
TnB: Resolving Collisions in LoRa based on the Peak Matching
Cost and Block Error Correction

Raghav Rathi and Zhenghao Zhang

rrathi@fsu.edu,zzhang@cs.fsu.edu

Florida Sate Univesity, Tallahassee, Florida 32306, USA

ABSTRACT
LoRa has emerged as one of the main candidates for connecting

low-power wireless IoT devices. Packet collisions occur in LoRa

networks when multiple nodes transmit wireless signals simultane-

ously. In this paper, a novel solution, referred to as TnB, is proposed

to decode collided LoRa signals. Two major components of TnB are

Thrive and Block Error Correction (BEC). Thrive is a simple algo-

rithm to resolve collisions by assigning an observed signal to a node

according to a matching cost that reflects the likelihood for the node

to have transmitted the signal. BEC is a novel algorithm for decod-

ing the Hamming code used in LoRa, and is capable of correcting

more errors than the default decoder by jointly decoding multiple

codewords. TnB does not need any modification of the LoRa nodes

and can be adopted by simply replacing the gateway. TnB has been

tested with real-world experimental traces collected with commod-

ity LoRa devices, and the results show that TnB can increase the

median throughput by 1.36× and 2.46× over the state-of-the-art for

Spreading Factors (SF) 8 and 10, respectively. Simulations further

show that the improvement is even higher under more challenging

channel conditions.
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1 INTRODUCTION
LoRa [7] has emerged as a strong candidate for Low-Power Wide-

Area Networks (LPWAN), where a large number of nodes connect

to a gateway over long distances with wireless links. In LoRa, nodes

may transmit packets at the same time, causing collisions. There

have been increasing interests in enhancing LoRa by decoding
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collided packets, which have achieved significant gains over the

original LoRa [12, 15, 18, 20, 22–24, 26–28].

In this paper, TnB is proposed, which is a novel solution to decode
collided LoRa packets. Two main components of TnB are Thrive and
Block Error Correction (BEC). When a collision occurs, the received

signal contains multiple peaks, where each peak is generated by

a node. In order to decode the collided packets, the LoRa receiver

should find the owner of each peak, where the owner refers to the

node that transmitted the peak. Thrive is a simple yet effective

algorithm for finding the owners of the observed peaks. In LoRa,

the Hamming Code is used for Forward Error Correction, which

is simple but offers only limited error correction capabilities. For

example, with Coding Rate (CR) 4, the Hamming code has 4 data

bits and 4 parity bits per codeword, and the default decoder can

correct only 1-bit errors. BEC is an algorithm for decoding the same

Hamming code in LoRa but can correct more errors than the default

decoder. For example, with CR 4, BEC can correct all 1-symbol and

2-symbol errors, and even over 96% of 3-symbol errors. Thrive and

BEC do not need any modification of the LoRa nodes, allowing

a network operator to simply replace the gateway and enjoy im-

mediate performance improvements. The computation complexity

of Thrive and BEC are both moderate. TnB has been tested with

experimental traces collected with commodity LoRa devices, and

the results show that TnB can increase the median throughput by

1.36× and 2.46× over the state-of-the-art for Spreading Factors (SF)

8 and 10, respectively. Additional evaluation with simulations show

that TnB achieves even higher gains when the wireless channel is

more challenging with stronger multi-path and higher fluctuations.

The source code of TnB is available at [5].

Thrive is based on the well-known fact that a peak thrives, i.e., is
the highest, when the signal is processed with the specific parame-

ters of the owner of the peak. Thrive jointly considers three features

that can distinguish a node from others, namely, the symbol bound-

ary, the Carrier Frequency Offset (CFO), and the height of other

peaks observed from the same node, and therefore is more effective

than those consider only a subset of the features. The key novelty

of Thrive is to calculate a matching cost that extracts the information
embedded in these features based only on the height of the peaks,
therefore enjoying a low computation complexity. BEC corrects more

errors than the default decoder by exploiting a special dependency

of the codewords in LoRa. That is, a demodulation error will lead to

errors in multiple codewords at the same location. The key novelty

of BEC is to decode such codewords jointly, which allows BEC to
achieve an error correction capability beyond the traditional bound
based on the minimum Hamming distance of the codewords.

The rest of the paper is organized as follows. Section 2 discusses

the related work. Section 3 discusses the background of LoRa. Sec-

tion 4 gives an overview of TnB. Section 5 explains Thrive. Section

6 explains BEC. Section 7 explains the synchronization and CFO
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estimation. Section 8 describes the evaluation. Section 9 concludes

the paper.

2 RELATED WORK
LoRa packet collision resolution has attracted increasing interest

in recent years [21]. Choir [15] distinguishes peaks from different

nodes by the fraction CFOs, which likely lead to unique fractional

peak locations. mLoRa [24] leverages the time offset of the transmit-

ted packets and successively recovers and subtracts the collision-

free signal. FTrack [27] detects the interfering chirp from the dis-

continuity of the frequency track. CoLoRa [23] is based on the fact

that a misaligned chirp generates peaks at the same location in two

consecutive symbols, where the peak height ratio of the two peaks

is proportional to the amount of misalignment. Nscale [22] pro-

cesses the received signal with a modified downchirp, which leads

to different effects on the peaks from different nodes. SCLoRa [18]

distinguishes the peaks based on the power of the peaks and the

change of the peaks when the processing window slides to the left

or the right. Pyramid [28] is based on the observation that the peak

height of a node increases then decreases when the signal is pro-

cessed with a sliding window, where the highest height is achieved

when the window matches the actual symbol. AlignTrack [12] is

based on a similar observation but processes the signal with the

symbol boundaries of the detected packets. PCube [26] identifies

the signals from different nodes in the spatial domain with multiple

antennas. CIC [20] cancels the interference and leaves only the

target peak.

TnB is significantly different from the work listed above in mul-

tiple aspects. First, TnB assigns peaks to the nodes by calculating

a matching cost based on multiple unique features of the node,

namely, the symbol boundary, the CFO, and the peak height his-

tory, while the existing work exploits only a subset of the features.

Second, TnB makes a unique contribution in the error correction

decoding of LoRa, which has not been explored. Third, the peak

assignment algorithm in TnB is very simple and does not involve

costly computations or a large number of antennas.

There have been other attempts to improve LoRa. OPR [11]

exploits multiple gateways to recover a lost packet, while TnB runs

at a single gateway. BICM Decoding [16] and List Decoding [17]

enhance the error correction of LoRa; however, they are designed

for single-node transmissions and cannot be applied to signals with

collisions because strong signals are processed first which could

be from other nodes. TnB is designed for unmodified LoRa nodes

and is therefore different from those add own application layer

codes [13, 19].

3 BACKGROUND OF LORA PHY
The LoRa Spreading Factor (SF) is an integer that can be from 6 to 12.

The upchirp, denoted by 𝐶 , is a complex vector of length 2
𝑆𝐹

with

unit amplitude but linearly increasing frequency. The conjugate

of 𝐶 is denoted as 𝐶′
and is called the downchirp. A LoRa packet

consists of LoRa symbols transmitted back-to-back, where a symbol

is a cyclically shifted version of 𝐶 . For example, the top of Fig. 1(a)

shows the real part of a symbol with SF 8, which is 𝐶 shifted by

one location. A symbol modulates 𝑆𝐹 bits of data, because𝐶 can be

shifted by ℎ locations where ℎ ∈ [0, 2𝑆𝐹 − 1].

(a) (b) (c)

Figure 1: (a). Modulation and demodulation of a LoRa symbol.
(b) Sensitivity of the peak height to timing error. (c) Sensitiv-
ity of the peak height to CFO.

At the receiver, a received symbol is denoted as 𝛽 , which is

also a complex vector of length 2
𝑆𝐹

. The receiver first de-chirps
𝛽 by computing 𝛾 = 𝛽 ⊙ 𝐶′

, where ⊙ denotes the element-wise

multiplication of two vectors. If the transmitted symbol shifts 𝐶 by

ℎ locations, 𝛾 is a sinusoid that completes ℎ cycles in the symbol

time, as shown in the middle of Fig. 1(a). The signal vector, denoted
as𝑌 , is defined as𝑌 = |𝐹𝐹𝑇 (𝛾) | ⊙ |𝐹𝐹𝑇 (𝛾) |,which is a vector with a
peak at location ℎ, as shown at the bottom of Fig. 1(a). The receiver

can therefore infer the value of the transmitted data. When there

are multiple receiving antennas, the signal vector is the summation

of the individual signal vectors of all antennas.

To demodulate a symbol, the receiver needs to find the correct

symbol boundary, which refers to the start of the symbol, and cancel

the CFO. The peak height can be reduced with a mismatching

symbol boundary and residual CFO. A case with misaligned symbol

boundary is shown in Fig. 1(b), where, as only part of the symbol

is used in the calculation, the peak is noticeably lower. A case with

residual CFO is shown in Fig. 1(c), where the residual CFO leads to

an additional 0.5 cycles in 𝛾 and a much lower peak.

