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1. Introduction

In this study, we aim to develop a physics-
informed-data-driven approach to model
the inverse design of optical metamaterials.
Inverse design of materials has a property-
to-structure objective, wherein, an algo-
rithm provides valid design of materials
for achieving target properties.[1] In other
words, inverse design calculates cause
from effect.[2] Optical metamaterials have
various light modulation applications like,
cloaking,[3,4] optical communication, imag-
ing,[5] and holography[6] owing to electro-
magnetic (EM) characteristics unlike
those of any conventional materials and
ability to manipulate optical response
through interaction with light.[6,7] Given
the wide range of application of optical
metamaterials, there arises a need to solve
the inverse problem, that is, prediction of
design parameters given the desired optical
response.[8,9] However, inverse problems
are often touted as “ill-posed” problems,
which is numerically difficult to solve for

as there is no closed form solution. Optical metamaterial systems
often encompass a wide range of possible design candidates.
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Optical metamaterials manipulate light through various confinement and scat-
tering processes, offering unique advantages like high performance, small form
factor and easy integration with semiconductor devices. However, designing
metasurfaces with suitable optical responses for complex metamaterial systems
remains challenging due to the exponentially growing computation cost and the
ill-posed nature of inverse problems. To expedite the computation for the inverse
design of metasurfaces, a physics-informed deep learning (DL) framework is
used. A tandem DL architecture with physics-based learning is used to select
designs that are scientifically consistent, have low error in design prediction, and
accurate reconstruction of optical responses. The authors focus on the inverse
design of a representative plasmonic device and consider the prediction of design
for the optical response of a single wavelength incident or a spectrum of
wavelength in the visible light range. The physics-based constraint is derived
from solving the electromagnetic wave equations for a simplified homogenized
model. The model converges with an accuracy up to 97% for inverse design
prediction with the optical response for the visible light spectrum as input, and
up to 96% for optical response of single wavelength of light as input, with optical
response reconstruction accuracy of 99%.
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These systems usually comprise ultrathin array of periodic sub-
wavelength structures, called meta-atoms that mimic atoms in
ordinary materials.[10,11] These meta-atoms have multidimen-
sional design parameters that are challenging to be determined
by inverse design problem.

The inverse design of metamaterials using semi-analytical
methods such as rigorous coupled-wave analysis (RCWA), or
numerical methods such as finite difference time domain
(FDTD) and finite-element method (FEM), is computationally
expensive due to the immense size of the design space.[8,9]

These methods often involve iterative searches and parameter
sweeps through a multidimensional space, making the design
process time-consuming. Additionally, when these approaches
are used, the design geometry is often limited to simple design
parameters, which does not capture the full potential of the opti-
cal metamaterial design. Few studies have also used evolutionary
methods like genetic algorithm to facilitate metamaterial
design.[12] However, these methods are less suitable for inverse
design tasks as they typically require high number of evolutions
and have limited design exploration capabilities.[13–16]

Furthermore, these algorithms necessitate the constant execu-
tion of physics-based simulations to evaluate the objective func-
tion, adding to their computational demands and making them
less efficient for designing complex metamaterial systems.[17,18]

Recent advancements in computer architectures, algorithms,
computer hardware, and the availability of large datasets have
enabled the use of deep learning (DL) methods to solve
various mechanics problems, including the inverse design of
materials.[19,20] DL algorithms utilize multiple layers of nonlinear
transformations to learn complex functions from data.[21]

However, despite its success in solving complex problems, DL
still faces several issues, such as high data burden, lack of
robustness, and difficulty in interpretation due to learning
high-dimensional complex functions.[22] Moreover, DL solutions
often face convergence issues when multiple valid solutions
exist, as it is deterministic in nature. The EM wave equations
governing the relationship between design and optical response
are highly nonlinear, and even a relatively small error in the
design prediction can result in considerable deviation in the
optical response. Additionally, the one-to-many mapping from
response to design results in nearly identical optical responses
being produced by different design structures, which further
complicates the inverse problem solution using DL methods
and renders it unstable and continuously dependent on initial
conditions.[23]

Thus, solving the inverse problem by DL methods require
adoption of either 1) a probabilistic approach instead of deter-
ministic model or 2) a regularizer to constrain the network
parameters to a specific domain.

DL-powered inverse designs for metamaterials have adopted
generative models like generative adversarial network (GAN)
and variational autoencoder (VAE).[24] GANs were employed
by Liu et al.[25] and Jiang et al.[26] to predict structural images
for a given transmission spectra. These networks can generate
novel structural patterns, which can provide insight into new
structures beyond human intuition built on experience and
knowledge. VAE, a semi-supervised strategy, has been utilized
by Ma et al.[27] and Liu et al.[28] VAE models have a decoder that
reconstructs the structure geometry from compressed latent

variables. The encoder learns the parameters of the distribution
of the latent variables. The decoder output generates multiple
candidate designs for a spectrum, from which a single design
is chosen based on fabrication requirements.

The tandemmodel architecture developed by Liu et al. for opti-
cal metamaterial design aims to predict structure design that
leads to proper reconstruction of optical response.[29] The model
concatenates an inverse DL model architecture, which predicts
structural design from response data, with a pretrained forward
DL model that predicts optical response from the predicted
design. The model then minimizes the difference between the
input response spectrum and the corresponding spectrum pro-
duced by the predicted design parameter. This method functions
like a pseudo autoencoder model, requiring fewer parameters to
train and achieving stable convergence.

