked students how they would incorporate CT into their future 
teaching. Their answers demonstrated that they were planning on integrating CT into 
their future courses. Some examples include:

“This could be great for when I am trying to teach a complicated topic and I can 
break it up into much smaller parts for the students to understand it.” (Decomposition).

“having students create models, and have them predict outcomes based on chang-
ing certain variables.” (Algorithmic Thinking; Data; Variables).

Table 8  Correlation between CT Rubric Items
Decomposition Variables Data Algorithmic Thinking Generalization

Decomposition 1 0.707* 0.428* 0.738* 0.142
Variables 1 0.412* 0.582* -0.003
Data 1 0.418* 0.355*
Algorithmic Thinking 1 0.092
Generalization 1
*p < .0001
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“A couple of Scratch programs can be used when I teach my students certain for-
mulas like the Pythagorean Theorem.” (Generalization).

“I will definitely incorporate Scratch in my future teaching. You are able to use 
Scratch for basically any subject. I would have students create games on certain 
things we are learning in class or I will create a game for them to play and then leave 
a part for them to remix or debug. Using Scratch for any core subject allows students 
to understand that computational thinking can be applied to anything.” (Algorithmic 
Thinking; Generalization).

5  Discussion

Our aim was to create a single CT assessment tool that could be used by instructors 
in multiple courses who use different programming environments. We created a CT 
rubric based on components derived from the literature (Brennan & Resnick, 2012; 
Csizmadia et al., 2015; ISTE and CSTA, 2011; Rose et al., 2017; Weintrop et al., 
2016) and integrated it with higher orders of Bloom’s Taxonomy (Anderson & Krath-
wohl, 2001; Bloom et al., 1956). Using Bloom’s Taxonomy enabled us to define our 
CT items in terms of how students learn, focusing on students’ ability to understand, 
apply, analyze, create, and evaluate. We implemented our CT rubric in four different 
courses in a pre-service education program.

Table 9  Pre- and Post-test Survey Statements (n = 80a)
Category Statement Mean (S. D.) Wilcoxon 

signed-rank 
test

Ef-
fect 
Size

Pre-test Post-test

General CT
CT I am confident in my ability to use 

computational thinking to understand 
or analyze problems.

3.41 (1.10) 4.11 (0.88) V = 162*** 0.66

Specific CT Category
Decomposition I am able to break a complex prob-

lem into smaller, more manageable 
parts or components so that it can be 
solved using a computer.

3.49 (1.06) 4.18 (0.83) V = 218*** 0.62

Variables I am able to manipulate a system’s 
variables or components to achieve a 
desired result.

3.48 (1.13) 4.06 (0.88) V = 168.5** 0.57

Data I can analyze or interpret a program’s 
output or data.

2.93 (1.17) 3.93 (0.96) V = 218*** 0.70

Algorithmic 
Thinking

I am able to modify existing com-
puter code to complete small tasks in 
subject areas I am familiar with.

2.74 (1.25) 3.88 (0.95) V = 195*** 0.72

I am able to create computer code to 
complete small tasks in subject areas 
I am familiar with.

2.67 (1.17) 3.95 (0.97) V = 121.5*** 0.78

Generalization I am able to apply what I’ve learned 
to another problem or discipline.

3.89 (0.89) 4.19 (0.78) V = 239* 0.44

*p < .01; **p < .001; ***p < .0001; aDue to student omissions in some pre- or post-survey items n = 77 for 
variables and n = 79 for creating code and overall confidence in CT.
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Many researchers argue that multiple forms of assessment are ideal (Boe et al., 
2013; Brennan & Resnick, 2012; Grover et al., 2014). Therefore, in addition to using 
our rubric to assess CT skills in our students, we also surveyed the students to mea-
sure the self-efficacy of students’ CT skills. Similar to Weese and Feldhausen (2017) 
who created a self-efficacy survey to gather students’ perceptions on their CT abili-
ties, our CT survey measures students self-efficacy in CT and maps to each of our 
five CT rubric items. Our survey results showed that students felt they had significant 
gains in CT by the end of the semester. This is consistent with CT rubric scores which 
showed a significant percentage of students in the proficiency/high proficiency range 
for each CT item.

We also found that our students were positive about their experiences in our updated 
courses and had many ideas on how to integrate CT into their future classrooms.

In our post-survey, one student who took the Computer Science for All course 
wrote “This semester has made me grow in computational thinking more than ever. 
Continuing what I learned is the key going forward. Everything else is on me, the 
school did its job.” In our technological society, having computing incorporated into 
teacher education programs is vital for the future generations of children to have the 
opportunity to see and use coding and CT.

5.1  Implications and Lessons learned

Below we discuss implications and lessons we learned.

5.1.1  Having a rubric led to better assignments

Similar to Crowe et al. (2008, p. 373), who found that their rubric was leading them 
“to ask and write better questions,” using the CT rubric helped improve CT assign-
ments provided to our students. For example, during the implementation of CT in 
our pilot year, the geometry CT module consisted of students creating shapes with 
Scratch. However, the module did not consider a key CT criterion, generalization. 
Students were not shown how what they learned could be generalized to other real-
world problems or disciplines. After the creation of the rubric, we added a real-world 
component in which students could see how learning how to draw shapes in Scratch 
can be taken to the next level through exploring patterns found in a different disci-
pline, art. This implementation was superior, as students learned not only how to inte-
grate geometry and Scratch, but also how the CT skills they learned could be applied 
in more than one discipline. In the post-survey, one student wrote that he might incor-
porate CT into his own future class by doing a similar project in his classroom.