At the sender, the data from the upper layer is encoded by an

(8,4) Hamming code, followed by procedures such as whitening. At

the receiver, the reverse process is applied to the demodulated bits,

including de-whitening and error correction. The generator matrix

of the Hamming code is:
1 0 0 0 1 0 1 1

0 1 0 0 1 1 1 0

0 0 1 0 1 1 0 1

0 0 0 1 0 1 1 1

 .
A codeword can be generated by multiplying the data, which is

a 1 by 4 binary vector, with the matrix. A complete codeword is

a 1 by 8 binary vector, where the first 4 bits are the data bits and

the remaining bits are the parity bits. The Coding Rate (CR) is an

integer between 1 and 4 and is the number of parity bits transmitted

per codeword. If the CR is between 2 and 4, the first CR parity bits

are transmitted. An exception is when the CR is 1, in which case

the parity bit is the checksum of the 4 data bits. For example, if

the data is ‘1001,’ the complete codeword is is ‘10011100’, which

is the summation of rows 1 and 4 of the generator matrix. If the

CR is 3, the transmitted codeword is ‘1001110.’ The Hamming code
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(a) (b) (c)

Figure 2: A code block in LoRa with SF 8 and CR 3.

guarantees detecting 𝑡 −1 errors if the minimumHamming distance

between the codewords is 𝑡 , and correcting 𝑡 errors if the minimum

Hamming distance is 2𝑡 + 1. Therefore, CR 1 and CR 2 offer 1-bit

error detection, while CR 3 and CR 4 offer 1-bit error correction.

LoRa organizes the codewords in blocks, where each block is a

𝑆𝐹 by 4 +𝐶𝑅 binary matrix. In a block, each row is a codeword and

each column contains the bits to be transmitted by one symbol. As

an example, a code block is shown Fig. 2(a), where the SF is 8 and

the CR is 3. Let the received block be the block received by the re-

ceiver, potentially with some symbols corrupted. Fig. 2(b) shows the

received block, where symbols 2 and 7 have been corrupted. Note

that, as the error values are random, a corrupted symbol usually

does not flip all bits in a column. The default decoder replaces each

row of the received block with a codeword that is closest to the row,

i.e., with the minimum Hamming distance, producing the cleaned
block. Fig. 2(c) shows the cleaned block, where, in all rows except

row 7, the number of errors are 1 or 0, which can be corrected by

the default decoder. Row 7 however has 2 errors, which is beyond

the error correction capability of the Hamming code. The default

decoder ”snaps” row 7 to the codeword with the minimum Ham-

ming distance, which differs with row 7 in column 3, producing

an error. Note the BEC can decode this block correctly, as will be

explained in Section 6.1.

A LoRa packet starts with the preamble, followed by the Physical

Layer (PHY) header, then the payload. The preamble allows the

receiver to detect the packet, which typically starts with 8 upchirps,

followed by 2 symbols called the sync symbols, then 2.25 downchrips.
The PHY header consists of 8 symbols and uses CR 4, from which

the receiver can learn the CR and the length of the payload.

4 OVERVIEW OF TNB
TnB consists of four components, as shown in Fig. 3. The first is

the packet detection component, which takes the received time-

domain signal as input and detects packets, at the same time finding

the symbol boundary and the CFO of each packet. The second is

the signal calculation component, which takes the list of detected

packets, as well as the time-domain signal, as input, and calculates

the signal vectors of each packet, where the signal vectors of a

particular packet are calculated by aligning to its estimated symbol

boundary and correcting the CFO according to its estimated CFO.

The core of TnB are the third and fourth components, namely,

Thrive and BEC. Thrive takes the signal vectors as input, and assigns

peaks to the packets. BEC takes the peak locations of each packet

as input, and decode them into data bits. Thrive and BEC can be

Figure 3: Overview of TnB.

Figure 4: The checking point and symbols in Thrive.

jointly used as in TnB, or used separately and combined with other

methods, such as combining BEC with CIC [20] in Section 8.

Starting from the first sample of the received signal, every 2
𝑆𝐹

samples, which is the length of the symbol, is a checking point. At
each checking point, Thrive examines the symbols that intersect

the checking point, and assigns one peak to each symbol. Once the

PHY header of a packet has been received, BEC is called to decode

the PHY header to learn the CR and the length of the payload. Once

the last symbol of the payload has been received, BEC is called

to decode the payload. Thrive also reexamines the received signal

for a second time to decode packets that failed at the first attempt,

because many packets may have been decoded correctly and their

peak locations are known and can be masked.

The packet detection component is described in Section 7. The

signal calculation component is very straightforward. Thrive and

BEC are explained in the following.

5 PEAK ASSIGNMENTWITH THRIVE
Thrive is a simple algorithm for assigning peaks to packets when

there are multiple peaks in the signal vector.

5.1 Challenges
A checking point is shown in Fig. 4, which intersects 3 symbols

denoted as 𝑆1, 𝑆2, and 𝑆3, respectively, where the symbols are sorted

according to their boundaries with the first being 𝑆1. Symbol 𝑖 be-

longs to packet 𝑖 , which is transmitted by node 𝑖 . Symbols of packet

𝑖 right before and after 𝑆𝑖 are denoted as 𝑆−1
𝑖

and 𝑆+1
𝑖
, respectively.

The challenges of peak assignment can be seen in Fig. 5, which

shows the signal vectors of the symbols in Fig. 4. As can be seen in
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Figure 5: An example of signal vectors and peaks.

the figure, a signal vector contains multiple peaks, while the owners

of the peaks are unclear. The number of peaks in a signal vector is

more than the number of nodes, because the signal from one node

generates a peak not only in its own signal vector, but also in the

signal vectors of other nodes if the symbols overlap. For example,

node 2 generates a peak in 𝑆2. However, as 𝑆2 overlaps with 𝑆1 and

𝑆+1
1
, the same signal also generates in peaks in the signal vectors

of 𝑆1 and 𝑆
+1
1
, which are at different locations and are of different

heights. The same signal also generates peaks in the signal vectors

of 𝑆−1
3

and 𝑆3.

As mentioned earlier, Thrive jointly considers the symbol bound-

ary, the CFO, and the peak height history. While these features

have been exploited to various degrees in the past, combining them

further improves the distinguishability of the peaks. The challenge,

however, is how to combine them effectively without incurring

high computation cost.

5.2 Core Ideas
Thrive is based on the observation is that the height of a peak is

highly sensitive to the symbol boundary and the CFO, and is also

highly correlated with peaks in nearby symbols from the same node.

Therefore, reversely, by examining how the peak height varies in the
signal vectors of different nodes and how it differs from those in nearby
symbols, the owner of the peak can be identified.As the signal vectors
have been found by the packet signal calculation component, no

additional heavy computations are needed in Thrive.

To elaborate, first, note that the peak height is reduced if the

signal is processed with incorrect symbol boundary and CFO, as

shown in Fig. 1(b) and Fig. 1(c). Therefore, as long as the nodes have

different symbol boundaries and CFOs, the signal from a node likely

generates the highest peak in its own signal vector, rather than in

those of other nodes. To exploit this observation, let siblings refer
to the set of peaks in the signal vectors of different nodes generated

by the same transmitted symbol. For example, the 5 peaks pointed

by the arrows in Fig. 5 are siblings. From the receiver’s point of

view, as the highest peak among all siblings is in the signal vector

of node 2, the peak matches the best with the parameters of node

2, and therefore node 2 is most likely the owner of the peak. The

sibling cost of a peak is therefore defined based on its relative height

Figure 6: The peak height history of a packet, along with the
upper and lower estimates.

among its siblings. The higher the peak, the lower the cost, and

the more likely the node to which the signal vector belongs is the

owner of the peak.

The peak height history can be very useful, because the signal

powers of the nodes likely differ, resulting in different peak heights;

at the same time, the peaks from the same node should bear some

similarities. An example is shown in Fig. 6 for a packet, where,

although the signal fluctuates, the peak height still follows some

trend. The history cost of a peak measures the deviation of the

peak from the expected peak height of a node based on the past

observations of the node. The smaller the deviation, the lower the

cost, and the more likely the node is the owner of the peak. The

expected peak height is computed by a curve-fitting algorithm

capable of tracking the changes caused by channel fluctuations,

bootstrapped by the peaks in the preamble.

Lastly, the sibling cost and the history cost are linearly combined

into the matching cost, which represents the likelihood of a node to

be the owner of a peak.

5.3 Details of Thrive
The details of Thrive are explained in the following for a generic

checking point.

5.3.1 Notations. Let𝑀 be the number of symbols intersecting the

checking point. Let 𝜏𝑖 be the time difference between the boundaries

of 𝑆𝑖 and 𝑆1. Let 𝛿𝑖 be the CFO difference between 𝑆𝑖 and 𝑆1, where

the CFO is measured by the number of cycles the CFO sinewave

completes in a symbol. Let 𝛼𝑖 = 𝜏𝑖 + 𝛿𝑖 . For each 1 ≤ 𝑖 ≤ 𝑀 , Thrive

runs a peak finding algorithm [29] to find the peaks in the signal

vector of 𝑆𝑖 , denoted as {𝑃𝑖,1, 𝑃𝑖,2, ...}, where the maximum number

of peaks in a symbol is currently 2𝑀 . The height of 𝑃𝑖,ℎ is denoted

as 𝜂𝑖,ℎ . The matching cost of 𝑃𝑖,ℎ is the summation of𝑤𝑖,ℎ and 𝐹𝑖,ℎ ,

which denote the sibling cost and the history cost, respectively.

5.3.2 Identifying the Siblings. A potential challenge is to identify

the set of siblings. Fortunately, in LoRa, the following fact holds:

if a symbol or part of the symbol overlaps with both 𝑆𝑖 and 𝑆𝑘 and
produces peaks at locations 𝑎 and 𝑏, respectively, 𝑎 = mod {𝑏 +
𝛼𝑖 − 𝛼𝑘 − 1, 2𝑆𝐹 } + 1. Therefore, it is possible to track a peak in all

symbols where it may emerge and find its siblings based on the

locations of the peaks.

