l.)
e TnB: Resolving Collisions in LoRa based on the Peak Matching

Cost and Block Error Correction

Raghav Rathi and Zhenghao Zhang
rrathi@fsu.edu,zzhang@cs.fsu.edu
Florida Sate Univesity, Tallahassee, Florida 32306, USA

ABSTRACT

LoRa has emerged as one of the main candidates for connecting
low-power wireless IoT devices. Packet collisions occur in LoRa
networks when multiple nodes transmit wireless signals simultane-
ously. In this paper, a novel solution, referred to as TnB, is proposed
to decode collided LoRa signals. Two major components of TnB are
Thrive and Block Error Correction (BEC). Thrive is a simple algo-
rithm to resolve collisions by assigning an observed signal to a node
according to a matching cost that reflects the likelihood for the node
to have transmitted the signal. BEC is a novel algorithm for decod-
ing the Hamming code used in LoRa, and is capable of correcting
more errors than the default decoder by jointly decoding multiple
codewords. TnB does not need any modification of the LoRa nodes
and can be adopted by simply replacing the gateway. TnB has been
tested with real-world experimental traces collected with commod-
ity LoRa devices, and the results show that TnB can increase the
median throughput by 1.36x and 2.46X over the state-of-the-art for
Spreading Factors (SF) 8 and 10, respectively. Simulations further
show that the improvement is even higher under more challenging
channel conditions.

CCS CONCEPTS

« Networks — Wireless access points, base stations and in-
frastructure.

KEYWORDS

LoRa, Multi-packet collisions, Error correction

ACM Reference Format:

Raghav Rathi and Zhenghao Zhang. 2022. TnB: Resolving Collisions in
LoRa based on the Peak Matching Cost and Block Error Correction. In
The 18th International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’22), December 6-9, 2022, Roma, Italy. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3555050.3569132

1 INTRODUCTION

LoRa [7] has emerged as a strong candidate for Low-Power Wide-
Area Networks (LPWAN), where a large number of nodes connect
to a gateway over long distances with wireless links. In LoRa, nodes
may transmit packets at the same time, causing collisions. There
have been increasing interests in enhancing LoRa by decoding

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CoNEXT °22, December 69, 2022, Roma, Italy

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9508-3/22/12.

https://doi.org/10.1145/3555050.3569132

collided packets, which have achieved significant gains over the
original LoRa [12, 15, 18, 20, 22-24, 26-28].

In this paper, ThBis proposed, which is a novel solution to decode
collided LoRa packets. Two main components of TnB are Thrive and
Block Error Correction (BEC). When a collision occurs, the received
signal contains multiple peaks, where each peak is generated by
anode. In order to decode the collided packets, the LoRa receiver
should find the owner of each peak, where the owner refers to the
node that transmitted the peak. Thrive is a simple yet effective
algorithm for finding the owners of the observed peaks. In LoRa,
the Hamming Code is used for Forward Error Correction, which
is simple but offers only limited error correction capabilities. For
example, with Coding Rate (CR) 4, the Hamming code has 4 data
bits and 4 parity bits per codeword, and the default decoder can
correct only 1-bit errors. BEC is an algorithm for decoding the same
Hamming code in LoRa but can correct more errors than the default
decoder. For example, with CR 4, BEC can correct all 1-symbol and
2-symbol errors, and even over 96% of 3-symbol errors. Thrive and
BEC do not need any modification of the LoRa nodes, allowing
a network operator to simply replace the gateway and enjoy im-
mediate performance improvements. The computation complexity
of Thrive and BEC are both moderate. TnB has been tested with
experimental traces collected with commodity LoRa devices, and
the results show that TnB can increase the median throughput by
1.36X and 2.46X over the state-of-the-art for Spreading Factors (SF)
8 and 10, respectively. Additional evaluation with simulations show
that TnB achieves even higher gains when the wireless channel is
more challenging with stronger multi-path and higher fluctuations.
The source code of TnB is available at [5].

Thrive is based on the well-known fact that a peak thrives, i.e., is
the highest, when the signal is processed with the specific parame-
ters of the owner of the peak. Thrive jointly considers three features
that can distinguish a node from others, namely, the symbol bound-
ary, the Carrier Frequency Offset (CFO), and the height of other
peaks observed from the same node, and therefore is more effective
than those consider only a subset of the features. The key novelty
of Thrive is to calculate a matching cost that extracts the information
embedded in these features based only on the height of the peaks,
therefore enjoying a low computation complexity. BEC corrects more
errors than the default decoder by exploiting a special dependency
of the codewords in LoRa. That is, a demodulation error will lead to
errors in multiple codewords at the same location. The key novelty
of BEC is to decode such codewords jointly, which allows BEC to
achieve an error correction capability beyond the traditional bound
based on the minimum Hamming distance of the codewords.

The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3 discusses the background of LoRa. Sec-
tion 4 gives an overview of TnB. Section 5 explains Thrive. Section
6 explains BEC. Section 7 explains the synchronization and CFO

https://doi.org/10.1145/3555050.3569132
https://doi.org/10.1145/3555050.3569132
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555050.3569132&domain=pdf&date_stamp=2022-11-30

CoNEXT 22, December 6-9, 2022, Roma, Italy

estimation. Section 8 describes the evaluation. Section 9 concludes
the paper.

2 RELATED WORK

LoRa packet collision resolution has attracted increasing interest
in recent years [21]. Choir [15] distinguishes peaks from different
nodes by the fraction CFOs, which likely lead to unique fractional
peak locations. mLoRa [24] leverages the time offset of the transmit-
ted packets and successively recovers and subtracts the collision-
free signal. FTrack [27] detects the interfering chirp from the dis-
continuity of the frequency track. CoLoRa [23] is based on the fact
that a misaligned chirp generates peaks at the same location in two
consecutive symbols, where the peak height ratio of the two peaks
is proportional to the amount of misalignment. Nscale [22] pro-
cesses the received signal with a modified downchirp, which leads
to different effects on the peaks from different nodes. SCLoRa [18]
distinguishes the peaks based on the power of the peaks and the
change of the peaks when the processing window slides to the left
or the right. Pyramid [28] is based on the observation that the peak
height of a node increases then decreases when the signal is pro-
cessed with a sliding window, where the highest height is achieved
when the window matches the actual symbol. AlignTrack [12] is
based on a similar observation but processes the signal with the
symbol boundaries of the detected packets. PCube [26] identifies
the signals from different nodes in the spatial domain with multiple
antennas. CIC [20] cancels the interference and leaves only the
target peak.

TnB is significantly different from the work listed above in mul-
tiple aspects. First, TnB assigns peaks to the nodes by calculating
a matching cost based on multiple unique features of the node,
namely, the symbol boundary, the CFO, and the peak height his-
tory, while the existing work exploits only a subset of the features.
Second, TnB makes a unique contribution in the error correction
decoding of LoRa, which has not been explored. Third, the peak
assignment algorithm in TnB is very simple and does not involve
costly computations or a large number of antennas.

There have been other attempts to improve LoRa. OPR [11]
exploits multiple gateways to recover a lost packet, while TnB runs
at a single gateway. BICM Decoding [16] and List Decoding [17]
enhance the error correction of LoRa; however, they are designed
for single-node transmissions and cannot be applied to signals with
collisions because strong signals are processed first which could
be from other nodes. TnB is designed for unmodified LoRa nodes
and is therefore different from those add own application layer
codes [13, 19].

3 BACKGROUND OF LORA PHY

The LoRa Spreading Factor (SF) is an integer that can be from 6 to 12.
The upchirp, denoted by C, is a complex vector of length 25F with
unit amplitude but linearly increasing frequency. The conjugate
of C is denoted as C’ and is called the downchirp. A LoRa packet
consists of LoRa symbols transmitted back-to-back, where a symbol
is a cyclically shifted version of C. For example, the top of Fig. 1(a)
shows the real part of a symbol with SF 8, which is C shifted by
one location. A symbol modulates SF bits of data, because C can be
shifted by h locations where 4 € [0,25F —1].

402

Raghav Rathi and Zhenghao Zhang

Domain o
Signal

1

0

After 0
De-chirp

o

wvi‘w\\um(uwumuum f
\uwlunmmuwm/m\m\u

-1

Signal ° 5 5
Vector I
0
50 100 150 200 250
Original With timing error With CFO error
(@) (b) (©
Figure 1: (a). Modulation and demodulation of a LoRa symbol.

(b) Sensitivity of the peak height to timing error. (c) Sensitiv-
ity of the peak height to CFO.

50 100 150 200 250 50 100 150 200 250

At the receiver, a received symbol is denoted as f, which is
also a complex vector of length 25F. The receiver first de-chirps
B by computing y = © C’, where ® denotes the element-wise
multiplication of two vectors. If the transmitted symbol shifts C by
h locations, y is a sinusoid that completes h cycles in the symbol
time, as shown in the middle of Fig. 1(a). The signal vector, denoted
asY,isdefined as Y = |FFT(y)|®©|FFT(y)|, which is a vector with a
peak at location h, as shown at the bottom of Fig. 1(a). The receiver
can therefore infer the value of the transmitted data. When there
are multiple receiving antennas, the signal vector is the summation
of the individual signal vectors of all antennas.

To demodulate a symbol, the receiver needs to find the correct
symbol boundary, which refers to the start of the symbol, and cancel
the CFO. The peak height can be reduced with a mismatching
symbol boundary and residual CFO. A case with misaligned symbol
boundary is shown in Fig. 1(b), where, as only part of the symbol
is used in the calculation, the peak is noticeably lower. A case with
residual CFO is shown in Fig. 1(c), where the residual CFO leads to
an additional 0.5 cycles in y and a much lower peak.

