
TYPE Original Research

PUBLISHED 18 May 2023

DOI 10.3389/fnut.2023.1096194

OPEN ACCESS

EDITED BY

Vassilis Mougios,

Aristotle University of Thessaloniki, Greece

REVIEWED BY

Beat Knechtle,

University of Zurich, Switzerland

David Christopher Nieman,

Appalachian State University, United States

*CORRESPONDENCE

Cameron Cook

ccook@rti.org

RECEIVED 15 November 2022

ACCEPTED 18 April 2023

PUBLISHED 18 May 2023

CITATION

Cook C, Chen G, Hager WW and Lenhart S

(2023) Optimally controlling nutrition and

propulsion force in a long distance running

race. Front. Nutr. 10:1096194.

doi: 10.3389/fnut.2023.1096194

COPYRIGHT

© 2023 Cook, Chen, Hager and Lenhart. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Optimally controlling nutrition
and propulsion force in a long
distance running race

Cameron Cook1*, Guoxun Chen2, William W. Hager3 and

Suzanne Lenhart4

1Research Triangle Institute (RTI) Health Solutions, Research Triangle Park, NC, United States,
2Department of Nutrition, University of Tennessee, Knoxville, Knoxville, TN, United States, 3Department

of Mathematics, University of Florida, Gainsville, FL, United States, 4Department of Mathematics,

University of Tennessee, Knoxville, Knoxville, TN, United States

Introduction: Runners competing in races are looking to optimize their

performance. In this paper, a runner’s performance in a race, such as a marathon,

is formulated as an optimal control problem where the controls are: the nutrition

intake throughout the race and the propulsion force of the runner. As nutrition is

an integral part of successfully running long distance races, it needs to be included

in models of running strategies.

Methods: We formulate a system of ordinary differential equations to represent

the velocity, fat energy, glycogen energy, and nutrition for a runner competing

in a long-distance race. The energy compartments represent the energy sources

available in the runner’s body. We allocate the energy source from which the

runner draws, based on how fast the runner is moving. The food consumed during

the race is a source term for the nutrition differential equation. With our model, we

are investigating strategies to manage the nutrition and propulsion force in order

to minimize the running time in a fixed distance race. This requires the solution of

a nontrivial singular control problem.

Results: As the goal of an optimal control model is to determine the optimal

strategy, comparing our results against real data presents a challenge; however, in

comparing our results to the world record for themarathon, our results differed by

0.4%, 31 seconds. Per each additional gel consumed, the runner is able to run 0.5

to 0.7 kilometers further in the same amount of time, resulting in a 7.75% increase

in taking five 100 calorie gels vs no nutrition.

Discussion: Our results confirm the belief that themost effective way to run a race

is to run approximately the samepace the entire racewithout letting one’s energies

hit zero, by consuming in-race nutrition. While this model does not take all factors

into account, we consider it a building block for future models, considering our

novel energy representation, and in-race nutrition.
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1. Introduction

Running is one of the most popular forms of exercise. There are more than 275, 000

road races per year in the United States (1). At the marathon distance alone, there are over

500, 000 people a year in the United States who choose to race (www.runningtheusa.com).

Some people run for fun while others choose to seriously compete, attempting to run the

shortest time for a fixed distance race (2). Outside of sprints, pacing oneself to run the best

possible race is crucial (3–5). If the runner starts the race too slow, they may not finish in
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FIGURE 1

The above data comes from the 2015 Boston Marathon. We graphed

finish placement on the x-axis and pace difference on the y-axis.

Pace difference is the difference between the runners 5 km pace

(min/mile) and the runners overall pace (min/mile) for the race. The

horizontal line represents a difference of 0 between the two paces.

as fast a time as expected. On the other-hand, if the runner goes out

too fast, they may find themselves running out of energy, struggling

to even finish the race (3–5). Determining the best pacing strategy

for each individual runner is challenging, as a runner’s optimal pace

depends on several values that are individual to them, something

this work aims to answer. Looking at data collected from timing

mats in the 2015 Boston Marathon, Figure 1 plots how the runners

placed vs. how their pace differed from their first 10 k and their

overall pace. Amongst this elite field, one can see that, on average,

the runners who placed lower had much higher pace variation than

runners who finished in a shorter time (better placing).

While running the fastest race possible has been a goal for

runners, it has also been a research topic for scientists for many

years. Keller’s model developed in the early 1970’s, was the first to

cast running an optimal race as an optimal control problem and

has since been adapted and expanded by others such as Aftalion

and Bonnans (6), Woodside (7), and Pitcher (8). All of the results

from these works show the importance of pacing, but lack attention

to the different energy systems. Kim et al. (9) applied whole-body

metabolism models to exercise, but not to optimizing running race

performance. Another factor that has not yet been considered in

a runner model to date is, in-race nutrition as an energy source

available to the runner. In order to avoid energy depletion during

a long distance run, a runner can consume food. To meet this

need there is a whole market of products for runners to use in

order to deliver necessary fuel to the body quickly. As energy is

currency for runners, including in-race nutrition in a model is

essential in determining the optimal race for a runner tackling a

long-distance race.

The goal of this work was to build a more dynamic runner

model that better represents the body’s energy systems, including

energy allocation of fat and carbohydrate energy dependent on

velocity, as well as in-race nutrition. We use this improved model

to determine the minimum time it takes to run different length

races (in particular the marathon distance race) by optimally

choosing velocity and in-race nutrition consumption profiles

through control of propulsion force and nutrition input. The

inputs for the model are individualized such that an optimal

race can be determined for any level of runner. We first discuss

the physics, biochemistry, and other factors that can limit or

enhance a runner’s performance before presenting our model,

and optimization techniques. Results and various simulations are

presented, followed by discussion.

1.1. Background and groundwork from past
models

There are many different factors that coaches and runners

have to think about as a runner prepares for a race. They have

to consider all the training needed to get the runner in the best

possible condition for the race as well as all the in-race components

(10). It takes time to train not just the muscles, but the body’s

energy pathways and metabolism. All the cumulative knowledge

that exists today on developing the best training and racing plans

began from understanding how the body transfers stored energy

into mechanical work (11). Originally, scientists viewed exercise as

the heat to mechanical energy transfer; however, biological energy

transfer, or bioenergetics, was discovered to be better suited to

describe the anaerobic and aerobic energy transfers due to chemical

nature of the exchange (6, 11).