5.3.3 Peak Cost Calculation. As shown in Fig. 5, a peak transmitted

by node 𝑖 in symbol 𝑆𝑖 may also appear in 2(𝑀−1) symbols, namely,
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𝑆𝑘 and 𝑆+1
𝑘

for 1 ≤ 𝑘 < 𝑖 , and 𝑆−1
𝑘

and 𝑆𝑘 for 𝑀 ≥ 𝑘 > 𝑖 . Denote

the maximum peak height of all siblings of 𝑃𝑖,ℎ as 𝐻∗
. Note that

in the signal vectors of some nodes, the sibling may be too weak

to be identified as a peak; in this case, the height of the sibling is

the value of the signal vector at the expected location of the sibling.

The sibling cost of 𝑃𝑖,ℎ is

𝑤𝑖,ℎ = (1 −
𝜂𝑖,ℎ

𝐻∗ )
2 . (1)

To calculate the history cost, let𝐴𝑖 and 𝐷𝑖 be the estimated peak

height and peak height deviation when processing 𝑆𝑖 , respectively.

Thrives uses a curve-fitting algorithm [8] to fit the height of the

peaks that have been observed for packet 𝑖 so far. 𝐴𝑖 is the value

of the fitted curve at 𝑆−1
𝑖

, and 𝐷𝑖 is the median of the differences

between the actual and fitted data. The upper and lower estimates
are 𝑈𝑖 = 𝐴𝑖 + 4𝐷𝑖 and 𝐿𝑖 = max{0, 𝐴𝑖 − 4𝐷𝑖 }, respectively, which
are shown in Fig. 6, along with the actual height of the peaks. The

history cost of 𝑃𝑖,ℎ is:

𝐹𝑖,ℎ =


𝜔 (1 − 𝑈𝑖

𝜂𝑖,ℎ
)2 if 𝜂𝑖,ℎ > 𝑈𝑖

0, if𝑈𝑖 ≥ 𝜂𝑖,ℎ ≥ 𝐿𝑖

𝜔 (1 − 𝜂𝑖,ℎ
𝐿𝑖

)2, otherwise

, (2)

where 𝜔 is an empirical parameter to control the importance of

the history cost. Currently, 𝜔 = 0.1. As TnB decodes a packet for

a second time if the first attempt was not successful, during the

second attempt, the curve fitting algorithm runs on all peaks, while

𝐴𝑖 is the value of the fitted curve at 𝑆𝑖 , and 𝐷𝑖 is the median of the

differences between the actual and fitted data.

5.3.4 Peak Assignment. Prior to the peak assignment, the known

peaks and their siblings are found and masked, where a peak is

known if it is in the preamble part of a packet, or if the packet has

been decoded correctly. The peak assignment algorithm is a simple

heuristic that determines the assignment of a selected symbol in

each iteration. In each iteration, it first finds the minimummatching

cost of the peaks in all remaining symbols. If there is only one

symbol that has a peak with the minimum cost, this symbol is

selected; otherwise, the symbol that has the fewest peaks with the

minimum cost is selected; if there are still ties, an arbitrary choice is

made. The selected symbol is assigned a minimum cost peak, after

which the siblings of the peak are masked and the selected symbol

removed.

5.3.5 Complexity. At a checking point that intersects 𝑀 symbols,

Thrive needs to run the peak finder and the curve fitting algorithms

for at most𝑀 times each, as well as running the peak assignment

algorithm for at most𝑀 iterations, because each symbol is assigned

a peak in each iteration and the decisions are never revisited. The

peak cost needs to be calculated for at most 2𝑀2
peaks, where

the calculation for each peak involves finding its siblings and cal-

culating the cost in constant time according to Eq. 1 and Eq. 2.

6 BLOCK ERROR CORRECTION (BEC)
BEC is an algorithm that decodes the same Hamming code in LoRa

but achieves much higher error correction capabilities than the

default decoder, as summarized in Table 1.

Table 1: Decoding Capability Comparison

CR Default Decoder BEC
1 Detects 1-bit error Corrects 1-symbol error

2 Detects 1-bit error Corrects 1-symbol error

3 Corrects 1-bit error Corrects 1-symbol error and

almost all 2-symbol errors

4 Corrects 1-bit error Corrects 1 and 2-symbol errors

and over 96% of 3-symbol errors

6.1 Core Ideas
BEC decodes code blocks in LoRa instead of individual codewords,

because errors in a block are correlated: a corrupted symbol leads

to errors in the same column of the block. BEC examines the differ-

ences between the received block and the cleaned block, because

the differences are either the true errors, or are related to the true

errors. In the following, the core ideas of BEC are explained for CR

3, because other CRs are similar.

Fig. 7 is an example continuing with Fig. 2, where the differ-

ences between the received block and the cleaned block are shown

in red at the top of the figure. As mentioned earlier, due to the

randomness of errors, a corrupted symbol rarely flips every bit in

the corresponding column. Therefore, even when there are multi-

ple corrupted symbols, there often exist rows with only one error,

which is within the error correction capability of the Hamming

Code and can be corrected by the default decoder. In Fig. 7, rows

2, 3, 4, 5, 6, and 8 have only one error and the differences between

the received block and the cleaned block are either in column 2 or

column 7, which are the true error columns.

When the number of errors is beyond the error correction capabil-

ity of the Hamming code, the default decoder produces a decoding

error, which is still mathematically related to the true errors. In

Fig. 7, as row 7 has two errors, the default decoder flips the wrong

bit in column 3. However, this is not a random action, because the

default decoder will always flip the bit in column 3 if there are

errors in columns 2 and 7. Therefore, column 3 is referred to as the

companion of columns 2 and 7. Fundamentally, this is because a bi-

nary vector with ‘1’s only in columns 2, 3 and 7 is a valid codeword.

As a result, flipping the bit in column 3 of row 7 also produces a

codeword, which is closer to row 7 than that by flipping the bits in

columns 2 and 7.

As the differences between the received block and the cleaned

block occur in columns 2, 3, and 7, BEC can determine that there

must be 2 or more error columns, because otherwise, the default

decoder is capable of correcting all errors and the difference shall

occur all in the same column.With CR 3, BEC attempts to correct up

to 2 error columns. The companion introduces ambiguities, because

it is unclear which columns are the true error columns and which is

the companion. Note that, as column 2 is the companion of columns

3 and 7, and column 7 is the companion of columns 2 and 3, the same

situation can be observed if the true error columns are 2 and 3, or 3

and 7. To resolve this ambiguity, BEC generates 3 BEC-fixed blocks
as potential solutions. Basically, BEC tests every combination of 2

potential error columns. As shown in Fig. 7, the BEC-fixed block

for every combination is obtained by first masking the columns in

the received block, then replacing each row with a codeword that

matches in the remaining columns. BEC relies on the packet-level
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Figure 7: BEC corrects the errors in Fig. 2.

Cyclic Redundancy Check (CRC) to identify the correct BEC-fixed

block, which should be the only one that leads to a CRC pass.

BEC applies only to packets with a small number of blocks,

because the number of CRC calculations grows exponentially with

the number of blocks. Fortunately, LoRa packets are typically small:

a packet with 16 bytes has only 3 to 5 blocks depending on the

SF and CR. Also, it could occur that the differences between the

received block and cleaned block do not appear in a true error

column. In almost all such cases, the differences occur in one true

error column and the companion of the true error columns, so

that BEC will still test the actual true error columns as one of the

potential solutions and correct the errors.

6.2 Preliminaries and Definitions
The following are some of the notations used in BEC:

• 𝑅: the received block

• Γ: the cleaned block

• 𝜙𝑖 : the set of rows in which 𝑅 and Γ differ by 𝑖 bits

• Ξ: the set columns in which the rows in 𝜙1 differ between 𝑅

and Γ
• 𝑟𝑖 : row 𝑖 of a matrix

• 𝑐𝑘 : column 𝑘 of a matrix

• Π: a set of columns

• ||: the size of a set

• 𝑉 (Π): a binary row vector with the same length of a code-

word, where a column is 1 if the column is in Π

In Fig. 2 and Fig. 7, 𝜙0 = {𝑟1}, 𝜙1 = {𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7, 𝑟8}, and
Ξ = {𝑐2, 𝑐3, 𝑐7}.

For a set of columns Π where |Π | is less than the minimum

Hamming distance of the code, a companion, denoted as Π′
, is

defined as the columns, which, when combined with Π, makes

a codeword. That is, 𝑉 (Π ∪ Π′) is a codeword. For example, for

the code shown in Fig. 2 and Fig. 7, the companion of {𝑐2, 𝑐7} is
{𝑐3}. Clearly, |Π | + |Π′ | = 𝐶𝑅. Note that when there are errors in

every column in Π, if |Π | < |Π′ |, the default decoder flips the bits
in Π; if |Π | > |Π′ |, the default decoder flips the bits in Π′

or in

other companions of Π; if |Π | = |Π′ |, the choice is arbitrary. Π
may have one or multiple companions depending on the CR and

|Π |. In particular, when the CR is 4 and |Π | = 2, as explained in

Section A.1, Π has 3 possible companions. In this case, Π, along
with its companions, are called a companion group.

6.3 Repair Methods
BEC employs a number of methods to repair 𝑅 to produce the BEC-
fixed blocks. There are a total of 4 repair methods, denoted as Δ′

,

Δ1, Δ2, and Δ3.

Δ′
applies only to CR 1 and its notation style is slightly different,

because CR 1 is a special case. To repair 𝑅 with a column is to use

the checksum of the other 4 columns to replace this column in 𝑅.