At the sender, the data from the upper layer is encoded by an
(8,4) Hamming code, followed by procedures such as whitening. At
the receiver, the reverse process is applied to the demodulated bits,
including de-whitening and error correction. The generator matrix
of the Hamming code is:

0

S = O O
-0 O O
_m = O

1
0
1l
1

S O O =
(=
—_ O = =

1
0
0

A codeword can be generated by multiplying the data, which is
a 1 by 4 binary vector, with the matrix. A complete codeword is
a 1 by 8 binary vector, where the first 4 bits are the data bits and
the remaining bits are the parity bits. The Coding Rate (CR) is an
integer between 1 and 4 and is the number of parity bits transmitted
per codeword. If the CR is between 2 and 4, the first CR parity bits
are transmitted. An exception is when the CR is 1, in which case
the parity bit is the checksum of the 4 data bits. For example, if
the data is ‘1001, the complete codeword is is ‘10011100°, which
is the summation of rows 1 and 4 of the generator matrix. If the
CR is 3, the transmitted codeword is ‘1001110 The Hamming code

TnB: Resolving Collisions in LoRa based on the Peak Matching Cost and Block Error Correction

data parity
1001f110 U
1010011 0]01
0001/011 101
0jo 0
SF/0110/001 :
0101100- 1|1 0
1000{101 0|10
0111/010 10 1
R R PR 1 11 1
« 4+ CR — Received Cleaned
Block Block

@ (b) (©
Figure 2: A code block in LoRa with SF 8 and CR 3.

guarantees detecting ¢ —1 errors if the minimum Hamming distance
between the codewords is t, and correcting ¢ errors if the minimum
Hamming distance is 2t + 1. Therefore, CR 1 and CR 2 offer 1-bit
error detection, while CR 3 and CR 4 offer 1-bit error correction.

LoRa organizes the codewords in blocks, where each block is a
SF by 4 + CR binary matrix. In a block, each row is a codeword and
each column contains the bits to be transmitted by one symbol. As
an example, a code block is shown Fig. 2(a), where the SF is 8 and
the CR is 3. Let the received block be the block received by the re-
ceiver, potentially with some symbols corrupted. Fig. 2(b) shows the
received block, where symbols 2 and 7 have been corrupted. Note
that, as the error values are random, a corrupted symbol usually
does not flip all bits in a column. The default decoder replaces each
row of the received block with a codeword that is closest to the row,
i.e., with the minimum Hamming distance, producing the cleaned
block. Fig. 2(c) shows the cleaned block, where, in all rows except
row 7, the number of errors are 1 or 0, which can be corrected by
the default decoder. Row 7 however has 2 errors, which is beyond
the error correction capability of the Hamming code. The default
decoder ”snaps” row 7 to the codeword with the minimum Ham-
ming distance, which differs with row 7 in column 3, producing
an error. Note the BEC can decode this block correctly, as will be
explained in Section 6.1.

A LoRa packet starts with the preamble, followed by the Physical
Layer (PHY) header, then the payload. The preamble allows the
receiver to detect the packet, which typically starts with 8 upchirps,
followed by 2 symbols called the sync symbols, then 2.25 downchrips.
The PHY header consists of 8 symbols and uses CR 4, from which
the receiver can learn the CR and the length of the payload.

4 OVERVIEW OF TNB

TnB consists of four components, as shown in Fig. 3. The first is
the packet detection component, which takes the received time-
domain signal as input and detects packets, at the same time finding
the symbol boundary and the CFO of each packet. The second is
the signal calculation component, which takes the list of detected
packets, as well as the time-domain signal, as input, and calculates
the signal vectors of each packet, where the signal vectors of a
particular packet are calculated by aligning to its estimated symbol
boundary and correcting the CFO according to its estimated CFO.
The core of TnB are the third and fourth components, namely,
Thrive and BEC. Thrive takes the signal vectors as input, and assigns
peaks to the packets. BEC takes the peak locations of each packet
as input, and decode them into data bits. Thrive and BEC can be

403

CoNEXT 22, December 6-9, 2022, Roma, Italy

Packet Packet 1: Packet 2:
» etactic + Start time - Start time
100 W . CEO . CEO
L | 'Y 2 1t
" L 1 [| t[LY

Calculation :
s b
of s

> Thrive

Block Error 04 F6 0A AD

3D BA 29 c7

E7 %93 1D B2
1D pec 25 B3

Correction

Figure 3: Overview of TnB.

Checking Point

+1
st
+1
SZ

sit ‘
Figure 4: The checking point and symbols in Thrive.

jointly used as in TnB, or used separately and combined with other
methods, such as combining BEC with CIC [20] in Section 8.

Starting from the first sample of the received signal, every
samples, which is the length of the symbol, is a checking point. At
each checking point, Thrive examines the symbols that intersect
the checking point, and assigns one peak to each symbol. Once the
PHY header of a packet has been received, BEC is called to decode
the PHY header to learn the CR and the length of the payload. Once
the last symbol of the payload has been received, BEC is called
to decode the payload. Thrive also reexamines the received signal
for a second time to decode packets that failed at the first attempt,
because many packets may have been decoded correctly and their
peak locations are known and can be masked.

The packet detection component is described in Section 7. The
signal calculation component is very straightforward. Thrive and
BEC are explained in the following.

9SF

5 PEAK ASSIGNMENT WITH THRIVE

Thrive is a simple algorithm for assigning peaks to packets when
there are multiple peaks in the signal vector.

5.1 Challenges

A checking point is shown in Fig. 4, which intersects 3 symbols
denoted as S1, Sz, and Ss, respectively, where the symbols are sorted
according to their boundaries with the first being S;. Symbol i be-
longs to packet i, which is transmitted by node i. Symbols of packet
i right before and after S; are denoted as S;” L and S?’l, respectively.

The challenges of peak assignment can be seen in Fig. 5, which
shows the signal vectors of the symbols in Fig. 4. As can be seen in

CoNEXT 22, December 6-9, 2022, Roma, Italy

Peak by

node 2

sit S, o

b T

S5t S S5

\ 1 o] ‘, l~ |
S5 S 3"

A J’ j Ll L =
50 150 250 50 150 250 50 150 250

Figure 5: An example of signal vectors and peaks.

the figure, a signal vector contains multiple peaks, while the owners
of the peaks are unclear. The number of peaks in a signal vector is
more than the number of nodes, because the signal from one node
generates a peak not only in its own signal vector, but also in the
signal vectors of other nodes if the symbols overlap. For example,
node 2 generates a peak in So. However, as Sy overlaps with S; and
S;l, the same signal also generates in peaks in the signal vectors
of $; and ST, which are at different locations and are of different
heights. The same signal also generates peaks in the signal vectors
of S5 1 and Ss.

As mentioned earlier, Thrive jointly considers the symbol bound-
ary, the CFO, and the peak height history. While these features
have been exploited to various degrees in the past, combining them
further improves the distinguishability of the peaks. The challenge,
however, is how to combine them effectively without incurring
high computation cost.

5.2 Core Ideas

Thrive is based on the observation is that the height of a peak is
highly sensitive to the symbol boundary and the CFO, and is also
highly correlated with peaks in nearby symbols from the same node.
Therefore, reversely, by examining how the peak height varies in the
signal vectors of different nodes and how it differs from those in nearby
symbols, the owner of the peak can be identified. As the signal vectors
have been found by the packet signal calculation component, no
additional heavy computations are needed in Thrive.

To elaborate, first, note that the peak height is reduced if the
signal is processed with incorrect symbol boundary and CFO, as
shown in Fig. 1(b) and Fig. 1(c). Therefore, as long as the nodes have
different symbol boundaries and CFOs, the signal from a node likely
generates the highest peak in its own signal vector, rather than in
those of other nodes. To exploit this observation, let siblings refer
to the set of peaks in the signal vectors of different nodes generated
by the same transmitted symbol. For example, the 5 peaks pointed
by the arrows in Fig. 5 are siblings. From the receiver’s point of
view, as the highest peak among all siblings is in the signal vector
of node 2, the peak matches the best with the parameters of node
2, and therefore node 2 is most likely the owner of the peak. The
sibling cost of a peak is therefore defined based on its relative height

404

Raghav Rathi and Zhenghao Zhang

£
(=]
‘@
il
~
< i
o — — ~Upper Estimate
=== Actual
9 | | ‘ | Lower Estimate
5 10 15 20 25 30 35 40
Symbol index

Figure 6: The peak height history of a packet, along with the
upper and lower estimates.

among its siblings. The higher the peak, the lower the cost, and
the more likely the node to which the signal vector belongs is the
owner of the peak.

The peak height history can be very useful, because the signal
powers of the nodes likely differ, resulting in different peak heights;
at the same time, the peaks from the same node should bear some
similarities. An example is shown in Fig. 6 for a packet, where,
although the signal fluctuates, the peak height still follows some
trend. The history cost of a peak measures the deviation of the
peak from the expected peak height of a node based on the past
observations of the node. The smaller the deviation, the lower the
cost, and the more likely the node is the owner of the peak. The
expected peak height is computed by a curve-fitting algorithm
capable of tracking the changes caused by channel fluctuations,
bootstrapped by the peaks in the preamble.

Lastly, the sibling cost and the history cost are linearly combined
into the matching cost, which represents the likelihood of a node to
be the owner of a peak.

5.3 Details of Thrive

The details of Thrive are explained in the following for a generic
checking point.

5.3.1 Notations. Let M be the number of symbols intersecting the
checking point. Let 7; be the time difference between the boundaries
of S; and S;. Let §; be the CFO difference between S; and Sq, where
the CFO is measured by the number of cycles the CFO sinewave
completes in a symbol. Let a; = 7; + ;. For each 1 < i < M, Thrive
runs a peak finding algorithm [29] to find the peaks in the signal
vector of S;, denoted as {P; 1, P; 2, ...}, where the maximum number
of peaks in a symbol is currently 2M. The height of P; j, is denoted
as 7; - The matching cost of P; j, is the summation of w; , and F; ,
which denote the sibling cost and the history cost, respectively.

5.3.2 Identifying the Siblings. A potential challenge is to identify
the set of siblings. Fortunately, in LoRa, the following fact holds:
if a symbol or part of the symbol overlaps with both S; and Sy and
produces peaks at locations a and b, respectively, a = mod {b +
a; — a — 1,25F} + 1. Therefore, it is possible to track a peak in all
symbols where it may emerge and find its siblings based on the
locations of the peaks.

5.3.3 Peak Cost Calculation. As shown in Fig. 5, a peak transmitted
by node i in symbol S; may also appear in 2(M —1) symbols, namely,

TnB: Resolving Collisions in LoRa based on the Peak Matching Cost and Block Error Correction

Sk and Sltl for1 <k <i,and S;l and Sg for M > k > i. Denote
the maximum peak height of all siblings of P; , as H". Note that
in the signal vectors of some nodes, the sibling may be too weak
to be identified as a peak; in this case, the height of the sibling is
the value of the signal vector at the expected location of the sibling.
The sibling cost of P; j, is
Wi = (1= T,)
To calculate the history cost, let A; and D; be the estimated peak
height and peak height deviation when processing S;, respectively.
Thrives uses a curve-fitting algorithm [8] to fit the height of the
peaks that have been observed for packet i so far. A; is the value
of the fitted curve at S;° 1 and Dj is the median of the differences
between the actual and fitted data. The upper and lower estimates
are U; = A; + 4D; and L; = max{0, A; — 4D;}, respectively, which
are shown in Fig. 6, along with the actual height of the peaks. The

history cost of P; j, is:
—_Uiy2 g, A
w(1 'h,h) if n;p > Ui
0, ifUi2np 2L

w(1 - 'Gi—h)z otherwise
1

Fip=

s

@

where o is an empirical parameter to control the importance of
the history cost. Currently, » = 0.1. As TnB decodes a packet for
a second time if the first attempt was not successful, during the
second attempt, the curve fitting algorithm runs on all peaks, while
Aj is the value of the fitted curve at S;, and D; is the median of the
differences between the actual and fitted data.