Keller (12) considered Newton’s Second Law and oxygen

supply, which was the first model of its kind, describing running

races, and treats energy as available oxygen in the muscles per unit

mass. Keller’s first equation is the equation of motion:

dV

dt
= f −

V

τ
(1)

where t is time, V(t) is the instantaneous velocity, f (t) is the

propulsive force per unit mass, V
τ
is a resistive force per unit mass,

and there is a constraint on the force, 0 ≤ f ≤ fmax. Keller’s second

equation governs energy, as the oxygen balance equation for ean:

dean

dt
= σ − fV (2)

where σ is the oxygen breathing and circulation rate in excess of

that supplied in non-running state with the constraint ean(t) ≥ 0

for all 0 ≤ t ≤ T (12). Solving the optimization problem of

minimizing the time to run a fixed by using only one energy type,

Keller was able to obtain results very close to world records for

shorter races. For example in the 100 m race, Keller’s theoretical

results garnered a time of 10.07 s while the world record at

the time was 9.9 s, a percent error of 1.7% (12). As both

anaerobic and aerobic processes happen in the human body,

modelers like Aftalion and Bonnans (6), as well as others (7, 13)

included both processes in their model. Woodside (7) included

both processes and considered the body responding differently

in longer races in his model by adding a fatigue factor for long

distances; however, no consideration is given to what measures

runners can take to combat fatigue. This work aims to address

this and highlight the need to include two separate energies in a

runner model.
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1.2. Understanding the body’s energy
sources

When food rich in carbohydrates is consumed, it travels

to the stomach where it is broken down and a product called

glucose is released through a process called gluconeogenesis (14).

In anaerobic metabolism the body uses only glycogen for energy

through the creation of glucose (14). This process, called glycolysis

produces energy quickly, but only two ATP (energy) molecules are

obtained (14). On the other hand, the aerobic metabolism uses both

fat and glycogen for energy and creates 38 ATPmolecules through a

more length process (14). The aerobic and anaerobic systems occur

in separate cellular compartments (mitochondria and cytoplasm,

respectively) and often at different rates, involve different reactants

and products (14). Not only is the allocation of the two separate

energy processes of interest, but also which fuel is being utilized

(14). Glucose and fatty acids provide most of the fuel required

for energy production in skeletal muscles during aerobic exercise

whereas glucose is the main source of energy in anaerobic exercise

(14). The body has significantly more energy available in the form

of fat, but the rate of using this energy form cannot be increased

at high exercise intensities when the anaerobic metabolism is the

main mechanism (14). Thus, the body is mainly able to use fatty

acids as an energy source at low levels of intensity (14). When not

exercising, ∼30% of the body’s energy comes from glycogen and

70% from fat stores (14). These percentages shift when intensity

increases, as does the number of calories being burned. Glucose is

preferred as it is readily available and quickly metabolized, but is

limited (14).

Figure 2 is a diagram showing fuel utilization between fat and

glycogen as a function of percent VO2max. In Figure 2, at low

percent of VO2max, the fuel utilization is low, and the percentage

contribution from fat is substantial. As the percent of VO2max

increases when running faster, the rate of fuel utilization increases

and the percent contribution of fat decreases.

1.3. Quantifiable values that drive
performance

Two quantifiable values that describe an athletes fitness are:

VO2max, and VLamax (G Hillson, personal communication, April

21, 2021). Together, these two values are indicative of how a

runner will perform, because they encompass the factors that

make each athlete unique such as sprinting ability, endurance,

training volume, gender, and experience. Both values play a role

in describing an athletes energy expenditure and what metabolic

system (aerobic or anaerobic) they are primarily using at a

particular exertion level (14). Which metabolism is being used by

the body is dependent on what percentage of one’s current VO2

maximum (max) they are using, where VO2max is the maximum

amount of oxygen you can utilize during exercise and is measured

in milliliters of oxygen consumed in one minute, per kilogram of

body weight (ml/kg/min) (14). This value usually ranges between

20–60 ml/kg/min with professional athletes holding values as high

as 90 ml/kg/min (15). There are devices, formulas, and VO2max

calculators (16, 17) that predict VO2max based on recent races and

current level of activity.

In preparing for long distance races, runners are attempting to

improve their VO2max through purposeful training, to allow the

body to work at higher levels before needing to use the anaerobic

system as the energy pathway (18). This means running at faster

velocities without expending as much energy (18). When walking,

people are between 15 and 30% of their VO2max, solely using

their aerobic process, with the percentage increasing with exertion

(14). When running a long-distance event, runners also mainly

uses aerobic respiration and aims to stay at their aerobic threshold

for the majority of the race, which is at about 60% VO2max (14).

Runners should only use their anaerobic metabolism for a small

portion of the race, as operating at such an intensity cannot be

sustained for very long (14). The anaerobic system is activated

when one is between 75 and 85% of their VO2max (14). During

this time, the aerobic system is still used, but at a lower rate, until

the runner reaches 100% of their VO2max (14). At that point, the

anaerobic system is the only energy system being used as the runner

is functioning at a level where they have used up all available oxygen

and need an energy system that does not require oxygen (14).

One negative consequence of using one’s anaerobic metabolism

as the primary energy system is the byproduct of lactate from the

reactions in the muscles (19). The accumulation of lactate in the

body causes fatigue in the muscles and the intensity of exercise has

to be lessened in order for the body to clear the lactate (19). Thus,

one’s ability to clear lactate significantly impacts their performance

(20). A runner’s VLamax or lactate capacity, is the body’s anaerobic

power, or maximum ability to produce lactate (G Hillson, personal

communication, April 21, 2021). The higher the VLamax, the worse

the runner is at clearing lactate near threshold (20), (G Hillson,

personal communication, April 21, 2021). Marathon runners want

to have a low VLamax so that they can use more fat for energy

and spare their carbohydrates (GHillson, personal communication,

April 21, 2021).

While VO2max is a good indicator of fitness, a runner’s VLa

max is what sets the professional runner apart from one another (G

Hillson, personal communication, April 21, 2021). Runners with a

VO2max of 65 or with a VO2max of 80, could still have identical

optimal races, depending on their VLamax. It doesn’t matter if

a runner has a high VO2max if they aren’t able to access all of

that oxygen (G Hillson, personal communication, April 21, 2021).