Δ1 is used most often and has been shown in Fig. 7. To repair 𝑅

with a set of columns, say, Π, BEC first masks these columns. A row

in 𝑅, say, 𝑅𝑖 , is repairable, if it matches one of the valid codewords,

say, 𝜃 , in the remaining columns. In this case, to repair 𝑅𝑖 is to

replace it with 𝜃 . 𝑅 is repairable only if every row is repairable.

Δ2 applies mainly to CR 4 for correcting 2-column errors when

Ξ contains one column, say, 𝑐𝑘1 . In this case, BEC assumes 𝑐𝑘1 is

a true error column, and attempts to repair the rows in 𝜙2. A row

in 𝜙2, say, 𝑅𝑖 , is repairable, if it differs only in one column, say, 𝑐𝑘2 ,

with a valid codeword, say, 𝜃 , after the bit in 𝑐𝑘1 is flipped. In this

case, to repair 𝑅𝑖 is to replace it with 𝜃 . 𝑐𝑘2 is called the column of
mismatch. 𝑅 is repairable only if all rows in 𝜙2 are repairable with

the same column of mismatch.

Δ3 applies only to CR 4 for correcting 2-column errors when

Ξ is empty. BEC attempts to repair 𝑅 with two columns, say 𝑐𝑘1
and 𝑐𝑘2 . A row in 𝜙2, say 𝑅𝑖 , is repairable, if it matches a codeword,

say, 𝜃 , after the bits in 𝑐𝑘1 and 𝑐𝑘2 are flipped. In this case, to repair

𝑅𝑖 is to replace it with 𝜃 . 𝑅 is repairable only if all rows in 𝜙2 are

repairable.

The complexity of Δ′
is clearly low because it involves only the

calculation of the checksum. Owing to the simplicity of the (8, 4)

Hamming code, the complexities of the rest of the repair methods

are also low, because the main computation is to compare each

modified row with all 16 codewords, where the total number of

comparisons is bounded by 16𝑆𝐹 .

6.4 Decoding CR 1
With CR 1, BEC attempts to correct up to 1-column errors. If the

parity check passes in every row, BEC returns, assuming there is

no error. Otherwise, BEC attempts to repair 𝑅 with each column

406



TnB: Resolving Collisions in LoRa based on the Peak Matching Cost and Block Error Correction CoNEXT ’22, December 6–9, 2022, Roma, Italy

according to Δ′
, and produces 5 BEC-fixed blocks, as there are 5

columns in 𝑅,

6.5 Decoding CR 2
With CR 2, a row in 𝑅 and the corresponding row in Γ differ by at

most one bit. BEC first examines if |Ξ| = 0, i.e., 𝑅 and Γ are identical,

and if so, BEC returns, assuming there is no error. If |Ξ| ≥ 1, BEC

attempts to decode 1-column errors. As explained in Section A.2, if

|Ξ| ≥ 3, there must be more than one error column and BEC returns

with decoding failure. If |Ξ| = 1, BEC first finds the companion

of the column in Ξ and adds it to Ξ, then applies Δ1 to repair 𝑅

with each column in Ξ, producing a BEC-fixed block for each if the

repair is successful. The same process is applied if |Ξ| is already 2.

6.6 Decoding CR 3
With CR 3, a row in 𝑅 and the corresponding row in Γ differ by at

most one bit. BEC first examines if |Ξ| = 0, and if so, BEC returns,

assuming there is no error. Otherwise, BEC examines if |Ξ| = 1, i.e.,

the differences between 𝑅 and Γ all occur in a single column, and if

so, BEC returns, assuming there is only one error column, because

the default decoder can correct one-bit errors. If |Ξ| ≥ 2, BEC

attempts to decode 2-column errors. As explained in Section A.2,

if |Ξ| ≥ 4, there must be more than two error columns and BEC

returns with decoding failure. If |Ξ| = 2, BEC finds the companion

of the two columns in Ξ, which is another column, and adds it to Ξ.
BEC attempts all 3 combinations of two columns in Ξ to repair 𝑅

with Δ1, producing a BEC-fixed block in each case if the repair is

successful. The same process is applied if |Ξ| is already 3, as shown

in Fig. 7.

6.7 Decoding CR 4
For CR 4, a row in𝑅 and the corresponding row in Γ differ by at most

two bits. Similar to CR 3, BEC returns without further processing

if 𝑅 and Γ are identical, or if the differences between 𝑅 and Γ all

occur in a single column. Otherwise, BEC first attempts to decode

2-column errors, and, if fails, 3-column errors.

6.7.1 2-Column Errors. If there are 2 error columns, as explained in

Section A.2, |Ξ| ≤ 2. Therefore, BEC attempts to decode 2-column

errors only if |Ξ| ≤ 2. First, if |Ξ| = 0, which is very rare, for every

row in 𝜙2, say row 𝑖 , where 𝑅𝑖 and Γ𝑖 differ in two columns, BEC

finds the companion group of the two columns, which contains 4

pairs. If every row in 𝜙2 yields exactly the same companion group,

BEC produces a BEC-fixed block for every pair in the group by

using the pair to repair 𝑅 with Δ3. If |Ξ| = 1, let the column in Ξ
be 𝑐𝑘 . BEC attempts to repair 𝑅 with Δ2 using 𝑐𝑘 and produces one

BEC-fixed block if the repair is successful. If |Ξ| = 2, BEC repairs 𝑅

with Δ1 using the two columns and produces one BEC-fixed block

if the repair is successful. The attempt to decode 2-column errors

fails if no BEC-fixed block is produced.

6.7.2 3-Column Errors. If there are 3 error columns, as explained in

Section A.2, |Ξ| ≤ 4. Therefore, BEC attempts to decode 3-column

errors only if |Ξ| ≤ 4. If |Ξ| = 0, however, BEC returns with decod-

ing failure, because it is beyond the capability of BEC.

If |Ξ| = 1, suppose the column in Ξ is 𝑐𝑘1 . BEC applies Δ2 us-

ing 𝑐𝑘1 . If there are indeed 3 error columns, based on Lemma 3 in

Table 2: Summary of BEC

CR # of Err. Approx. Repair # of
Columns Err. Prob. Complexity CRC

1 1 0 5 Δ′
5

2 1 0 2 Δ1 2

3 1 0 NA NA

2 2
−𝑆𝐹

3 Δ1 3

4 1 0 NA NA

2 0 ≤ 4Δ3 ≤ 4

3 ≤ 0.04 ≤ 9Δ1 4

Section A.7, there must be either 2 or 3 distinct columns of mis-

match for rows in 𝜙2 after the repair. In the former case, denote

the columns as 𝑐𝑘2 and 𝑐𝑘3 . BEC finds the companion of 𝑐𝑘1 , 𝑐𝑘2 ,

and 𝑐𝑘3 , denoted as 𝑐′. In the latter case, denote the columns as 𝑐𝑘2 ,

𝑐𝑘3 , and 𝑐𝑘4 , and based on Lemma 3, 𝑐𝑘4 must be the companion

of 𝑐𝑘1 , 𝑐𝑘2 , and 𝑐𝑘3 ; therefore, the two cases are equivalent. BEC

attempts to repair 𝑅 with Δ1 using all 4 combinations of 3 columns

and produces a BEC-fixed block in each case.

If |Ξ| = 2, BEC first makes 6 attempts to repair 𝑅 with Δ1, where

in each attempt it uses Ξ along with a column not in Ξ. If there
are indeed 3 error columns, based on Lemma 1 and Lemma 2 in

Section A.3, among the 6 attempts, regardless of whether or not

the two columns in Ξ are the true error columns or not, there will

be exactly 2 attempts that can repair 𝑅. Denote the two combina-

tions of columns that can repair 𝑅 as (𝑐𝑘1 , 𝑐𝑘2 , 𝑐𝑘3 ) and (𝑐𝑘1 , 𝑐𝑘2 , 𝑐𝑘4 ),
respectively, where 𝑐𝑘1 and 𝑐𝑘2 are in Ξ. Note that if Ξ contains

two true error columns, one of the two combinations are the true

error columns; otherwise, i.e., if Ξ contains the companion of the

true error columns, either (𝑐𝑘3 , 𝑐𝑘4 , 𝑐𝑘1 ) or (𝑐𝑘3 , 𝑐𝑘4 , 𝑐𝑘2 ) must be

the true error columns. Therefore, BEC makes two more attempts

with Δ1 using (𝑐𝑘3 , 𝑐𝑘4 , 𝑐𝑘1 ) and (𝑐𝑘3 , 𝑐𝑘4 , 𝑐𝑘2 ), and produces a total

of 4 BEC-fixed blocks.

If |Ξ| = 3, BEC adds the companion of Ξ to Ξ, which is another

column. BEC then attempts to repair 𝑅 with Δ1 using each com-

bination of 3 columns in Ξ. If there are indeed 3 error columns,

one BEC-fixed block is produced in each attempt. The same repair

process is applied if |Ξ| is already 4.

Note that, if there are more than 3 error columns, the repair may

fail. Even if the repair appears successful, the packet-level CRC will

still eventually fail.

6.8 Decoding Performance and Complexity
Table 2 summaries the decoding performance of BEC, the proof

of which can be found in the Appendix. Table 2 also shows the

complexity of BEC for decoding one block, where the computation

mainly include applying the repair methods and CRC calculations.

