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AbstractÐ Drifters are energy-efficient sampling platforms
for waterways and other water bodies with pronounced flows.
The motion of passive drifters is determined by the underlying
flow and thus limited. To overcome this limitation and enhance
maneuverability, we consider an active drifter, which has a
variable control surface for modulating the hydrodynamic drag
force, and a thruster for propulsion or braking. In order to
maintain the active drifter as an energy-efficient platform, the
use of the thruster must be sparing and carefully considered.
In this paper we present an optimal control problem for a
one-degree-of-freedom active drifter system, where the cost
function aims to balance the objectives of shortest time and
minimal thruster use. Despite the complex, realistic nonlinear
dynamics of the active drifter, an analytical solution to the
optimal control is found by exploiting PMP. In particular, for a
given desired final state, each candidate optimal control solution
is propagated backward in time, to compute the points in the
state space where the optimal control switches; such points are
parameterized by the co-state variables, linked implicitly to the
system’s initial conditions. The proposed approach naturally
results in a final-state-dependent partition of the state space,
where each region corresponds to a given optimal control
value. A feedback control law is readily derived from the
aforementioned map. The efficacy of the proposed approach
is supported with a numerical example, where the trade-off
between time-optimality and fuel-efficiency is illustrated.

I. INTRODUCTION

Before the advent of modern robotic platforms, engineers

sought to measure waterway quality with stationary analyzers

[1], [2]. Mobile platforms offer the advantage that they

may sample measurements at different points in a waterway,

reducing the number of sensors required. Drifters have been

a popular choice of measurement platform for collecting data

in waterways, because they take very little energy to operate.

Examples of measurements taken from drifter platforms

include iron fertilization, Lagrangian current measurements,

light fluxes, and photochemical processes in seawater [3]±[6].

Drifters may also collect meteorological data, communicate

with other marine measurement platforms, or listen for the

presence of acoustically tagged fish.

More sophisticated drifter systems such as Argo floats are

able to make measurements at different depths in the water

column [7]. Data collected from Argo floats have been used

to predict rainfall and infer monsoon signals in the Bay of

Bengal [8]. Expanding the capabilities of marine data collec-

tion networks can potentially save thousands of lives from

meteorological disasters. Participants in the Argo program
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are also interested in minimizing energy consumption of the

measurement platforms. Work by Riser et al. allows for low-

power sensors on Argo floats that can potentially operate for

years [8]. Like other passive drifters, the floats used in the

Argo program will drift wherever the current takes them,

which poses a significant limitation in the maneuverability

and thus the capability of these platforms.

In our prior work [9], [10] we proposed a steerable

drifter that could modulate the hydrodynamic forces acting

on its rudders. By changing the angles of the rudders,

steerable drifters are able to exert some degree of control

over their motion by modulating the effective drag force on

the platform. However, as the drifter’s velocity approaches

that of the ambient flow, the latitude of such control is

diminished. Therefore in this work we consider an active

drifter, which, in addition to being able to modulate the

hydrodynamic drag force via its control surfaces (such as

rudders), has a thruster to produce propulsion and braking.

The thruster force will not only allow the drifter to directly

change its velocity, but also produce the velocity differential

with respect to the ambient flow that is needed for drag-

based maneuvers. In order to maintain active drifters as a

low-energy platform, however, the use of the thruster must

be sparing and planned carefully. In this paper an optimal

control problem for a one-degree-of-freedom (DoF) active

drifter system is studied, where the cost function aims to

balance the objectives of shortest time and minimal thruster

use. We note that the considered one DoF setting is not

particularly restrictive, because drifter systems in rivers and

in large lake or ocean currents move primarily with the

direction of the ambient flow; for active drifters, control

along this axis is one-dimensional.

We note that optimal control has been studied in various

contexts and numerous methods have been developed in

the literature. In particular, Pontryagin’s Minimum Principle

(PMP) [11] has been applied to a wide variety of control

problems from loop-shaping to solving the Nash differential

games [12], [13]. While a powerful result, it can be difficult

to solve the system of equations presented by PMP to find the

optimal feedforward control. Numerical methods such as the

shooting approach can sometimes be used [14] [15]. When

these equations cannot be easily solved, methods such as that

discussed by Guo et al. [16] could be employed to solve the

Hamilton-Jacobi-Bellman (HJB) equation. Even for cases in

which the optimal control law is known, singularities in the

solution could force designers to resort to methods such as

that used by Rodrigo and Patiño [17]. In general, it is rare

to be able to obtain analytical optimal control solutions for

systems with nonlinear dynamics.
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In this work, despite the complex, realistic nonlinear

dynamics for the active drifter system, a novel approach

is proposed to derive an analytical solution to the optimal

control problem by exploiting PMP. In particular, for a given

desired final state, each candidate optimal control solution

is propagated backward in time, to compute the points in

the state space where the optimal control switches. For a

chosen final state (drifter position and velocity), bounds on

state space regions corresponding to different optimal control

values are determined, parameterized by one of the costate

variables. From these boundaries, final-state-dependent feed-

back control maps are synthesized.