In conclusion, a long-distance runner wants to train their body

to have a high VO2max and a low VLamax (G Hillson, personal

communication, April 21, 2021). These two values together are

comprehensive in their ability to determine a runner’s potential (G

Hillson, personal communication, April 21, 2021).

1.4. Nutrition is necessary

When running races such as the marathon, one must consider

pacing strategies (3–5). The runner must not only consider oxygen

availability, but how much energy the body has stored (14). To

optimally run these races, runners are mainly using the aerobic

system, but their intensity with corresponding percentage of the

VO2max is high enough for the body to use glucose as energy,
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FIGURE 2

Fuel Utilization: allocation of calories per minute per kilogram used as a function of percent VO2max [adapted from (14)].

causing them to still burn through the limited supply of glycogen.

Runners of different levels, masses, running at relatively different

VO2 values, burn through this glycogen at different rates; however,

it is commonly accepted that on average runners burn just over

100 kilocalories per mile, meaning their stores will be depleted

after about 20 miles or between 1.5 and 2 hours (14, 21). When

these stores are depleted, the runner is forced to slow down

significantly or stop running altogether and walk (22, 23). As

only one person to date has completed the marathon in under

2 h, this is a major problem that long-distance runners must

combat. In the 1960’s, work by Burke et al. (24) confirmed

that blood glucose concentrations were linked to fatigue and

that eating hard candies during a race prevented weakness and

fatigue during a race (21). Carbohydrates are digested in the small

intestine and converted into glucose. Glucose is stored mainly

in the muscles and the liver as glycogen, a chain of multiple

glucose residues, but is also available for immediate use if necessary

(14). The body can store about 600 grams of glycogen, with

500 grams stored in the muscles and 100 grams stored in the

liver (14), totaling 2,400 Kilocalories of glycogen stores in the

body.

During a long distance running race when glycogen

stores are depleted, ingested or exogenous carbohydrates

are quick sources of energy for the muscles, available

once absorbed by the muscles from the blood. Runners

typically consume gels, which are a concentrated dose of

glucose throughout long distances races. Most runners solely

consume gels, that contain ∼25 grams of carbohydrates (100

Kilocalorie).

Taking in nutrition during the race allows a runner to move

longer before glycogen stores are depleted and they’ve reached

some anaerobic energy threshold where they must walk (23). It

is known that the muscles absorb plasma glucose at a maximal

rate of 1–1.7 g/min (14, 25, 26) depending on the sugar mixture.

This means that while it may only take 3–5 min for some of the

carbohydrates from a 100 calorie intake to reach the muscles, it

can take ∼25 min for all of the carbohydrates from the package

to be absorbed. While there is no limit to how many carbohydrates

a runner can ingest, too many carbohydrates consumed in a short

time will result in digestive discomfort, forcing the runner to slow

down (23).

2. Methods

We build on the current models by adding in some novel

terms as well as completely reformulating the energy equation.

Our overall goal is to determine the best nutrition and pacing

strategy to use when running a marathon (or other long distance

race) in order to finish in the shortest amount of time. Our

first objective, is to develop a runner model that takes into

account fuel allocation depending on percentage VO2 max, fuel

intake (in-race nutrition), as well as the force which is applied

to the ground by the runner, by using a system of differential

equations. Next, we would like to cast this as an optimal control

problem to determine the optimal velocity and in race nutrition

consumption profiles through control of propulsion force and

nutrition input.
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2.1. The model

Our system of ordinary differential equations for:

V , Velocity, EF , Fat Energy, EG, Glycogen Energy, N, Nutrition

where V will be measured in meters/ min, EF and EG in KJ/Kg, N

in KJ, and our control force f (t) in meters/min2, are given by:

dV

dt
= f (t)−

V

τ
(3)

dEG

dt
= c3j(N)− af (t)Vglyc(V) (4)

dEF

dt
= − af (t)V(1− glyc(V)) (5)

dN

dt
= s(t)− dN − j(N) (6)

where a = 1
1000 . Figure 3 is a diagram of our system, including the

velocity compartment. Velocity is not directly connected to any of

the other compartments via energy transfer, but its impact on the

two energy compartments can be seen in Equations (4) and (5).

Our nutrition intake strategy is the fuel source function, s, entering

in the nutrition compartment.

In Equation (3), there is a propulsive force per unit mass f (t),

and |
V(t)
τ

| is a resistive force per unit mass, with τ as a constant of

proportionality. The initial condition for this equation is:V(0) = 0,

as we start from rest, and we have a constraint on the force, 0 ≤

f (t) ≤ fmax. This is the same equation that Hill, Keller, and others

used for velocity (6, 7, 13, 27, 28).

As energy is available from two different processes in the

body, anaerobic and aerobic metabolisms, we consider two energy

sources. Thus, our total energy, E, can be written as E = EF + EG.

The human body has large stores of fat for use as energy, but

the body prefers to use glycogen when moving at higher rates;

thus, a higher percentage of fuel usage comes from fat at lower

velocities. As runners typically take gels that are mainly sugar

(not a significant source of fat), we assume there is no input into

the fat energy compartment. The body expends energy at a rate,

f (t)V (work done). As we are allocating the energy usage between

the two sources, our fat energy differential Equation (5), and

glycogen energy differential Equation (4) have glycolitic function,

glyc(V), a fuel allocation function of one’s glycogen energy through

the anaerobic and aerobic pathways dependent on the quotient

of one’s instantaneous velocity, V , and their velocity, VVO2max,

at 100% VO2max, written V
VVO2max . Thus, 1 − glyc(V) accounts

for the fuel allocation function of one’s fat energy through the

aerobic pathway dependent on velocity compared to one’s velocity

at 100% VO2max.

It is difficult to know one’s current percentage VO2max;

however, one could know a priori their velocity at 100% VO2max, a

term known as VVO2max (29). Billat and Koralsztein (29) showed

that one’s VO2maxand their velocity at VO2max are linearly

related. As velocity is more easily computable, this relationship

is used in our model for determining the allocation of energy at

different velocities compared with one’s velocity at VO2max. To

approximate glyc(V), we first described it as a piecewise continuous

function on intervals of V
vvmax based on Figure 2 from (14) and

then approximated that function by a function that smooths the

points where the derivatives do not exist (described in detail

later).