Another approach uses gradients from training the forward
model for inverse design. Starting with an initial design, the loss
is calculated as the difference between the chosen design’s recon-
structed spectrum and the actual spectra. Gradients of the loss
function with respect to design parameters from the already
trained forward model are used to guide design updates through
iterations to minimize the loss. They enable exploration of large
number of designs simultaneously and thus can yield multiple
designs for the inverse problem. However, this technique risks
converging into network singularities, as they actively search for
extrema in the parameter space.[30–32]

A comparison of model performances of tandem neural net-
work (tandem-NN) with conditional GANs and conditional VAEs
for inverse design of metamaterials is performed by Ma et al.[33].
In this study, it is seen that the tandem model slightly outper-
forms the generative models in terms of target reconstruction
for low degree of freedom structure. Since tandem networks have
a relatively simple architecture, they are able to capture the
response–design relationship with less data requirement[17,34]

and easier hyper-parameter tuning[35] than the generative
models.

However, the tandem model introduced by Liu et al.[29] lacks a
constraint on the design parameter in the loss function.
Consequently, the inverse model is learned by minimizing the
optical reconstruction cost function, which can result in design
parameters that are far from the ground truth. Not imposing
constraints on the structural parameters leads to limited
exploration of design options and the generation of impractical
structures.[36–38] To address this limitation, researchers have
used hyper-parameter-driven design loss, serving as a penalty
term, along with the reconstruction loss term in the model’s loss
function. This addition enhances network robustness and
ensures that the retrieved parameters closely align with the
dataset.[36,38] Moreover, the design loss inclusion facilitates the
consideration of any fabrication prerequisites when applying
inverse design in practical applications. This approach introdu-
ces a small regularization loss, guiding predictions toward at
least one potential design parameter within the training dataset.
Although this may slightly impact convergence due to a margin-
ally higher loss for alternate candidate design parameters, the
concurrent presence of the reconstruction loss aids in maintain-
ing algorithmic stability.

Furthermore, the tandem model is a data-driven DL model
whose internal working is often difficult to comprehend. DL
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models have multiple hidden layers with intricate activation func-
tions, making it challenging to fully comprehend the learned
relationships. Therefore, DL models are often referred to as
“black box” models. Moreover, DL models require a large
amount of data and have poor generalization, meaning they
may not perform well on inputs outside the range of the training
set.[23,24] A naive solution, like, simplification of the DL model or
using simple linear/nonlinear ML algorithms with less parame-
ters to learn, would not work in practice. Even though the sim-
plified model is easier to explain, the approximation power of DL
is lost which decreases the accuracy of the model. Another
approach to tackle the issues involves increasing the design space
by data augmentation strategies. However, this too requires pro-
ducing new labeled data which is resource intensive.

Recently, scientists have adopted a method to improve gener-
alization power of DL models while reducing the large data
requirement and producing scientifically consistent predictions.
Domain knowledge, like, the governing physics are integrated in
a DL model by a variety of methods, which include incorporation
in the loss function, residual modeling, and initialization of
model parameters or architecture of the DL model.[2] They
are collectively referred to as physics-informed neural
network.[1,23,39–43] Research conducted by Lu et al.[44] and
Pestourie et al.[45] employ neural networks in conjunction with
a low-fidelity physics solver (i.e., simplified physics model) to
alleviate data requirements and enhance computational effi-
ciency. The incorporation of physics principles ensures the pres-
ervation of the conservation laws and symmetry requirements. In
our work, we aim to leverage this multi-fidelity model, which
combines a low-fidelity physics-based model with a data-driven
neural network for the purpose of inverse design of optical meta-
materials. This model has the capability to predict unique design
parameters that align with the physics principles integrated by
the simplified physics model. This integration enhances the
interpretability of the predictions, offering an alternative to
“black box” DL models. Moreover, the combined output of the
neural network and the simplified physics model can closely
match the results obtained from high-fidelity or full-feed physics
simulations.[45]

To integrate physics into the DL model, we utilize two
approaches: 1) physics-informed loss (PIL) function, which
includes a constraint based on the governing physics in the mod-
el’s loss function, and 2) physics-informed design of architecture,
where physics-based features are embedded into the neural net-
work design via intermediate layers. Specifically, we solve
Maxwell’s EM wave equations for a simplified homogenized
structure to obtain the physics knowledge. We penalize the final
design predictions that are not physics consistent in the loss
function, or guide the design toward physics consistency through
the architecture. This physics knowledge acts as a regularizer
during the training of the DL model which reduces the search
space of the model parameters. Hence, we predict design param-
eters that are explainable without decrease in prediction accuracy
with less labeled data. Furthermore, the DL models have more
generalization power for out-of-sample scenarios. Thus, the addi-
tion of physics in the DL model makes them models more
lucrative to domain scientists. Our study demonstrates that
the physics-informed DL models outperform the purely

data-based DL method in terms of design prediction and recon-
struction accuracy.

The rest of the paper is organized as follows. Section 2 dis-
cusses about the representative structure of an optical metama-
terial and the underlying mechanics that this structure follows.
Section 3 describes the specific DL components used for inverse
design as well as the integration of physics in the DL model.
Section 4 evaluates and characterizes the model performances
with concluding remarks discussed in Section 5.

2. Physics-Based Model

In this section, the geometry of a unit optical metamaterial cell,
the governing physics of optical metamaterials, and the simplifi-
cation of the structure by homogenization are discussed.

