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Introduction: Runners competing in races are looking to optimize their
performance. In this paper, a runner’s performance in a race, such as a marathon,
is formulated as an optimal control problem where the controls are: the nutrition
intake throughout the race and the propulsion force of the runner. As nutrition is
an integral part of successfully running long distance races, it needs to be included
in models of running strategies.

Methods: We formulate a system of ordinary differential equations to represent
the velocity, fat energy, glycogen energy, and nutrition for a runner competing
in a long-distance race. The energy compartments represent the energy sources
available in the runner’'s body. We allocate the energy source from which the
runner draws, based on how fast the runner is moving. The food consumed during
the race is a source term for the nutrition differential equation. With our model, we
are investigating strategies to manage the nutrition and propulsion force in order
to minimize the running time in a fixed distance race. This requires the solution of
a nontrivial singular control problem.

Results: As the goal of an optimal control model is to determine the optimal
strategy, comparing our results against real data presents a challenge; however, in
comparing our results to the world record for the marathon, our results differed by
0.4%, 31 seconds. Per each additional gel consumed, the runner is able to run 0.5
to 0.7 kilometers further in the same amount of time, resulting in a 7.75% increase
in taking five 100 calorie gels vs no nutrition.

Discussion: Our results confirm the belief that the most effective way to run a race
is to run approximately the same pace the entire race without letting one’s energies
hit zero, by consuming in-race nutrition. While this model does not take all factors
into account, we consider it a building block for future models, considering our
novel energy representation, and in-race nutrition.
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1. Introduction

Running is one of the most popular forms of exercise. There are more than 275,000
road races per year in the United States (1). At the marathon distance alone, there are over
500,000 people a year in the United States who choose to race (www.runningtheusa.com).
Some people run for fun while others choose to seriously compete, attempting to run the
shortest time for a fixed distance race (2). Outside of sprints, pacing oneself to run the best
possible race is crucial (3-5). If the runner starts the race too slow, they may not finish in
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FIGURE 1

The above data comes from the 2015 Boston Marathon. We graphed
finish placement on the x-axis and pace difference on the y-axis
Pace difference is the difference between the runners 5 km pace
(min/mile) and the runners overall pace (min/mile) for the race. The
horizontal line represents a difference of O between the two paces.

as fast a time as expected. On the other-hand, if the runner goes out
too fast, they may find themselves running out of energy, struggling
to even finish the race (3-5). Determining the best pacing strategy
for each individual runner is challenging, as a runner’s optimal pace
depends on several values that are individual to them, something
this work aims to answer. Looking at data collected from timing
mats in the 2015 Boston Marathon, Figure 1 plots how the runners
placed vs. how their pace differed from their first 10 k and their
overall pace. Amongst this elite field, one can see that, on average,
the runners who placed lower had much higher pace variation than
runners who finished in a shorter time (better placing).

While running the fastest race possible has been a goal for
runners, it has also been a research topic for scientists for many
years. Keller’s model developed in the early 1970’s, was the first to
cast running an optimal race as an optimal control problem and
has since been adapted and expanded by others such as Aftalion
and Bonnans (6), Woodside (7), and Pitcher (8). All of the results
from these works show the importance of pacing, but lack attention
to the different energy systems. Kim et al. (9) applied whole-body
metabolism models to exercise, but not to optimizing running race
performance. Another factor that has not yet been considered in
a runner model to date is, in-race nutrition as an energy source
available to the runner. In order to avoid energy depletion during
a long distance run, a runner can consume food. To meet this
need there is a whole market of products for runners to use in
order to deliver necessary fuel to the body quickly. As energy is
currency for runners, including in-race nutrition in a model is
essential in determining the optimal race for a runner tackling a
long-distance race.

The goal of this work was to build a more dynamic runner
model that better represents the body’s energy systems, including
energy allocation of fat and carbohydrate energy dependent on
velocity, as well as in-race nutrition. We use this improved model
to determine the minimum time it takes to run different length

Frontiersin Nutrition

10.3389/fnut.2023.1096194

races (in particular the marathon distance race) by optimally
choosing velocity and in-race nutrition consumption profiles
through control of propulsion force and nutrition input. The
inputs for the model are individualized such that an optimal
race can be determined for any level of runner. We first discuss
the physics, biochemistry, and other factors that can limit or
enhance a runner’s performance before presenting our model,
and optimization techniques. Results and various simulations are
presented, followed by discussion.

1.1. Background and groundwork from past
models

There are many different factors that coaches and runners
have to think about as a runner prepares for a race. They have
to consider all the training needed to get the runner in the best
possible condition for the race as well as all the in-race components
(10). It takes time to train not just the muscles, but the body’s
energy pathways and metabolism. All the cumulative knowledge
that exists today on developing the best training and racing plans
began from understanding how the body transfers stored energy
into mechanical work (11). Originally, scientists viewed exercise as
the heat to mechanical energy transfer; however, biological energy
transfer, or bioenergetics, was discovered to be better suited to
describe the anaerobic and aerobic energy transfers due to chemical
nature of the exchange (6, 11).

Keller (12) considered Newton’s Second Law and oxygen
supply, which was the first model of its kind, describing running
races, and treats energy as available oxygen in the muscles per unit
mass. Keller’s first equation is the equation of motion:

oy )
where t is time, V(#) is the instantaneous velocity, f(t) is the
propulsive force per unit mass, ¥ is a resistive force per unit mass,
and there is a constraint on the force, 0 < f < fiuq.. Keller’s second
equation governs energy, as the oxygen balance equation for e,,:

dean
dt

=51V )

where o is the oxygen breathing and circulation rate in excess of
that supplied in non-running state with the constraint e, (t) > 0
forall 0 < ¢t < T (12). Solving the optimization problem of
minimizing the time to run a fixed by using only one energy type,
Keller was able to obtain results very close to world records for
shorter races. For example in the 100 m race, Keller’s theoretical
results garnered a time of 10.07 s while the world record at
the time was 9.9 s, a percent error of 1.7% (12). As both
anaerobic and aerobic processes happen in the human body,
modelers like Aftalion and Bonnans (6), as well as others (7, 13)
included both processes in their model. Woodside (7) included
both processes and considered the body responding differently
in longer races in his model by adding a fatigue factor for long
distances; however, no consideration is given to what measures
runners can take to combat fatigue. This work aims to address
this and highlight the need to include two separate energies in a
runner model.
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1.2. Understanding the body’s energy
sources

