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Optimal Control of Active Drifter Systems

Eric Gaskell and Xiaobo Tan

Abstract— Drifters are energy-efficient sampling platforms
for waterways and other water bodies with pronounced flows.
The motion of passive drifters is determined by the underlying
flow and thus limited. To overcome this limitation and enhance
maneuverability, we consider an active drifter, which has a
variable control surface for modulating the hydrodynamic drag
force, and a thruster for propulsion or braking. In order to
maintain the active drifter as an energy-efficient platform, the
use of the thruster must be sparing and carefully considered.
In this paper we present an optimal control problem for a
one-degree-of-freedom active drifter system, where the cost
function aims to balance the objectives of shortest time and
minimal thruster use. Despite the complex, realistic nonlinear
dynamics of the active drifter, an analytical solution to the
optimal control is found by exploiting PMP. In particular, for a
given desired final state, each candidate optimal control solution
is propagated backward in time, to compute the points in the
state space where the optimal control switches; such points are
parameterized by the co-state variables, linked implicitly to the
system’s initial conditions. The proposed approach naturally
results in a final-state-dependent partition of the state space,
where each region corresponds to a given optimal control
value. A feedback control law is readily derived from the
aforementioned map. The efficacy of the proposed approach
is supported with a numerical example, where the trade-off
between time-optimality and fuel-efficiency is illustrated.

I. INTRODUCTION

Before the advent of modern robotic platforms, engineers
sought to measure waterway quality with stationary analyzers
[1], [2]. Mobile platforms offer the advantage that they
may sample measurements at different points in a waterway,
reducing the number of sensors required. Drifters have been
a popular choice of measurement platform for collecting data
in waterways, because they take very little energy to operate.
Examples of measurements taken from drifter platforms
include iron fertilization, Lagrangian current measurements,
light fluxes, and photochemical processes in seawater [3]-[6].
Drifters may also collect meteorological data, communicate
with other marine measurement platforms, or listen for the
presence of acoustically tagged fish.

More sophisticated drifter systems such as Argo floats are
able to make measurements at different depths in the water
column [7]. Data collected from Argo floats have been used
to predict rainfall and infer monsoon signals in the Bay of
Bengal [8]. Expanding the capabilities of marine data collec-
tion networks can potentially save thousands of lives from
meteorological disasters. Participants in the Argo program
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are also interested in minimizing energy consumption of the
measurement platforms. Work by Riser et al. allows for low-
power sensors on Argo floats that can potentially operate for
years [8]. Like other passive drifters, the floats used in the
Argo program will drift wherever the current takes them,
which poses a significant limitation in the maneuverability
and thus the capability of these platforms.

In our prior work [9], [10] we proposed a steerable
drifter that could modulate the hydrodynamic forces acting
on its rudders. By changing the angles of the rudders,
steerable drifters are able to exert some degree of control
over their motion by modulating the effective drag force on
the platform. However, as the drifter’s velocity approaches
that of the ambient flow, the latitude of such control is
diminished. Therefore in this work we consider an active
drifter, which, in addition to being able to modulate the
hydrodynamic drag force via its control surfaces (such as
rudders), has a thruster to produce propulsion and braking.
The thruster force will not only allow the drifter to directly
change its velocity, but also produce the velocity differential
with respect to the ambient flow that is needed for drag-
based maneuvers. In order to maintain active drifters as a
low-energy platform, however, the use of the thruster must
be sparing and planned carefully. In this paper an optimal
control problem for a one-degree-of-freedom (DoF) active
drifter system is studied, where the cost function aims to
balance the objectives of shortest time and minimal thruster
use. We note that the considered one DoF setting is not
particularly restrictive, because drifter systems in rivers and
in large lake or ocean currents move primarily with the
direction of the ambient flow; for active drifters, control
along this axis is one-dimensional.