2.1. Description of Optical Metamaterial Structure

Metasurfaces have various types of structure including spherical
shell meta atoms,[46,47] stratified medium of metal, and dielec-
tric,[48,49] and square or circular split ring resonator. The most
commonly studied representative structure of optical metamate-
rials is the thin polymer or dielectric film over a thick substrate
and a periodic grated metal bar stacked on top of the polymer
thin film.[50–52] These structures effectively modulate the inci-
dent light, such that the outgoing light waves have the desired
amplitude and phase.[50] The gratings can have a variety of
designs ranging from simple structures like cylindrical or rect-
angular to complicated structures like gyroid inspired by scales of
butterflies, bow, H, or cross.[51,53,54]

In this study, rectangular gratings are analyzed that are peri-
odic in the x1-direction and homogeneous in the x2-direction.
These gratings are stacked on an insulating polymer film on a
substrate, as depicted in Figure 1a, with the stacking taking place
along the x3-direction. The incoming light propagates along the
x3-direction with normal incidence. The design parameters of
this metamaterial system consist of the width of the grating,
w, the period of the grating, p, the thickness of the grating, t1,
and the thickness of the polymer film, t2. The substrate and grat-
ing material are made of metal, specifically gold (Au) due to its
high absorption coefficient,[55] and the dielectric film consists
of an insulating substance, such as liquid crystal elastomer
(LCE), with tunable properties. Such structures are easy to
manufacture while being able to produce a wide range of opti-
cal responses.[51] This plasmonic device is representative of a
structure that manipulates light through various light confine-
ment and scattering processes.[10,11] The parameters that vary
during optical metamaterial response modeling include the
parameters of the incident light, such as the wavelength, angle
of incidence, and polarization, as well as the design parame-
ters, material properties (e.g., refractive index), and optical
response.

2.2. Governing Physics

Optical metamaterials follow Maxwell’s EM equations,
Equation (1) and (2), where E,H,ω, μ0, ε0, and ε are electric
field, magnetic field, angular frequency of the wave, vacuum
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permeability, vacuum permittivity, and relative permittivity,
respectively.[56] These equations are solved for a particular design
to obtain response in the form of electric field and magnetic field
with an incident EM wave of λ0 wavelength.

∇� E ¼ iωμ0H (1)

∇�H ¼ �iωε0εE (2)

The optical response is computed as the ratio of the resultant
field intensity to the incident field intensity, which determines
the reflection, transmission, or absorption of the incident wave.
To solve the inverse design problem using a physics-informed
machine-learning approach, the machine-learning algorithm is
guided by the consistency of the response obtained by solving
EM wave equations for the predicted design. However, solving
these equations for a complex structure with high dielectric con-
trast, such as the one shown in Figure 1a, is computationally
expensive and requires numerical or semi-analytical methods.

To enable inexpensive computation and incorporate physics as
a guide for the machine-learning model, we use a simplified
structure that homogenizes the top layer. This approach reduces
the design parameter space and makes it easier and faster to cal-
culate the response by solving EM equations. The homogeniza-
tion results in an effective material property that approximates or
“averages” the property of the original metal gratings in the top
layer, in accordance with effective medium theory (discussed in
Section 2.3). This simplification allows the response to be calcu-
lated using analytical solutions and seamlessly incorporated as
guiding physics for the DL algorithm.

2.3. Simplified Physics Model Through Homogenization

Effective medium theory simplifies the design of complicated
structures, which provides computational efficiency and straight-
forward calculation of the forward equation. When the condi-
tions for the effective medium theory hold, the resultant
simplified structure has an equivalent response as the original
complex structure. The effective medium theory in conjunction
with analytical calculation of the optical response has been used

in many studies of photonics,[57–61] elasticity,[62] and acoustics.[63]

We incorporate the physics by considering a stratified medium,
wherein, the top layer, containing gratings, is homogenized in
accordance to effective medium theory. We utilize this simplified
model to introduce a scientific consistency penalty in the DL
algorithm, which reduces the search space to design prediction
that is consistent with the governing physics. A homogeneous
layer is considered with effective refractive index neff that is
intermediate between nau and nair.

The effective index is dependent on the polarization of the
incident light. We consider normal incidence, with the incident
light travelling in the x3 direction with transverse electric (TE)
mode of wave propagation where (E ⊥ K ) where K is the incident
light’s wave vector and E is the electric field of the EM wave. The
effective refractive index takes into consideration the fill factor
( f ) which is the volume fraction of metal present in the top
layer. In TE mode, considering λ0 ≫ p, and E as approximately
continuous across the boundary, from discontinuity of H across
the boundary,[60,61] we get the effective refractive index in
Equation (3).

nTEeff ¼ εTEeff
� �1

2 ¼ n2auf þ n2air 1� fð Þ� �1
2 (3)

When the dimensions of the structure are comparable to the
wavelength of the incident light, diffraction effects become
significant and impact the optical properties. However, in this
regime, the aforementioned homogenization theorem cannot
be used to calculate the effective optical response.[60] Rytov
et al.[64] derived transcendental wave equations for the TE mode
of propagation of plane waves in an infinite periodic layered
medium, given by Equation (4). The solution of this equation
involves higher-order refractive indices. For λ0 ≫ p, the tangent
term in Equation (4) can be truncated, and the homogeneous
effective index in Equation (3) can be recovered. However, for
design parameters that are mostly sub-wavelength, i.e., λ0 > p
and not λ0 ≫ p, the second-order solution given by Rytov
et al.[64] which truncates the tan x series at the cubic term, is more
appropriate, as shown in Equation (5).

(a) (b)

Figure 1. Approximation of a) the heterogeneous layer in the metal–polymer–metal structure, b) with a layer having “average” property, that simplifies
computation.
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n2air � n2TE
� �1

2 tan π
p
λ0

1� fð Þ n2air � n2TE
� �1

2

� �

¼ � n2au � n2TE
� �1

2 tan π
p
λ0

f n2au � n2TE
� �1

2

� � (4)

n 2ð Þ
TE ¼ nð1Þ2TE þ 1

3
π
p
λ0

f 1� fð Þ
� �

2
n2au � n2air
� �

2

� �1
2

(5)

After homogenizing the top grating layer of our representative
structure in Figure 1a, the metamaterial structure gets converted
to a stratified medium with effective properties in the top layer.
This homogenization is depicted in Figure 1b.