When food rich in carbohydrates is consumed, it travels
to the stomach where it is broken down and a product called
glucose is released through a process called gluconeogenesis (14).
In anaerobic metabolism the body uses only glycogen for energy
through the creation of glucose (14). This process, called glycolysis
produces energy quickly, but only two ATP (energy) molecules are
obtained (14). On the other hand, the aerobic metabolism uses both
fat and glycogen for energy and creates 38 ATP molecules through a
more length process (14). The aerobic and anaerobic systems occur
in separate cellular compartments (mitochondria and cytoplasm,
respectively) and often at different rates, involve different reactants
and products (14). Not only is the allocation of the two separate
energy processes of interest, but also which fuel is being utilized
(14). Glucose and fatty acids provide most of the fuel required
for energy production in skeletal muscles during aerobic exercise
whereas glucose is the main source of energy in anaerobic exercise
(14). The body has significantly more energy available in the form
of fat, but the rate of using this energy form cannot be increased
at high exercise intensities when the anaerobic metabolism is the
main mechanism (14). Thus, the body is mainly able to use fatty
acids as an energy source at low levels of intensity (14). When not
exercising, ~30% of the body’s energy comes from glycogen and
70% from fat stores (14). These percentages shift when intensity
increases, as does the number of calories being burned. Glucose is
preferred as it is readily available and quickly metabolized, but is
limited (14).

Figure 2 is a diagram showing fuel utilization between fat and
glycogen as a function of percent VO2max. In Figure 2, at low
percent of VO2max, the fuel utilization is low, and the percentage
contribution from fat is substantial. As the percent of VO2max
increases when running faster, the rate of fuel utilization increases
and the percent contribution of fat decreases.

1.3. Quantifiable values that drive
performance

Two quantifiable values that describe an athletes fitness are:
VO2max, and VLamax (G Hillson, personal communication, April
21, 2021). Together, these two values are indicative of how a
runner will perform, because they encompass the factors that
make each athlete unique such as sprinting ability, endurance,
training volume, gender, and experience. Both values play a role
in describing an athletes energy expenditure and what metabolic
system (aerobic or anaerobic) they are primarily using at a
particular exertion level (14). Which metabolism is being used by
the body is dependent on what percentage of one’s current VO2
maximum (max) they are using, where VO2max is the maximum
amount of oxygen you can utilize during exercise and is measured
in milliliters of oxygen consumed in one minute, per kilogram of
body weight (ml/kg/min) (14). This value usually ranges between
20-60 ml/kg/min with professional athletes holding values as high
as 90 ml/kg/min (15). There are devices, formulas, and VO2max
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calculators (16, 17) that predict VO2max based on recent races and
current level of activity.

In preparing for long distance races, runners are attempting to
improve their VO2max through purposeful training, to allow the
body to work at higher levels before needing to use the anaerobic
system as the energy pathway (18). This means running at faster
velocities without expending as much energy (18). When walking,
people are between 15 and 30% of their VO2max, solely using
their aerobic process, with the percentage increasing with exertion
(14). When running a long-distance event, runners also mainly
uses aerobic respiration and aims to stay at their aerobic threshold
for the majority of the race, which is at about 60% VO2max (14).
Runners should only use their anaerobic metabolism for a small
portion of the race, as operating at such an intensity cannot be
sustained for very long (14). The anaerobic system is activated
when one is between 75 and 85% of their VO2max (14). During
this time, the aerobic system is still used, but at a lower rate, until
the runner reaches 100% of their VO2max (14). At that point, the
anaerobic system is the only energy system being used as the runner
is functioning at a level where they have used up all available oxygen
and need an energy system that does not require oxygen (14).

One negative consequence of using one’s anaerobic metabolism
as the primary energy system is the byproduct of lactate from the
reactions in the muscles (19). The accumulation of lactate in the
body causes fatigue in the muscles and the intensity of exercise has
to be lessened in order for the body to clear the lactate (19). Thus,
one’s ability to clear lactate significantly impacts their performance
(20). A runner’s VLamax or lactate capacity, is the body’s anaerobic
power, or maximum ability to produce lactate (G Hillson, personal
communication, April 21, 2021). The higher the VLamax, the worse
the runner is at clearing lactate near threshold (20), (G Hillson,
personal communication, April 21, 2021). Marathon runners want
to have a low VLamax so that they can use more fat for energy
and spare their carbohydrates (G Hillson, personal communication,
April 21,2021).

While VO2max is a good indicator of fitness, a runner’s VLa
max is what sets the professional runner apart from one another (G
Hillson, personal communication, April 21, 2021). Runners with a
VO2max of 65 or with a VO2max of 80, could still have identical
optimal races, depending on their VLamax. It doesn’t matter if
a runner has a high VO2max if they aren’t able to access all of
that oxygen (G Hillson, personal communication, April 21, 2021).
In conclusion, a long-distance runner wants to train their body
to have a high VO2max and a low VLamax (G Hillson, personal
communication, April 21, 2021). These two values together are
comprehensive in their ability to determine a runner’s potential (G
Hillson, personal communication, April 21, 2021).