By using these maps, the optimal control for reaching a

chosen final state can be found with state feedback rather

than by solving a system of differential equations for the

state and costate. The efficacy of the proposed approach is

supported with a numerical example, where the aforemen-

tioned feedback control law is shown to drive the system to

its desired final configuration even in the presence of ambient

disturbances. Furthermore, the derived feedback control law

has explicit dependence on the parameter λ characterizing the

trade-off between time-optimality and fuel-efficiency, and the

numerical example confirms the desired trade-off behavior as

λ is varied.

The remainder of the paper is organized as follows. In Sec-

tion II the model for the active drifter and the formulation of

the optimal control problem are presented. In Section III the

approach to the derivation of the analytical optimal control

solution is elaborated. The numerical example is discussed in

Section IV, followed by some concluding remarks in Section

V.

II. PROBLEM FORMULATION

The active drifter system considered in this work is

assumed to be capable of modulating its drag force as well

as producing propulsion with a thruster. Drifters primarily

move with the current, making control along this dimension

essential for active drifter systems. Therefore, we consider

the one degree-of-freedom setup. The dynamic model for the

active drifter is similar to those proposed by Gaskell and Tan

[9], [10], with the key differences being that it includes the

effect of a thruster and is focused on the dynamics along the

flow direction. In particular, the system dynamics takes the

following form:

ẋ =

[

ẋ1

ẋ2

]

=

[

x2

−a(x2 − σ)|x2 − σ|u1 + bu2

]

(1)

where x1 ∈ R, x2 ∈ R are the system states that represent the

drifter’s position and velocity, respectively, σ is the constant

ambient flow velocity, a > 0 is a constant associated with

the drag force, b > 0 is a coefficient related to the thruster

force, and u1, u2 are the applied controls, which modulate the

strengths of the drag force and thruster force, respectively.

Note that the drag force is proportional to the square of the

drifter velocity x2 − σ relative to the flow and acts in the

opposite direction of the relative velocity. The control inputs

are subject to the following constraints: u1 ∈ {c, 1}, u2 ∈

{−1, 0, 1}, where c ∈ (0, 1]. The parameter c represents the

ratio of the minimum drag force to the maximum drag force

achievable through modulation.

Active drifters modulate their drag by rotating one or

more rudders, but do not use much energy to hold rudders

still. Based on practical considerations, it is assumed that

modulating the drag on a drifter will accordingly not require

much energy, but that activating the thruster will. A cost

functional L is thus defined as:

L(u(t)) = λ+ (1− λ)|u2(t)| (2)

where λ ∈ (0, 1) represents the trade-off between the two

objectives of shortest time and minimal fuel, respectively.

A value of λ close to 1 will incur a high penalty for time

taken and a low penalty for fuel use. Inversely, a value of λ
close to 0 will incur a low penalty for time taken and a high

penalty for fuel use.

Given an initial state of the system x(t0) = (x0,1, x0,2)
T

and a final state xf = x(tf ) = (xf,1, xf,2)
T , we aim to find

the control u = (u1, u2)
T that minimizes the cost

J(x(t0), u(·)) =
∫ tf

t0

L(u(t))dt (3)

where tf is the final time where x(tf ) = (xf,1, xf,2)
T .

Controlling such a system to a desired final state xf while

minimizing the integral of a cost functional normally requires

solving a system of differential equations for the state and the

costate. With the nonlinear dynamics, solving these adjoint

different equations typically has to resort to approximating

numerical methods, and the resulting solution is often a

time-parametrized feedforward control function, which is not

robust to system uncertainties or external disturbances.

This work seeks to map the optimal control inputs to the

state space. This map can then be used to select the optimal

control for an arbitrary state x through state feedback. Such

a feedback control approach will not only be simpler to

calculate and implement, but also be more robust (than the

feedforward solution).

III. OPTIMAL CONTROL BY PONTRYAGIN’S MINIMUM

PRINCIPLE

This section presents our approach to the analytical com-

putation of the PMP-based optimal control solution for the

active drifter system. First, necessary conditions for optimal

control are considered, and the approach to the derivation of

the solution is presented.