Transfer-matrix method (TMM) is used to solve EM equations
in a multilayer system subject to a uniform incident field.[65,66]

The field in the medium is divided into two components, the for-
ward (transmitted) component and the backward (reflected) com-
ponent. The amplitudes of the field across an interface (say from
material A to B) are related by the Fresnel transmission (tAB) and
reflection coefficient (rAB). The phase shift across the medium
(say, B) is controlled by a factor composed of the wave number
(k), refractive index of eachmedium (nB), and the thickness of the
layers (tB). The system-transfer matrix is defined by combining
these factors for each interfaces andmediums, which determines
the amplitude of the field in each layer. The reflection/absorp-
tion/transmission coefficient is computed from the elements
of the transfer matrix.

Our physics-informed machine-learning algorithm examines
the consistency between the predicted design’s reflection coeffi-
cient calculated from the aforementioned simplified method,
and the reflection coefficient corresponding to the true physics,
which is the input to the DL model. This would guide the algo-
rithm and predict design parameters, which is consistent with
the governing physics.

3. Physics-Informed DL for Inverse Design

In this section, we discuss the physics-informed DL framework
that we have developed to solve the inverse design problem. The
DL framework consists of a tandem architecture that has an
inverse model in conjunction with a pretrained forward
model.[29] Training this network to predict design parameters
ensures that the predicted design reconstructs the optical
response. Furthermore, we introduce the simplified physics
which is used as a constraint to guide the DL model to produce
scientifically consistent results. This simplified physics is applied
to an effective structure which is obtained by homogenizing the
complicated grating layer of the predicted metamaterial design.
The physics equations are then solved to obtain the optical
response, which is compared to the initial input optical response
to guide the DL model. The simplified physics is incorporated as
a part of the loss function of the DL model or as one of the layers
in the DLmodel architecture. The overall structure of the method
schematic is depicted in Figure 2. We use the physics-informed
DL approach to facilitate inverse design for a 1D periodic grating
metamaterial structure, as illustrated in Figure 1a. Nevertheless,
it is interesting to note that this methodology can also be
extended to 2D periodic grating, multilayer optical metamaterial
structures.

3.1. Components of the Physics-Informed DL Model’s
Architecture

In this subsection, we introduce the physics-informed DL
architecture (PIA) model. We formulate the inverse problem,
introduce the reconstruction constraints, and the physics infor-
mation to enable proper physics-consistent prediction and optical
reconstruction of the predicted design.

For our study, we consider the inverse of the EM equations as
the target function. Given input and output pair of response and
design, fRi,Digni , we train a DL model to learn the relationship
between Ri and Di. For the forward EM equation, Ri ¼ f Dið Þ,
response, Ri, is calculated from design, Di. The DL model is
trained to approximate the inverse function, f �1 using training
data that follows, Di ¼ f �1 Rið Þ, without an iterative search
procedure.

As discussed in Section 1, due to the ill-posed nature of
inverse problems and high nonlinearity of the EM equations,
a plain inverse model cannot ensure prediction of design
parameters with accurate reconstruction of optical response.
Hence, we develop a tandem architecture wherein a DL model
approximating the forward EM equation is appended with the
inverse DL model, such that, the output of the inverse model,
D̂, is fed into the forward DL model.

The forward DL model approximates the function that calcu-
lates R from D. The loss of the forward model is defined as the
difference between predicted response from the forward DL
model, Rrecon, and response produced by true design, R. The for-
ward model is trained such that the difference between R and
Rrecon is minimized.

The tandem model architecture consists of the inverse DL
model in conjunction with the pretrained forward DL model.
After training the forward model, the weights of the model
are frozen, i.e., they are considered as non-trainable parameters
during the training of the tandemmodel. The inverse model pre-
dicts the design parameters and this output is fed into the pre-
trained forward DL model, as depicted in Figure 3, to ensure
proper reconstruction of optical response. The entire structure
is trained to minimize the design prediction error (deviation
of predicted design from the inverse model, D̂, from the ground

Figure 2. Overview of the components of the physics-informed deep
learning (DL) model. Rinput is the input optical response and the design,

D̂, predicted from the inverse model. The predicted design, D̂, is then fed
into a pretrained forward model to ensure proper reconstruction of the
optical response, Rrecon. The structure of D̂ is then simplified according
to the homogenization principle and the physics equations are solved
to obtain Rphysics that ensures physics-informed learning.
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truth design, D) and the reconstruction error (deviation of the
response reconstructed by the predicted design, Rrecon, from
the input response, Rinput).

We introduce the physics-based constraint to guide the tan-
dem DL architecture for better design prediction. The physics-
based constraint is calculated by solving for the optical response
from the physics equations introduced in Section 2 from the pre-
dicted design parameters. The optical response calculated is then
compared with the true optical response. This model is named
PIL. However, the simplified physics model is an approximation
of the true model and the effective homogenization principles
are only followed by design parameters that have λ0=p > 2.
Thus, we cannot incorporate the physics-based constraints for
every design parameter in our domain.