1.4. Nutrition is necessary

When running races such as the marathon, one must consider
pacing strategies (3-5). The runner must not only consider oxygen
availability, but how much energy the body has stored (14). To
optimally run these races, runners are mainly using the aerobic
system, but their intensity with corresponding percentage of the
VO2max is high enough for the body to use glucose as energy,
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Fuel Utilization: allocation of calories per minute per kilogram used as a function of percent VO2max [adapted from (14)].
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causing them to still burn through the limited supply of glycogen.
Runners of different levels, masses, running at relatively different
VO2 values, burn through this glycogen at different rates; however,
it is commonly accepted that on average runners burn just over
100 kilocalories per mile, meaning their stores will be depleted
after about 20 miles or between 1.5 and 2 hours (14, 21). When
these stores are depleted, the runner is forced to slow down
significantly or stop running altogether and walk (22, 23). As
only one person to date has completed the marathon in under
2 h, this is a major problem that long-distance runners must
combat. In the 1960’s, work by Burke et al. (24) confirmed
that blood glucose concentrations were linked to fatigue and
that eating hard candies during a race prevented weakness and
fatigue during a race (21). Carbohydrates are digested in the small
intestine and converted into glucose. Glucose is stored mainly
in the muscles and the liver as glycogen, a chain of multiple
glucose residues, but is also available for immediate use if necessary
(14). The body can store about 600 grams of glycogen, with
500 grams stored in the muscles and 100 grams stored in the
liver (14), totaling 2,400 Kilocalories of glycogen stores in the
body.

During a long distance running race when glycogen
stores are depleted, ingested or exogenous carbohydrates
are quick sources of

energy for the muscles, available

once absorbed by the muscles from the blood. Runners
typically consume gels,
glucose throughout long distances races. Most runners solely
consume gels, that contain ~25 grams of carbohydrates (100

Kilocalorie).

which are a concentrated dose of
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Taking in nutrition during the race allows a runner to move
longer before glycogen stores are depleted and they’ve reached
some anaerobic energy threshold where they must walk (23). It
is known that the muscles absorb plasma glucose at a maximal
rate of 1-1.7 g/min (14, 25, 26) depending on the sugar mixture.
This means that while it may only take 3-5 min for some of the
carbohydrates from a 100 calorie intake to reach the muscles, it
can take ~25 min for all of the carbohydrates from the package
to be absorbed. While there is no limit to how many carbohydrates
a runner can ingest, too many carbohydrates consumed in a short
time will result in digestive discomfort, forcing the runner to slow
down (23).

2. Methods

We build on the current models by adding in some novel
terms as well as completely reformulating the energy equation.
Our overall goal is to determine the best nutrition and pacing
strategy to use when running a marathon (or other long distance
race) in order to finish in the shortest amount of time. Our
first objective, is to develop a runner model that takes into
account fuel allocation depending on percentage VO2 max, fuel
intake (in-race nutrition), as well as the force which is applied
to the ground by the runner, by using a system of differential
equations. Next, we would like to cast this as an optimal control
problem to determine the optimal velocity and in race nutrition
consumption profiles through control of propulsion force and
nutrition input.
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2.1. The model

Our
V,Velocity, Ep, Fat Energy, Eg, Glycogen Energy,

equations  for:
N, Nutrition
where V will be measured in meters/ min, Er and Eg in KJ/Kg, N

system of ordinary differential

in KJ, and our control force f(£) in meters/min?, are given by:

av 4

o IO 7 ©
dE
TtG = 3j(N) — af () Vglyc(V) (4)
dE

7: = —af(t)V(1 — glye(V)) ()
dN .

— =0 —dN —j(N) (©)

1
1000 *

velocity compartment. Velocity is not directly connected to any of

where a = Figure 3 is a diagram of our system, including the
the other compartments via energy transfer, but its impact on the
two energy compartments can be seen in Equations (4) and (5).
Our nutrition intake strategy is the fuel source function, s, entering
in the nutrition compartment.

In Equation (3), there is a propulsive force per unit mass f(t),
and |@| is a resistive force per unit mass, with t as a constant of
proportionality. The initial condition for this equation is: V(0) = 0,
as we start from rest, and we have a constraint on the force, 0 <
f(t) < finax- This is the same equation that Hill, Keller, and others
used for velocity (6, 7, 13, 27, 28).

As energy is available from two different processes in the
body, anaerobic and aerobic metabolisms, we consider two energy
sources. Thus, our total energy, E, can be written as E = Er + Eg.
The human body has large stores of fat for use as energy, but
the body prefers to use glycogen when moving at higher rates;
thus, a higher percentage of fuel usage comes from fat at lower
velocities. As runners typically take gels that are mainly sugar
(not a significant source of fat), we assume there is no input into
the fat energy compartment. The body expends energy at a rate,
f(1)V (work done). As we are allocating the energy usage between
the two sources, our fat energy differential Equation (5), and
glycogen energy differential Equation (4) have glycolitic function,
glyc(V), a fuel allocation function of on€’s glycogen energy through
the anaerobic and aerobic pathways dependent on the quotient
of one’s instantaneous velocity, V, and their velocity, VVO2max,
at 100% VO2max, written W. Thus, 1 — glyc(V) accounts
for the fuel allocation function of one’s fat energy through the
aerobic pathway dependent on velocity compared to one’s velocity
at 100% VO2max.

It is difficult to know one’s current percentage VO2max;
however, one could know a priori their velocity at 100% VO2max, a
term known as VVO2max (29). Billat and Koralsztein (29) showed
that one’s VO2maxand their velocity at VO2max are linearly
related. As velocity is more easily computable, this relationship
is used in our model for determining the allocation of energy at
different velocities compared with one’s velocity at VO2max. To

approximate glyc(V'), we first described it as a piecewise continuous
v

vvmax
then approximated that function by a function that smooths the

function on intervals of based on Figure 2 from (14) and
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points where the derivatives do not exist (described in detail
later).

Equations (4) and (5) have a convex combination of this
function and the fat allocation function of 1 — glyc(V), as the
total work rate must equal f(#)V. We obtained the piecewise
graph for glyc(V) from Figure 2 as well as from the literature (14).
Figure 2 gives a good estimate of how the body uses fat energy vs.
glycogen energy.

We assume that the anaerobic pathway is not used until after
60% VO2max, and that the energy from fat linearly decreases to 0
by 100% VO2max at which point the anaerobic system, and thus
the glycogen compartment, is solely used. Figure 4 is a graph of
three different possible glyc(V) functions that we obtained from our
Figure 2.