A. Necessary Conditions for Optimal Control

The Minimum Principle requires several necessary condi-

tions for a control to be optimal [11]. Solutions to the optimal

control problem may be found through examination of these

necessary conditions:

• The applied control needs to minimize the system

Hamiltonian H with respect to the control input;

• The evolution of the costate p satisfies ṗ = −∇xH ,

where ∇xH denotes the gradient of H with respect to

the state x;
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• The Hamiltonian is uniformly equal to 0 over the entire

trajectory, i.e, H ≡ 0.

First, we examine the potential controls that minimize the

Hamiltonian based on the system state and costate. Then, we

show that these controls meet the second condition. Finally,

for a known xf , we find piecewise continuous controls

satisfying H ≡ 0.

In order to facilitate the analysis, define a transformed

system state z2 that represents the relative velocity of the

drifter with respect to the ambient flow:

z2 = x2 − σ (4)

The dynamics of the transformed system x̄
△
= (x1, z2)

T is

given by:

˙̄x =

[

ẋ1

ż2

]

=

[

z2 + σ
−az2|z2|u1 + bu2

]

(5)

The Hamiltonian H can then be stated in terms of the

transformed system as

H = λ+(1−λ)|u2|+p1(z2+σ)+p2(−az2|z2|u1+bu2) (6)

where p
△
= (p1, p2)

T is the costate. Eq. (6) can be regrouped

according to the control inputs u1 and u2:

H = λ+ p1(z2 + σ) + [(1− λ)|u2|+ p2bu2]− ap2z2|z2|u1

(7)

From (7), the control u1 minimizing the Hamiltonian is

u∗

1
=











1, z2p2 > 0

c, z2p2 < 0

∈ {0, 1} z2p2 = 0

(8)

Similarly, the optimal control u∗
2

that minimizes the

Hamiltonian is

u∗

2
=































1 p2b < λ− 1

−1 p2b > 1− λ

0 |p2b| < 1− λ

∈ {−1, 0} p2b = 1− λ

∈ {0, 1} p2b = λ− 1

(9)

From (8) and (9), for z2 > 0, if p2 < 0, u∗
1
= c, and

u∗
2
= 0 or u∗

2
= 1, but u∗

2
̸= −1, since p2b < 0 < 1 − λ.

Likewise, for z2 > 0, if p2 > 0, u∗
1
= 1, and u∗

2
= 0 or

u∗
2
= −1, but u∗

2
̸= 1, since p2b > 0 > 1−λ. It can be shown

that p2z2 cannot remain constantly at 0 for a nontrivial time

interval unless z2 = 0 and that |p2b| cannot remain at 1− λ
for a nontrivial time interval unless z2 ∈ {0,±

√

b/(ac)}.

To examine these possibilities, state space trajectories of the

system are considered. Trajectories in the state space under

a constant control are the solutions to (10) under that control

dx1

dz2
=

z2 + σ

−a(z2)|(z2)|u1 + bu2

(10)

By applying a control with |u2| = 1, u1 = c and setting
dz2
dx1

= 0, the asymptotic velocities are

z2 = ±
√

b

ac
(11)

which implies that for velocities between the asymptotic

velocities of the system, |p2b| cannot remain uniformly at

1− λ unless z2 = 0. For the case examined, the trajectories

for which z2 = 0 over a nontrivial interval were found to

incur a higher cost than simpler but suboptimal control, and

therefore they cannot be optimal. For cases not examined,

trajectories for which z2 = 0 should be considered.

To illustrate the proposed approach, we present the details

of the derivation for one case {xf,2 > 0, zf,2 > 0}. Other

cases, {xf,2 > 0, zf,2 < 0}, {xf,2 < 0, zf,2 < 0}, {xf,2 <
0, zf,2 > 0}, {xf,2 = 0}, and {zf,2 = 0} can be solved in a

similar manner. As discussed earlier for the case of z2 > 0,

there are 4 possible optimal controls in the neighborhood of

x̄f with zf,2 > 0:

u∗ ∈
{[

1
0

]

,

[

1
−1

]

,

[

c
0

]

,

[

c
1

]}

(12)

Our solution will take a back-propagation approach, where

we infer the optimal control backward from the final state.

By exploring each of the possible controls in (12), we seek

to find a complete solution for the entire state space.