The number of CRC calculations for a block is exactly the number

of BEC-fixed blocks. The type of the repair method and the number

of times it is applied depend on the CR and the number of error

columns, which, in most cases, should be clear from the description

of the decoding process. With CR 4 and 3 error columns, the bound

is 9Δ1, because the highest computation occurs when |Ξ| = 2, in

which case BEC first assumes that there are two error columns and

applies Δ1 once, which will fail, then applies Δ1 8 times, assuming

there are 3 error columns.
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6.9 Packet Decoding
A packet is decoded by assembling the BEC-fixed blocks of different

blocks into a repaired packet and testing the packet level CRC. To

limit the computation complexity, the number of CRC calculations

is limited by a parameter denoted as𝑊 . If the potential number of

repaired packets exceeds𝑊 , only𝑊 packets are randomly selected

and tested.𝑊 is currently 125, 16, 16, and 16 when the CR is 1,

2, 3, and 4, respectively.𝑊 is higher when the CR is 1, because

more BEC-fixed blocks are generated, a price for transmitting less

overhead. However, it was found that when the CR is 1, changing

𝑊 to 25 reduces the number of decoded packets by less than 5%.

7 PACKET DETECTION
In TnB, packet detection consists of 4 steps, where the main inno-

vation is the last step for the estimation of the fractional symbol

boundary and CFO.

In step 1, TnB detects packets with a similar approach as that

in [20] by finding peaks at the same locations in consecutive sym-

bols, which should be generated by the upchirps and the downchirps

in the preamble.

In step 2, a preliminary estimate of the start time of a detected

preamble is calculated and the preamble is removed if it does not

produce peaks at expected locations. For example, if the preamble

is detected with the downchirp, the preliminary start time should

be selected such that the downchirp peaks are at location 1. Under

this constraint, the upchirp peaks should be close to location 1,

where the relaxation is determined by the maximum allowable

CFO, because the CFO has not been corrected at this point. To

avoid errors that are multiples of 𝑇 , where 𝑇 is the length of a

symbol, multiple tests are performed with adjustments of −2𝑇 , −𝑇 ,
0, 𝑇 , and 2𝑇 added to the preliminary estimate of the start time. A

preamble is discarded only if it fails all 5 tests.

In step 3, coarse timing and CFO estimations are calculated for

each detected preamble according to [25]. That is, let 𝑥1 and 𝑥2
be the locations of the upchirp peaks and the downchirp peaks,

respectively. The preamble start time and the CFO are adjusted by

𝜏 ⌊(𝑥1 − 𝑥2)/2⌉ and 𝑓 ⌊(𝑥1 + 𝑥2)/2⌉, respectively, where ⌊⌉ denotes
rounding a number to the nearest integer, 𝜏 is the sample time, and

𝑓 = 1/𝑇 .
In step 4, fractional timing and CFO are estimated, which are

fractions of 𝜏 and 𝑓 , respectively. For simplicity, adjustments of 𝛿𝑡𝜏

and 𝛿𝑓 𝑓 are denoted as 𝛿𝑡 and 𝛿𝑓 , respectively, where 𝛿𝑡 and 𝛿𝑓 are

real numbers. Due to challenges caused by collisions, TnB uses a

search that evaluates a function for different combinations of 𝛿𝑡 and

𝛿𝑓 and selects the combination that achieves the maximum. The

search is optimized and evaluates only 36 combinations when𝑈 = 8,

where 𝑈 denotes the Over-Sampling Factor (OSF), which is the

number of samples taken at the receiver between two transmitted

samples at the sender.

To be more specific, for a received symbol 𝛽 , let the complex
signal vector be 𝐹𝐹𝑇 (𝛽 ⊙𝐶′). For any 𝛿𝑓 and 𝛿𝑡 , let𝑄 (𝛿𝑡 , 𝛿𝑓 ) be the
total peak energy in the preamble, where the energy is computed

by adding the complex signal vectors of the preamble and comput-

ing the energy at the peak location in the summation vector. The

complex signal is used because it preserves the phase information,

so that the summation at the peak location is weak if the fractional

Figure 8:𝑄 () and𝑄∗ () of a packet transmitted by a commodity
LoRa device [3].

CFO is not canceled. Let 𝑄∗ (𝛿𝑡 , 𝛿𝑓 ) be 𝑄 (𝛿𝑡 , 𝛿𝑓 ) if both the up-

chirp peaks and downchirp peaks are at location 1; otherwise, let

𝑄∗ (𝛿𝑡 , 𝛿𝑓 ) be 0.
The search consists of 3 phases. In Phase 1, the search evaluates

17 points along a line where 𝛿𝑡 = 0 and 𝛿𝑓 is from -1 to 0 at a step

of 𝑓 /16. Suppose 𝑄 () achieves the maximum at (0, 𝛿∗
𝑓
). In Phase 2,

the search evaluates a total of 10 points along two lines. On both

lines, 𝛿𝑡 is from −1 to 1 at a step of 1/2. On one line, 𝛿𝑓 = 𝛿∗
𝑓
; on

the other line, 𝛿𝑓 = 𝛿∗
𝑓
+ 1. Suppose𝑄∗ () achieves the maximum at

( ˆ𝛿𝑡 , ˆ𝛿𝑓 ). In Phase 3, the search evaluates 𝑈 + 1 points along a line

where 𝛿𝑡 is from ˆ𝛿𝑡 − 1/2 to ˆ𝛿𝑡 + 1/2 at a step of 1/𝑈 and 𝛿𝑓 = ˆ𝛿𝑓 .

Suppose𝑄∗ () achieves the maximum at ( ˜𝛿𝑡 , ˜𝛿𝑓 ). ˜𝛿𝑡 and ˜𝛿𝑓 are used

as the estimated fractional timing and CFO, respectively.

The search is based on the fact that when the timing is accurate

and the CFO has been fully canceled, the total energy of the peaks

is the highest and the upchirp peaks and downchirp peaks are all

at location 1. By exploiting the nature of 𝑄 (), the computation

complexity is significantly reduced compared to a naive approach

that may evaluate all possible combinations of 𝛿𝑓 and 𝛿𝑡 . The top

of Fig. 8 shows 𝑄 () of a packet transmitted by a commodity LoRa

device [3], where it can be seen that along any line where 𝛿𝑡 is fixed,

𝑄 () achieves high values when 𝛿𝑓 is correct, or when 𝛿𝑓 is off by

±1. Therefore, in Phase 1, the search simply is along the line where

𝛿𝑡 = 0, which will find either the correct fractional CFO, or off by

±1. In Phase 2, the correct fractional CFO is found by evaluating

𝑄∗ (), because the peaks will not be at location 1 if the fractional

CFO is off by 1 or -1, as can be seen at the bottom of Fig. 8. In Phase

3, the search is along the line with the correct fractional CFO to

pick the best fractional timing offset.
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Figure 9: (a) The LoRa node. (b). Indoor. (c). Outdoor 1. (d).
Outdoor 2.

Table 3: Experiment Parameters

Carrier Frequency 915 MHz

Bandwidth 125 kHz

Over-Sampling Factor (OSF) 8

Packet Size 16 bytes

Duration 30 seconds

SF 8, 10

CR 1, 2, 3, 4

8 EVALUATIONS
TnB has been implemented and compared with the state-of-the-art.

The implementation can be found at [5] and is capable of detecting

and decoding packets transmitted by commodity LoRa devices. Part

of the implementation related to specific operations in LoRa, such

as whitening, CRC calculation, etc., are based on the open-source

LoRa implementations at [6, 10, 14].

8.1 Experiment Setup
The LoRa nodes used in the experiment are the Adafruit Feather

M0 with RFM95 LoRa Radio 900 MHz [3], one of which is shown in

Fig. 9(a). One of the nodes acts as the starter. At the beginning of an
experiment, the starter transmits a start message 3 times to inform

the nodes about the configuration of the experiment, including the

SF, the CR, the start time of the experiment, the number of packets

to be transmitted by each node, and the duration of the experiment.

After receiving the start messages, a node transmits packets at

randomly selected times during the experiment. A USRP B210 [9] is

placed next to the starter to record the samples, which are written

to a trace file. Some common parameters in all experiments are

shown in Table 3. The packet transmitted by each node has 16 bytes

of payload, which includes 4 bytes of header, 10 bytes of data, and 2

bytes of CRC. A node ID and a sequence number have been added

to the data part of the packet to distinguish the packets.

Figure 10: Estimated SNR of the 3 deployments.

Figure 11: Lower bound of the medium usage in two cases at
the highest load.

Three deployments have been tested, which are referred to as

Indoor, Outdoor 1 and Outdoor 2, with 19, 25, and 25 nodes, re-

spectively. The layout of the deployments are shown in Fig.9(b),

Fig.9(c), and Fig.9(d), respectively, where the star is the location of

the starter and the USRP sniffer. In each deployment, it was con-

firmed that each node could communicate with starter. SF 8 and SF

10 were tested for all CR values. For each combination of SF and

CR, 5 network traffic load values were tested from 5 pkt/sec to 25

pkt/sec at a step of 5 pkt/sec. For each traffic load, the experiment

was repeated 3 times, called three runs. A total of 360 trace files

were collected.

Fig. 10 shows the Cumulative Distribution Function (CDF) of

the estimated Signal to Noise Ratio (SNR) of the nodes in various

deployments. To be more specific, for each deployment and SF, the

run with the most number of nodes that have decoded packets is

selected. The SNR of a node is estimated based on the peak heights

found in its decoded packets. The SNR estimations are different

between SF 8 and SF 10, primarily because more weak packets can

be decoded with SF 10. The SNR of the same node can also vary,

such as by over 5 dB, in one run. Still, it can be seen that the SNR

varies in different deployments, and, within the same deployment,

the SNRs of the nodes may also differ by more than 20 dB.