To tackle this issue and to ensure that the physics knowledge
for all observations is utilized, we assign the design parameters
that follow the simplified physics model to an intermediate layer
in the neural network (NN) model. The intermediate layer out-
puts the design parameters that produce response as per the sim-
plified physics-based model. The intermediate layer predicts the
thickness parameters, t1ð , t2Þ, and fill factor, ( f ), from which the
effective refractive index is calculated according to Equation (3).
The optical response from the simplified structure is calculated
from the physics equations and compared to the true response
for the physics-based constraint term. It’s crucial to emphasize
that the design parameters are not expressly bound; rather, they
are configured to yield the authentic optical response following
the 1D TMM equations. As previously highlighted, the true
response fluctuates with p, but varying p can yield an identical
f, and the identical f through the simplified physics response
would yield the same response for different p, which would devi-
ate greatly from the true response. Consequently, the predicted f

0

by the DLmodel is tailored to generate the true response through
simplified physics calculations. This adjusted f

0
diverges from

the genuine f since it generates distinct responses for varying
p values. After the intermediate layer, the NN consists of a
few layers that learn the true design parameters, i.e., they pro-
duce response as per the true physics model. This portion of

the NN learns the change in design parameter due to introduc-
tion of the grating in the top layer. The final output predicts the
width (w) and period (p) of gold bars, and thickness of gold bar
(t1) and film (t2). Hence, in this method, the physics is incorpo-
rated in the DL architecture and can guide the DL by using sim-
plified physics yet not constraint the final design as per
requirements of the simplified model. This modification enables
the use of physics knowledge for all the design parameters. The
DL architecture of the PIA model is depicted in Figure 3. This
model is called PIA. The initial portion of PIA learns the inverse
function consistent with the physics of the homogenized model
and guides the later part of the model to learn the effect of intro-
ducing rectangular metal blocks with air gaps instead of homo-
geneous metal block.

3.2. Training of the Physics-Informed DL Model

Having discussed the architecture of the physics-informed
model, in this section, we introduce the training of the DL model
by describing the following: 1) objective function that consist of
data-based and physics-based loss, 2) training the DL model by a
non-convex optimization technique and backpropagation.

3.2.1. Loss Function of DL Model

To train our physics-informed DL model, we designed an objec-
tive function, Equation (6), that is to be minimized to learn the
optimal model parameters. The objective function of the inverse
model minimizes the loss associated with the design parameter,
which is the first term in Equation (6). The tandem model archi-
tecture adds a reconstruction loss which is the second term in
Equation (6). This term calculates the deviation of the optical
response produced by the predicted design, D̂, from the desired
response, i.e., difference between the reconstructed response,
which is the output of the pretrained forward model, Rrecon,
and the input optical response, Rinput.

The physics is incorporated in the third term in Equation (6) as
a penalty for final output layer or intermediate layer for PIL and

Figure 3. Physics-informed DL architecture (PIA).The “Design (Physics) layer” includes intermediate variables that are consistent with the underlying phys-
ics. These variables are calculated based on the design parameters that result in a certain response, as predicted by the electromagnetic equations for the
simplified homogenized structure. The “Output (Design) layer” then uses these intermediate variables to predict the original complex design parameters.
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PIA, respectively. The penalty is the difference between input
optical response, Rinput, and the response calculated by solving
EM equations for a simplified design structure, Rphysics. The sim-
plified design corresponds to homogenizing the top grating
layers of the representative structure. For PIA, the final layer
design output is only used for the data-based loss function term
and the intermediate layer design output is used for the physics-
based loss function term. Whereas, for PIL, the final layer design
output is used for both the data-based and physics-based loss
function terms.

Loss ¼ wdata1MAE D, D̂
� �þ wdata2MAE Rinput,Rrecon

� �
þ wphy Dð ÞMAE Rinput,Rphysics

� � (6)

The weightage of each loss term is a hyper-parameter. wdata1
and wdata2 are chosen based on grid-search hyper-parameter tun-
ing that gives best model performance on the validation set. wphy

is proportional to λ0/p which ensures that more weightage is
given to the physics-based loss function term when λ0 ≫ p
and the effective medium theory of the homogenization hold
true.

3.2.2. Training the DL Model

DL models typically consist of multiple layers of neurons with
each layer consisting of hundreds of neuron. The number of
layers and neurons depends on the type and the complexity of
problem that is to be solved. Since we are dealing with a
regression problem with continuous input, we chose <10 layers
of neurons and each layer has a few hundred neurons.[21,67]

Each neuron has a nonlinear transformation of the input var-
iables, or, an activation function, to approximate the relationship
between input and output variables. The most common activa-
tion function used for this problem is rectified linear unit
(RelU),[21,68] sigmoid and hyperbolic tangent (Tanh).[13,26]

However, RelU activation function, max 0, zkð Þ, often encounters
the “dying RelU” problem where the neuron associated only out-
puts zero.[69] This can be solved by using variants of RelU, e.g.,
smooth and continuous function, sigmoid-weighted linear units
(SilU),[70] which gets rid of the point of inflection and has non-
zero slope segments. SilU activation function has the functional
form of sigmoid function multiplied by its input zkσ zkð Þ[70]. We
use SilU as the activation function for most layers as it has an
advantage of nonsaturation of gradient while being smooth
and continuous at all points. We also use Tanh as the activation
function for some layers as they preserve negative inputs and
have strong gradients, which lead to big learning steps and faster
convergence.

The model parameters of the physics-informed DL model are
determined by minimization of the objective function defined in
Section 3.2.1. The objective function is optimized by backpropa-
gation with “AdamW” optimizer, which uses the adaptive
momentum technique along with weight decay. This optimizer
is chosen because momentum helps in faster convergence and
weight decay provides additional regularization to prevent
overfitting. The physics principles are leveraged as additional
regularization terms that steers the learning of the model

parameters such that the model predictions are consistent with
the governing physics.

4. Evaluation

In this section, we discuss the evaluation of our developed
algorithm and the description of the dataset used.

4.1. Data Description

4.1.1. Variables of the Physics-Informed DL Model

To model the complicated relationship between the design
parameters and the EM response, there are a number of variables
that must be considered. They can be grouped into the following
categories: parameters of incident light: wavelength of the inci-
dent light; design parameters: width (w), period (p), thickness (t1)
of metal grating, and thickness (t2) of polymer; and optical
response: reflection and absorption of the incident light.