5.3.4 Peak Assignment. Prior to the peak assignment, the known
peaks and their siblings are found and masked, where a peak is
known if it is in the preamble part of a packet, or if the packet has
been decoded correctly. The peak assignment algorithm is a simple
heuristic that determines the assignment of a selected symbol in
each iteration. In each iteration, it first finds the minimum matching
cost of the peaks in all remaining symbols. If there is only one
symbol that has a peak with the minimum cost, this symbol is
selected; otherwise, the symbol that has the fewest peaks with the
minimum cost is selected; if there are still ties, an arbitrary choice is
made. The selected symbol is assigned a minimum cost peak, after
which the siblings of the peak are masked and the selected symbol
removed.

5.3.5 Complexity. At a checking point that intersects M symbols,
Thrive needs to run the peak finder and the curve fitting algorithms
for at most M times each, as well as running the peak assignment
algorithm for at most M iterations, because each symbol is assigned
a peak in each iteration and the decisions are never revisited. The
peak cost needs to be calculated for at most 2M? peaks, where
the calculation for each peak involves finding its siblings and cal-
culating the cost in constant time according to Eq. 1 and Eq. 2.

6 BLOCK ERROR CORRECTION (BEC)

BEC is an algorithm that decodes the same Hamming code in LoRa
but achieves much higher error correction capabilities than the
default decoder, as summarized in Table 1.

405

CoNEXT 22, December 6-9, 2022, Roma, Italy

Table 1: Decoding Capability Comparison

BEC
Corrects 1-symbol error
Corrects 1-symbol error
Corrects 1-symbol error and
almost all 2-symbol errors
Corrects 1 and 2-symbol errors
and over 96% of 3-symbol errors

CR | Default Decoder
Detects 1-bit error
2 Detects 1-bit error

3 Corrects 1-bit error

4 Corrects 1-bit error

6.1 Core Ideas

BEC decodes code blocks in LoRa instead of individual codewords,
because errors in a block are correlated: a corrupted symbol leads
to errors in the same column of the block. BEC examines the differ-
ences between the received block and the cleaned block, because
the differences are either the true errors, or are related to the true
errors. In the following, the core ideas of BEC are explained for CR
3, because other CRs are similar.

Fig. 7 is an example continuing with Fig. 2, where the differ-
ences between the received block and the cleaned block are shown
in red at the top of the figure. As mentioned earlier, due to the
randomness of errors, a corrupted symbol rarely flips every bit in
the corresponding column. Therefore, even when there are multi-
ple corrupted symbols, there often exist rows with only one error,
which is within the error correction capability of the Hamming
Code and can be corrected by the default decoder. In Fig. 7, rows
2,3, 4,5, 6, and 8 have only one error and the differences between
the received block and the cleaned block are either in column 2 or
column 7, which are the true error columns.

When the number of errors is beyond the error correction capabil-
ity of the Hamming code, the default decoder produces a decoding
error, which is still mathematically related to the true errors. In
Fig. 7, as row 7 has two errors, the default decoder flips the wrong
bit in column 3. However, this is not a random action, because the
default decoder will always flip the bit in column 3 if there are
errors in columns 2 and 7. Therefore, column 3 is referred to as the
companion of columns 2 and 7. Fundamentally, this is because a bi-
nary vector with ‘1’s only in columns 2, 3 and 7 is a valid codeword.
As a result, flipping the bit in column 3 of row 7 also produces a
codeword, which is closer to row 7 than that by flipping the bits in
columns 2 and 7.

As the differences between the received block and the cleaned
block occur in columns 2, 3, and 7, BEC can determine that there
must be 2 or more error columns, because otherwise, the default
decoder is capable of correcting all errors and the difference shall
occur all in the same column. With CR 3, BEC attempts to correct up
to 2 error columns. The companion introduces ambiguities, because
it is unclear which columns are the true error columns and which is
the companion. Note that, as column 2 is the companion of columns
3 and 7, and column 7 is the companion of columns 2 and 3, the same
situation can be observed if the true error columns are 2 and 3, or 3
and 7. To resolve this ambiguity, BEC generates 3 BEC-fixed blocks
as potential solutions. Basically, BEC tests every combination of 2
potential error columns. As shown in Fig. 7, the BEC-fixed block
for every combination is obtained by first masking the columns in
the received block, then replacing each row with a codeword that
matches in the remaining columns. BEC relies on the packet-level

CoNEXT 22, December 6-9, 2022, Roma, Italy

1/0/o1|1 1|0
1/0/1/0/0 1|0
. oofo1fo 10
Received 01/1/0lo 00
Block |ggjo1|100
1/0/0/0(1 0j0
0o0j11f011
1/o01 1|1 1f2
- —
.‘.-“ : l......
& \ -
) r M — r

1{110 1 o111 10 |1]1 1]

0l0 10 1 l10/01 1 0 olo 1|

1001 0 0o l01jo1 0o |101]

ojooo 0 /1000 01 ooo:

1(1 00 o [0110] 00 110

oj100 1/ oo|10] 10 010

1j011 0 1101 00 [1/01]

(111 i 11 10 |11 1]
. - o U

- . .

A = ¥ .
1ofoj1|1 1 0 1/0/0 1(1 1f0 10/0/11 1|0
1/1jo/ojo10 1/0/1 0o 1)1 10/1/0fo 11
011|101 0 0001011 0o0/0/1)0 1|1
oojoojooo o/1/1 0001 01/10f00f1
o 1ofij100 0101100 0011101
1‘1110100 1/ojo 0|1 o)1 1000[101
ojojoj1jo 11 o/1[11jo 1/0 0001011
1‘1 1(1(2 21 12f 1)1 1f2 100011 1|0
BEC-fixed BEC-fixed BEC-fixed
Block 1 Block 2 Block 3

CRC Failure CRC Success CRC Failure

Figure 7: BEC corrects the errors in Fig. 2.

Cyclic Redundancy Check (CRC) to identify the correct BEC-fixed
block, which should be the only one that leads to a CRC pass.

BEC applies only to packets with a small number of blocks,
because the number of CRC calculations grows exponentially with
the number of blocks. Fortunately, LoRa packets are typically small:
a packet with 16 bytes has only 3 to 5 blocks depending on the
SF and CR. Also, it could occur that the differences between the
received block and cleaned block do not appear in a true error
column. In almost all such cases, the differences occur in one true
error column and the companion of the true error columns, so
that BEC will still test the actual true error columns as one of the
potential solutions and correct the errors.

6.2 Preliminaries and Definitions
The following are some of the notations used in BEC:

R: the received block

I': the cleaned block

¢;: the set of rows in which R and I differ by i bits

=: the set columns in which the rows in ¢, differ between R
and T

ri: row i of a matrix

¢k column k of a matrix

IT: a set of columns

||: the size of a set

406

Raghav Rathi and Zhenghao Zhang

e V(II): a binary row vector with the same length of a code-
word, where a column is 1 if the column is in IT

In Fig. 2 and Fig. 7, ¢o = {r1}, ¢1 = {ra,r3,ra,7s,76,r7,r3}, and
== {Cz, C3, 07}.

For a set of columns IT where |II| is less than the minimum
Hamming distance of the code, a companion, denoted as IT’, is
defined as the columns, which, when combined with II, makes
a codeword. That is, V(IT U IT’) is a codeword. For example, for
the code shown in Fig. 2 and Fig. 7, the companion of {ca, c7} is
{c3}. Clearly, |II| + |II’| = CR. Note that when there are errors in
every column in I, if |TI| < [II’|, the default decoder flips the bits
in IL; if [TI| > |1’|, the default decoder flips the bits in IT” or in
other companions of IT; if |II| = [II’|, the choice is arbitrary. II
may have one or multiple companions depending on the CR and
|IT|. In particular, when the CR is 4 and |II| = 2, as explained in
Section A.1, IT has 3 possible companions. In this case, II, along
with its companions, are called a companion group.

6.3 Repair Methods

BEC employs a number of methods to repair R to produce the BEC-
fixed blocks. There are a total of 4 repair methods, denoted as A’,
Al, Az, and Ag.

A’ applies only to CR 1 and its notation style is slightly different,
because CR 1 is a special case. To repair R with a column is to use
the checksum of the other 4 columns to replace this column in R.

Aq is used most often and has been shown in Fig. 7. To repair R
with a set of columns, say, IT, BEC first masks these columns. A row
in R, say, R;, is repairable, if it matches one of the valid codewords,
say, 0, in the remaining columns. In this case, to repair R; is to
replace it with 6. R is repairable only if every row is repairable.

Ay applies mainly to CR 4 for correcting 2-column errors when
= contains one column, say, Cky - In this case, BEC assumes Ck, is
a true error column, and attempts to repair the rows in ¢2. A row
in ¢y, say, R;, is repairable, if it differs only in one column, say, Chey»
with a valid codeword, say, 6, after the bit in Ck, is flipped. In this
case, to repair R; is to replace it with 6. ¢, is called the column of
mismatch. R is repairable only if all rows in ¢, are repairable with
the same column of mismatch.

A3 applies only to CR 4 for correcting 2-column errors when
Z is empty. BEC attempts to repair R with two columns, say cg,
and c,. A row in ¢, say R;, is repairable, if it matches a codeword,
say, 0, after the bits in ¢, and c, are flipped. In this case, to repair
R; is to replace it with 6. R is repairable only if all rows in ¢; are
repairable.

The complexity of A’ is clearly low because it involves only the
calculation of the checksum. Owing to the simplicity of the (8, 4)
Hamming code, the complexities of the rest of the repair methods
are also low, because the main computation is to compare each
modified row with all 16 codewords, where the total number of
comparisons is bounded by 16SF.