Fig. 11 shows the medium usage in 2 typical runs at the highest

load, where the medium usage of a particular time instant refers

to the number of packets on the air at the time and reveals the

traffic condition. As the traffic was randomly generated and not

all packets were received correctly, the medium usage is a random

variable that cannot be known exactly. Fig. 11 shows a lower bound

obtained by considering only packets that were correctly decoded

by TnB, which is a subset of all transmitted packets. It can be seen

that the medium can be very busy both for SF 8 and SF 10, and is

more so for SF 10, because the packet is longer with SF 10.
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8.2 Compared Schemes
TnB is compared with CIC [20] and AlignTrack [12], which are

recent LoRa packet collision resolution schemes, as well as Lo-

RaPHY [6], which is an implementation of the original LoRa packet

decoder. CIC and LoRaPHY were tested with their open-source

implementations graciously shared by their authors at [4, 6]. The

testing of AlignTrack poses some challenges, as an open-source

implementation was not available. AlignTrack mainly consists of a

peak detection algorithm, a packet detection algorithm, and a peak

assignment algorithm, which are described in Sections IV.C, IV.D,

and IV.E in [12], respectively. In this paper, the comparison focuses

on the peak assignment algorithm, denoted as AlignTrack
∗
, because

it is the core and main innovation of AlignTrack. AlignTrack
∗
has

been implemented and can swap out Thrive as a component of

TnB to be tested, because it solves the same problem as Thrive. It

should be mentioned that the peak detection algorithm in TnB is

a highly rated open-source peak finder [29]. The packet detection

algorithm in TnB allows TnB to outperform CIC; in addition, it

also lends the benefit of the fractional CFO information to Align-

Track, because AlignTrack estimates only the coarse CFO. Each

scheme was tested with exactly the same traces collected in the

experiments. As CIC and AlignTrack
∗
find only the peak locations

of the packets, their outputs were decoded by the open-source LoRa

implementation [6, 10] into data bits.

8.3 Results
The results are shown in Fig. 12, Fig. 13, Fig. 14, for Indoor, Outdoor

1, and Outdoor 2, respectively. In most cases, a data point is the

average of 3 runs. In some cases, however, the number of nodes that

responded to the start messages are significantly smaller, which

leads to biased results. A simple rule is applied to filter such cases;

that is, the result of a run is used, if the number of nodes with

decoded packets is at least half of the maximum number of nodes

with decoded packets in the same deployment. Only two cases were

found with no valid data after the filtering, namely, in Outdoor 2

for the highest load when the SF is 10 and the CR is 1 and 4. In

other cases, because some nodes might not have responded, the

traffic load values shown in the figures, which assume all nodes

responded in the experiment, is higher than the actual traffic load.

The comparison is still fair because all schemes process exactly the

same traces.

It can be seen that, first, TnB achieves much higher throughput

than the compared schemes. At the highest tested load, the median

throughput increase of TnB over CIC among all CR values in all

experiments are 1.36× and 2.46× for SF 8 and 10, respectively. The

highest improvement is 2.59× for the Outdoor 1 deployment with SF

10 and CR 3. Second, the gain of TnB over CIC is significantly higher

for SF 10 than SF 8, because the packet duration is longer with SF

10, resulting in more collisions. For the same reason, LoRaPHY

still decoded a descent amount of packets for SF 8, but not SF 10.

Lastly, the performance of AlignTrack
∗
is similar to CIC for the

two outdoor cases with SF 8, but is much lower with SF 10, which

will be further investigated in Section 8.4.

Figure 12: Results of the Indoor deployment.

Figure 13: Results of the Outdoor 1 deployment.
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Figure 14: Results of the Outdoor 2 deployment.

8.4 Further Analysis
Further analysis is conducted with the results from experiments

at the highest load with valid data in each deployment. First, to

understand the source of the gains, TnB is tested with various con-

figurations. To be more specific, Thrive refers to TnB without BEC

and uses the default Hamming code decoder, and Sibling refers

to Thrive without the history cost and relying only on the sib-

ling cost. The performances of these configurations are shown in

Fig. 15, along with those of CIC for comparison. It can be seen that

Thrive is similar to CIC for SF 8, but outperforms CIC for SF 10,

suggesting that Thrive is an effective peak assignment algorithm.

The median improvement of TnB over Thrive is 1.31×, confirming

the contribution of BEC. Sibling does not perform well in certain

cases, revealing the importance of the peak history information.

Fig. 16 reveals more details about BEC, which shows the CDF

of the number of BEC rescued codewords in each decoded packet,

which are those decoded by BEC but not decoded correctly by the

default decoder. The fraction of packets rescued by BEC can be in

the figure, which is the fraction of packets with at least one BEC

rescued codeword. In such packets, it can be seen that there can be

multiple rescued codewords.

Fig. 17 shows the scatter plots of the Packet Receiving Ratio

(PRR) of TnB and CIC in different ranges of SNR, where each marker

represents one combination of SF and CR in a deployment within a

particular SNR range. It can be seen that higher SNR leads to higher

PRRs. Except a few cases, TnB achieves higher PRRs than CIC in

all ranges of SNR.

Figure 15: Evaluating the components of TnB.

Figure 16: Number of codewords rescued by BEC in a packet.

Fig. 18 shows the percentage of packets decoded by TnB at differ-

ent collision levels, where the collision level of a packet is defined as

the highest number of packets it collided with during its transmis-

sion. Similar to the medium usage shown in Fig. 11, the collision

level is estimated by considering only the packets decoded by TnB,

and is therefore a lower bound. It can be seen that less than 15% of

decoded packets with SF 8 had no collision, while others typically

collide with at least 1 or 2 packets. The majority of packets decoded

with SF 10 collided with 4 or more packets.
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Figure 17: Scatter plots of the PRR at various SNR ranges.

Figure 18: Collision levels of packets decoded by TnB.

Lastly, AlignTrack
∗
did not perform well for SF 10 because it

is very sensitive to peaks that may occur accidentally, which are

found more with SF 10 than with SF 8. Such accidental peaks may be

generated by noise, interference, etc. Typically, they can be seen in

one signal vector but not in others, which poses a problem, because

AlignTrack
∗
considers a peak to be aligned to a symbol if it is higher

in this symbol than in other symbols. As a result, once there is an

accidental peak, AlignTrack
∗
finds more than one peak aligned

with a symbol, among which one is the correct peak and others

the accidental peaks. In such cases, an arbitrary and often incorrect

decision has to be made.

8.5 Comparisons with Simulation
Additional evaluation was conducted with simulations, which was

intended mainly to examine more challenging channel conditions,

i.e., the LTE ETU model [1, 2], which represents channels with

strong multi-path and fluctuations, because strong channel fluc-

tuations were not observed in the experiments due to the lack of

mobility in the environment. The simulation setup is mostly identi-

cal to the experiments, with the same bandwidth, OSF, packet size,

and duration. The SNR ranges of SF 8 and SF 10 are [0, 20] dB and

[−6, 14] dB, respectively. The CFO of a packet is randomly selected

from [−4.88, 4.88] kHz. The delay spread of the ETU channel is 5

𝜇s and the Doppler shift is 5 Hz.

The compared schemes are CIC, AlignTrack
∗
, and TnB. CIC and

AlignTrack
∗
are also combined with BEC, denoted as CIC+ and

AlignTrack
∗
+, respectively, to test BEC when combined with other

methods. Thrive and TnB2ant are also tested, where Thrive has been

defined in Section 8.4, and TnB2ant is when the TnB receiver has 2

Figure 19: Simulation results in the ETU channel.

antennas, because high channel fluctuations result in a high outage

probability for single antenna systems, which can be mitigated by

a higher antenna diversity.

The results are shown in Fig. 19, where the traffic load is selected

such that the PRR of TnB2ant of at least one CR is above 0.9. It can

be observed that TnB2ant achieves PRRs close to or above 0.9 in the

ETU channels. TnB, as well as Thrive, achieves much higher gains

over CIC in the ETU channels than in the experiments, especially

for SF 10, suggesting that CIC may need further enhancements to

cope with large channel fluctuations. It can also be seen that BEC

can be combined with CIC and AlignTrack
∗
and always improve the

performance. AlignTrack
∗
sometimes achieves better performance

than CIC in the simulation, an improvement since the experimen-

tal evaluation, likely because the interference in the experimental

traces leads to more accidental peaks.

9 CONCLUSIONS
In this paper, TnB, a novel solution for decoding collided LoRa

packets, is proposed. Two main components of TnB are referred to

as Thrive and BEC, respectively. Thrive finds the actual transmitters

of the peaks in the received signal vectors, and is mainly based

on the fact that a peak is the highest if it is processed with the

parameters of its actual transmitter, which is further augmented

with the peak history information. BEC decodes exactly the same

Hamming code in LoRa, but is capable of correcting much more

errors than the default decoder, because its jointly decodes multiple

codewords in the same block. TnB has been extensively tested with

both real-world experimental traces and simulations, and the results

show that TnB significantly outperforms the state-of-the-art. TnB

does not require any modifications to the LoRa nodes and can bring

immediate benefits to the network operator.
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A THEORETICAL FOUNDATION AND
ANALYSIS OF BEC

A.1 Properties of Companions
The companion is a key concept for CR 2 or above. For CR 2, the

companion of a column is another column and is unique. It can be

verified that the companion pairs are 𝑐1 and 𝑐5, 𝑐2 and 𝑐3, 𝑐4 and 𝑐6.

For CR3, if |Π | = 2, the companion ofΠ contains only one column

and is unique. To see this, supposeΠ consists of columns 𝑐𝑘1 and 𝑐𝑘2 ,

and has two companions, namely, 𝑐𝑘 ′ and 𝑐𝑘 ′′ . Consider vectors

𝑉 (𝑐𝑘1 , 𝑐𝑘2 , 𝑐𝑘 ′ ) and 𝑉 (𝑐𝑘1 , 𝑐𝑘2 , 𝑐𝑘 ′′ ), both must be codewords but

with Hamming distance only two, a contradiction, as the minimum

Hamming distance is 3.