Furthermore, in order to determine whether students would be able to generalize 
what they learned to another discipline or real-world problem, students in the Geom-
etry course also had to submit answers to questions such as:

1)	 How would you apply this to other disciplines?
2)	 What other discipline could you incorporate into this project (besides art)?
3)	 Are there ways to connect this project to other courses you have taken or what 

you plan to take in the future?
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4)	 How would you incorporate this project or ideas from this project in your future 
classroom?

Taking CT one step further by not only using it, but evaluating how it could be used 
in the future is now included as an important part of the module.

In the Physics course, students used VPython simulations as part of our agenda 
to incorporate CT into the curriculum. However, after the creation of the rubric, the 
assignment was modified so that students were also required to make modifications to 
the Python code, thereby improving algorithmic thinking skills. In their post-survey 
responses on how they would integrate CT into their own classrooms, students now 
reported including coding and more hands-on activities. Furthermore, to provide stu-
dents with more coding experience in a text-based platform, we implemented addi-
tional assignments. In one, students are given a VPython simulation, which drew 
vectors on the screen, displaying the sum of the vectors, but now they needed to 
include the code to add the vectors together. This provided them with more experi-
ence using loops and variables, as well as an opportunity to better understand existing 
code and how to contribute to it in a more significant way.

5.1.2  More than one data source to determine rubric scores

We found that the programming projects were not enough to determine rubric scores. 
In addition to students’ submitting their artifacts, an important factor was the inclu-
sion of additional methods for assessment. To help determine the rubric scores, 
many instructors included individual assignment questions asking students to submit 
answers pertaining to each of the five rubric components in the module. (See Appen-
dix A for an example from the Computer Science course.) Since most of the rubric 
modules were group work, this allowed instructors to determine individual student 
scores for each of the five rubric items.

Another method used by some of the instructors in their scoring included relying 
on classroom observation and their notes on class activities, particularly when grad-
ing the algorithmic thinking item. For example, in Science Methods and Physics, 
although student programs and output from all groups were similar, instructors also 
based some of their calculations on class observation and video when determining 
students’ algorithmic thinking scores. Instructors determined in class whether stu-
dents were able to break the problem into small steps and use algorithmic thinking as 
they were doing the exercises.

Lastly, while many of the rubric items were able to be determined based on proj-
ect artifacts, one area that most relied on other sources was generalization, which 
is not displayable directly by code, but mostly rated either through the individual 
assignment questions or through classroom observation/discussion. For example, to 
examine generalization in Computer Science for All (Appendix A), question 5 asked 
students how they could use what they learned to solve a different problem.
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5.1.3  Integrating CT for their own students

Overall, the integration of CT into the courses was positively received by the stu-
dents. While our students were eager to use CT in the future, in some cases they 
may have misunderstood the goal by thinking they should use programming or CT 
to teach a concept rather than having their students use it. For example, as shown in 
the quote in Sect. 4.2, when asked about how they would incorporate CT into their 
future teaching, one student wrote “This could be great for when I am trying to teach 
a complicated topic and I can break it up into much smaller parts for the students to 
understand it.” Rather than describing how their future students would decompose a 
problem into its parts, this student described breaking up a problem for her students. 
Therefore, it is important to ensure that future teachers understand the real motivation 
is for providing opportunities for their students to use CT themselves.

5.2  Limitations and future work

While the CT rubric was implemented in four different courses, it was only used at 
one university, and two out of four of the courses had small class sizes. Nevertheless, 
the four instructors found the rubric helpful and it guided them in creating assign-
ments that covered the key CT components. While some instructors used additional 
factors to complete the rubric, such as classroom observation and answers to ques-
tions, having the rubric helped guide assignment questions and ensure students were 
able to acquire the CT skills on the rubric. Future research can compare our students’ 
CT skills at the beginning of the program to the end of the program to determine gains 
in CT not only for one semester but as a program.

6  Conclusion

Incorporating a CT module into a course for future teachers to improve their CT 
skills is adequate, but not sufficient. Pre-service teacher programs can incorporate 
CT into multiple courses to be really successful in training future teachers with CT. 
We modified our pre-service STEM curriculum for future elementary and middle 
school teachers to include CT and coding in content courses, the Science Methods 
course, and a Computer Science course for educators. We created a rubric, based on 
Bloom’s Taxonomy, to assess CT and used it in four courses successfully. Using the 
rubric enabled us to learn how our students’ CT skills were growing and where there 
was room for improvement, such as having more hands-on coding opportunities. The 
creation of a CT rubric can allow instructors in different courses and disciplines to 
have a single systematic method for assessment of CT.

7  Appendix A

Sample Individual Project Questions from the Computer Science Course.
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1)	 What was the general problem or topic you were addressing? What are the key 
components of that problem? What is the significance of the key component(s)? 
Describe the code that corresponds to each of the key components?

2)	 What variables did you use in your project? Explain how those variables were 
used and why it was necessary to use variables. How could you modify your 
project by changing the variables?

3)	 Explain the output of your program. What is the significance of the results of 
your code? What are the limitations of your code or the data you collected?

4)	 Describe the part of the code that you created? (Not your team member’s portion 
of code). What component in the overall code does the part that you created solve 
or address? How did you construct the code? What logical operators did you use 
to make your code efficient?

5)	 Your project used Scratch or Robotics, do you have ideas for a project using the 
same tool you chose but to address a different real world problem and/or a dif-
ferent discipline. How does this new problem relate or compare to the original 
problem? How would you justify the results and the importance of using this 
tool?
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