Since we used an absorbing material like gold as the substrate
and the metal grating, the metamaterial structure only absorbs
and reflects the incident light. Since the transmission of light
is not considered, the complex reflection coefficient and absorp-
tion of light are the input optical response to the DL model.
Absorption of light is the intensity attenuation as light passes
through the material. The reflection coefficient has real and
imaginary components. The complex reflection presents the exis-
tence of phase shift between incident and reflected EM waves.
Due to the conservation of energy, the amplitude of reflection
coefficient and absorption coefficient follows Equation (7).

Aþ R ¼ 1 (7)

Wavelength of light is considered in the visible range. For
this study, we have developed our model for different input
cases–fixed single wavelength, variable single wavelength, and
multiple wavelengths. For fixed single wavelength model, the
optical response—reflection and absorption–for a fixed wave-
length value is considered for inverse design prediction. For var-
iable single wavelength model, the optical response–reflection
and absorption—particular wavelength, and material informa-
tion is provided as input to the inverse DL model. For multiple
wavelengths model, the reflection and absorption for 40 equidis-
tant wavelength points in the wavelength range 500–700 nm are
input to the inverse DLmodel. The standardized optical response
for a particular set of design parameters is given in Figure 4. The
design parameters span the dimensions within the range of
50–500 nm for period of the grating, 30–200 nm for width of
grating, 10–60 nm for thickness of grating, and 10–100 nm for
thickness of polymer film.

4.1.2. Dataset Preparation

The dataset is prepared by a semi-analytical approach that solves
the EM equations called RCWA. RCWA offers a computationally
efficient and numerically stable method to provide exact solu-
tions to Maxwell’s equations for multilayer periodic struc-
tures.[37,71,72] In this algorithm, infinite periodic structures are
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calculated with Fourier harmonic basis. For the purpose of this
study, ten Fourier harmonics orders are considered. The 2D
RCWA is performed that consider stacking along x3-direction
and periodic grating along x1-direction. The inputs to the
RCWA model are design dimensions, material parameters,
and parameters of incident light. The model solves the forward
model and provides the reflection and absorption coefficient.

In the variable single wavelength model, we recorded a total of
60 000 observations for TE polarization. This dataset included the
optical response measured at 40 evenly spaced wavelength points
ranging from 500 to 700 nm. Each wavelength point was evalu-
ated for 1500 unique design parameters. We used these 1500 dis-
tinct design parameters along with their corresponding optical
response spectra measured at 40 different wavelength points
as the dataset for the multiple wavelength model. For the fixed
single wavelength model, we collected 40 000 observations for TE
polarization at a fixed incident wavelength of 450 nm. The dataset
was divided into a 75–25% train–test split, and within the

training data, a further 75–25% train–validation split was applied.
This resulted in a total of 22 500 observations used for training,
10 000 for testing, and 7500 for validation in the fixed single
wavelength model. In contrast, for the variable single wavelength
model, we utilized a larger dataset, which consisted of 33 750
observations for training, 15 000 observations for testing, and
11 250 observations for validation.

4.2. Model Description

We implemented our physics-informed DLmodel using Pytorch.
As discussed in Section 4.1.1, the dimensions of the design
parameters have different ranges. Hence, to avoid biases, we nor-
malize the data to min–max scale that ensures data is between 0
and 1. To tackle nonlinearity, we used a mix of nonlinear activa-
tion function like SilU[70] and Tanh. The output layer of our
model has sigmoid activation. This is to ensure that the output
ranges between 0 and 1 in accordance with the range of the
variables considered in the model. All objective functions are
computed using mean absolute error (MAE) that calculates
the L1 deviation. We use MAE loss to avoid heavy penalty of out-
liers. The simplified physics model is introduced as a regularizer
to train the DL model. The efficacy of the simplified physics for
the metamaterial structure in Figure 1a is evaluated in Figure 5.
We observed that our dataset validates the expected behavior of
the homogenized model on comparison with the full-feed simu-
lation. The spectra graphs of Figure 5b denote that as λ0/p
decreases, the absorption of the incident wavelength spectra
for the homogenized model increasingly diverges from the
full-feed simulation. Figure 5b shows that the absolute difference
in the computed absorption coefficient from homogenized
model and from full feed-model (y-axis) decreases with the
increase of λ0=p (x-axis). Therefore, our dataset corroborates
the limitation of using effective medium theory-based physics
model, which restricts the homogenization of a periodic optically
responsive structure to large values of λ0/p. Thus, it is necessary
to introduce a weight (wphy) for the physics-basedmodel, which is

Figure 4. Optical response spectra for wavelength range 500–700 nm for
design parameters: p= 280 nm; t1, t2 = 10 nm.

(a) (b)

Figure 5. a) Comparison of the absorption spectrum from full-feed simulation and homogenized model for different λ0/p. The difference between
homogenized model and full-feed simulation increases with decreasing λ0/p. b) The absolute difference of absorption coefficient from full-feed simulation
by rigorous coupled-wave analysis and our physics-based model that homogenizes the metal grating in the top layer and calculates the absorption
coefficient by transfer-matrix method.
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proportional to λ0=p and is set to 0 when λ0=p < 2 in the PIL
model.

4.3. Results and Discussion

We evaluate our physics-informed DL model for both fixed
single wavelength, variable single wavelength, and multiple
wavelengths of incident light. For the fixed single wavelength
model, the entire model is trained on a fixed wavelength of inci-
dent light. For variable single wavelength, the model predicts
design parameters given optical response and wavelength infor-
mation for a single wavelength of incident light. For multiple
wavelength, the model predicts design parameters given the opti-
cal response for a spectrum of wavelength of incident light in the
visible range.