We note that optimal control has been studied in various
contexts and numerous methods have been developed in
the literature. In particular, Pontryagin’s Minimum Principle
(PMP) [11] has been applied to a wide variety of control
problems from loop-shaping to solving the Nash differential
games [12], [13]. While a powerful result, it can be difficult
to solve the system of equations presented by PMP to find the
optimal feedforward control. Numerical methods such as the
shooting approach can sometimes be used [14] [15]. When
these equations cannot be easily solved, methods such as that
discussed by Guo et al. [16] could be employed to solve the
Hamilton-Jacobi-Bellman (HJB) equation. Even for cases in
which the optimal control law is known, singularities in the
solution could force designers to resort to methods such as
that used by Rodrigo and Patifio [17]. In general, it is rare
to be able to obtain analytical optimal control solutions for
systems with nonlinear dynamics.



In this work, despite the complex, realistic nonlinear
dynamics for the active drifter system, a novel approach
is proposed to derive an analytical solution to the optimal
control problem by exploiting PMP. In particular, for a given
desired final state, each candidate optimal control solution
is propagated backward in time, to compute the points in
the state space where the optimal control switches. For a
chosen final state (drifter position and velocity), bounds on
state space regions corresponding to different optimal control
values are determined, parameterized by one of the costate
variables. From these boundaries, final-state-dependent feed-
back control maps are synthesized.

By using these maps, the optimal control for reaching a
chosen final state can be found with state feedback rather
than by solving a system of differential equations for the
state and costate. The efficacy of the proposed approach is
supported with a numerical example, where the aforemen-
tioned feedback control law is shown to drive the system to
its desired final configuration even in the presence of ambient
disturbances. Furthermore, the derived feedback control law
has explicit dependence on the parameter A characterizing the
trade-off between time-optimality and fuel-efficiency, and the
numerical example confirms the desired trade-off behavior as
A is varied.

The remainder of the paper is organized as follows. In Sec-
tion II the model for the active drifter and the formulation of
the optimal control problem are presented. In Section III the
approach to the derivation of the analytical optimal control
solution is elaborated. The numerical example is discussed in
Section IV, followed by some concluding remarks in Section
V.

II. PROBLEM FORMULATION

The active drifter system considered in this work is
assumed to be capable of modulating its drag force as well
as producing propulsion with a thruster. Drifters primarily
move with the current, making control along this dimension
essential for active drifter systems. Therefore, we consider
the one degree-of-freedom setup. The dynamic model for the
active drifter is similar to those proposed by Gaskell and Tan
[9], [10], with the key differences being that it includes the
effect of a thruster and is focused on the dynamics along the
flow direction. In particular, the system dynamics takes the
following form:

|

where z; € R,z € R are the system states that represent the
drifter’s position and velocity, respectively, o is the constant
ambient flow velocity, a > 0 is a constant associated with
the drag force, b > 0 is a coefficient related to the thruster
force, and uy, us are the applied controls, which modulate the
strengths of the drag force and thruster force, respectively.
Note that the drag force is proportional to the square of the
drifter velocity xo — o relative to the flow and acts in the
opposite direction of the relative velocity. The control inputs
are subject to the following constraints: u; € {c,1},uy €
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{-1,0,1}, where ¢ € (0, 1]. The parameter c represents the
ratio of the minimum drag force to the maximum drag force
achievable through modulation.

Active drifters modulate their drag by rotating one or
more rudders, but do not use much energy to hold rudders
still. Based on practical considerations, it is assumed that
modulating the drag on a drifter will accordingly not require
much energy, but that activating the thruster will. A cost
functional L is thus defined as:

L(u(t)) = A+ (1 = A)|uz(t)] 2

where A € (0,1) represents the trade-off between the two
objectives of shortest time and minimal fuel, respectively.
A value of A close to 1 will incur a high penalty for time
taken and a low penalty for fuel use. Inversely, a value of A
close to 0 will incur a low penalty for time taken and a high
penalty for fuel use.

Given an initial state of the system z(ty) = (20,1, %0,2)"
and a final state x5 = z(ts) = (vf1,252)", we aim to find
the control u = (uy,us)? that minimizes the cost

J((to), u(-)) / " L(u(t)ar

to

= 3)
where t; is the final time where z(t;) = (vy1,272)7.
Controlling such a system to a desired final state x; while
minimizing the integral of a cost functional normally requires
solving a system of differential equations for the state and the
costate. With the nonlinear dynamics, solving these adjoint
different equations typically has to resort to approximating
numerical methods, and the resulting solution is often a
time-parametrized feedforward control function, which is not
robust to system uncertainties or external disturbances.