Equations (4) and (5) have a convex combination of this

function and the fat allocation function of 1 − glyc(V), as the

total work rate must equal f (t)V . We obtained the piecewise

graph for glyc(V) from Figure 2 as well as from the literature (14).

Figure 2 gives a good estimate of how the body uses fat energy vs.

glycogen energy.

We assume that the anaerobic pathway is not used until after

60% VO2max, and that the energy from fat linearly decreases to 0

by 100% VO2max at which point the anaerobic system, and thus

the glycogen compartment, is solely used. Figure 4 is a graph of

three different possible glyc(V) functions that we obtained from our

Figure 2.

Recall, that while what percentage of one’s VO2maxat which

they are running is explicitly in the glyc(V) function, VO2max

is not the only value that effects our fuel utilization. Lactate

capacity (VLa), also impacts one’s fuel utilization as described

earlier. We account for differences in VLa, by considering

different structures for our fuel utilization function, glyc(V). The

function is still dependent on percent VO2max, but varies in fuel

utilization at particular percent VO2maxvalues. Figure 4 shows

three different glyc(V) functions corresponding to three different

lactate capacities. We use these three different glyc structures

to represent runners who have a low VLa (good), an average

VLa (avg), and a high VLa (bad). The runners with a low VLa

(good) are able to run at a faster pace than those with a higher

VLa without accumulating as much lactate in their muscles.

The VLa is a feature that sets the best professionals apart from

one another.

In Equation (4) for glycogen energy there is a source term with

j(N) that comes from the nutrition differential Equation (6). Our

j(N) term is a nutrition consumption function increasing energy

available in the muscles in the form of glycogen, but at a bounded

rate: j(N) = c4N with rate constant c4 = 1
m , the inverse of the

runners mass. Our initial conditions for our two energy equations

are EG = 144 Kilojoules per unit mass, assuming the runner has

full glycogen stores, and EF(0) = 3, 439 Kilojoules per unit mass,

dependent on the runner’s body fat percentage. Both of the energies

must stay non-negative, and dictate the choices of f (t) and the

corresponding V. Thus, in particular, if EG = 0, f (t) = 0. This

is not optimal and would be avoided in an optimal race until the

very end.

Further, in our nutrition energy differential equation, Equation

(6), s(t) is a source term from nutrition input such as a gel. Each gel

is roughly 100 Kilocalories (4.18 Kilojoules). The addition of the

source term slows the rate at which EG decreases. The−dN term in

the nutrition differential equation represents the nutrition used for

basic bodily function, not available to the muscles for energy usage.

The initial condition for this equation is N(0) = 0 as we assume

there is nothing in this compartment when the race starts. Model

parameters can be found in the results section in Table 2.

2.2. Optimal control

Our second goal is to determine the best strategy to use when

running a long distance race in order to finish in the shortest
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FIGURE 3

Energy-nutrition-velocity diagram.

FIGURE 4

Three different glyc functions corresponding to runners with a good, average, or bad VLa.

amount of time. Casting this as an optimal control problem, we

could think of this as a problem of maximizing the distance over

a fixed time interval or equivalently [proved in (6)], as a problem of

minimizing time over a fixed distance. Solving the minimum time

problem requires an extra isoperimetric constraint; thus, we choose

to solve the maximum distance problem. We have two controls in

our problem: propulsive force, f (t), and fuel intake s(t).

We will determine the optimal control f (t) for each of the

intake strategies and then optimize over those intake strategies.

As there are many philosophies within the running community

about how often you should take nutrition during a race, we

test 15 different nutrition strategies, S = {s0, s1, s2, . . . , s15},

shown in Table 1. For the maximum distance problem, assuming

we have a nutrition strategy, si, we maximize the objective

Frontiers inNutrition 06 frontiersin.org
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TABLE 1 Scenarios of nutrition intake during a marathon race.

s0 ,s1 ,s2 ,s3 , s4 ,s5 ,s6 , s7 100 Calorie gels spread evenly 0, 1, 2, 3, 4, 5, 11,

and 24 times throughout the race.

s8 One 100 Calorie gel taken toward the beginning of

the race.

s9 One 100 Calorie gel taken toward the end of the

race.

s10 Four 100 Calorie gels: two taken early in the race,

two taken toward the end of the race.

s11 Four 200 Calorie gels spread evenly throughout

the race.

s12 , s13 250 Calorie gels spread evenly 2, 4 times

throughout the race

s14 Ten 50 Calorie gels taken evenly throughout the

race.

s15 One 250 Calorie gel taken, one 100 Calorie gel

taken, one 250 Calorie gel taken.

functional:

Ji(f ) =

∫ T

0
V(t)dt (7)

for si ∈ S (a finite set of nutrition strategies),

where

S = {s1, s2, ..., sN ∈ L2(0,T)|0 ≤ si(t) ≤ smax, a.e., i = 1, 2, ...,N}

we determine an optimal control depending on si, and then

optimize over our set S. We obtain continuous velocity and

energy profiles corresponding to our control force and then

optimize over discrete si. We solve the following with fixed

T:

max
S

max
Ai

J(si, f ) = max
S

max
Ai

∫ T

0
V(t)dt (8)

with bounded controls: 0 ≤ f ≤

fmax, 0 ≤ si(t) ≤ s(t)max, and control

set

Ui = si × {f ∈ L2(0,T) | 0 ≤ f (t) ≤ fmax, a.e.}

subject to state constraints: 0 ≤ EF(t) 0 ≤ EG(t), for t ∈

[0,T]

initial conditions: V(0) = 0, EF(0) = K, EG(0) = 144, N(0) = 0,

and state Equations (3)–(6).

Our admissible control set for si ∈ S is

Ai = {(si, f ) ∈ Ui |EF(t) ≥ 0,EG(t) ≥ 0, for t ≥ 0}

Note that V(t) and N(t) are non-negative, from Equations (3)

and (6). The proof of the existence of an optimal pair (s∗i , f
∗) can be

found in the Supplementary material and (30).

Using Pontryagin’s Maximum Principle (PMP) (31), we were

able to understand some features of the optimal control f ∗ with

corresponding s∗i . For most of the time interval, the optimal control

is singular, meaning that the objective functional is flat with respect

to the control. See the Supplementary material for some ideas

about the necessary conditions satisfied by the optimal control

f ∗ given a nutrition strategy s∗i . This “singular" feature led us to

our numerical solution algorithm as explained in the methods

section (32). We discretize the system in order to implement an

approximate solution to the optimal control problem, including a

penalization term known to reduce the noise in optimal control

problems with singular solutions (33).