For CR 4, if |Π | = 3, the companion of Π contains one column

and is unique. As mentioned earlier, if |Π | = 2, Π has 3 possible

companions. For example, the companions of {𝑐1, 𝑐2} are {𝑐6, 𝑐8},
{𝑐3, 𝑐5}, and {𝑐4, 𝑐7}, because there are 3 codewords with weight 4,

namely, [11000101], [11101000], and [11010010], where bits 1 and
2 are both ‘1’. The same argument can be applied to other pairs of

columns.

A.2 Properties of Ξ
Except for the special and simple case of CR 1, the decoding process

depends on Ξ. This is because a column in Ξ is either a true error

column, or the companion of the true error columns.

For CR 2, note that if there is a single error column, say, 𝑐𝑘 , the

companion of 𝑐𝑘 is another column denoted as 𝑐𝑘 ′ . And, if a row

has an error in 𝑐𝑘 , the default decoder flips either the bit in 𝑐𝑘 or in

𝑐𝑘 ′ . Therefore, |Ξ| is either 1 or 2.
For CR 3, consider the case with two error columns, denoted as

𝑐𝑘1 and 𝑐𝑘2 , and suppose their companion is 𝑐𝑘 ′ . In any row 𝑖 , there

are 4 possible cases:

(1) No error in both 𝑐𝑘1 and 𝑐𝑘2 : 𝑅𝑖 and Γ𝑖 are identical
(2) No error in 𝑐𝑘1 but error in 𝑐𝑘2 : 𝑅𝑖 and Γ𝑖 differ in 𝑐𝑘2
(3) Error in 𝑐𝑘1 but no error in 𝑐𝑘2 : 𝑅𝑖 and Γ𝑖 differ in 𝑐𝑘1
(4) Errors in both 𝑐𝑘1 and 𝑐𝑘2 : 𝑅𝑖 and Γ𝑖 differ in 𝑐𝑘 ′

Therefore, with two error columns, |Ξ| ≤ 3.

For CR 4, the case with two error columns, say, 𝑐𝑘1 and 𝑐𝑘2 , can

be analyzed similarly as that for CR 3, except when there are errors

in both 𝑐𝑘1 and 𝑐𝑘2 , because 𝑅𝑖 and Γ𝑖 shall differ in 𝑐𝑘1 and 𝑐𝑘2 ,

or in the columns of one of their companions, and therefore, no

column will be added to Ξ and |Ξ| ≤ 2. For CR 4, when there are

three error columns, |Ξ| ≤ 4, because the companion of any 3 error

columns is one column.

A.3 Properties of Δ1

Clearly, Δ1 shall succeed with Π if Π is the set of true error columns.

In the following, Δ1 in other cases are analyzed, in which Ω denotes

the set of true error columns and Ω = {𝑐𝑘1 , 𝑐𝑘2 , . . . , 𝑐𝑘𝑛 }.
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Lemma 1. If the companion of Ω is a column denoted as 𝑐𝑘 ′ , Δ1

shall succeed if Π consists of all but one true error column, as well as
𝑐𝑘 ′ .

Proof. Without Loss Of Generality (WLOG), suppose 𝑅 is re-

paired with {𝑐𝑘 ′ , 𝑐𝑘2 , . . . , 𝑐𝑘𝑛 }. For any row 𝑖 , suppose the original

transmitted codeword is 𝜃 . If there is no error in 𝑐𝑘1 , clearly, after

masking, the remaining bits in 𝑅𝑖 match 𝜃 ; otherwise, the remain-

ing bits match 𝜃 ′ = 𝜃 ⊕ 𝑉 (𝑐𝑘1 , 𝑐𝑘2 , . . . , 𝑐𝑘𝑛 , 𝑐𝑘 ′ ), which is another

codeword. □

Lemma 2. If the companion of Ω is a column denoted as 𝑐𝑘 ′ , and
if the minimum Hamming distance of the code is 3 or more, Δ1 shall
not succeed if Π consists of all but one true error columns, as well as
another column 𝑐𝑘 ′′ other than 𝑐𝑘 ′ .

Proof. WLOG, suppose 𝑅 is repaired with {𝑐𝑘 ′′ , 𝑐𝑘2 , . . . , 𝑐𝑘𝑛 }.
Consider a row 𝑖 where 𝑅𝑖 has an error in 𝑐𝑘1 . WLOG, further

suppose the original transmitted codeword, denoted as 𝜃 , is the all

0 codeword. If the claim is not true, suppose 𝑅𝑖 matches a codeword

𝜃 ′′ in the remaining columns after masking. Clearly, 𝜃 ′′ ≠ 𝜃 . Also,

𝜃 ′′ ≠ 𝜃 ′, where 𝜃 ′ = 𝑉 (𝑐𝑘1 , 𝑐𝑘2 , . . . , 𝑐𝑘𝑛 , 𝑐𝑘 ′ ), because 𝜃 ′ is 1 in 𝑐𝑘 ′ ,

while 𝜃 ′′ must be 0 in 𝑐𝑘 ′ , as 𝑐𝑘 ′ has not been masked. 𝜃 ′′ can be 1

only in {𝑐𝑘 ′′ , 𝑐𝑘2 , . . . , 𝑐𝑘𝑛 }, and therefore has only distance 2 to 𝜃 ′,
a contradiction. □

A.4 Independence Assumption
In the rest of this section, when analyzing the decoding error prob-

ability, it will be assumed that the bits in the error columns are

flipped independently with probability 0.5, referred to as the in-
dependence assumption. The independence assumption makes the

analysis tractable, but is an approximation, because at least one bit

must have been flipped in each error column. Fig. 20 shows that the

approximations are reasonably close to the actual decoding error

probabilities.

A.5 Analysis for CR 3 with 2-Column Errors
Suppose 𝑐𝑘1 and 𝑐𝑘2 are the two true error columns and their com-

panion is 𝑐𝑘 ′ . A decoding error occurs when in every row, either

there is no error in both 𝑐𝑘1 and 𝑐𝑘2 , or there are errors in both 𝑐𝑘1
and 𝑐𝑘2 , such thatΞ contains only 𝑐𝑘 ′ . BEC shall return prematurely,

believing that there is only one error column. The error probability

is 2
−𝑆𝐹

under the independence assumption.

A.6 Analysis for CR 4 with 2-Column Errors
BEC always corrects 2-column errors for CR 4, because any column

in Ξ must be a true error column; therefore, the repair when |Ξ|
is 1 or 2 must be successful. When |Ξ| is 0, for any row in 𝜙2, the

two columns where 𝑅 and Γ differ must either be the true error

columns, or their companion.

A.7 Analysis for CR 4 with 3-Column Errors
BEC is capable of correcting 3-column errors if |Ξ| > 0. The cases

when |Ξ| = 2, 3, and 4 are straightforward. The case when |Ξ| = 1

is proved in the following.

Lemma 3. BEC can correct the errors when there are three error
columns and |Ξ| = 1.

Proof. Note that BEC applies Δ2 to 𝑅 using the column in Ξ.
Clearly, this will not repair 𝑅. The purpose is instead to discover

the error columns. To see this, suppose there are indeed 3 error

columns denoted as 𝑐𝑘1 , 𝑐𝑘2 , and 𝑐𝑘3 , and their companion is 𝑐𝑘 ′ .

First, suppose the column in Ξ is 𝑐𝑘 ′ . Note that in this case, there

is no row with only one error in one of the true error columns,

i.e., every row has 0, 2, or 3 errors. As BEC did not return with

the assumption that there was only 1 error column, there must be

some rows with two errors. Suppose one of such rows, denoted

as 𝑅𝑖 , has errors in 𝑐𝑘1 and 𝑐𝑘2 . Clearly, flipping the bit in 𝑐𝑘 ′ will

change 𝑅𝑖 to a codeword except in 𝑐𝑘3 . As BEC did not return with

the assumption that there were only 2 error columns, there must be

at least another row with 2 errors not in 𝑐𝑘1 and 𝑐𝑘2 . Clearly, in this

row, flipping the bit in 𝑐𝑘 ′ will reveal another true error column.

Therefore, it is guaranteed that at least two true error columns will

be revealed. Note that the same argument holds when the column

in Ξ is one of the true error columns. □

As the errors are random and can either be 0 or 1 in the error

columns in a particular row, when there are 3 error columns, in

each row, there are 8 possible combinations. Let Ψ𝑥 denote the

probability that exactly 𝑥 distinct error combinations occur in 𝑅.

Clearly, Ψ1 = ( 1
8
)𝑆𝐹 . For 𝑥 > 1, it can be verified that the following

recursive relation hold under the independence assumption:

Ψ𝑥 = ( 𝑥
8

)𝑆𝐹 −
𝑥−1∑︁
𝑦=1

(
𝑥

𝑦

)
Ψ𝑦 .

The following Lemma explains the decoding error probability.

Lemma 4. Under the independence assumption, the decoding error
probability of CR 4 when there are three error columns is

Ψ1 + 7Ψ2 + 9Ψ3 + 3Ψ4 + 2
−𝑆𝐹 .

Proof. Suppose 𝑐𝑘1 , 𝑐𝑘2 and 𝑐𝑘3 are the true error columns, and

their companion is 𝑐𝑘 ′ . With 3-column errors, any column in Ξ
must be a true error column or 𝑐𝑘 ′ . A decoding error occurs when

BEC returns prematurely, i.e., returns with the assumption that the

number of error columns is less than 3.