Recall, that while what percentage of one’s VO2maxat which
they are running is explicitly in the glyc(V) function, VO2max
is not the only value that effects our fuel utilization. Lactate
capacity (VLa), also impacts one’s fuel utilization as described
earlier. We account for differences in VLa, by considering
different structures for our fuel utilization function, glyc(V). The
function is still dependent on percent VO2max, but varies in fuel
utilization at particular percent VO2maxvalues. Figure 4 shows
three different glyc(V) functions corresponding to three different
lactate capacities. We use these three different glyc structures
to represent runners who have a low VLa (good), an average
VLa (avg), and a high VLa (bad). The runners with a low VLa
(good) are able to run at a faster pace than those with a higher
VLa without accumulating as much lactate in their muscles.
The VLa is a feature that sets the best professionals apart from
one another.

In Equation (4) for glycogen energy there is a source term with
j(N) that comes from the nutrition differential Equation (6). Our
j(N) term is a nutrition consumption function increasing energy
available in the muscles in the form of glycogen, but at a bounded
rate: j(N) = c4N with rate constant ¢4 = %, the inverse of the
runners mass. Our initial conditions for our two energy equations
are Eg = 144 Kilojoules per unit mass, assuming the runner has
full glycogen stores, and Er(0) = 3,439 Kilojoules per unit mass,
dependent on the runner’s body fat percentage. Both of the energies
must stay non-negative, and dictate the choices of f(#) and the
corresponding V. Thus, in particular, if Eg = 0, f(t) = 0. This
is not optimal and would be avoided in an optimal race until the
very end.

Further, in our nutrition energy differential equation, Equation
(6), s(t) is a source term from nutrition input such as a gel. Each gel
is roughly 100 Kilocalories (4.18 Kilojoules). The addition of the
source term slows the rate at which Eg decreases. The —dN term in
the nutrition differential equation represents the nutrition used for
basic bodily function, not available to the muscles for energy usage.
The initial condition for this equation is N(0) = 0 as we assume
there is nothing in this compartment when the race starts. Model
parameters can be found in the results section in Table 2.

2.2. Optimal control

Our second goal is to determine the best strategy to use when
running a long distance race in order to finish in the shortest
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Three different glyc functions corresponding to runners with a good, average, or bad VLa.

amount of time. Casting this as an optimal control problem, we
could think of this as a problem of maximizing the distance over
a fixed time interval or equivalently [proved in (6)], as a problem of
minimizing time over a fixed distance. Solving the minimum time
problem requires an extra isoperimetric constraint; thus, we choose
to solve the maximum distance problem. We have two controls in
our problem: propulsive force, f(t), and fuel intake s(t).

Frontiersin Nutrition

We will determine the optimal control f(t) for each of the
intake strategies and then optimize over those intake strategies.
As there are many philosophies within the running community
about how often you should take nutrition during a race, we
{s0,51,52,. .., 515},
shown in Table 1. For the maximum distance problem, assuming

test 15 different nutrition strategies, S =

we have a nutrition strategy, s;, we maximize the objective
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TABLE 1 Scenarios of nutrition intake during a marathon race.

100 Calorie gels spread evenly 0, 1, 2, 3, 4, 5, 11,
and 24 times throughout the race.

5055152535 54,585,856, S7

S8 One 100 Calorie gel taken toward the beginning of
the race.

S9 One 100 Calorie gel taken toward the end of the
race.

S10 Four 100 Calorie gels: two taken early in the race,

two taken toward the end of the race.

s11 Four 200 Calorie gels spread evenly throughout
the race.
$125 513 250 Calorie gels spread evenly 2, 4 times
throughout the race
S14 Ten 50 Calorie gels taken evenly throughout the
race.
Si5 One 250 Calorie gel taken, one 100 Calorie gel
taken, one 250 Calorie gel taken.
functional:
T
i = [ v @)
0
for s; € S (a finite set of nutrition strategies),
where

S=1{s1,8,...5N € LZ(O, T)|0 < si(t) < spax-a-e.,i=1,2,..,N}

we determine an optimal control depending on s;, and then
optimize over our set S. We obtain continuous velocity and
energy profiles corresponding to our control force and then
optimize over discrete s;. We solve the following with fixed
T:

T
max max J(s;, f) = maxmax/ V(t)dt (8)
S A; S A; 0
with  bounded  controls: 0 < f <
fmmo 0 < Si(t) < S(t)max, and control
set

Ui =s; x {f € LZ(O) 7|0 Sf(t) Sfmax; a.e.}

subject to state constraints: 0 < Ep(t) 0 < Eg(t), for t €
[0, T]

initial conditions: V(0) = 0, Ep(0) = K, Eg(0) = 144, N(0) = 0,
and state Equations (3)-(6).

Our admissible control set for s; € Sis
Ai = {(sif) € Ui| Ep(t) = 0,Eg(f) = 0, fort > 0}

Note that V(t) and N(t) are non-negative, from Equations (3)
and (6). The proof of the existence of an optimal pair (s, f*) can be
found in the Supplementary material and (30).

Using Pontryagin’s Maximum Principle (PMP) (31), we were
able to understand some features of the optimal control f* with
corresponding s7. For most of the time interval, the optimal control
is singular, meaning that the objective functional is flat with respect
to the control. See the Supplementary material for some ideas
about the necessary conditions satisfied by the optimal control
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f* given a nutrition strategy s. This “singular” feature led us to
our numerical solution algorithm as explained in the methods
section (32). We discretize the system in order to implement an
approximate solution to the optimal control problem, including a
penalization term known to reduce the noise in optimal control
problems with singular solutions (33).

2.3. Discretization

Over time, optimal control problems have been solved and
approximated using many different numerical techniques. There
are many numerical examples in mathematical biology that use
the Forward Backwards sweep method (34, 35). Programs such as
GPOPS and PASA have been developed to handle particular types
of optimal control problems (36, 37). MATLAB has a minimization
tool, fmincon, that is built to handle a variety of optimization
problems. We tried to use the forward backwards sweep method,
the packages GPOPS and PASA, as well as fmincon in the
continuous setting; however, none of these methods were robust
enough to handle this particular problem. Thus, we discretized
our problem and used fmincon, inputting our differential equation
system in through equality constraints.