2.3. Discretization

Over time, optimal control problems have been solved and

approximated using many different numerical techniques. There

are many numerical examples in mathematical biology that use

the Forward Backwards sweep method (34, 35). Programs such as

GPOPS and PASA have been developed to handle particular types

of optimal control problems (36, 37). MATLAB has a minimization

tool, fmincon, that is built to handle a variety of optimization

problems. We tried to use the forward backwards sweep method,

the packages GPOPS and PASA, as well as fmincon in the

continuous setting; however, none of these methods were robust

enough to handle this particular problem. Thus, we discretized

our problem and used fmincon, inputting our differential equation

system in through equality constraints.

We began the discretization of our optimal control problem

by partitioning our time interval, [0,T] using M+1 equally spaces

nodes, 0 = t0 < t1 < · · · < tM = T. We used a left

rectangular approximation for the objective functional, obtaining

the maximization problem:

max
f

J(f ) = max
f

[

M−1
∑

k=0

hVk] (9)

where h = T
M with bounded controls: 0 ≤ fk ≤ fmax = 36, 000

meters/min2, and f = (f0, . . . , fM−1), with s = (s1, . . . , s15) ∈ S,

and 0 ≤ si(tk) ≤ smax for all 0 < k < M − 1 and with initial

conditions: V0 = 0, EF,0 = K, EG,0 = 144, N0 = 0.

Next we use a forward Euler approximation for the state

equations and obtain:

Vk+1 = Vk + h(fk −
Vk

τ
) (10)

EF,k+1 = EF,k + h(−afkVk(1− glyc(Vk))) (11)

EG,k+1 = EG,k + h(c3j(Nk)− afkVk(glyc(Vk))) (12)

Nk+1 = Nk + h(s(tk)− dNk − j(Nk)) (13)

We also now have the discretized version of J(Nk): j(Nk) =

c4Nk . We discretized our glyc function, glyc(Vk), by using a

spline interpolator in MATLAB, described in the next section,

and dropped in each ith nutrition scenario, sk, corresponding to

the time points each nutrition strategy designated. To optimize

our system, while satisfying the constraints, we use fmincon as

the minimization solver on the discretized system, using a left-

rectangular integral approximation for the objective function.
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“Fmincon is a gradient-based method that is designed to work

on problems where the objective and constraint functions are both

continuous and have continuous first derivatives" (38), but due

to our constraints and nutrition input, it was helpful to write

it as a discrete system. Fmincon is set to accept: the objective

function, a starting guess for the control vector, X0, inequality linear

constraints, equality linear constraints, lower and upper bounds for

the state variables, non-linear inequality and equality constraints, as

well as options that allow the user to change the MATLAB settings

for various features or provide the system with more information.

Our discretized objective function was originally

J = −δ

T−1
∑

i=1

Vk

whereVk occurs in ourX vector as entriesX(3n+1 : 4n) and δ = T
M

where T is the length of the race and M is the number of mesh

points, including t = 0, but we will modify this objective function

to include minimizing the total variation in f . In order to modify

the objective function to include minimizing the total variation,

we added two additional state variables, ι and ζ (39), such that the

variation in two time points in f is written as

f (i+ 1)− f (i) = ζ (i)− ι(i) .

Our starting guess vector, X0, that gives an initial placeholder

for our state vector was: X0 = [

T
︷ ︸︸ ︷

36000 . . . 36000

6T−2
︷ ︸︸ ︷

0 . . . 0]. Note that

each state vector variable is a column vector of length (T × 1) and

the two vectors used for variation penalization, ζ and ι are of length

(T − 1)× 1 due to their structure. Our initial condition vector was:

[f (1) EF(1) EG(1) V(1) N(1) ζ (1) ι(1)] = [36000 3439 144 0 0 0 0] .

As we do not have any inequality constraints and our equality linear

constraints were written as: Aeqx = beq, whereAeq is a n×nmatrix,

x is our solution column vector of length n × 1, and beq, of length

n× 1 is the righthand side of our equality linear constraints.

As the velocity and nutrition equations are linear, we input

those as our linear equality constraints. Our two energy equations

are non-linear and thus are input as non-linear equality constraints.

One important feature for our problem is our energy constraints,

EG(i) ≥ 0 and EF(i) ≥ 0 for every i ∈ [0,T]. With our problem

set up in its current format, we are able to simply input our lower

bounds for our fat and glycogen energies as 0.We input the runners

physical force, velocity, and energy capacities as appropriate upper

bounds. We also give our variables appropriate initial conditions

for the runner’s initial fat and glycogen energies, 0 velocity, and 0 in

race nutrition.

In our glycogen energy equation we have a function we call

“glyc" and its counter part “1-glyc" in our fat energy equation. We

approximated these from a fuel utilization. Figure 4 adapted from

one in Stipanuk and Caudill’s textbook (14), by creating two vectors

of points where one vector represents the percent VO2maxand the

other represent the percent glycogen used. To smooth out our glyc

function, we used a function in MATLAB called spline. Spline is

a cubic piecewise polynomial interpolator that is continuous and

twice differentiable everywhere. It takes the two vector of points

you supply it with and creates n−1 cubic polynomials that connect

at the supplied x vector given.

One common issue in control problems where the control

has a singular sub-arc is variation. Ding and Lenhart (40) as well

as Caponigro et al. (41) both penalized their original objective

functional to regularize the chattering. In order to obtain a

reasonable trajectory for the runner, we chose to penalize the

objective functional by adding a term to our objective functional

that bounded the total variation (33, 39). This technique, developed

by Hager and Aghaee (33), has been shown to reduce the noise in

optimal control solutions. Adding this penalty, not only amends the

objective function to include penalizing for variation, it adds a 5th

constraint to our problem. By adding this penalty we are decreasing

the total variation in the solution trajectory. We can express the

total variation, V(f ), in the control (39) as:

V(f ) = sup

N−1
∑

i=0

|f (i+ 1)− f (i)|

where the supremum is being taken over all possible partitions of

our time interval. Due to the difficulty of differentiating absolute

value functions we decompose the absolute value term, using two

new T − 1 vectors ζ (i) and ι(i), whose entries are non-negative.