The minimizing controls in (12) must also satisfy the

condition of ṗ = −∇x̄H where

∇x̄H =

[

0
p1 − 2ap2|z2|u1

]

(13)

Note that p1 must therefore be a constant. A third neces-

sary condition for a control solution to be optimal is that the

Hamiltonian must satisfy H = 0 for all time t. An expression

for p2 can then be found by applying this condition to (7)

and solving for p2:

p2 =
λ+ (1− λ)|u2|+ p1(z2 + σ)

az2|z2|u1 − bu2

(14)

Note that for |z2| <
√

b
ac

, the asymptotic speed, and

under the controls included in (12), the denominator of p2
is nonzero. The control input u = (u1, u2)

T is piecewise

constant, formed from controls included in (12). Because λ,

σ, p1, a, b, and c are also constants, the time derivative of

p2 is then

ṗ2 =
1

(az2|z2|u1 − bu2)2

[

(az2|z2|u1 − bu2)(p1)

− (λ+ (1− λ)|u2|+ p1(z2 + σ))(2a|z2|u1)

]

ż2 (15)

From the system definition in (5),

ż2 = −(az2|z2|u1 − bu2) (16)

which implies
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ṗ2 = −p1 +
λ+ (1− λ)|u2|+ p1(z2 + σ)

az2|z2|u1 − bu2

(2a|z2|u1) (17)

B. Backward Derivation of Optimal Control Switching

Points

In order to find the state feedback control from an arbitrary

initial state to a fixed final state xf , the following method is

proposed:

1) For each control identified in (12):

• Assume this to be the optimal final control u∗

f for

a family of trajectories terminating at x̄f ;

• Apply (8) and (9) to determine a range of pf,2 for

this family of trajectories;

• Solve (14) for p1 to determine a range of the

constant p1 for this family of trajectories;

• Solve for any points in the state space where the

optimal control changes according to (8) and (9),

working backward from the final point x̄f ;

• Treat these points as curves representing the lo-

cation where the optimal control to reach x̄f

changes, parameterized by p1.

2) Plot all boundaries found for each family of trajecto-

ries in the state space, enclosing regions of different

optimal controls.

3) Use this map to derive the state feedback control law.

As an example, we now present the derivation of the

solution corresponding to the family of optimal trajectories

for which the final optimal control u∗

f = (1, 0)T . Solutions

corresponding to u∗

f = {(1,−1)T , (c, 0)T , (c, 1)T } may be

derived in a similar manner.

From (14), with u∗ = (1, 0)T , for z2 > 0, p2 can be

expressed as

p2 =
λ+ p1(z2 + σ)

az2
2

(18)

In order to satisfy our assumption that this is the optimal

final control, we will need p2 > 0 and |p2b| < 1 − λ.

Applying these constraints and solving for p1 yields

−λ

z2 + σ
< p1 <

(1− λ)az2
2
− λb

b(z2 + σ)
(19)

Note that due to the restrictions placed on a, b, xf,2, zf,2
and λ, the right side of (19) will always be greater than the

left side. Now we look for any relative velocities z−1,2 where

the control switches. The first subscript ª−1º in z indicates

that this would be the first switching point going backward in

time. Analogous notations will be applied for other variables

in the subsequent derivation. Under the current control with

only drag in effect, z2 cannot change sign, and x2, z2 should

be more positive as we propagate time backward. From this,

we can infer that the control switch will only depend on

conditions on p2. With continuous p2, the control will either

switch at p2 = 0 or p2 = 1−λ
b

. The first condition yields

p−1,2 = 0 =
λ+ p1(z−1,2 + σ)

az2
−1,2

(20)

(21)

which implies

z−1,2 = − λ

p1
− σ (22)

Applying the second condition yields

p−1,2 =
(1− λ)

b
=

λ+ p1(z−1,2 + σ)

az2
−1,2

(23)

(24)

which implies

z−1,2 =
1

2a(1− λ)

[

p1b

±
√

(p1b)2 + 4ab(1− λ)(λ+ p1σ)
]

(25)

The real solutions in (25), if existing, are either negative

(unreachable under this control) or found to satisfy z−1,2 <
zf,2 for all combinations of system parameters examined,

indicating they are past the final point. For parameters

not examined, this solution may have to be considered.

Therefore, the only feasible location of the control switch

x̄−1 is given by (22). The x1 coordinate of x̄−1 can be found

from (10) under this control:

−1

a

[

log (z2)−
σ

z2

]

= x1 + C0 (26)

where C0 is a constant. C0 can be found by evaluating at

the known zf :

x−1,1 =
1

a

[

log

(

zf,2
z−1,2

)

+ σ

[

1

z−1,2

− 1

zf,2

]]

+ xf,1

(27)

At x̄−1, p2 = 0. From (8), at p2 = 0 the control switches

from u = (c, 0)T to u = (1, 0)T , which the system follows

until reaching x̄f .