We began the discretization of our optimal control problem
by partitioning our time interval, [0, T] using M+1 equally spaces
T. We used a left
rectangular approximation for the objective functional, obtaining

nodes, 0 = tH) < 1 < < ty =

the maximization problem:
M—1
maxJ(f) = max[z hVy] 9)
f LA

where h = % with bounded controls: 0 < fi < fiuax = 36,000
meters/min?2, and f = (fo,....fm—1), with s = (s1,...,515) € S,
and 0 < s;(fr) < Smax forall 0 < k < M — 1 and with initial
conditions: Vo =0, Erp = K, Ego = 144, Ny = 0.

Next we use a forward Euler approximation for the state
equations and obtain:

Vg = Vi + h(fi — %) (10)
Epgr1 = Epg + h(—afi Vi(1 — glyc(Vy)) (11)
EGi+1 = Egk + h(csj(Nk) — afy Vi(glyc(Vi))) (12)

Nii1 = Nk + h(s(tg) — dNi — j(Ng)) (13)

We also now have the discretized version of J(Ng): j(Ng) =
c4Ni . We discretized our glyc function, glyc(Vy), by using a
spline interpolator in MATLAB, described in the next section,
and dropped in each i nutrition scenario, s, corresponding to
the time points each nutrition strategy designated. To optimize
our system, while satisfying the constraints, we use fmincon as
the minimization solver on the discretized system, using a left-
rectangular integral approximation for the objective function.
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“Fmincon is a gradient-based method that is designed to work
on problems where the objective and constraint functions are both
continuous and have continuous first derivatives" (38), but due
to our constraints and nutrition input, it was helpful to write
it as a discrete system. Fmincon is set to accept: the objective
function, a starting guess for the control vector, X0, inequality linear
constraints, equality linear constraints, lower and upper bounds for
the state variables, non-linear inequality and equality constraints, as
well as options that allow the user to change the MATLAB settings
for various features or provide the system with more information.
Our discretized objective function was originally

T-1
J=-8) Vi
i=1

where V. occurs in our X vector as entries X(3n+1:4n)and § = %
where T is the length of the race and M is the number of mesh
points, including t = 0, but we will modify this objective function
to include minimizing the total variation in f. In order to modify
the objective function to include minimizing the total variation,
we added two additional state variables, ¢ and ¢ (39), such that the

variation in two time points in f is written as
fla+1) = f() = () — ().

Our starting guess vector, X0, that gives an initial placeholder
T 6T—2

for our state vector was: X0 = [36000 .. .36000 m] Note that
each state vector variable is a column vector of length (T x 1) and
the two vectors used for variation penalization, £ and ¢ are of length
(T — 1) x 1 due to their structure. Our initial condition vector was:
[f(1) Ep(1) Eg(1) V(1) N(1) £(1) 1(1)] = [36000 3439 144000 0] .
As we do not have any inequality constraints and our equality linear
constraints were written as: Aeqx = beq, where Aeq is a n x n matrix,
x is our solution column vector of length # x 1, and beg, of length
n x 11is the righthand side of our equality linear constraints.

As the velocity and nutrition equations are linear, we input
those as our linear equality constraints. Our two energy equations
are non-linear and thus are input as non-linear equality constraints.
One important feature for our problem is our energy constraints,
Eg(i) > 0 and Ep(i) > 0 for every i € [0, T]. With our problem
set up in its current format, we are able to simply input our lower
bounds for our fat and glycogen energies as 0. We input the runners
physical force, velocity, and energy capacities as appropriate upper
bounds. We also give our variables appropriate initial conditions
for the runner’s initial fat and glycogen energies, 0 velocity, and 0 in
race nutrition.

In our glycogen energy equation we have a function we call
“glyc" and its counter part “1-glyc" in our fat energy equation. We
approximated these from a fuel utilization. Figure 4 adapted from
one in Stipanuk and Caudill’s textbook (14), by creating two vectors
of points where one vector represents the percent VO2maxand the
other represent the percent glycogen used. To smooth out our glyc
function, we used a function in MATLAB called spline. Spline is
a cubic piecewise polynomial interpolator that is continuous and
twice differentiable everywhere. It takes the two vector of points
you supply it with and creates #n — 1 cubic polynomials that connect
at the supplied x vector given.
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One common issue in control problems where the control
has a singular sub-arc is variation. Ding and Lenhart (40) as well
as Caponigro et al. (41) both penalized their original objective
functional to regularize the chattering. In order to obtain a
reasonable trajectory for the runner, we chose to penalize the
objective functional by adding a term to our objective functional
that bounded the total variation (33, 39). This technique, developed
by Hager and Aghaee (33), has been shown to reduce the noise in
optimal control solutions. Adding this penalty, not only amends the
objective function to include penalizing for variation, it adds a 5th
constraint to our problem. By adding this penalty we are decreasing
the total variation in the solution trajectory. We can express the
total variation, V(f), in the control (39) as:

N-1

V(f) =sup Y [f(i+1) — £(i)|

i=0

where the supremum is being taken over all possible partitions of
our time interval. Due to the difficulty of differentiating absolute
value functions we decompose the absolute value term, using two
new T — 1 vectors ¢ (i) and (i), whose entries are non-negative.
Each entry of ¢ (i) and ¢(7) will be defined as

FG+1) =) = ¢@) — (@)

We can think of this decomposition as satisfying the following
two conditions (39):

Iff(i + 1) — f(i) > 0, then £ (i) = f(i + 1) — f(i) and (i) = 0;
Iff(i+1)—f(i) < 0, then £(i) = 0and 1(i) = —(f(i+1) —f(i)),

where ¢ (i) > 0, ((i) > 0 and either (i) = 0or (i) =0
Appending this penalty to the objective function we have:

T—-1 T=-2

J==8 Vi) +p) (&0 +)

i=1 i=1

and resulted in the extra linear equality constraint
ceq5(i) = —f(i + 1) + f(i) + ¢ (i) — (i),

The coefficient p of our bounded variation scales the degree
to which we penalize variation. If p is large, there is a more
emphasis being placed on minimizing the variation of the control
variable, force.