4.3.1. Overall Performance of the Tandem Physics-Informed DL
Model

We evaluate our physics-informed DL models to solve the
inverse problem for the dataset described in Section 4.1.2.
For all three aforementioned input cases, the model is able
to perform inverse design with proper reconstruction of optical
response. The inverse design model for fixed single wavelength

trained with λ ¼ 450 nm converges with �7% MAE. For vari-
able single wavelength and multiple wavelength, our model
converges with �4% MAE and 2.6% MAE, respectively, for
inverse design. Furthermore, our model is able to achieve
<1% reconstruction error for single wavelength model and
�3% reconstruction error for multiple wavelength models.
The comparison of performance for inverse design and recon-
struction by our PIA model with tandem-NN and PIL model is
depicted in Figure 6.

We validate and quantify the expected behavior from various
studies[29,73] of the simple feed-forward NN and tandem-NN
model using our dataset. We observe that for single wavelength
response input cases, Figure 6a,b, the reconstruction error
significantly decreases on using tandem-NN model. As the
design error is also a component of the objective function
(Equation (6)), the tandem-NN model improves the reconstruc-
tion while maintaining the accuracy of the inverse design.

In spite of the improvement in performance in tandem-PIL,
physics knowledge is not utilized during training of all design
parameters to prevent erroneous prediction as the simplified
physics deviates substantially from the true governing physics.
Thus, to make better utilization of the simplified physics model,
we develop the PIA model. In this model, we embed the simpli-
fied physics-obeying design parameters into an intermediate
layer of neurons in the DL model thus enabling us to model

(a) (b) (c)

(d) (e) (f)

Figure 6. Design and reconstruction accuracy: a,d) model trained for incident light of fixed single wavelength; b,e) model trained for incident light of
variable single wavelength; and c,f ) model trained for incident light of multiple wavelengths. a–c) Reconstruction accuracy improves on using tandem
neural network (tandem-NN) model instead of inverse NN model. Addition of physics-based constraint in loss (PIL) does not change the reconstruction
error but improves further on using PIA of DL instead of PIL. d–f ) Design accuracy improves on addition of physics-informed loss. Design accuracy
remains approximately same for PIA and PIL with increase of reconstruction accuracy.
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the whole design space. PIA does not constraint the final design
output to follow the simplified physics, rather the final design
output only contributes to the data-based loss term in the objec-
tive function in Equation (6). Instead, PIA constraints output of
an intermediate layer to follow the simplified physics as dis-
cussed in Section 3.1. As shown in the reconstruction error fig-
ures, Figure 6a–c, tandem-PIA provides better reconstruction
than tandem-PIL as the physics-based constrained variables in
the intermediate layer guide the DL model toward capturing
the governing physics for the whole design space without caus-
ing any significant change in the design accuracy for the inverse
model as noted in the design error figures, Figure 6d–f.

4.3.2. Performance on Fixed Single Wavelength Input

For fixed single wavelength, we see that PIA performs best in
terms of reconstruction of optical response and design prediction
error. In Figure 6a, we see that tandem-NN outperforms vanilla
NN by achieving a three-fifths reduction in response reconstruc-
tion error. This improvement is expected as a simple
feed-forward neural network does not perform well for inverse
design problems. The reconstruction error is improved by
one-fourth from the tandem-NN model by using the PIA model.
The inverse design error is seen to reduce by addition of physics-
based constraint with comparable error values for PIL and PIA as
seen in Figure 6d.

Figure 6a,d depicts the reconstruction error and design predic-
tion error for the DL models for light with wavelength of 450 nm
incident on the structure. Inverse design is more challenging for
shorter wavelength due to emergence of multiple diffraction
orders that increases complexity of the underlying physics.
Consequently, we present the result of our model being evalu-
ated on 450 nm incident light for all fixed single wavelength
evaluations. However, it is to be noted that the same model archi-
tecture is used for inverse design for higher wavelengths within
the visible light region as well.

4.3.3. Performance on Variable Single Wavelength Input

PIA performs design prediction with lowest reconstruction error
for variable single wavelength input. Figure 6b,e depicts the opti-
cal response reconstruction error and design prediction error for
the DL models for a single wavelength of light incident with
wavelengths between 500 and 700 nm. Figure 6b shows that
tandem-NN outperforms vanilla NN by achieving a one-fourth
reduction in response reconstruction error, as anticipated given
the challenges faced by basic feed-forward neural networks for
inverse design. Reconstruction error improves by one-tenth from
the tandem-NN model by using the PIA model. Inverse design
error reduces by a one-tenth in value due to addition of physics-
based constraint with comparable error values for PIL and PIA as
seen in Figure 6d.

4.3.4. Performance on Multiple Wavelength Input

The predictive power of the physics-based inverse design and
response reconstruction is analyzed for multiple wavelength
input, i.e., wavelength spectrum response as input. In

Figure 6f, we see that physics-informed DL improves on design
prediction accuracy over data-based DL, reducing the prediction
error by one fifth. However, we also note that the introduction
of tandem-NN does not cause any improvement in reconstruction
of optical response unlike the other single wavelength input cases.
The result is so because, it is not likely for different designs to
produce identical response for all optical parameters for each
wavelength value in the spectrum. Since there are multiple optical
response parameters (complex reflection and absorption coeffi-
cient) for each of the 40 wavelength points, the dataset we consid-
ered do not pose a nonunique inverse design problem for the
response of a wavelength spectrum scenario. Hence, the introduc-
tion of the tandem-NN model does not increase reconstruction
accuracy for the multiple wavelength case as seen in Figure 6c.

By comparing Figure 6f,e, it is noted that the inverse design
loss for multiple wavelength input is lower than the inverse
model with single wavelength information as input. This is
due to the higher level of information fed as input to the multiple
wavelength model, as optical response information for 40 wave-
length points is the input as opposed to optical response of one
wavelength point in the single wavelength cases.