Using a similar process to propagate backward in time,

the optimal control is found to switch at a point x̄−2. Here

the control switches from u = (c, 1)T to u = (c, 0)T , which

the system follows until reaching x̄−1. In particular, one can

derive, at x̄−2,

z−2,2 =
−1

2(1− λ)ac

[

p1b+

√

(p1b)2 − 4(λ+ p1σ)(1− λ)abc
]

(28)

and x−2,1 can be found from (10) under the control u =
(c, 0)T :
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x−2,1 =
1

ac

[

log (
z−1,2

z−2,2

) + σ

(

1

z−2,2

− 1

z−1,2

)]

+ x−1,1

(29)

The next point where the optimal control switches, x̄−3,

occurs where the trajectories in this family cross z2 = 0.

Here the control switches from u = (1, 1)T to u = (c, 1)T ,

which the system follows until reaching x̄−2.

z−3,2 = 0 (30)

from which x−3,1 can be expressed as

x−3,1 = − 1

2ac
log

[

b

b− acz2
−2,2

]

−

σ tanh−1
(√

ac
b
z−2,2

)

√
abc

+ x−2,1 (31)

For this family of trajectories, one final point x̄−4 is

identified where the optimal control changes from u =
(1, 0)T to u = (1, 1)T , which the system follows until

reaching x̄−3. By applying the condition p2b = λ− 1,

z−4,2 =
1

2a(1− λ)

[

p1b

−
√

(p1b)2 + 4ab(1− λ)(λ+ p1σ)
]

(32)

from which x−4,1 can be expressed as

x−4,1 =
σ√
ab

arctan
(

zj2
√

a/b
)

−

1

2a
log

(

b

az2
−4,2 + b

)

+ x−3,1 (33)

Solutions corresponding to further control switches are

attempted, but one can show there are no more real, feasible

solutions. Thus, x̄−4 is the state space location for the final

control switch. This process is repeated for each family of

trajectories corresponding to different final optimal controls

until no further locations can be identified where the optimal

control changes.

C. Feedback Control Maps

Control switching points as calculated above can be

thought of as curves in the state space parameterized by

p1 over the range of p1 for their respective families of

trajectories. By plotting these curves in the state space,

regions may be found over which the optimal control to

reach xf is the same. Where necessary, these regions are

closed with trajectories formed by constant control such that

any point in the state-space belongs to exactly one region.

For example, all trajectories for which u∗

f = (c, 1)T

cross z2 = 0 at the same point. Between this point and

xf , a boundary was formed from the trajectory under this

control input. This boundary separates regions for which

u∗ = (c, 1)T from regions for which u∗ = (1,−1)T .

From the continuity of the costate, such a switch cannot

occur. However, examination of possible optimal trajectories

suggests that this trajectory forms the boundary for which

feasible trajectories from xi (the initial state) to xf exist for

each control input.

As an example, for a = 1, b = 1, c = 0.5, σ = 0.3,

xf = (0, 0.5)T , maps of the optimal control generated for

λ = {0.2, 0.5, 0.8}, are shown in Figs. 1 - 3.

Fig. 1. Feedback control map showing the optimal control to reach xf for
λ = 0.2.

Fig. 2. Feedback control map showing the optimal control to reach xf for
λ = 0.5.

In Fig. 1, for which λ = 0.2, there are large regions for

which u2 = 0. This is because there is a small penalty

associated with time, but a large penalty for applying force

with the thruster. These regions shrink as λ increases to

λ = 0.5 in Fig. 2, and shrink further as λ increases to λ = 0.8
in Fig. 3.

IV. SIMULATION RESULTS

For an initial condition xi = (−2, 0.1)T and the required

final state xf = (0, 0.5)T , the optimal open-loop control and

the corresponding state trajectory are calculated for λ = 0.5.

The system trajectory is then calculated under the optimal
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disturbance, and the resulting feedback control policy was

shown to be accurate and robust.

Previous prototypes and models of steerable drifters es-

tablished in [9] and [10] modulate their drag with a pair of

rudders. Through symmetric operation of rudders in such

a configuration, drag can effectively be modulated in the

longitudinal direction, with the resulting dynamics close to

the case of a one-degree-of-freedom system as represented

in Eq. (1). We plan to experimentally validate the proposed

optimal control approach by implementing it on the physical

prototype and evaluating its performance in a river envi-

ronment. We also plan to compare the performance of this

control to paths generated with Rapid Random Trees (RRTs).
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