3. Results and discussion

3.1. World record optimal results

We found that using a direct discrete optimization without
adjoint functions, fmincon, was the most efficient approximation
method and captured all the dynamics. Table 2 shows the constants
and coefficients with their scientific meaning and their units. Five
parameters that can be chosen depending on the individual are:
E(0) (Initial glycogen energy), mass, VLa type, nutrition uptake
rate, ¢4, and VVO2max, shown at the end of Table 2.
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TABLE 2 Parameters used for world record holder.

Parameter Value Unit Meaning

T 120 minutes Length of race

M T+1 minutes Number mesh points
including t = 0

T 1/60 min Internal resistant force
constant

d 0.005 min~! Loss of nutrition

sm 1/3,600 (seconds) 2 Seconds to minutes
conversion

c3 1/m kg™! Mass conversion
constant

P 0.5 unitless Variation penalty
coefficient

a 1/1,000 | kilojoules/joules | Unit conversion constant

8 120/121 /M Discretization parameter

m 55 kilogram Runner mass

E(0) 144 kilojoules/kg Initial energy at start of
race

¢y 1/6 min~! Nutrition uptake rate

VVO2max 402 meters/min Velocity at 100%
VO2max

VLa type Good Unitless Good, average, bad in
glyc function

We first chose to simulate the optimal race of the current
world record holder. In the attempt to break the 2 h marathon
barrier, experts collaborated to optimize a set of runners VLamax,
VO2max, general running economy, nutrition plan, as well as pick
the perfect race course for these runners. The parameter values for
our simulation can be found in Table 2. During Eulid Kipchoge’s
race to beat the 2 h marathon barrier, his nutrition consisted of
hydrogels by Maurteen. He consumed 100 g Carbs per hour (which
would be four baked sweet potatoes in solid food for reference)
(42), although there is no comment on his exact feeding regime.
This amount of carbohydrates is pretty high for a runner to tolerate
during a marathon due to the increased gastrointestinal movement
in running. This number of carbohydrates is more in line with what
cyclist would consume during their longer races. This is in contrast
to the practice most runners follow of taking about 50 carbs per
hour, an area of research that is continuously being studied by
nutrition companies.

While three different VLA types are shown in Figure 4,
the “good" glyc was picked to reflect appropriate values for a
professional (world record breaking) runner. Plots of the state and
control variables are seen in Figure 5. In Figure 5 we see that the
runner’s velocity rapidly increases from 0 to reach an approximately
constant velocity of 357 m/min, that they can maintain for the
entirety of the race. The plot of the runner’s propulsion force,
similar to the runner’s velocity plot, shows the runners force
quickly increasing from 0 m/min? to a constant force of 2.14 -
10* m/min?. The runner’s fat energy, Ep, decreases linearly, from
3,439 KJ/Kg to 3390, nowhere near the energy constraint, Ep >
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0. The runner’s glycogen energy decreases from its initial value
of Eg(0) = 144 KJ/Kg to its final value of ~0 KJ/Kg. We see
bumps in this subplot corresponding to the nutrition fueling. In
this simulation we assumed that the runner took four 200 calorie
gels at t = 20, 46, 71, 97, which can be seen in the nutrition
subplot in Figure 5, and the runner took 120 min to complete the
distance.

The VVO2max was set to be 402 meters per minute, as this
is a reasonable assumption for a world class runner. The fastest
marathon ever run thus far is 1:59:40. In the simulation from our
model, the runner completes 42.5 kilometers in 120 min, which
is equivalent to the runner running a 1:59:09 marathon. This is
only a 0.4% difference between the current world record and the
results from this model. This difference in average pace would be
the runner running 4:33 min per mile instead of 4:34 min per
mile. Note, that although our results are extremely close to the
current world record, parameters could be changed to address a
runner having an even better VLa, or better running economy. We
also didn’t explicitly have “shoe type" in our model but a better
shoe could result in better running economy which would result
in a better VVO2max. It is believed that the world record time
will continue to get faster over time. For an optimization runner
model, the results from the world record marathon run were the
most ideal comparison; however, to see the model’s robustness,
we vary a variety of parameters and consider several potential
scenarios. We first considered the scenario of no in-race nutrition
consumed, then various nutrition scenarios, before concluding by
varying other inputs.

3.2. Results: varying runner dependent
parameters

A runners in-race nutrition, VLamax, and their VO2max
are the driving factors behind a runners performance, and thus
it is important to see how changing these impacts the results.
First, analyzing nutrition, there are several nutrition strategies
over which we are optimizing, three of which include: simulating
Kipchoge’s known race intake, a standard intake strategy used by
average runners, as well as taking no nutrition labeled sy, from
Table 1, as some runners complete marathons without taking in-
race nutrition. The parameters used for the 15 different nutrition

strategies are all the same as those used in Table 2, except, T = 135,
135

m .

We analyze the percentage improvement from using the

which also changes § =

determined strategy vs. consuming no carbohydrates. As stomach
sensitivity to food intake during the race has not been included in
this model yet, the results skew in favor of taking as much nutrition
in as possible. Table 3 shows the distance completed with each of
the tested strategies. In comparing a strategy of taken 0 nutrition
vs. five 100 cal gels, the runner is able to run between 0.5 and 0.7
kilometers further per each additional gel 3, which translates to
~1.5% increase in distance per gel. By taking five 100 calorie gels
instead of taking no nutrition, the runner has a 7.75% improvement
in performance. In Figures 6, 7 we see similar strategies in the force
and velocity subplots; however the propulsion force and therefore
the velocity the runner is able to maintain, is significantly higher for
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World record marathon simulation, with four 200 calorie gels.