6.4 Decoding CR 1

With CR 1, BEC attempts to correct up to 1-column errors. If the
parity check passes in every row, BEC returns, assuming there is
no error. Otherwise, BEC attempts to repair R with each column

TnB: Resolving Collisions in LoRa based on the Peak Matching Cost and Block Error Correction

according to A’, and produces 5 BEC-fixed blocks, as there are 5
columns in R,

6.5 Decoding CR 2

With CR 2, a row in R and the corresponding row in T differ by at
most one bit. BEC first examines if |Z| = 0, i.e., R and I are identical,
and if so, BEC returns, assuming there is no error. If |Z| > 1, BEC
attempts to decode 1-column errors. As explained in Section A.2, if
|Z| > 3, there must be more than one error column and BEC returns
with decoding failure. If |Z| = 1, BEC first finds the companion
of the column in E and adds it to =, then applies A; to repair R
with each column in E, producing a BEC-fixed block for each if the
repair is successful. The same process is applied if |=| is already 2.

6.6 Decoding CR 3

With CR 3, a row in R and the corresponding row in T differ by at
most one bit. BEC first examines if |Z| = 0, and if so, BEC returns,
assuming there is no error. Otherwise, BEC examines if |Z| = 1, i.e.,
the differences between R and I' all occur in a single column, and if
so, BEC returns, assuming there is only one error column, because
the default decoder can correct one-bit errors. If |Z| > 2, BEC
attempts to decode 2-column errors. As explained in Section A.2,
if |Z| > 4, there must be more than two error columns and BEC
returns with decoding failure. If |Z| = 2, BEC finds the companion
of the two columns in Z, which is another column, and adds it to =.
BEC attempts all 3 combinations of two columns in = to repair R
with Ay, producing a BEC-fixed block in each case if the repair is
successful. The same process is applied if |Z| is already 3, as shown
in Fig. 7.

6.7 Decoding CR 4

For CR 4, arow in R and the corresponding row in T differ by at most
two bits. Similar to CR 3, BEC returns without further processing
if R and T are identical, or if the differences between R and I all
occur in a single column. Otherwise, BEC first attempts to decode
2-column errors, and, if fails, 3-column errors.

6.7.1 2-Column Errors. If there are 2 error columns, as explained in
Section A.2, |E| < 2. Therefore, BEC attempts to decode 2-column
errors only if |Z| < 2. First, if |Z| = 0, which is very rare, for every
row in ¢y, say row i, where R; and I; differ in two columns, BEC
finds the companion group of the two columns, which contains 4
pairs. If every row in ¢y yields exactly the same companion group,
BEC produces a BEC-fixed block for every pair in the group by
using the pair to repair R with As. If |E| = 1, let the column in =
be cj.. BEC attempts to repair R with Az using cj and produces one
BEC-fixed block if the repair is successful. If |=| = 2, BEC repairs R
with A; using the two columns and produces one BEC-fixed block
if the repair is successful. The attempt to decode 2-column errors
fails if no BEC-fixed block is produced.

6.7.2 3-Column Errors. If there are 3 error columns, as explained in
Section A.2, |Z| < 4. Therefore, BEC attempts to decode 3-column
errors only if |Z| < 4. If |Z| = 0, however, BEC returns with decod-
ing failure, because it is beyond the capability of BEC.

If || = 1, suppose the column in Z is c,. BEC applies Az us-
ing ci, . If there are indeed 3 error columns, based on Lemma 3 in

407

CoNEXT 22, December 6-9, 2022, Roma, Italy

Table 2: Summary of BEC

CR | #ofErr. | Approx. Repair # of
Columns | Err. Prob. | Complexity | CRC
1 1 0 5N 5
2 1 0 2 A 2
3 1 0 NA NA
2 25T 34 3
4 1 0 NA NA
2 0 < 4A3 <4
3 < 0.04 < 9N 4

Section A.7, there must be either 2 or 3 distinct columns of mis-
match for rows in ¢ after the repair. In the former case, denote
the columns as cg, and c,. BEC finds the companion of ¢, cg,,
and Chy» denoted as ¢’. In the latter case, denote the columns as Chey>
Ck,» and cg,, and based on Lemma 3, cg, must be the companion
of Ckys Chy» and Chys therefore, the two cases are equivalent. BEC
attempts to repair R with A; using all 4 combinations of 3 columns
and produces a BEC-fixed block in each case.

If |Z| = 2, BEC first makes 6 attempts to repair R with A, where
in each attempt it uses Z along with a column not in E. If there
are indeed 3 error columns, based on Lemma 1 and Lemma 2 in
Section A.3, among the 6 attempts, regardless of whether or not
the two columns in = are the true error columns or not, there will
be exactly 2 attempts that can repair R. Denote the two combina-
tions of columns that can repair R as (cg,, Ck,, Ck,) and (¢, Ck,, Ck,)
respectively, where ¢, and cg, are in Z. Note that if = contains
two true error columns, one of the two combinations are the true
error columns; otherwise, i.e., if = contains the companion of the
true error columns, either (cg,, ck,, ck,) or (ck,s Ck,, Ck,) must be
the true error columns. Therefore, BEC makes two more attempts
with A; using (cg,, ¢k, ck,) and (c,, ¢k, ck,), and produces a total
of 4 BEC-fixed blocks.

If |Z| = 3, BEC adds the companion of E to =, which is another
column. BEC then attempts to repair R with A1 using each com-
bination of 3 columns in E. If there are indeed 3 error columns,
one BEC-fixed block is produced in each attempt. The same repair
process is applied if |Z| is already 4.

Note that, if there are more than 3 error columns, the repair may
fail. Even if the repair appears successful, the packet-level CRC will
still eventually fail.

6.8 Decoding Performance and Complexity

Table 2 summaries the decoding performance of BEC, the proof
of which can be found in the Appendix. Table 2 also shows the
complexity of BEC for decoding one block, where the computation
mainly include applying the repair methods and CRC calculations.
The number of CRC calculations for a block is exactly the number
of BEC-fixed blocks. The type of the repair method and the number
of times it is applied depend on the CR and the number of error
columns, which, in most cases, should be clear from the description
of the decoding process. With CR 4 and 3 error columns, the bound
is 9A1, because the highest computation occurs when |Z| = 2, in
which case BEC first assumes that there are two error columns and
applies A; once, which will fail, then applies A; 8 times, assuming
there are 3 error columns.

CoNEXT 22, December 6-9, 2022, Roma, Italy

6.9 Packet Decoding

A packet is decoded by assembling the BEC-fixed blocks of different
blocks into a repaired packet and testing the packet level CRC. To
limit the computation complexity, the number of CRC calculations
is limited by a parameter denoted as W. If the potential number of
repaired packets exceeds W, only W packets are randomly selected
and tested. W is currently 125, 16, 16, and 16 when the CR is 1,
2, 3, and 4, respectively. W is higher when the CR is 1, because
more BEC-fixed blocks are generated, a price for transmitting less
overhead. However, it was found that when the CR is 1, changing
W to 25 reduces the number of decoded packets by less than 5%.

7 PACKET DETECTION

In TnB, packet detection consists of 4 steps, where the main inno-
vation is the last step for the estimation of the fractional symbol
boundary and CFO.

In step 1, TnB detects packets with a similar approach as that
in [20] by finding peaks at the same locations in consecutive sym-
bols, which should be generated by the upchirps and the downchirps
in the preamble.

In step 2, a preliminary estimate of the start time of a detected
preamble is calculated and the preamble is removed if it does not
produce peaks at expected locations. For example, if the preamble
is detected with the downchirp, the preliminary start time should
be selected such that the downchirp peaks are at location 1. Under
this constraint, the upchirp peaks should be close to location 1,
where the relaxation is determined by the maximum allowable
CFO, because the CFO has not been corrected at this point. To
avoid errors that are multiples of T, where T is the length of a
symbol, multiple tests are performed with adjustments of —2T, —T,
0, T, and 2T added to the preliminary estimate of the start time. A
preamble is discarded only if it fails all 5 tests.

In step 3, coarse timing and CFO estimations are calculated for
each detected preamble according to [25]. That is, let x; and x3
be the locations of the upchirp peaks and the downchirp peaks,
respectively. The preamble start time and the CFO are adjusted by
tl(x1 — x2)/2] and f| (x1 + x2)/2], respectively, where | | denotes
rounding a number to the nearest integer, 7 is the sample time, and
f=1T.

In step 4, fractional timing and CFO are estimated, which are
fractions of 7 and f, respectively. For simplicity, adjustments of &;7
and &y f are denoted as &; and ¢, respectively, where &; and &5 are
real numbers. Due to challenges caused by collisions, TnB uses a
search that evaluates a function for different combinations of §; and
8 and selects the combination that achieves the maximum. The
search is optimized and evaluates only 36 combinations when U = 8,
where U denotes the Over-Sampling Factor (OSF), which is the
number of samples taken at the receiver between two transmitted
samples at the sender.

To be more specific, for a received symbol f, let the complex
signal vectorbe FFT(©C’). For any &7 and &y, let Q(Jy, 5¢) be the
total peak energy in the preamble, where the energy is computed
by adding the complex signal vectors of the preamble and comput-
ing the energy at the peak location in the summation vector. The
complex signal is used because it preserves the phase information,
so that the summation at the peak location is weak if the fractional

408

Raghav Rathi and Zhenghao Zhang

Q)

Cro -

Figure 8: Q() and Q*() of a packet transmitted by a commodity
LoRa device [3].

CFO is not canceled. Let Q* (&, 8¢) be Q(8¢, 6f) if both the up-
chirp peaks and downchirp peaks are at location 1; otherwise, let
Q" (6, 6¢) be 0.

The search consists of 3 phases. In Phase 1, the search evaluates
17 points along a line where §; = 0 and ¢ is from -1 to 0 at a step
of f/16. Suppose Q() achieves the maximum at (0, 5}). In Phase 2,

the search evaluates a total of 10 points along two lines. On both
lines, &; is from —1 to 1 at a step of 1/2. On one line, 5f =46%; 0on

f
the other line, 67 = 5} + 1. Suppose Q*() achieves the maximum at

(3,, 5}). In Phase 3, the search evaluates U + 1 points along a line
where &; is from &; — 1/2 to St + 1/2atastep of 1/U and & = 5}.

Suppose Q*() achieves the maximum at (5}, 5~f). ¢ and 5~f are used
as the estimated fractional timing and CFO, respectively.