BEC may return prematurely with the assumption that there is

1 error column, if every row has 3 errors, or if some rows have no

error but all other rows have 3 errors. Therefore, the probability is

Ψ1 + Ψ2.
When testing the hypothesis that there are 2 error columns, there

are three cases depending on |Ξ|. If |Ξ| = 0, every row has 0 or 2

errors. BEC will not return prematurely, because the 4 pairs must

be from the same companion group, which occurs only if the errors

occur in the same two columns in every row, or do not occur.

If |Ξ| = 1, first, suppose the column in Ξ is 𝑐𝑘 ′ . Clearly, there is

no row with a single error. In order for BEC to return prematurely

at this point, there must be at least one row with two errors. WLOG,

suppose the errors occur in 𝑐𝑘1 and 𝑐𝑘2 in this row. It follows that all

rows with two errors must have errors in 𝑐𝑘1 and 𝑐𝑘2 , because the

repair would not appear successful otherwise. There also must be

at least one row with 3 errors. As long as these conditions are met,

some row may have no error. Therefore, the probability is Ψ2 + Ψ3.
Note that there are two other combinations of two error columns.

Second, suppose the column in Ξ is 𝑐𝑘1 . There also must be least
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Figure 20: Decoding error probability when the CR is 4 with
3 error columns.

one row with two errors, and all such rows must have errors in

the same two columns. There cannot be a row with 3 errors. As a

result, in the rows with 2 errors, the errors must occur in 𝑐𝑘2 and

𝑐𝑘3 , because otherwise there will be less than 3 error columns in

total. Therefore, the probability is Ψ2 + Ψ3. Note that Ξ may also

be one of the other two error columns. The total error probability

when |Ξ| = 1 is therefore 6(Ψ2 + Ψ3).
If |Ξ| = 2, first, note that Ξ cannot contain two true error

columns, because masking the two columns will not make 𝑅𝑖 identi-

cal to a codeword in the remaining columns, where 𝑅𝑖 is a row with

an error in the error column that has not been masked. Therefore,

WLOG, suppose Ξ contains 𝑐𝑘1 and 𝑐𝑘 ′ . In order for BEC to return

prematurely at this point, among the rowswith two errors, all errors

must occur in the same two columns. In addition, the two columns

must be 𝑐𝑘2 and 𝑐𝑘3 , because if one row, say, 𝑅𝑖 , has errors in 𝑐𝑘1
and 𝑐𝑘2 , after masking 𝑐𝑘1 and 𝑐𝑘 ′ , the remaining columns differ

either in 𝑐𝑘2 or 𝑐𝑘3 with the closest codeword. There also must be at

least one row with 3 errors, as well as one row with only one error

in 𝑐𝑘1 . As long as these conditions are met, some row may have

no errors. Therefore, the probability is Ψ3 + Ψ4. Note that the same

argument can be applied to the cases when Ξ contains other true

error columns. Therefore, the total error probability when |Ξ| = 2

is 3(Ψ3 + Ψ4).
In addition, decoding failure occurs when BEC tests the hypothe-

sis that there are 3 error columns but finds |Ξ| = 0. The probability

is 2
−𝑆𝐹

under the independence assumption, because there can

only be 0 or 2 errors in each row. □

Fig. 20 shows the decoding error probabilities when the CR is 4

with 3 error columns. It can be seen that: 1) the error probability is

less than 0.04 when the 𝑆𝐹 is 7, 2) the error probability decreases

as the 𝑆𝐹 increases, and 3) the analysis and the simulation results

are reasonably close.

B ARTIFACT APPENDIX
B.1 Abstract
The artifact is the source code of TnB written in Matlab, which decodes
wireless signals in LoRa networks. TnB is capable of decoding packets
transmitted by commodity LoRa devices, even when multiple packets
overlaps in time, i.e., experience collision. Accompanying the source
code are trace files collected in the experiments, which can be decoded
by TnB into data packets.

B.2 Artifact check-list (meta-information)
• Algorithm: TnB consists of a few new algorithms, including the

packet detection algorithm, collision resolution algorithm, and error

correction decoding algorithm.

• Data set: TnB can be tested with the accompanying data set, which

contains 24 traces collected from LoRa networks with around 20

nodes using Universal Software Radio Peripheral (USRP). Each trace

file is about 150 MB.

• Run-time environment: TnB can run on anymachinewithMatlab

R2021b or above installed along with certain required toolboxes.

• Hardware:Anymachinewith 11thGen Intel(R) Core(TM) i7-1195G7

@ 2.90GHz with 32 GB RAM or similar.

• Execution: About 60-120 seconds are needed to process a trace file

on a typical machine.

• Metrics: The performance of TnB is measured by the number of

packets decoded corrected (passed CRC).

• Output: The output can be of various forms with information at

different levels of details about the decoded packets. The current

program shows the total number of packets decoded. Also shown is

a list of packets decoded from each node, including the sequence

number, the estimated Signal to Noise Ratio (SNR), the start time of

the packet in the trace, and the Carrier Frequency Offset (CFO) of

the packet.

• Experiments: TnB can be tested with the accompanying data set.

No experiment is needed.

• How much disk space required (approximately)?: The source

code is less than 200 KB. The trace file is about 150 MB each. With

a total of 24 trace files, the total size of the data set is about 3.6 GB.

The trace files can be individually downloaded if there is no need to

evaluate all files.

• How much time is needed to prepare workflow (approxi-
mately)?: Less than 10 minutes.

• Publicly available?: The source code and data set are both publicly
available.

• Workflow framework used?: No workflow framework is used to

automate and customize experiments.

B.3 Description
B.3.1 How to access. The source code can be found at

https://github.com/raghavrathi10/TnB

The traces files can be downloaded at

https://doi.org/10.5281/zenodo.7199527

B.3.2 Hardware dependencies. TnB is written in MATLAB, so any

hardware that supports MATLAB can be used, such as 11th Gen

Intel(R) Core(TM) i7-1195G7 @ 2.90GHz with 32 GB RAM.

B.3.3 Software dependencies. MATLAB R2021b or above along

with the following toolboxes: Fixed Point Designer, Communica-

tions Toolbox, Signal Processing Toolbox and DSP System Toolbox.

B.3.4 Data sets. The trace fileswere collected in 3 deployed testbeds,
named “Indoor,” “Outdoor 1,” and “Outdoor 2.” For each testbed, 8

traces have been uploaded, one for each combination of Spreading

Factor (SF), which is either 8 or 10, and Coding Rate (CR), which is

from 1 to 4. The file name is, for example, “indoor-SF8-CR3.” This
set of trace files were selected from a total of 360 trace files, because

they contain the most number of decoded packets for each SF and

CR combination.
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Information about the testbed set up can be found in the Eval-

uation section of the paper. Some additional details that may be

useful are provided below:

• The LoRa device transmits a preamble that starts with 8

upchirps, followed by a symbol with peak at 9, then a symbol

with peak at 17, then 2.25 downchirps.

• A transmitted packet starts with 4 bytes of header, followed

by 2 bytes as the node ID, 2 bytes as the packet sequence

number, 6 bytes of data, then 2 bytes of CRC.

• The signal was sampled by a USRP B210 at 1 Msps, where

each sample consists of a real part and an imaginary part,

both as 16-bit integers.

B.4 Installation
The user will need to install MATLAB R2021b or above first and

then install the required Toolboxes in MATLAB mentioned earlier

in “software dependencies.”

After unzipping the source file, there should a directory, named

TnB, which is the source code directory. The main file, named

TnBMain.m, can be found under the TnB directory. The trace data
should be downloaded to another directory, which can be called

AEexpdata and can be at the same level as TnB, or according to

what the user prefers.

B.5 Evaluation and expected results
To run TnB, the user may simply open Matlab, go to the TnB direc-

tory, and type “TnBMain” in the command window.

To test different traces, the user may open TnBMain.m andmodify

the first two lines. One is to select the trace, such as:

TraceName = ’../AEexpdata/outdoor1-SF8-CR4’;
and the other is to set the corresponding Spreading Factor:

SF = 8;
After the programfinishes, the number of decoded packets is printed,

such as:

— TnB decoded 278 pkts —
The complete list of files and the number of decoded packets are

in the following:

• indoor-SF8-CR1: 368
• indoor-SF8-CR2: 334
• indoor-SF8-CR3: 383
• indoor-SF8-CR4: 394
• indoor-SF10-CR1: 302
• indoor-SF10-CR2: 263
• indoor-SF10-CR3: 290
• indoor-SF10-CR4: 295
• outdoor1-SF8-CR1: 280
• outdoor1-SF8-CR2: 234
• outdoor1-SF8-CR3: 250
• outdoor1-SF8-CR4: 278
• outdoor1-SF10-CR1: 260
• outdoor1-SF10-CR2: 234
• outdoor1-SF10-CR3: 301
• outdoor1-SF10-CR4: 253
• outdoor2-SF8-CR1: 375
• outdoor2-SF8-CR2: 356
• outdoor2-SF8-CR3: 358

• outdoor2-SF8-CR4: 366
• outdoor2-SF10-CR1: 164
• outdoor2-SF10-CR2: 350
• outdoor2-SF10-CR3: 294
• outdoor2-SF10-CR4: 178

It should be mentioned that the number of decoded packets may

vary slightly, typically by 1-2 packets, for the same trace, when

the trace is processes by different machines. This is likely because

although TnB is a set of deterministic algorithms, it calls a few

functions which may contain randomness.
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