Each entry of ζ (i) and ι(i) will be defined as

f (i+ 1)− f (i) = ζ (i)− ι(i)

We can think of this decomposition as satisfying the following

two conditions (39):

If f (i+ 1)− f (i) > 0, then ζ (i) = f (i+ 1)− f (i) and ι(i) = 0;

If f (i+1)− f (i) ≤ 0, then ζ (i) = 0 and ι(i) = −(f (i+1)− f (i)),

where ζ (i) ≥ 0, ι(i) ≥ 0 and either ζ (i) = 0 or ι(i) = 0

Appending this penalty to the objective function we have:

J = −δ

T−1
∑

i=1

V(i)+ p

T−2
∑

i=1

(ζ (i)+ ι(i))

and resulted in the extra linear equality constraint

ceq5(i) = −f (i+ 1)+ f (i)+ ζ (i)− ι(i),

The coefficient p of our bounded variation scales the degree

to which we penalize variation. If p is large, there is a more

emphasis being placed on minimizing the variation of the control

variable, force.

3. Results and discussion

3.1. World record optimal results

We found that using a direct discrete optimization without

adjoint functions, fmincon, was the most efficient approximation

method and captured all the dynamics. Table 2 shows the constants

and coefficients with their scientific meaning and their units. Five

parameters that can be chosen depending on the individual are:

EG(0) (Initial glycogen energy), mass, VLa type, nutrition uptake

rate, c4, and VVO2max, shown at the end of Table 2.
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TABLE 2 Parameters used for world record holder.

Parameter Value Unit Meaning

T 120 minutes Length of race

M T + 1 minutes Number mesh points

including t = 0

τ 1/60 min Internal resistant force

constant

d 0.005 min−1 Loss of nutrition

sm 1/3, 600 (seconds)−2 Seconds to minutes

conversion

c3 1/m kg−1 Mass conversion

constant

p 0.5 unitless Variation penalty

coefficient

a 1/1, 000 kilojoules/joules Unit conversion constant

δ 120/121 T/M Discretization parameter

m 55 kilogram Runner mass

EG(0) 144 kilojoules/kg Initial energy at start of

race

c4 1/6 min−1 Nutrition uptake rate

VVO2max 402 meters/min Velocity at 100%

VO2max

VLa type Good Unitless Good, average, bad in

glyc function

We first chose to simulate the optimal race of the current

world record holder. In the attempt to break the 2 h marathon

barrier, experts collaborated to optimize a set of runners VLamax,

VO2max, general running economy, nutrition plan, as well as pick

the perfect race course for these runners. The parameter values for

our simulation can be found in Table 2. During Eulid Kipchoge’s

race to beat the 2 h marathon barrier, his nutrition consisted of

hydrogels by Maurteen. He consumed 100 g Carbs per hour (which

would be four baked sweet potatoes in solid food for reference)

(42), although there is no comment on his exact feeding regime.

This amount of carbohydrates is pretty high for a runner to tolerate

during a marathon due to the increased gastrointestinal movement

in running. This number of carbohydrates is more in line with what

cyclist would consume during their longer races. This is in contrast

to the practice most runners follow of taking about 50 carbs per

hour, an area of research that is continuously being studied by

nutrition companies.

While three different VLA types are shown in Figure 4,

the “good" glyc was picked to reflect appropriate values for a

professional (world record breaking) runner. Plots of the state and

control variables are seen in Figure 5. In Figure 5 we see that the

runner’s velocity rapidly increases from 0 to reach an approximately

constant velocity of 357 m/min, that they can maintain for the

entirety of the race. The plot of the runner’s propulsion force,

similar to the runner’s velocity plot, shows the runner’s force

quickly increasing from 0 m/min2 to a constant force of 2.14 ·

104 m/min2. The runner’s fat energy, EF , decreases linearly, from

3, 439 KJ/Kg to 3390, nowhere near the energy constraint, EF ≥

0. The runner’s glycogen energy decreases from its initial value

of EG(0) = 144 KJ/Kg to its final value of ∼0 KJ/Kg. We see

bumps in this subplot corresponding to the nutrition fueling. In

this simulation we assumed that the runner took four 200 calorie

gels at t = 20, 46, 71, 97, which can be seen in the nutrition

subplot in Figure 5, and the runner took 120 min to complete the

distance.

The VVO2max was set to be 402 meters per minute, as this

is a reasonable assumption for a world class runner. The fastest

marathon ever run thus far is 1:59:40. In the simulation from our

model, the runner completes 42.5 kilometers in 120 min, which

is equivalent to the runner running a 1:59:09 marathon. This is

only a 0.4% difference between the current world record and the

results from this model. This difference in average pace would be

the runner running 4:33 min per mile instead of 4:34 min per

mile. Note, that although our results are extremely close to the

current world record, parameters could be changed to address a

runner having an even better VLa, or better running economy. We

also didn’t explicitly have “shoe type" in our model but a better

shoe could result in better running economy which would result

in a better VVO2max. It is believed that the world record time

will continue to get faster over time. For an optimization runner

model, the results from the world record marathon run were the

most ideal comparison; however, to see the model’s robustness,

we vary a variety of parameters and consider several potential

scenarios. We first considered the scenario of no in-race nutrition

consumed, then various nutrition scenarios, before concluding by

varying other inputs.

3.2. Results: varying runner dependent
parameters

A runner’s in-race nutrition, VLamax, and their VO2max

are the driving factors behind a runners performance, and thus

it is important to see how changing these impacts the results.

First, analyzing nutrition, there are several nutrition strategies

over which we are optimizing, three of which include: simulating

Kipchoge’s known race intake, a standard intake strategy used by

average runners, as well as taking no nutrition labeled s0, from

Table 1, as some runners complete marathons without taking in-

race nutrition. The parameters used for the 15 different nutrition

strategies are all the same as those used in Table 2, except, T = 135,

which also changes δ = 135
136 .