The search is based on the fact that when the timing is accurate
and the CFO has been fully canceled, the total energy of the peaks
is the highest and the upchirp peaks and downchirp peaks are all
at location 1. By exploiting the nature of Q(), the computation
complexity is significantly reduced compared to a naive approach
that may evaluate all possible combinations of §7 and &;. The top
of Fig. 8 shows Q() of a packet transmitted by a commodity LoRa
device [3], where it can be seen that along any line where J; is fixed,
Q() achieves high values when 8¢ is correct, or when &y is off by
+1. Therefore, in Phase 1, the search simply is along the line where
& = 0, which will find either the correct fractional CFO, or off by
+1. In Phase 2, the correct fractional CFO is found by evaluating
Q*(), because the peaks will not be at location 1 if the fractional
CFO is off by 1 or -1, as can be seen at the bottom of Fig. 8. In Phase
3, the search is along the line with the correct fractional CFO to
pick the best fractional timing offset.

TnB: Resolving Collisions in LoRa based on the Peak Matching Cost and Block Error Correction

! 30m
(a) (b)
50m
100 m -
©) (d)

Figure 9: (a) The LoRa node. (b). Indoor. (c). Outdoor 1. (d).
Outdoor 2.

Table 3: Experiment Parameters

Carrier Frequency 915 MHz
Bandwidth 125 kHz
Over-Sampling Factor (OSF) 8
Packet Size 16 bytes
Duration 30 seconds
SF 8, 10
CR 1,2,3,4

8 EVALUATIONS

TnB has been implemented and compared with the state-of-the-art.
The implementation can be found at [5] and is capable of detecting
and decoding packets transmitted by commodity LoRa devices. Part
of the implementation related to specific operations in LoRa, such
as whitening, CRC calculation, etc., are based on the open-source
LoRa implementations at [6, 10, 14].

8.1 Experiment Setup

The LoRa nodes used in the experiment are the Adafruit Feather
MO0 with RFM95 LoRa Radio 900 MHz [3], one of which is shown in
Fig. 9(a). One of the nodes acts as the starter. At the beginning of an
experiment, the starter transmits a start message 3 times to inform
the nodes about the configuration of the experiment, including the
SF, the CR, the start time of the experiment, the number of packets
to be transmitted by each node, and the duration of the experiment.
After receiving the start messages, a node transmits packets at
randomly selected times during the experiment. A USRP B210 [9] is
placed next to the starter to record the samples, which are written
to a trace file. Some common parameters in all experiments are
shown in Table 3. The packet transmitted by each node has 16 bytes
of payload, which includes 4 bytes of header, 10 bytes of data, and 2
bytes of CRC. A node ID and a sequence number have been added
to the data part of the packet to distinguish the packets.

409

CoNEXT 22, December 6-9, 2022, Roma, Italy

1 SF 10)
- === Indoor
== =Outdoor 1
0.8 Outdoor 2
n06
S
0.4
0.2
Lt
-20 -10 0 10 20 -20 -
SNR (dB) SNR (dB)

Figure 10: Estimated SNR of the 3 deployments.

Medium Usage in Two Cases

—— Indoor SF 8 CR 3 7
Indoor SF 10 CR 3

Medium Usage
IS o

N

Figure 11: Lower bound of the medium usage in two cases at
the highest load.

Three deployments have been tested, which are referred to as
Indoor, Outdoor 1 and Outdoor 2, with 19, 25, and 25 nodes, re-
spectively. The layout of the deployments are shown in Fig.9(b),
Fig.9(c), and Fig.9(d), respectively, where the star is the location of
the starter and the USRP sniffer. In each deployment, it was con-
firmed that each node could communicate with starter. SF 8 and SF
10 were tested for all CR values. For each combination of SF and
CR, 5 network traffic load values were tested from 5 pkt/sec to 25
pkt/sec at a step of 5 pkt/sec. For each traffic load, the experiment
was repeated 3 times, called three runs. A total of 360 trace files
were collected.

Fig. 10 shows the Cumulative Distribution Function (CDF) of
the estimated Signal to Noise Ratio (SNR) of the nodes in various
deployments. To be more specific, for each deployment and SF, the
run with the most number of nodes that have decoded packets is
selected. The SNR of a node is estimated based on the peak heights
found in its decoded packets. The SNR estimations are different
between SF 8 and SF 10, primarily because more weak packets can
be decoded with SF 10. The SNR of the same node can also vary,
such as by over 5 dB, in one run. Still, it can be seen that the SNR
varies in different deployments, and, within the same deployment,
the SNRs of the nodes may also differ by more than 20 dB.

Fig. 11 shows the medium usage in 2 typical runs at the highest
load, where the medium usage of a particular time instant refers
to the number of packets on the air at the time and reveals the
traffic condition. As the traffic was randomly generated and not
all packets were received correctly, the medium usage is a random
variable that cannot be known exactly. Fig. 11 shows a lower bound
obtained by considering only packets that were correctly decoded
by TnB, which is a subset of all transmitted packets. It can be seen
that the medium can be very busy both for SF 8 and SF 10, and is
more so for SF 10, because the packet is longer with SF 10.

CoNEXT 22, December 6-9, 2022, Roma, Italy

8.2 Compared Schemes

TnB is compared with CIC [20] and AlignTrack [12], which are
recent LoRa packet collision resolution schemes, as well as Lo-
RaPHY [6], which is an implementation of the original LoRa packet
decoder. CIC and LoRaPHY were tested with their open-source
implementations graciously shared by their authors at [4, 6]. The
testing of AlignTrack poses some challenges, as an open-source
implementation was not available. AlignTrack mainly consists of a
peak detection algorithm, a packet detection algorithm, and a peak
assignment algorithm, which are described in Sections IV.C, IV.D,
and IVEE in [12], respectively. In this paper, the comparison focuses
on the peak assignment algorithm, denoted as AlignTrack®, because
it is the core and main innovation of AlignTrack. AlignTrack® has
been implemented and can swap out Thrive as a component of
TnB to be tested, because it solves the same problem as Thrive. It
should be mentioned that the peak detection algorithm in TnB is
a highly rated open-source peak finder [29]. The packet detection
algorithm in TnB allows TnB to outperform CIC; in addition, it
also lends the benefit of the fractional CFO information to Align-
Track, because AlignTrack estimates only the coarse CFO. Each
scheme was tested with exactly the same traces collected in the
experiments. As CIC and AlignTrack® find only the peak locations
of the packets, their outputs were decoded by the open-source LoRa
implementation [6, 10] into data bits.

8.3 Results

The results are shown in Fig. 12, Fig. 13, Fig. 14, for Indoor, Outdoor
1, and Outdoor 2, respectively. In most cases, a data point is the
average of 3 runs. In some cases, however, the number of nodes that
responded to the start messages are significantly smaller, which
leads to biased results. A simple rule is applied to filter such cases;
that is, the result of a run is used, if the number of nodes with
decoded packets is at least half of the maximum number of nodes
with decoded packets in the same deployment. Only two cases were
found with no valid data after the filtering, namely, in Outdoor 2
for the highest load when the SF is 10 and the CR is 1 and 4. In
other cases, because some nodes might not have responded, the
traffic load values shown in the figures, which assume all nodes
responded in the experiment, is higher than the actual traffic load.
The comparison is still fair because all schemes process exactly the
same traces.

It can be seen that, first, TnB achieves much higher throughput
than the compared schemes. At the highest tested load, the median
throughput increase of TnB over CIC among all CR values in all
experiments are 1.36X and 2.46X for SF 8 and 10, respectively. The
highest improvement is 2.59% for the Outdoor 1 deployment with SF
10 and CR 3. Second, the gain of TnB over CIC is significantly higher
for SF 10 than SF 8, because the packet duration is longer with SF
10, resulting in more collisions. For the same reason, LoRaPHY
still decoded a descent amount of packets for SF 8, but not SF 10.
Lastly, the performance of AlignTrack™ is similar to CIC for the
two outdoor cases with SF 8, but is much lower with SF 10, which
will be further investigated in Section 8.4.

Raghav Rathi and Zhenghao Zhang

Indoor, SF 8

—
o

[5,]

o

.

Throughput (pkt/sec})
o

[4)]

[4)]

-
oo

Throughput (pkt/sec)

[$)]

[5,]

-
[=]e]

Throughput {(pkt/sec)

[4)]

-
o

[5,]

CR2 =—=TnB
= =CIC
LoRaPHY
""" AlignTrack*
15 20 255 10 25
Traffic Load (pkt/sec)
Indoor, SF 10
CR2 ===TnB
= =ClIC
LoRaPHY
""" AlignTrack*
15 20 255 10 25
Traffic Load (pkt/sec)
Figure 12: Results of the Indoor deployment.
Outdoor 1, SF 8
CR2 —TnB
= =CIC
LoRaPHY
""" AlignTrack*
15 20 255 10 5
Traffic Load (pkt/sec)
Outdoor 1, SF 10
CR2 =——=TnB
= =CIC
LoRaPHY
""" AlignTrack®

o

=Y

Throughput (pkt/sec)
o

[4)]

15 20 255 10
Traffic Load (pkt/sec)

Figure 13: Results of the Outdoor 1 deployment.

TnB: Resolving Collisions in LoRa based on the Peak Matching Cost and Block Error Correction

Outdoor 2, SF 8

CR2 ==TnB
10 = =CIC
) LoRaPHY
@ -] P FPPELL s i I R W rrtTLL b | L AlignTrack*
k;
k=3
a 0
5
510
o
-
=
5
0
5 10 15 20 255 10 15 20 25
Traffic Load (pkt/sec)
Outdoor 2, SF 10
CR2 m—TnB
10 - =CIC
) LoRaPHY
% 5 S L AlignTrack*
2 - -
R T R B TETPTTT YO .
DY i P) leklel bk L LS
-% CR3 CR4
210
e
=
=

5 10 15 20 255 10 15 20 25
Traffic Load (pkt/sec)

Figure 14: Results of the Outdoor 2 deployment.

8.4 Further Analysis

Further analysis is conducted with the results from experiments
at the highest load with valid data in each deployment. First, to
understand the source of the gains, TnB is tested with various con-
figurations. To be more specific, Thrive refers to TnB without BEC
and uses the default Hamming code decoder, and Sibling refers
to Thrive without the history cost and relying only on the sib-
ling cost. The performances of these configurations are shown in
Fig. 15, along with those of CIC for comparison. It can be seen that
Thrive is similar to CIC for SF 8, but outperforms CIC for SF 10,
suggesting that Thrive is an effective peak assignment algorithm.
The median improvement of TnB over Thrive is 1.31X, confirming
the contribution of BEC. Sibling does not perform well in certain
cases, revealing the importance of the peak history information.