This work seeks to map the optimal control inputs to the
state space. This map can then be used to select the optimal
control for an arbitrary state x through state feedback. Such
a feedback control approach will not only be simpler to
calculate and implement, but also be more robust (than the
feedforward solution).

III. OPTIMAL CONTROL BY PONTRYAGIN’S MINIMUM
PRINCIPLE

This section presents our approach to the analytical com-
putation of the PMP-based optimal control solution for the
active drifter system. First, necessary conditions for optimal
control are considered, and the approach to the derivation of
the solution is presented.

A. Necessary Conditions for Optimal Control

The Minimum Principle requires several necessary condi-
tions for a control to be optimal [11]. Solutions to the optimal
control problem may be found through examination of these
necessary conditions:

o The applied control needs to minimize the system

Hamiltonian H with respect to the control input;

e The evolution of the costate p satisfies p = —V,.H,
where V,H denotes the gradient of H with respect to
the state x;



o The Hamiltonian is uniformly equal to O over the entire
trajectory, i.e, H = 0.

First, we examine the potential controls that minimize the
Hamiltonian based on the system state and costate. Then, we
show that these controls meet the second condition. Finally,
for a known zy, we find piecewise continuous controls
satisfying H = 0.

In order to facilitate the analysis, define a transformed
system state zo that represents the relative velocity of the
drifter with respect to the ambient flow:

29 = T2 — 0O (4)

The dynamics of the transformed system 2 (21, 22)7T is
given by:

s 55.1 o 22+0
r= |:2’2:| - [—a22|z'2u1 +bUQ (5)

The Hamiltonian H can then be stated in terms of the
transformed system as

H = M (1=XN)|ug|+p1(z2+0)+p2(—aza|z2|us +bus) (6)

where p 2 (p1,p2)T is the costate. Eq. (6) can be regrouped

according to the control inputs u; and us:

H=X+pi(z2+0)+[(1 = N)|uz| + p2bus] — apaza|za|ug
)

From (7), the control u; minimizing the Hamiltonian is

1a Z2p2 > 0
uy =4 ¢ Zop2 < 0 )
€ {07 1} Z2p2 = 0

Similarly, the optimal control w5 that minimizes the
Hamiltonian is

1 pob <A —1
-1 p2b>1—A
uy; =<0 Ip2b] <1 — A )
e{-1,0} pb=1-—2X
€{0,1} pb=X-1

From (8) and (9), for zo > 0, if p2 < 0, u] = ¢, and
uy = 0 or uy = 1, but uj # —1, since p2b < 0 <1 — A
Likewise, for zo > 0, if po2 > 0, u7 = 1, and u5 = 0 or
us = —1, but uj # 1, since pob > 0 > 1—\. It can be shown
that pazo cannot remain constantly at O for a nontrivial time
interval unless zo = 0 and that |p2b| cannot remain at 1 — A
for a nontrivial time interval unless zo € {0,4+/b/(ac)}.
To examine these possibilities, state space trajectories of the
system are considered. Trajectories in the state space under
a constant control are the solutions to (10) under that control

d.’L’l Zo + 0

- 10
dzo  —a(z2)|(22)|u1 + bus (10)

By applying a control with |us| = 1,u; = ¢ and setting
g% = 0, the asymptotic velocities are

b
ZQZZt &
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which implies that for velocities between the asymptotic
velocities of the system, |p2b| cannot remain uniformly at
1 — X\ unless zo = 0. For the case examined, the trajectories
for which z, = 0 over a nontrivial interval were found to
incur a higher cost than simpler but suboptimal control, and
therefore they cannot be optimal. For cases not examined,
trajectories for which z = 0 should be considered.

To illustrate the proposed approach, we present the details
of the derivation for one case {xy2 > 0,272 > 0}. Other
cases, {2 > 0,250 < 0}, {252 < 0,252 <0}, {252 <
0,252 > 0}, {zf2 =0}, and {z52 = 0} can be solved in a
similar manner. As discussed earlier for the case of zo > 0,
there are 4 possible optimal controls in the neighborhood of
Ty with Zfo > 0:

e ][4BT

Our solution will take a back-propagation approach, where
we infer the optimal control backward from the final state.
By exploring each of the possible controls in (12), we seek
to find a complete solution for the entire state space.