We analyze the percentage improvement from using the

determined strategy vs. consuming no carbohydrates. As stomach

sensitivity to food intake during the race has not been included in

this model yet, the results skew in favor of taking as much nutrition

in as possible. Table 3 shows the distance completed with each of

the tested strategies. In comparing a strategy of taken 0 nutrition

vs. five 100 cal gels, the runner is able to run between 0.5 and 0.7

kilometers further per each additional gel 3, which translates to

∼1.5% increase in distance per gel. By taking five 100 calorie gels

instead of taking no nutrition, the runner has a 7.75% improvement

in performance. In Figures 6, 7 we see similar strategies in the force

and velocity subplots; however the propulsion force and therefore

the velocity the runner is able to maintain, is significantly higher for
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FIGURE 5

World record marathon simulation, with four 200 calorie gels.

TABLE 3 Total distance achieved with different nutrition strategies.

Strategy Distance (km) Strategy Distance (km)

s0 40.0 s8 40.7

s1 40.7 s9 40.5

s2 41.4 s10 42.5

s3 42.0 s11 45.1

s4 42.6 s12 43.2

s5 43.1 s13 45.6

s6 46.0 s14 43.1

s7 52.9 s15 43.7

the runner who took five 100 calorie gels than for the runner who

took no nutrition.

We were also interested if there would be any differences in

performance if the runner took in the same amount of calories, but

distributed differently. In s5, where the runner took in 500 calories

by taking five 100 calorie gels, the distance achieved was 43.1 km.

In s12 where the runner takes in two 250 calorie gels the distance

achieved was 43.2 km. Lastly, in s14 where the runner consumes ten

50 calorie gels, the runner traveled 43.1 km. Regardless of the way

in which the runner consumes the same amount of calories, they

travel relatively the same distance. Perhaps this would be different

if there were a mechanism in the model that discouraged eating too

much at once or eating later in the race.

A typical marathon runner, may consume five 100 calorie gels

throughout a race. This is in contrast to the intake of professionals

who are taking up to 100 carbohydrates an hour, translating to

400 calories an hour. A runner finishing the marathon in about

2 h would take in 800 calories, which is simulated with strategy

s8, in Figure 5. In this simulation the runner is able to run 1.5

km further when consuming 800 calories instead of 500 calories,

an improvement of 3.5%. In both simulations we see similar

trajectories; however, the runner in simulation s8 is able to run

at a higher average speed throughout the race, yielding the larger

distance ran in the same amount of time. These results were

expected as increasing the energy the body is able to use, should

result in greater distance traveled. This shows the importance in

runners being able to take in as many calories during a race as

possible. A runner can increase the amount of calories they can

consume during a race by taking nutrition that is easier to digest,

taking water with the nutrition so that the salinity balance of the gut

is kept, and practicing taking in nutrition during long training runs.

The last nutrition strategies we considered were, s6, s7, where

the runner takes eleven and twenty-four 100 calorie gels throughout

the race, respectively. These scenarios are unlikely to occur as a

runner would struggle to consume this many gels without getting

sick. We completed simulations with nutrition strategies s6 and s7
to see if the model would organically capture the effect of a runner

taking in too much nutrition. As seen in the results from Table 3,

this effect was not captured and the simulations simply show an

increase in energy as more gels are added, and no negative side

effects. In the simulation where the runners consumes 11 gels, they

are able to run 46.0 km, while in 24 gel simulation the runner travels

52.9 kms. Simply put, with a fixed time race, we see an increase in

distance traveled for every gel that is taken. Taking in eleven and

certainly twenty-four 100 calorie gels throughout a race wouldmost
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FIGURE 6

Marathon simulation with three states and optimal force with no gels.

FIGURE 7

Marathon simulation with four states and optimal force with five 100 calorie gels.

certainly upset the runners stomach and all of those carbohydrates

would struggle to make it to the muscles due to imbalances in the

stomach. The body does not handle the amount of accumulated

energy in the nutrition compartment without a negative reaction.

In future work we plan to handle this issue.

Table 4 shows the distances achieved using different VLa types

across two different nutrition strategies. The VLa types labeled

as “good", “average", and “bad" correspond to the glyc functions

shown in Figure 4. For these runs, we tested the distance for the

case where the runner takes in no nutrition during the race, as well

as the runner taking in four 100 calorie gels.

In the three different simulations with varying VLa’s, the runner

consumes four 100 calorie gels during the race. In these results,

the importance of runners training their body’s to have lower
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TABLE 4 Total distance achieved by runners with different VLa types

across two nutrient strategies.

VLa type Nutrition Distance (km)

Good 0 calories taken 41.7

Average 0 calories taken 40.0

Bad 0 calories taken 37.8

Good Four 100 calorie gels 44.1

Average Four 100 calorie gels 42.6

Bad Four 100 calorie gels 40.5

maximum rate production of lactate for a lo ng distance runner is

evident. The runner with the good VLamax type ( i.e. the runner

whose glyc function was made to use fewer carbohydrates than

fats than the runners with average or bad VLa’s) is able to run

much further in the same amount of time. There is an 8.9–10.3%

improvement in the runner with a good VLamax as compared

with a bad VLamax depending on if the runners took in nutrition

as well. We see the same race structure regardless of the VLa

type, with both simulations showing the runners ending with ∼0

glycogen energy, but similarly to the simulation where the runner

takes more nutrition, the runner with the higher VLamax is able

to maintain a higher force. The runner with a good VLamax can

maintain a force of 1.97 × 104 m/min2 throughout the race, while

the runner with a bad VLamax was only able to maintain a level

force of ∼1.81 × 104 m/min2. Some of these results can be seen in

Table 5.

To see optimal race strategies for individuals of all levels, we

also completed scenarios including varying: the length of race, T,

the runners mass, m, the initial glycogen energy, EG(0), and the

runner’s VVO2max. We use many of the same parameters from

Table 2, but change the weight of the runner, m, length of race, T,

as well as the VVO2max of the runners. Note that c3 and M also

vary, but do so due to their relationship withm and T, respectively.

Runners of different levels will finish the marathon in different

lengths of time, thus the need to vary T. Also, runners of different

abilities can have significantly different VVO2max values and VLa

types, and therefore change depending on the individual. Table 5

shows the distances achieved for our different levels of runners over

4 time intervals.

To see the versatility of the model for individuals with different

VLamax and VO2max inputs, we use the same parameters from

Table 2, but vary the glyc function when analyzing the impact of

Vlamax and vary the VVO2max, along with associated parameters,

when analyzing the impact of VO2 max.

For runners who are running for 155 and 180 min with

VVO2max’s of 320 and 250, respectively, the results are realistic.