Fig. 16 reveals more details about BEC, which shows the CDF
of the number of BEC rescued codewords in each decoded packet,
which are those decoded by BEC but not decoded correctly by the
default decoder. The fraction of packets rescued by BEC can be in
the figure, which is the fraction of packets with at least one BEC
rescued codeword. In such packets, it can be seen that there can be
multiple rescued codewords.

Fig. 17 shows the scatter plots of the Packet Receiving Ratio
(PRR) of TnB and CIC in different ranges of SNR, where each marker
represents one combination of SF and CR in a deployment within a
particular SNR range. It can be seen that higher SNR leads to higher
PRRs. Except a few cases, TnB achieves higher PRRs than CIC in
all ranges of SNR.

411

CoNEXT 22, December 6-9, 2022, Roma, Italy

Indoor, SF 8 Indoor, SF 10

Ecic
N Sibling
[Thrive
I TnB

10

3
3

Outdoor 1, SF 8 Outdoor 1, SF 10

Throughput (pkt/sec)
o [&)] E;

Outdoor 2, SF 8 Outdoor 2, SF 10

-
o [, o

CR1 CR2 CR3 CR4 CR1 CR2 CR3 CR4

Figure 15: Evaluating the components of TnB.

Indoor, SF 8 Indoor, SF 10
e e S [CR1
F = =CR2
0.8 CR3
----- CR4

Qutdoor 1, SF 10

___.__4..:--’-’""“‘
._..ﬁ
|

ol

Qutdoor 2, SF 10

PP L

0 5 10 0 5 10
Number of Corrected Codewords

Figure 16: Number of codewords rescued by BEC in a packet.

Fig. 18 shows the percentage of packets decoded by TnB at differ-
ent collision levels, where the collision level of a packet is defined as
the highest number of packets it collided with during its transmis-
sion. Similar to the medium usage shown in Fig. 11, the collision
level is estimated by considering only the packets decoded by TnB,
and is therefore a lower bound. It can be seen that less than 15% of
decoded packets with SF 8 had no collision, while others typically
collide with at least 1 or 2 packets. The majority of packets decoded
with SF 10 collided with 4 or more packets.

CoNEXT 22, December 6-9, 2022, Roma, Italy

SNR < -10 dB -10 dB < SNR < 0dB
,,', o ,,',
&
@
|S 0.5 o P o J//'
N E ¢
0 dB < SNR < 10 dB 10 dB < SNR
1 0o g@df)\?/ » © /ﬁ/{}
=
= 80
O W v
0 0.5 1 0 0.5 1
CIC CIC

Figure 17: Scatter plots of the PRR at various SNR ranges.

SF 8 SF 10
50 50
40 40
©
o
£ 30 30
C
3
5 20 20
o
10 10

0123456789
Collision Level

0123456789
Collision Level

Figure 18: Collision levels of packets decoded by TnB.

Lastly, AlignTrack® did not perform well for SF 10 because it
is very sensitive to peaks that may occur accidentally, which are
found more with SF 10 than with SF 8. Such accidental peaks may be
generated by noise, interference, etc. Typically, they can be seen in
one signal vector but not in others, which poses a problem, because
AlignTrack® considers a peak to be aligned to a symbol if it is higher
in this symbol than in other symbols. As a result, once there is an
accidental peak, AlignTrack® finds more than one peak aligned
with a symbol, among which one is the correct peak and others
the accidental peaks. In such cases, an arbitrary and often incorrect
decision has to be made.

8.5 Comparisons with Simulation

Additional evaluation was conducted with simulations, which was
intended mainly to examine more challenging channel conditions,
i.e., the LTE ETU model [1, 2], which represents channels with
strong multi-path and fluctuations, because strong channel fluc-
tuations were not observed in the experiments due to the lack of
mobility in the environment. The simulation setup is mostly identi-
cal to the experiments, with the same bandwidth, OSF, packet size,
and duration. The SNR ranges of SF 8 and SF 10 are [0, 20] dB and
[—6, 14] dB, respectively. The CFO of a packet is randomly selected
from [—4.88,4.88] kHz. The delay spread of the ETU channel is 5
s and the Doppler shift is 5 Hz.

The compared schemes are CIC, AlignTrack®, and TnB. CIC and
AlignTrack* are also combined with BEC, denoted as CIC+ and
AlignTrack™*+, respectively, to test BEC when combined with other
methods. Thrive and TnB2ant are also tested, where Thrive has been
defined in Section 8.4, and TnB2ant is when the TnB receiver has 2

412

Raghav Rathi and Zhenghao Zhang

SF 8, ETU, 6.67 pktisec

I AlignTrack*
[l AlignTrack*+
[eic
Ilcic+

[Thrive
[TnB

I TB2ant

0.5

Packet Reception Ratio

CR1 CR2 CR3 CR4

SF 10, ETU, 6.67 pkt/sec

I AlignTrack*
I AlignTrack*+
[cic
Ellcic+

E Thrive
(B]

I ThB2ant

0.5

Packet Reception Ratio

CR1 CR2 CR3 CR4

Figure 19: Simulation results in the ETU channel.

antennas, because high channel fluctuations result in a high outage
probability for single antenna systems, which can be mitigated by
a higher antenna diversity.

The results are shown in Fig. 19, where the traffic load is selected
such that the PRR of TnB2ant of at least one CR is above 0.9. It can
be observed that TnB2ant achieves PRRs close to or above 0.9 in the
ETU channels. TnB, as well as Thrive, achieves much higher gains
over CIC in the ETU channels than in the experiments, especially
for SF 10, suggesting that CIC may need further enhancements to
cope with large channel fluctuations. It can also be seen that BEC
can be combined with CIC and AlignTrack™ and always improve the
performance. AlignTrack® sometimes achieves better performance
than CIC in the simulation, an improvement since the experimen-
tal evaluation, likely because the interference in the experimental
traces leads to more accidental peaks.

9 CONCLUSIONS

In this paper, TnB, a novel solution for decoding collided LoRa
packets, is proposed. Two main components of TnB are referred to
as Thrive and BEC, respectively. Thrive finds the actual transmitters
of the peaks in the received signal vectors, and is mainly based
on the fact that a peak is the highest if it is processed with the
parameters of its actual transmitter, which is further augmented
with the peak history information. BEC decodes exactly the same
Hamming code in LoRa, but is capable of correcting much more
errors than the default decoder, because its jointly decodes multiple
codewords in the same block. TnB has been extensively tested with
both real-world experimental traces and simulations, and the results
show that TnB significantly outperforms the state-of-the-art. TnB
does not require any modifications to the LoRa nodes and can bring
immediate benefits to the network operator.

ACKNOWLEDGMENTS

We greatly appreciate our shepherd Zicheng Chi and the reviewers
of our paper for their valuable feedback and guidance. This research
work was supported by the US National Science Foundation under
Grant 1910268.

TnB: Resolving Collisions in LoRa based on the Peak Matching Cost and Block Error Correction

REFERENCES

[1] 3GPP TS 36.101. User Equipment (UE) Radio Transmission and Reception. 3rd
Generation Partnership Project; Technical Specification Group Radio Access
Network. Evolved Universal Terrestrial Radio Access (E-UTRA).

3GPP TS 36.104. Base Station (BS) radio transmission and reception. 3rd Genera-
tion Partnership Project; Technical Specification Group Radio Access Network.
Evolved Universal Terrestrial Radio Access (E-UTRA).

[3] Adafruit Feather Mo with RFM95 LoRa Radio.
https://www.adafruit.com/product/3178.
[4] Concurrent Interference Cancellation (CIC) Implementation.

https://github.com/osama4933/CIC.

Implementation of TnB. https://github.com/raghavrathi10/TnB.

LoRaPHY. https://github.com/jkadbear/LoRaPHY.

LoRaWAN 1.1 specification. https://www.lora-alliance.org/ resource-
hub/lorawantm-specification-v11.

] smoothdata: Smooth noisy data. MATLAB.

USRP B210. https://www.ettus.com/all-products/ub210-kit/.

] Bassel Al Homssi, Kosta Dakic, Simon Maselli, Hans Wolf, Sithamparanathan
Kandeepan, and Akram Al-Hourani. Iot network design using open-source lora
coverage emulator. IEEE Access, 9:53636-53646, 2021.

Artur Balanuta, Nuno Pereira, Swarun Kumar, and Anthony Rowe. A cloud-
optimized link layer for low-power wide-area networks. In MobiSys "20: The 18th
Annual International Conference on Mobile Systems, Applications, and Services,
Toronto, Ontario, Canada, June 15-19, 2020, pages 247-259. ACM, 2020.

Qian Chen and Jiliang Wang. Aligntrack: Push the limit of LoRa collision decoding.
In 2021 IEEE 29th International Conference on Network Protocols (ICNP), pages
1-11, 2021.

Ulysse Coutaud, Martin Heusse, and Bernard Tourancheau. Fragmentation and
forward error correction for lorawan small MTU networks. In Christine Julien,
Fabrice Valois, Omprakash Gnawali, and Amy L. Murphy, editors, Proceedings of
the 2020 International Conference on Embedded Wireless Systems and Networks,
EWSN 2020, Lyon, France, February 17-18, 2020, pages 289-294. ACM, 2020.
Daniele Croce, Michele Gucciardo, Stefano Mangione, Giuseppe Santaromita, and
Ilenia Tinnirello. Impact of lora imperfect orthogonality: Analysis of link-level
performance. IEEE Communications Letters, 22(4):796-799, 2018.

Rashad Eletreby, Diana Zhang, Swarun Kumar, and Osman Yagan. Empowering
low-power wide area networks in urban settings. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, SSIGCOMM 2017, Los
Angeles, CA, USA, August 21-25, 2017, pages 309-321. ACM, 2017.

Tallal Elshabrawy and Joerg Robert. Evaluation of the BER performance of LoRa
communication using BICM decoding. In 2019 IEEE 9th International Conference
on Consumer Electronics (ICCE-Berlin), pages 162-167, 2019.

Sondos Elzeiny, Phoebe Edward, and Tallal Elshabrawy. LoRa performance en-
hancement through list decoding technique. In 2021 IEEE International Conference
on Communications Workshops (ICC Workshops), pages 1-6, 2021.

Bin Hu, Zhimeng Yin, Shuai Wang, Zhuqing Xu, and Tian He. SCLoRa: Leveraging
multi-dimensionality in decoding collided LoRa transmissions. In 2020 IEEE 28th
International Conference on Network Protocols (ICNP), pages 1-11, 2020.

Paul J. Marcelis, Nikolaos Kouvelas, Vijay S. Rao, and R. Venkatesha Prasad. Dare:
Data recovery through application layer coding for lorawan. IEEE Transactions
on Mobile Computing, 21(3):895-910, 2022.