TABLE 3 Total distance achieved with different nutrition strategies.

Strategy Distance (km) Strategy Distance (km)

So 40.0 sg 40.7
s1 40.7 S9 40.5
52 41.4 10 42.5
S3 42.0 S11 45.1
Sy 42.6 s12 43.2
S5 43.1 S13 45.6
S6 46.0 S14 43.1
57 52.9 Sis 43.7

the runner who took five 100 calorie gels than for the runner who
took no nutrition.

We were also interested if there would be any differences in
performance if the runner took in the same amount of calories, but
distributed differently. In s5, where the runner took in 500 calories
by taking five 100 calorie gels, the distance achieved was 43.1 km.
In s;2 where the runner takes in two 250 calorie gels the distance
achieved was 43.2 km. Lastly, in s14 where the runner consumes ten
50 calorie gels, the runner traveled 43.1 km. Regardless of the way
in which the runner consumes the same amount of calories, they
travel relatively the same distance. Perhaps this would be different
if there were a mechanism in the model that discouraged eating too
much at once or eating later in the race.

A typical marathon runner, may consume five 100 calorie gels
throughout a race. This is in contrast to the intake of professionals
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who are taking up to 100 carbohydrates an hour, translating to
400 calories an hour. A runner finishing the marathon in about
2 h would take in 800 calories, which is simulated with strategy
sg, in Figure 5. In this simulation the runner is able to run 1.5
km further when consuming 800 calories instead of 500 calories,
an improvement of 3.5%. In both simulations we see similar
trajectories; however, the runner in simulation sg is able to run
at a higher average speed throughout the race, yielding the larger
distance ran in the same amount of time. These results were
expected as increasing the energy the body is able to use, should
result in greater distance traveled. This shows the importance in
runners being able to take in as many calories during a race as
possible. A runner can increase the amount of calories they can
consume during a race by taking nutrition that is easier to digest,
taking water with the nutrition so that the salinity balance of the gut
is kept, and practicing taking in nutrition during long training runs.

The last nutrition strategies we considered were, s¢, s7, where
the runner takes eleven and twenty-four 100 calorie gels throughout
the race, respectively. These scenarios are unlikely to occur as a
runner would struggle to consume this many gels without getting
sick. We completed simulations with nutrition strategies s and s;
to see if the model would organically capture the effect of a runner
taking in too much nutrition. As seen in the results from Table 3,
this effect was not captured and the simulations simply show an
increase in energy as more gels are added, and no negative side
effects. In the simulation where the runners consumes 11 gels, they
are able to run 46.0 km, while in 24 gel simulation the runner travels
52.9 kms. Simply put, with a fixed time race, we see an increase in
distance traveled for every gel that is taken. Taking in eleven and
certainly twenty-four 100 calorie gels throughout a race would most
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Marathon simulation with four states and optimal force with five 100 calorie gels.

certainly upset the runners stomach and all of those carbohydrates
would struggle to make it to the muscles due to imbalances in the
stomach. The body does not handle the amount of accumulated
energy in the nutrition compartment without a negative reaction.
In future work we plan to handle this issue.

Table 4 shows the distances achieved using different VLa types
across two different nutrition strategies. The VLa types labeled
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as “good", “average”, and “bad" correspond to the glyc functions
shown in Figure 4. For these runs, we tested the distance for the
case where the runner takes in no nutrition during the race, as well
as the runner taking in four 100 calorie gels.

In the three different simulations with varying VLa’, the runner
consumes four 100 calorie gels during the race. In these results,
the importance of runners training their body’s to have lower
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TABLE 4 Total distance achieved by runners with different VLa types
across two nutrient strategies.

VLa type Nutrition Distance (km)
Good 0 calories taken 41.7
Average 0 calories taken 40.0
Bad 0 calories taken 37.8
Good Four 100 calorie gels 44.1
Average Four 100 calorie gels 4.6
Bad Four 100 calorie gels 40.5

maximum rate production of lactate for a lo ng distance runner is
evident. The runner with the good VLamax type ( i.e. the runner
whose glyc function was made to use fewer carbohydrates than
fats than the runners with average or bad VLas) is able to run
much further in the same amount of time. There is an 8.9-10.3%
improvement in the runner with a good VLamax as compared
with a bad VLamax depending on if the runners took in nutrition
as well. We see the same race structure regardless of the VLa
type, with both simulations showing the runners ending with ~0
glycogen energy, but similarly to the simulation where the runner
takes more nutrition, the runner with the higher VLamax is able
to maintain a higher force. The runner with a good VLamax can
maintain a force of 1.97 x 10* m/min? throughout the race, while
the runner with a bad VLamax was only able to maintain a level
force of ~1.81 x 10* m/min®. Some of these results can be seen in
Table 5.

To see optimal race strategies for individuals of all levels, we
also completed scenarios including varying: the length of race, T,
the runners mass, m, the initial glycogen energy, E;(0), and the
runner’s VVO2max. We use many of the same parameters from
Table 2, but change the weight of the runner, m, length of race, T,
as well as the VVO2max of the runners. Note that ¢3 and M also
vary, but do so due to their relationship with m and T, respectively.
Runners of different levels will finish the marathon in different
lengths of time, thus the need to vary T. Also, runners of different
abilities can have significantly different VVO2max values and VLa
types, and therefore change depending on the individual. Table 5
shows the distances achieved for our different levels of runners over
4 time intervals.

To see the versatility of the model for individuals with different
VLamax and VO2max inputs, we use the same parameters from
Table 2, but vary the glyc function when analyzing the impact of
Vlamax and vary the VVO2max, along with associated parameters,
when analyzing the impact of VO2 max.