The runners run at around 85% of their VO2max which is

the suggested level by experts, and the impact of taking in-race

nutrition compared without nutrition is substantial as expected.

The runner who takes 180 min to finish the race and has an

average VLamax has a 4% improvement when they take nutrition

vs. when they do not. One issue can be found in the result from

the scenario where the runner had a race time of 215 min and a

bad VLA type (Table 5), as these results show this runner to be

running at an unrealistically high percentage of their VO2max. This

is most likely due to the fact that our model does not penalize a

runner for running too fast, as long as they have enough glycogen

energy. Recall, that our only constraints are that the energies have

to be above 0, and that there are some upper bounds on forces

and velocities. As the average finish time for a marathon such as

the Berlin marathon is between 4 and 5 h (43), it is important

for future work to address this. We plan to amend our current

model such that the runner is not only being constrained by total

amount of glycogen energy, as this limitation impacts the models

accuracy for runners moving at slower velocities, as well as the

model’s ability to predict realistic optimal finishing times for shorter

races.

4. Conclusions and limitations

To understand the impact of nutrition we formulated our

model such that in-race nutrition could be accounted for in

the energy differential equations. We created a marathon model

described by velocity, fat energy, glycogen energy, and in-race

nutrition differential equations. This marathon model better

represented the body’s energy systems and included nutrition

pulses throughout the race. After formulating an optimal control

problem with this system of differential equations, and with

the goal to maximize the distance achieved over a fixed time

interval, we proved the existence of an optimal control. We

determined a discretized approximate solution to the associated

optimal control problem using MATLAB’s fmincon optimization

software, that included a bounded variation penalty on our

control force. We then optimized over a finite set of in-

race nutrition strategies, obtaining a solution to our model for

each strategy.

We analyzed the complicated role that in-race nutrition input

has on a marathon runner as well as energy allocation dependent

on the percentage of one’s VO2max during running. Expressing

the dynamics of the body’s energy throughout a running race as

two differential equations, that represent fat energy and glycogen

energy, with usage determined by an allocation function dependent

on the ratio of one’s velocity compared to their VVO2max, is

a valuable contribution to the field of runner models. Prior to

our model, all energy dynamics in runner models, were based on

available oxygen per unit mass, which does not allow for one to

include in-race nutrition energy. As a runner has a much smaller

storage supply of glycogen than fat, and the body prefers to use the

glycogen at high levels of exertion, the in-race nutrition consists

of essentially only carbohydrates. These factors required us to split

up the energy into the two compartments and to use the allocation

function. While we obtained an optimal solution for an expert

runner, we also individualized our model such that it can be used

to determine a race strategy for any type of runner as long as they

know their weight, VO2max and VLamax type.

To obtain our approximate solution to the optimal control

problem of maximizing distance for a fixed time, we discretized

our problem, and then optimized, using Matlab’s optimizing tool,

fmincon. We included a penalization for variation in the objective

function. The variation penalization was extremely important and

the solution structure was very sensitive to this penalization. With
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TABLE 5 Total distance achieved with different levels of runners and four lengths of time.

Race time (min) VVO2max (m/min) Weight (Kg) VLa type Nutrition (Cals) EG(0) (KJ/Kg) Dist. (Km)

155 320 73 Avg 4 100 cal gels 150 42.9

155 320 73 Avg 0 100 cal gels 150 40.1

155 320 73 Good 4 100 cal gels 150 44.4

155 320 73 Bad 4 100 cal gels 150 41.6

180 250 80 Avg 0 100 cal gels 140 41.0

180 250 80 Avg 4 100 cal gels 140 42.7

215 200 80 Bad 0 100 cal gels 140 41.6

210 200 80 Avg 4 100 cal gels 144 44.3

too small of a variation penalty coefficient, the runners purposive

force was often erratic and non-optimal. We found that the optimal

trajectory for marathon runners was to run at a steady state velocity

for the majority of the race and take in at least four 100 calorie

supplements spread evenly throughout the event. Over a variety

of runner’s individual parameters, this racing strategy was optimal.

A runner can improve their performance with consistent and

targeted training to improve their VV02max and their VLamax,

(which correlates to having a better glyc function) which can in

turn drastically improve the their performance potential. When

we approximated a solution to our problem for a runner with the

parameters of the current world record holder in the marathon, our

approximation was quite good with an error of 0.4%.

Our contributions to the field also include: formulating a

system that includes energy allocation dependent on the ratio

of their velocity and their velocity at VO2max, adding in-race

nutrition to a runner model, and approximating a solution to

the optimal control problem, amended to include a penalty

bounding the variation of the control. As we have found

that taking more carbohydrates throughout the race improves

performance, it is natural to believe that one should take in as

many carbohydrates as possible; however, this is unrealistic as

the stomach’s digestion slows through a running race and also

struggles to tolerate high volume of carbohydrates in the form of

glucose and fructose. Our initial marathon model does not account

for this fact and our results showed that a runner’s performance

increased linearly with each gel they consumed, over the set of

reasonable nutrition scenarios that were tested. To account for this

limitation requires additional work, which will be presented in our

next paper.

Upon executing different scenarios for ourmarathonmodel, we

realized that our model was not appropriate for races between a

sprint and a half marathon. In these scenarios we obtained results

that were much faster than has been accomplished by humans thus

far. These results came from only having energy constraints in

model, when in reality, not all the energy in the body is available

for use, due to the dependence on lactate production. An extended

model with the effects of lactate will be presented in our followup

paper. We also could add in some components from Kim et al. (9)

for a more granular approach that includes tissue/organ subsystems

and hormonal controllers to predict glucose homeostasis during

moderate intensity exercise.

We view our model as a strong building block on which to

add key features. We acknowledge some limitations of our model

and the possibility to include more features like race terrain,

temperature, humidity, and even loss of body weight during the

race (44–47). As an important next extension, we would like to

incorporate a key feature, hydration to our model. Hydration levels

and fluid overload can be a huge factor for a runner (43, 47–

49). Low hydration can negatively affect the rate at which the

body uptakes the nutrition. One possibility could be changing

our nutrition uptake function to represent low, medium, or high

levels of hydration. Building this feature in would be the next step

in advising runners on optimal intake during running races.This

work does not aim to capture every related race variable, but will

hopefully be a building block for future runner models.
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