The minimizing controls in (12) must also satisfy the
condition of p = —V; H where

12)

0
p1— 2ap2|z2|u1]
Note that p; must therefore be a constant. A third neces-
sary condition for a control solution to be optimal is that the
Hamiltonian must satisfy H = 0 for all time ¢. An expression
for ps can then be found by applying this condition to (7)
and solving for ps:

A+ (1 — )\)|U2| —|—p1(2’2 —|—CT)
azs|za|uy — bug

p2 = (14)

Note that for |zo| < % the asymptotic speed, and
under the controls included in (12), the denominator of po
is nonzero. The control input v = (uy,us)” is piecewise
constant, formed from controls included in (12). Because A,
o, p1, a, b, and c are also constants, the time derivative of
po is then

1

s _
b2 (aza|z2|ur — bug)? (azs|22|ur = buz)(p1)
— ()\ + (1 — )\)|U2| +p1(22 + J))(2a|22|u1) 29 (15)
From the system definition in (5),
22 = —((I22|22|U1 — bUQ) (16)

which implies



A+ (1= N)|ug| +pi1(22 + o)

aza|zo|ug — bus

p2=-—p1+ (2alz2|u1) (17)
B. Backward Derivation of Optimal Control Switching
Points

In order to find the state feedback control from an arbitrary
initial state to a fixed final state z s, the following method is
proposed:

1) For each control identified in (12):

o Assume this to be the optimal final control u} for
a family of trajectories terminating at Z ;

o Apply (8) and (9) to determine a range of py 5 for
this family of trajectories;

e Solve (14) for p; to determine a range of the
constant p; for this family of trajectories;

o Solve for any points in the state space where the
optimal control changes according to (8) and (9),
working backward from the final point Zs;

« Treat these points as curves representing the lo-
cation where the optimal control to reach Zj
changes, parameterized by p;.

2) Plot all boundaries found for each family of trajecto-
ries in the state space, enclosing regions of different
optimal controls.

3) Use this map to derive the state feedback control law.

As an example, we now present the derivation of the
solution corresponding to the family of optimal trajectories
for which the final optimal control u} = (1, 0)T'. Solutions
corresponding to u} = {(1,—1)", (¢,0)”, (¢,1)"} may be
derived in a similar manner.

From (14), with u* = (1,0)T, for z > 0, pa can be
expressed as

A+pi(za+0o
pp = 2E A EO) (18)
azy
In order to satisfy our assumption that this is the optimal
final control, we will need po > 0 and |p2b] < 1 — A
Applying these constraints and solving for p; yields

- << (1 —MNaz2 —X\b
V) + o P b(ZQ +J)

19)

Note that due to the restrictions placed on a,b, 2,252
and A, the right side of (19) will always be greater than the
left side. Now we look for any relative velocities z_ 2 where
the control switches. The first subscript “—1” in z indicates
that this would be the first switching point going backward in
time. Analogous notations will be applied for other variables
in the subsequent derivation. Under the current control with
only drag in effect, z5 cannot change sign, and x5, 2o should
be more positive as we propagate time backward. From this,
we can infer that the control switch will only depend on
conditions on po. With continuous p-, the control will either
switch at po = 0 or py = % The first condition yields

A+pi(z-12+0)

p-12=0= 5 (20)
az71,2
2y
which implies
A
Z_12=———0 (22)
b1
Applying the second condition yields
1—-A A+pi(z-12+0
poap= LA _ATNE2E0) g
azZq o
(24)
which implies
1
192 =———|p1b
2T 01— {pl
£/ (p10)” + 4ab(1 = N (A + p10) | (25)

The real solutions in (25), if existing, are either negative
(unreachable under this control) or found to satisfy z_j 2 <
zyo for all combinations of system parameters examined,
indicating they are past the final point. For parameters
not examined, this solution may have to be considered.
Therefore, the only feasible location of the control switch
Z_1 is given by (22). The x; coordinate of Z_; can be found
from (10) under this control:

1
- {log (22) — U} =z1+ Cy
a z9

(26)
where Cj is a constant. Cj can be found by evaluating at
the known zy:

1 Zf2 1 1
x_11=— |log +o0o —— || + 2z
a Z-1,2 Z-1,2 Zf2

27)

At _1, p2 = 0. From (8), at ps = 0 the control switches
from u = (¢,0)T to u = (1,0)”, which the system follows
until reaching Z ;.