For runners who are running for 155 and 180 min with
VVO2max’s of 320 and 250, respectively, the results are realistic.
The runners run at around 85% of their VO2max which is
the suggested level by experts, and the impact of taking in-race
nutrition compared without nutrition is substantial as expected.
The runner who takes 180 min to finish the race and has an
average VLamax has a 4% improvement when they take nutrition
vs. when they do not. One issue can be found in the result from
the scenario where the runner had a race time of 215 min and a
bad VLA type (Table 5), as these results show this runner to be
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running at an unrealistically high percentage of their VO2max. This
is most likely due to the fact that our model does not penalize a
runner for running too fast, as long as they have enough glycogen
energy. Recall, that our only constraints are that the energies have
to be above 0, and that there are some upper bounds on forces
and velocities. As the average finish time for a marathon such as
the Berlin marathon is between 4 and 5 h (43), it is important
for future work to address this. We plan to amend our current
model such that the runner is not only being constrained by total
amount of glycogen energy, as this limitation impacts the models
accuracy for runners moving at slower velocities, as well as the
model’s ability to predict realistic optimal finishing times for shorter
races.

4. Conclusions and limitations

To understand the impact of nutrition we formulated our
model such that in-race nutrition could be accounted for in
the energy differential equations. We created a marathon model
described by velocity, fat energy, glycogen energy, and in-race
nutrition differential equations. This marathon model better
represented the body’s energy systems and included nutrition
pulses throughout the race. After formulating an optimal control
problem with this system of differential equations, and with
the goal to maximize the distance achieved over a fixed time
interval, we proved the existence of an optimal control. We
determined a discretized approximate solution to the associated
optimal control problem using MATLAB’s fmincon optimization
software, that included a bounded variation penalty on our
control force. We then optimized over a finite set of in-
race nutrition strategies, obtaining a solution to our model for
each strategy.

We analyzed the complicated role that in-race nutrition input
has on a marathon runner as well as energy allocation dependent
on the percentage of one’s VO2max during running. Expressing
the dynamics of the body’s energy throughout a running race as
two differential equations, that represent fat energy and glycogen
energy, with usage determined by an allocation function dependent
on the ratio of one’s velocity compared to their VVO2max, is
a valuable contribution to the field of runner models. Prior to
our model, all energy dynamics in runner models, were based on
available oxygen per unit mass, which does not allow for one to
include in-race nutrition energy. As a runner has a much smaller
storage supply of glycogen than fat, and the body prefers to use the
glycogen at high levels of exertion, the in-race nutrition consists
of essentially only carbohydrates. These factors required us to split
up the energy into the two compartments and to use the allocation
function. While we obtained an optimal solution for an expert
runner, we also individualized our model such that it can be used
to determine a race strategy for any type of runner as long as they
know their weight, VO2max and VLamax type.

To obtain our approximate solution to the optimal control
problem of maximizing distance for a fixed time, we discretized
our problem, and then optimized, using Matlab’s optimizing tool,
fmincon. We included a penalization for variation in the objective
function. The variation penalization was extremely important and
the solution structure was very sensitive to this penalization. With
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TABLE 5 Total distance achieved with different levels of runners and four lengths of time.

Race time (min) VVO2max (m/min) Weight (Kg) VLatype Nutrition (Cals) Eg(0) (KIJ/Kg) Dist. (Km)
155 320 73 Avg 4100 cal gels 150 429
155 320 73 Avg 0100 cal gels 150 40.1
155 320 73 Good 4100 cal gels 150 44.4
155 320 73 Bad 4100 cal gels 150 41.6
180 250 80 Avg 0100 cal gels 140 41.0
180 250 80 Avg 4100 cal gels 140 42.7
215 200 80 Bad 0100 cal gels 140 41.6
210 200 80 Avg 4100 cal gels 144 443

too small of a variation penalty coeflicient, the runners purposive
force was often erratic and non-optimal. We found that the optimal
trajectory for marathon runners was to run at a steady state velocity
for the majority of the race and take in at least four 100 calorie
supplements spread evenly throughout the event. Over a variety
of runner’s individual parameters, this racing strategy was optimal.
A runner can improve their performance with consistent and
targeted training to improve their VV02max and their VLamax,
(which correlates to having a better glyc function) which can in
turn drastically improve the their performance potential. When
we approximated a solution to our problem for a runner with the
parameters of the current world record holder in the marathon, our
approximation was quite good with an error of 0.4%.

Our contributions to the field also include: formulating a
system that includes energy allocation dependent on the ratio
of their velocity and their velocity at VO2max, adding in-race
nutrition to a runner model, and approximating a solution to
the optimal control problem, amended to include a penalty
bounding the variation of the control. As we have found
that taking more carbohydrates throughout the race improves
performance, it is natural to believe that one should take in as
many carbohydrates as possible; however, this is unrealistic as
the stomach’s digestion slows through a running race and also
struggles to tolerate high volume of carbohydrates in the form of
glucose and fructose. Our initial marathon model does not account
for this fact and our results showed that a runner’s performance
increased linearly with each gel they consumed, over the set of
reasonable nutrition scenarios that were tested. To account for this
limitation requires additional work, which will be presented in our
next paper.

Upon executing different scenarios for our marathon model, we
realized that our model was not appropriate for races between a
sprint and a half marathon. In these scenarios we obtained results
that were much faster than has been accomplished by humans thus
far. These results came from only having energy constraints in
model, when in reality, not all the energy in the body is available
for use, due to the dependence on lactate production. An extended
model with the effects of lactate will be presented in our followup
paper. We also could add in some components from Kim et al. (9)
for a more granular approach that includes tissue/organ subsystems
and hormonal controllers to predict glucose homeostasis during
moderate intensity exercise.
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We view our model as a strong building block on which to
add key features. We acknowledge some limitations of our model
and the possibility to include more features like race terrain,
temperature, humidity, and even loss of body weight during the
race (44-47). As an important next extension, we would like to
incorporate a key feature, hydration to our model. Hydration levels
and fluid overload can be a huge factor for a runner (43, 47—
49). Low hydration can negatively affect the rate at which the
body uptakes the nutrition. One possibility could be changing
our nutrition uptake function to represent low, medium, or high
levels of hydration. Building this feature in would be the next step
in advising runners on optimal intake during running races.This
work does not aim to capture every related race variable, but will
hopefully be a building block for future runner models.
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