We also validated the performance of the PIA model in recon-
structing the optical response. As seen in Figure 7e, the optical
response generated by the design predicted by our physics-
informed DL model approximates the optical response calculated
from full-feed RCWA simulation for the true design very closely.
The misfit between the reconstructed response spectrum and the
input is the slight increase in variance of the reconstructed spec-
trum. The increased variance can be characterized due to the use
of two DL models (PIA for inverse design and forward DL for
prediction of response), as it is a characteristic of DL model to
overfit/have high variance results. However, this difference is
small (�3%) and the trend of the response is captured by the
PIA model.

4.3.5. Robustness of the PIA Model

We analyze the ability of the PIA model to perform design pre-
diction for low data and out-of-training sample cases.

In Figure 7a, we observe that our PIA model is able to predict
design parameters with very less training examples. The reported
evaluations in Figure 6 are based on DL models trained with
>20 000 data points. It is well known that DL models perform
better function approximation and generalization with increased
amount of training data. However, since collecting data involves
expensive forward computation, we add external knowledge to
limit training data requirement without loss of model perfor-
mance. The introduction of the physics provides a source of
knowledge of the behavior of the function we aim to approxi-
mate. The addition of physics allows for better generalizability
with low data dependency. Figure 7a shows that for the model
trained on fixed single wavelength of 450 nm, the physics-
informed DL model (PIA) performs better consistently with
lower prediction error than data based model for less training
examples. The difference of error grows with decreasing number
of training samples. Therefore, addition of physics for inverse
design DL model decreases the data burden and improves test
accuracy.
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(a)

(b) (c) (d)

(e)

Figure 7. Robustness of physics-informed learning versus data based learning: a) with decrease in number of training examples, PIA model performs
increasingly better than tandem-NN. b–d) Generalization power of PIA is better than tandem-NN when the design parameter (period of grating, thickness
of polymer) or input parameter (absorption of incident light) is out of range of the training samples. e) The PIA model has the ability to reconstruct the
absorption response for a wavelength spectrum.
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In addition, we evaluated the model’s ability to predict test
examples beyond the range of the training data using the fixed
single wavelength model trained on 450 nm incident light. The
generalizability of the model was tested on design parameters,
grating period (p), polymer thickness (t2), and input parameter,
incident light absorption (A), which were outside the range of
values used to train the DL model. Figure 7b–d displays the mod-
el’s performance for lower p and t2 values and higher A values
than those in the training set. The results show that, in all cases,
PIA has a lower design prediction error than the data-based
model.

4.4. Model Characterization

We analyzed the importance of the variables, as shown in
Figure 8a, in the forward problem. This could provide a sense
of weighing the error for the prediction of each design parameter
in the inverse model based on the variable importance. The
importance is computed from the response prediction error
where each design variable does not contribute in the network
to calculate the response. We analyses the importance of design,
light and material parameters. For forward model, the average
error is �0.4%. We observe that the presence of either refractive
index information or the wavelength of the incident light is suf-
ficient for the forward model to perform as good as the full
model. However, if both the incident light as well as material
parameter information is not provided, the model cannot predict
the response properly, recording an average loss of �5.36%.
Similarly, it is seen that the design parameters are paramount
to calculating response, with the most important parameter
being thickness of the film (MAE �13%) followed by period
of grating (MAE� 6.5%), thickness of metal grating MAE
(�4.2%), and width of grating (MAE� 2.3%)

In this study, we reported inverse design prediction results by
the DL model for all the variable in the design space. That is to
say, we considered that all the design parameters are unknown
and the entire parameter set is to be determined that properly
reconstructs response. However, in practice, during the design
or fabrication of the photonic structures there are often con-
straints about multiple design parameters. In this case, not all

design parameters need to be predicted by the inverse model.
If the design information about a subset of design parameters
are fed in, it reduces the uncertainty of prediction of the model
and the target space, thus reducing the prediction error. We cor-
roborated that in Figure 8b, for variable single wavelength input,
which shows that as we fix each design parameter for prediction
model, the design error for the other variables reduces. If two
parameters are to be predicted-thickness t1, t2 or material grating
design, w, p, the design error is lower than the full design pre-
diction and single design parameter prediction is even lower.
Also, it is noted that the prediction of design parameters–period
of grating, p and thickness of metal bars, t1 are the most difficult.

5. Conclusion

In summary, to enable efficient and scientifically consistent
design of metasurfaces in a supervised learning setting, we intro-
duce a physics-informed machine-learning model. This model
leverages the power of neural networks to uncover the interde-
pendence between device topology and optical response. To
address the issues arising when using a deep neural network
to solve inverse problems, such as nonunique predictions and
high data burden, we propose a tandem architecture that predicts
explainable and scientifically consistent design parameters while
accurately reconstructing the optical response. By combining the
forward and inverse models in the tandem architecture, we
overcome the issue of nonunique prediction. Additionally, the
inclusion of a physics-based penalty reduces data burden and
increases generalizability while ensuring scientifically consistent
prediction. To compute this physics-based term, we simplify the
metamaterial structure into a stratified medium and solve for the
optical response analytically. However, as our model deals with
data where the dimensions are approximately equal to the
wavelength, we restrict the physics-based loss function to sub-
wavelength observations. To make use of physics knowledge
for all observations, we developed a PIA that includes physics-
consistent design parameters as intermediate neurons. This
approach drives the model toward scientifically consistent predic-
tion without constraining the final design output to be physics

(a) (b)

Figure 8. a) Analyzing importance of variables in the forward modeling of optical response from input parameters. The figure shows the error in pre-
diction of accurate optical response when any of the design, material, or incident light parameter is absent. b) The prediction power of the inverse DL
model increases when partial information of design parameters is given.
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consistent. Our proposedmodel achieves high accuracy in design
prediction and optical response reconstruction, including up to
96% accuracy (4% MAE) for design prediction, 99.5% accuracy
for the reconstruction of optical response for variable single
wavelength input, and 97% accuracy in design prediction for
multiple wavelength input.
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