Using a similar process to propagate backward in time,
the optimal control is found to switch at a point Z_5. Here
the control switches from u = (¢, 1)T to u = (c,0)%, which
the system follows until reaching z_;. In particular, one can
derive, at T_o,

-t
2(1 = X)ac

Vp1h)2 — 4 + pro) (1 — A)abc]

and z_o; can be found from (10) under the control u =
(c,0)T:

Z_ 992 = [Pl b+

(28)



1 _ 1 1
T_21=— {log(z 1’2)+0< - ﬂ +x_11
ac Z-22 Z_22 Z-172 29)

The next point where the optimal control switches, Z_s,
occurs where the trajectories in this family cross zo = 0.
Here the control switches from u = (1,1)7 to u = (¢, 1)7,
which the system follows until reaching Z_s.

2_372 = O (30)
from which x_3 1 can be expressed as
1 1 b
r_31=——1I0g | —-75—|—
a1 2ac | b— acz? 4,
otanh™! ac_
(VFe2a) | T 91 31)

For this family of trajectories, one final point T_, is
identified where the optimal control changes from u =
(1,007 to uw = (1,1)T, which the system follows until
reaching Z_3. By applying the condition pob = A — 1,

1
_49 = —————|pb
2T 91— N [pl
VPP (I - N+ o) 6D
from which x_4 1 can be expressed as
ag
Togq = \/ﬁ arctan (ng a/b)—
1
71 - T 33
2 & az®,,+0b T3 (33)

Solutions corresponding to further control switches are
attempted, but one can show there are no more real, feasible
solutions. Thus, Z_4 is the state space location for the final
control switch. This process is repeated for each family of
trajectories corresponding to different final optimal controls
until no further locations can be identified where the optimal
control changes.

C. Feedback Control Maps

Control switching points as calculated above can be
thought of as curves in the state space parameterized by
p1 over the range of p; for their respective families of
trajectories. By plotting these curves in the state space,
regions may be found over which the optimal control to
reach xy is the same. Where necessary, these regions are
closed with trajectories formed by constant control such that
any point in the state-space belongs to exactly one region.

For example, all trajectories for which u} = (e, T
cross zz = 0 at the same point. Between this point and
2, a boundary was formed from the trajectory under this
control input. This boundary separates regions for which
u* = (¢,1)T from regions for which v* = (1,-1)T.

From the continuity of the costate, such a switch cannot
occur. However, examination of possible optimal trajectories
suggests that this trajectory forms the boundary for which
feasible trajectories from x; (the initial state) to x; exist for
each control input.

As an example, for a = 1, b = 1, ¢ = 0.5, 0 = 0.3,
zy = (0,0.5)7, maps of the optimal control generated for
A ={0.2,0.5,0.8}, are shown in Figs. 1 - 3.

2 3 o= L -1
FEE v = [1. 0]
1.5 u=[1, 1]
A = [e,0]7
1 u=[e,1]"
- u=[e,—1]T
A €Ty
-1
-1.5 i
3 2 -1 0 1 2 3

&I

Fig. 1. Feedback control map showing the optimal control to reach x ; for
A=0.2.

2 = = [, -1
HEEE v = [1,0)7
1.5 =1, 17
e, E u=[e,0)
1 5 M w = [e. 1]
B = If:. —l]"
&Iy
2 3

Fig. 2. Feedback control map showing the optimal control to reach z ¢ for
A=0.5.

In Fig. 1, for which A = 0.2, there are large regions for
which ug = 0. This is because there is a small penalty
associated with time, but a large penalty for applying force
with the thruster. These regions shrink as A increases to
A = 0.5 in Fig. 2, and shrink further as ) increases to A = 0.8
in Fig. 3.