Muhammad Osama Shahid, Millan Philipose, Krishna Chintalapudi, Suman Baner-
jee, and Bhuvana Krishnaswamy. Concurrent interference cancellation: decoding
multi-packet collisions in LoRa. In Fernando A. Kuipers and Matthew C. Caesar,
editors, ACM SIGCOMM 2021 Conference, Virtual Event, USA, August 23-27, 2021,
pages 503-515. ACM, 2021.

Chenglong Shao, Osamu Muta, Wenjie Wang, and Wonjun Lee. Toward ubiq-
uitous connectivity via LoORaWAN: An overview of signal collision resolving
solutions. IEEE Internet of Things Magazine, 4(4):114-119, 2021.

Shuai Tong, Jiliang Wang, and Yunhao Liu. Combating packet collisions using
non-stationary signal scaling in LPWANs. In MobiSys '20: The 18th Annual
International Conference on Mobile Systems, Applications, and Services, Toronto,
Ontario, Canada, June 15-19, 2020, pages 234-246. ACM, 2020.

Shuai Tong, Zhenqiang Xu, and Jiliang Wang. CoLoRa: Enabling multi-packet re-
ception in LoRa. In 39th IEEE Conference on Computer Communications, INFOCOM
2020, Toronto, ON, Canada, July 6-9, 2020, pages 2303-2311. IEEE, 2020.

Xiong Wang, Linghe Kong, Liang He, and Guihai Chen. mLoRa: A multi-packet
reception protocol in LoRa networks. In 2019 IEEE 27th International Conference
on Network Protocols (ICNP), pages 1-11, 2019.

Mathieu Xhonneux, Orion Afisiadis, David Bol, and Jérome Louveaux. A low-
complexity LoRa synchronization algorithm robust to sampling time offsets. IEEE
Internet of Things Journal, 9(5):3756-3769, 2022.

Xianjin Xia, Ningning Hou, and Yuanging Zheng. PCube: Scaling LoRa concurrent
transmissions with reception diversities. In ACM Mobicom, 2021.

Xianjin Xia, Yuanqing Zheng, and Tao Gu. FTrack: Parallel decoding for LoRa
transmissions. IEEE/ACM Transactions on Networking, 28(6):2573-2586, 2020.

[12

(13

[14]

[15

[16

[17]

[18

[19]

[20]

[21

[22

[23

[24]

[25

[26

[27

413

CoNEXT 22, December 6-9, 2022, Roma, Italy

[28

Zhenqiang Xu, Pengjin Xie, and Jiliang Wang. Pyramid: Real-time LoRa collision
decoding with peak tracking. In IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, pages 1-9, 2021.

Nathanael Yoder. peakfinder(x0, sel, thresh, extrema, in-
cludeendpoints, interpolate). MATLAB Central File Exchange,
(https://www.mathworks.com/matlabcentral/fileexchange/25500-peakfinder-

x0-sel-thresh-extrema-includeendpoints-interpolate), Retrieved March 16,
2022.

[29

A THEORETICAL FOUNDATION AND
ANALYSIS OF BEC

A.1 Properties of Companions

The companion is a key concept for CR 2 or above. For CR 2, the
companion of a column is another column and is unique. It can be
verified that the companion pairs are c¢; and cs, ¢z and ¢3, ¢4 and cg.

For CR3, if |TI| = 2, the companion of II contains only one column
and is unique. To see this, suppose IT consists of columns ¢, and cg,,
and has two companions, namely, ¢; and cg~. Consider vectors
V(ck,» Cky» k) and V(cg,, Ck,, cx), both must be codewords but
with Hamming distance only two, a contradiction, as the minimum
Hamming distance is 3.

For CR 4, if |TI| = 3, the companion of II contains one column
and is unique. As mentioned earlier, if |II| = 2, IT has 3 possible
companions. For example, the companions of {c1, c2} are {cg, cs},
{c3, ¢5}, and {cq, c7}, because there are 3 codewords with weight 4,
namely, [11000101], [11101000], and [11010010], where bits 1 and
2 are both ‘1’. The same argument can be applied to other pairs of
columns.

A.2 Properties of =

Except for the special and simple case of CR 1, the decoding process
depends on E. This is because a column in = is either a true error
column, or the companion of the true error columns.

For CR 2, note that if there is a single error column, say, ¢, the
companion of ¢ is another column denoted as cg/. And, if a row
has an error in ¢y, the default decoder flips either the bit in ¢ or in
cxr. Therefore, |=| is either 1 or 2.

For CR 3, consider the case with two error columns, denoted as
¢k, and ck,, and suppose their companion is cg/. In any row i, there
are 4 possible cases:

(1) No error in both ¢, and cg,: R; and I; are identical
(2) No error in ¢, but error in cg,: R; and I differ in cy,
(3) Error in ¢, but no error in cg,: R; and I differ in ¢,

(4) Errors in both ¢, and cg,: R; and I differ in ¢/
Therefore, with two error columns, || < 3.

For CR 4, the case with two error columns, say, Ck, and Ck,> can
be analyzed similarly as that for CR 3, except when there are errors
in both ¢, and cg,, because R; and I; shall differ in ¢, and cg,,
or in the columns of one of their companions, and therefore, no
column will be added to Z and |Z| < 2. For CR 4, when there are
three error columns, |Z| < 4, because the companion of any 3 error
columns is one column.

A.3 Properties of A;

Clearly, A shall succeed with ITif IT is the set of true error columns.
In the following, A; in other cases are analyzed, in which Q denotes
the set of true error columns and Q = {ckl, Chypo - - .,ckn}.

CoNEXT 22, December 6-9, 2022, Roma, Italy

LEMMA 1. If the companion of Q is a column denoted as cyr, A
shall succeed if I1 consists of all but one true error column, as well as

Ckr-

Proor. Without Loss Of Generality (WLOG), suppose R is re-
paired with {c, cg,, . . ., ck, }. For any row i, suppose the original
transmitted codeword is 6. If there is no error in Ck, clearly, after
masking, the remaining bits in R; match 0; otherwise, the remain-
ing bits match 6/ = 0 @ V(ckl, Chys - -+ Chps ¢k), which is another
codeword. o

LEMMA 2. If the companion of Q is a column denoted as cy, and
if the minimum Hamming distance of the code is 3 or more, A1 shall
not succeed if I consists of all but one true error columns, as well as
another column cy» other than cy.

Proor. WLOG, suppose R is repaired with {cy~,ck,....,ck, }-
Consider a row i where R; has an error in c,. WLOG, further
suppose the original transmitted codeword, denoted as 6, is the all
0 codeword. If the claim is not true, suppose R; matches a codeword
6" in the remaining columns after masking. Clearly, 8" # 6. Also,
0" # 0’, where 0" = V(ck,, Ck,» - - -, Ck,,» Ck), because 0’ is 1 in ¢y,
while 8”” must be 0 in ¢/, as ¢js has not been masked. 8’ can be 1
.»Ck,, }» and therefore has only distance 2 to ¢’,

O

only in {cgr, cg,, . -
a contradiction.

A.4 Independence Assumption

In the rest of this section, when analyzing the decoding error prob-
ability, it will be assumed that the bits in the error columns are
flipped independently with probability 0.5, referred to as the in-
dependence assumption. The independence assumption makes the
analysis tractable, but is an approximation, because at least one bit
must have been flipped in each error column. Fig. 20 shows that the
approximations are reasonably close to the actual decoding error
probabilities.

A.5 Analysis for CR 3 with 2-Column Errors

Suppose ci, and ci, are the two true error columns and their com-
panion is c-. A decoding error occurs when in every row, either
there is no error in both ¢, and ¢y, , or there are errors in both ¢y,
and cg,, such that = contains only c. BEC shall return prematurely,
believing that there is only one error column. The error probability

is 27SF under the independence assumption.

A.6 Analysis for CR 4 with 2-Column Errors

BEC always corrects 2-column errors for CR 4, because any column
in E must be a true error column; therefore, the repair when |=|
is 1 or 2 must be successful. When |Z| is 0, for any row in ¢, the
two columns where R and I differ must either be the true error
columns, or their companion.

A.7 Analysis for CR 4 with 3-Column Errors
BEC is capable of correcting 3-column errors if |Z| > 0. The cases
when |Z| = 2, 3, and 4 are straightforward. The case when |Z| =1
is proved in the following.

LEMMA 3. BEC can correct the errors when there are three error
columns and |Z| = 1.

414

Raghav Rathi and Zhenghao Zhang

Proor. Note that BEC applies Ay to R using the column in E.
Clearly, this will not repair R. The purpose is instead to discover
the error columns. To see this, suppose there are indeed 3 error
columns denoted as c,, cg,, and ck,, and their companion is cj.
First, suppose the column in = is cj-. Note that in this case, there
is no row with only one error in one of the true error columns,
i.e., every row has 0, 2, or 3 errors. As BEC did not return with
the assumption that there was only 1 error column, there must be
some rows with two errors. Suppose one of such rows, denoted
as R;, has errors in ¢, and c,. Clearly, flipping the bit in ¢ will
change R; to a codeword except in cg,. As BEC did not return with
the assumption that there were only 2 error columns, there must be
at least another row with 2 errors not in ct, and cy,,. Clearly, in this
row, flipping the bit in c¢j, will reveal another true error column.
Therefore, it is guaranteed that at least two true error columns will
be revealed. Note that the same argument holds when the column
in E is one of the true error columns. O

As the errors are random and can either be 0 or 1 in the error
columns in a particular row, when there are 3 error columns, in
each row, there are 8 possible combinations. Let ¥y denote the
probability that exactly x distinct error combinations occur in R.
Clearly, ¥; = (%)SF . For x > 1, it can be verified that the following
recursive relation hold under the independence assumption:

x—1
_ (X \SF _ X
e = () Z (y)\lfy.
y=1
The following Lemma explains the decoding error probability.

LEMMA 4. Under the independence assumption, the decoding error
probability of CR 4 when there are three error columns is

Yy + 7% + 9¥3 + 3V, + 275F,

PROOF. Suppose c,, ¢, and ci, are the true error columns, and
their companion is c;,. With 3-column errors, any column in =
must be a true error column or ¢. A decoding error occurs when
BEC returns prematurely, i.e., returns with the assumption that the
number of error columns is less than 3.

BEC may return prematurely with the assumption that there is
1 error column, if every row has 3 errors, or if some rows have no
error but all other rows have 3 errors. Therefore, the probability is
Y1 + ¥,.