IV. SIMULATION RESULTS

For an initial condition x; = (—2,0.1)7 and the required
final state z; = (0,0.5)7, the optimal open-loop control and
the corresponding state trajectory are calculated for A = 0.5.
The system trajectory is then calculated under the optimal
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Fig. 3. Feedback control map showing the optimal control to reach xf for
A =038

state feedback controller, derived from the map in Fig. 2.
Fig. 4(a) shows the corresponding state trajectories under
both controls, where one can see they overlap with each
other. This agreement shows that, in the absence of any
disturbance, the feedback control produces consistent results
as the optimal open-loop control calculated with PMP.

We further simulate the controlled drifter behavior when
the system is subject to external disturbances. An additive
white Gaussian noise (AWGN) term w, representing a distur-
bance force, is added to the model. The optimal feedforward
control and the optimal feedback control, respectively, are
then applied to the model with disturbance, and the cor-
responding trajectories are shown in Fig. 4(b). It can be
seen that the system fails to reach the required final state
under the pre-calculated optimal feedforward control, while
the feedback control is able to take the drifter to the desired
final state despite the presence of the disturbances.

1 e —— B
- T T
0 [0
o
B * z;
-1 State Feedback Control, VAR(w) = 0
— — —Open-Loop Control, VAR(w) = 0
L L L L L L
-2 -1.5 -1 -0.5 0 0.5
it
(a)
1 P e
0 i<l
o o
* Ty
-1 State Feedback Control, VAR(w) = 0.2 *
— — _Open-Loop Contral, VAR(w) = 0.2
-2 -1.5 -1 -0.5 0 0.5

Ty

(b)

Fig. 4. (a) Simulated trajectories under the optimal feedforward control and
the optimal feedback control, in the absence of disturbance; (b) simulated
trajectories under the optimal feedforward control and the optimal feedback
control, in the presence of the disturbance w with variance of 0.2.

Finally, the optimal feedback control is simulated without
disturbance for the same x; but different values for the trade-

off parameter A = {0.2,0.5,0.8}. The resulting control in-
puts are shown in Fig. 5, while the trajectories corresponding
to these controls are shown in Fig. 6. From Figs. 5 and 6,
the effect of A\ on the optimal control can be seen. As the
penalty for the thruster use is increased relative to the penalty
for time taken, the thruster is activated for shorter intervals,
the active drifter remains in drift for longer periods, and it
takes a longer time to reach z.

2 == =A=02
s A = (.5
A=08
T q " -
S :
O 1 1 1 ]
0 1 2 3 4
)
1
|
------- *

Time (s)

Fig. 5. Comparison of the optimal state feedback control for A =
{0.2,0.5,0.8}. Final optimal controls are marked with asterisks.
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05 ® z;
A 1y
-1
2.5 -2 -1.5 -1 -0.5 0 0.5

Fig. 6. Comparison of the state trajectories under optimal state feedback
control for A = {0.2,0.5,0.8}

V. CONCLUSION

Active drifters are promising energy-efficient sampling
platforms for sampling in waterways, lakes, and oceans.
In this work we examined the optimal control problem for
one-degree-of-freedom active drifters with nonlinear dynam-
ics. The proposed approach was shown to generate PMP-
based analytical solutions to the optimal control problem.
Furthermore, the optimal control was directly mapped to
the state space, enabling the derivation of state feedback
laws. The effect of varying A was examined on the optimal
control policy. For A = 0.5, the system was simulated under
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disturbance, and the resulting feedback control policy was
shown to be accurate and robust.

Previous prototypes and models of steerable drifters es-
tablished in [9] and [10] modulate their drag with a pair of
rudders. Through symmetric operation of rudders in such
a configuration, drag can effectively be modulated in the
longitudinal direction, with the resulting dynamics close to
the case of a one-degree-of-freedom system as represented
in Eq. (1). We plan to experimentally validate the proposed
optimal control approach by implementing it on the physical
prototype and evaluating its performance in a river envi-
ronment. We also plan to compare the performance of this
control to paths generated with Rapid Random Trees (RRTs).
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