When testing the hypothesis that there are 2 error columns, there
are three cases depending on |Z|. If |Z| = 0, every row has 0 or 2
errors. BEC will not return prematurely, because the 4 pairs must
be from the same companion group, which occurs only if the errors
occur in the same two columns in every row, or do not occur.

If |Z| = 1, first, suppose the column in = is ¢gs. Clearly, there is
no row with a single error. In order for BEC to return prematurely
at this point, there must be at least one row with two errors. WLOG,
suppose the errors occur in ¢, and cg, in this row. It follows that all
rows with two errors must have errors in ¢, and cg,, because the
repair would not appear successful otherwise. There also must be
at least one row with 3 errors. As long as these conditions are met,
some row may have no error. Therefore, the probability is ¥ + ¥s.
Note that there are two other combinations of two error columns.
Second, suppose the column in Z is ¢, . There also must be least

TnB: Resolving Collisions in LoRa based on the Peak Matching Cost and Block Error Correction

= CR =4, 3 Error Columns

£

=4 ~ = =Analysis

= ~

2 402 -~

o -~

— -~

1T} -~ -

2 iy

= ~

8 3 = ~

S 10 ‘ ‘ ‘ !

(=) 7 8 9 10 11 12
SF

Figure 20: Decoding error probability when the CR is 4 with
3 error columns.

one row with two errors, and all such rows must have errors in
the same two columns. There cannot be a row with 3 errors. As a
result, in the rows with 2 errors, the errors must occur in Ch, and
Chsy» because otherwise there will be less than 3 error columns in
total. Therefore, the probability is ¥; + ¥3. Note that Z may also
be one of the other two error columns. The total error probability
when |Z| = 1 is therefore 6(¥2 + ¥3).

If |Z| = 2, first, note that Z cannot contain two true error
columns, because masking the two columns will not make R; identi-
cal to a codeword in the remaining columns, where R; is a row with
an error in the error column that has not been masked. Therefore,
WLOG, suppose = contains c, and cgs. In order for BEC to return
prematurely at this point, among the rows with two errors, all errors
must occur in the same two columns. In addition, the two columns
must be Ck, and Chy» because if one row, say, R;, has errors in Ck,
and cg,, after masking ci, and ¢/, the remaining columns differ
either in ¢y, or ¢, with the closest codeword. There also must be at
least one row with 3 errors, as well as one row with only one error
in cg,. As long as these conditions are met, some row may have
no errors. Therefore, the probability is W3 + ¥4. Note that the same
argument can be applied to the cases when = contains other true
error columns. Therefore, the total error probability when |Z| = 2
is 3(¥3 + ¥y).

In addition, decoding failure occurs when BEC tests the hypothe-
sis that there are 3 error columns but finds |Z| = 0. The probability
is 275F under the independence assumption, because there can
only be 0 or 2 errors in each row. O

Fig. 20 shows the decoding error probabilities when the CR is 4
with 3 error columns. It can be seen that: 1) the error probability is
less than 0.04 when the SF is 7, 2) the error probability decreases
as the SF increases, and 3) the analysis and the simulation results
are reasonably close.

B ARTIFACT APPENDIX

B.1 Abstract

The artifact is the source code of TnB written in Matlab, which decodes
wireless signals in LoRa networks. TnB is capable of decoding packets
transmitted by commodity LoRa devices, even when multiple packets
overlaps in time, i.e., experience collision. Accompanying the source
code are trace files collected in the experiments, which can be decoded
by TnB into data packets.

415

CoNEXT 22, December 6-9, 2022, Roma, Italy

B.2 Artifact check-list (meta-information)

e Algorithm: TnB consists of a few new algorithms, including the
packet detection algorithm, collision resolution algorithm, and error
correction decoding algorithm.

Data set: TnB can be tested with the accompanying data set, which
contains 24 traces collected from LoRa networks with around 20
nodes using Universal Software Radio Peripheral (USRP). Each trace
file is about 150 MB.

e Run-time environment: TnB can run on any machine with Matlab

R2021b or above installed along with certain required toolboxes.
e Hardware: Any machine with 11th Gen Intel(R) Core(TM) i7-1195G7
@ 2.90GHz with 32 GB RAM or similar.
o Execution: About 60-120 seconds are needed to process a trace file
on a typical machine.
Metrics: The performance of TnB is measured by the number of
packets decoded corrected (passed CRC).
Output: The output can be of various forms with information at
different levels of details about the decoded packets. The current
program shows the total number of packets decoded. Also shown is

a list of packets decoded from each node, including the sequence
number, the estimated Signal to Noise Ratio (SNR), the start time of
the packet in the trace, and the Carrier Frequency Offset (CFO) of
the packet.

o Experiments: TnB can be tested with the accompanying data set.
No experiment is needed.

o How much disk space required (approximately)?: The source
code is less than 200 KB. The trace file is about 150 MB each. With
a total of 24 trace files, the total size of the data set is about 3.6 GB.
The trace files can be individually downloaded if there is no need to
evaluate all files.

¢ How much time is needed to prepare workflow (approxi-

mately)?: Less than 10 minutes.

Publicly available?: The source code and data set are both publicly

available.

o Workflow framework used?: No workflow framework is used to
automate and customize experiments.

B.3 Description

B.3.1 How to access. The source code can be found at
https://github.com/raghavrathi10/TnB
The traces files can be downloaded at
https://doi.org/10.5281/zenodo.7199527

B.3.2 Hardware dependencies. TnB is written in MATLAB, so any
hardware that supports MATLAB can be used, such as 11th Gen
Intel(R) Core(TM) i7-1195G7 @ 2.90GHz with 32 GB RAM.

B.3.3 Software dependencies. MATLAB R2021b or above along
with the following toolboxes: Fixed Point Designer, Communica-
tions Toolbox, Signal Processing Toolbox and DSP System Toolbox.

B.3.4 Data sets. The trace files were collected in 3 deployed testbeds,
named “Indoor” “Outdoor 1,” and “Outdoor 2. For each testbed, 8
traces have been uploaded, one for each combination of Spreading
Factor (SF), which is either 8 or 10, and Coding Rate (CR), which is
from 1 to 4. The file name is, for example, “indoor-SF8-CR3.” This
set of trace files were selected from a total of 360 trace files, because
they contain the most number of decoded packets for each SF and
CR combination.

CoNEXT 22, December 6-9, 2022, Roma, Italy

Information about the testbed set up can be found in the Eval-
uation section of the paper. Some additional details that may be
useful are provided below:

e The LoRa device transmits a preamble that starts with 8
upchirps, followed by a symbol with peak at 9, then a symbol
with peak at 17, then 2.25 downchirps.

o A transmitted packet starts with 4 bytes of header, followed
by 2 bytes as the node ID, 2 bytes as the packet sequence
number, 6 bytes of data, then 2 bytes of CRC.

o The signal was sampled by a USRP B210 at 1 Msps, where
each sample consists of a real part and an imaginary part,
both as 16-bit integers.

B.4 Installation

The user will need to install MATLAB R2021b or above first and
then install the required Toolboxes in MATLAB mentioned earlier
in “software dependencies”

After unzipping the source file, there should a directory, named
TnB, which is the source code directory. The main file, named
TnBMain.m, can be found under the TnB directory. The trace data
should be downloaded to another directory, which can be called
AEexpdata and can be at the same level as TnB, or according to
what the user prefers.

B.5 Evaluation and expected results

To run TnB, the user may simply open Matlab, go to the TnB direc-
tory, and type “TnBMain” in the command window.
To test different traces, the user may open TnBMain.mand modify
the first two lines. One is to select the trace, such as:
TraceName = ’../AEexpdata/outdoor1-SF8-CR4’;
and the other is to set the corresponding Spreading Factor:
SF = 8;
After the program finishes, the number of decoded packets is printed,
such as:
— TnB decoded 278 pkts —
The complete list of files and the number of decoded packets are
in the following:

e indoor-SF8-CR1: 368

e indoor-SF8-CR2: 334

e indoor-SF8-CR3: 383

e indoor-SF8-CR4: 394

e indoor-SF10-CR1: 302

e indoor-SF10-CR2: 263

e indoor-SF10-CR3: 290

e indoor-SF10-CR4: 295

e outdoor1-SF8-CR1: 280

e outdoor1-SF8-CR2: 234

e outdoor1-SF8-CR3: 250

e outdoor1-SF8-CR4: 278

e outdoor1-SF10-CR1: 260
e outdoor1-SF10-CR2: 234
e outdoor1-SF10-CR3: 301
e outdoor1-SF10-CR4: 253
e outdoor2-SF8-CR1: 375

e outdoor2-SF8-CR2: 356

e outdoor2-SF8-CR3: 358

416

Raghav Rathi and Zhenghao Zhang

e outdoor2-SF8-CR4: 366

e outdoor2-SF10-CR1: 164
e outdoor2-SF10-CR2: 350
e outdoor2-SF10-CR3: 294
e outdoor2-SF10-CR4: 178

It should be mentioned that the number of decoded packets may
vary slightly, typically by 1-2 packets, for the same trace, when
the trace is processes by different machines. This is likely because
although TnB is a set of deterministic algorithms, it calls a few
functions which may contain randomness.

	Abstract
	1 Introduction
	2 Related Work
	3 Background of LoRa PHY
	4 Overview of TnB
	5 Peak Assignment with Thrive
	5.1 Challenges
	5.2 Core Ideas
	5.3 Details of Thrive

	6 Block Error Correction (BEC)
	6.1 Core Ideas
	6.2 Preliminaries and Definitions
	6.3 Repair Methods
	6.4 Decoding CR 1
	6.5 Decoding CR 2
	6.6 Decoding CR 3
	6.7 Decoding CR 4
	6.8 Decoding Performance and Complexity
	6.9 Packet Decoding

	7 Packet Detection
	8 Evaluations
	8.1 Experiment Setup
	8.2 Compared Schemes
	8.3 Results
	8.4 Further Analysis
	8.5 Comparisons with Simulation

	9 Conclusions
	References
	A Theoretical Foundation and Analysis of BEC
	A.1 Properties of Companions
	A.2 Properties of
	A.3 Properties of 1
	A.4 Independence Assumption
	A.5 Analysis for CR 3 with 2-Column Errors
	A.6 Analysis for CR 4 with 2-Column Errors
	A.7 Analysis for CR 4 with 3-Column Errors

	B Artifact Appendix
	B.1 Abstract
	B.2 Artifact check-list (meta-information)
	B.3 Description
	B.4 Installation
	B.5 Evaluation and expected results

