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AbstractÐ Autonomous marine vehicles are deployed in
oceans and lakes to collect spatio-temporal data. GPS is often
used for localization, but is inaccessible underwater. Poor
localization underwater makes it difficult to pinpoint where
data are collected, to accurately map, or to autonomously
explore the ocean and other aquatic environments. This paper
proposes the use of multifidelity Gaussian process regression to
incorporate data associated with uncertain locations. With the
proposed approach, an adaptive sampling algorithm is devel-
oped for exploration and mapping of unknown scalar fields.
The reconstruction performance based on the multifidelity
model is compared to that based on a single-fidelity Gaussian
process model that only uses data with known locations, and
to that based on a single-fidelity Gaussian process model that
ignores the localization error. Numerical results show that
the proposed multifidelity approach outperforms both single-
fidelity approaches in terms of the reconstruction accuracy.

I. INTRODUCTION

With increasingly complex mobile robotic systems, au-

tonomous exploration has grown into a linchpin problem

with varying complexity. It has applications including local-

ization and mapping [1], search and rescue [2], multi-target

search [3], and adaptive sampling [4]. When exploring a

spatial field, Gaussian process (GP) regression is a common

tool used to efficiently reconstruct the field as a function

of the position without measuring every point. It enables the

development of sampling strategies that help decide the most

informative points to sample based on previously observed

data. These strategies can be beneficial in many marine

applications where vehicles are deployed to collect spatio-

temporal data such as temperature, fish population density,

or algae concentration.

When a vehicle performs underwater sensing, poor local-

ization (GPS signal is degraded underwater) makes it difficult

to pinpoint where the data are collected. The localization

uncertainty also makes it challenging to accurately map

and autonomously explore the underwater environments. In

many cases, the position of the vehicle has to be estimated

with dead reckoning. Standard Gaussian process regression

assumes precise inputs (position and time for a spatio-

temporal process), which is no longer directly applicable.

Prediction with localization uncertainty can be obtained as

a posterior predictive distribution using Bayes’ rule, but it
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generally has no analytical closed-form solution and must

be approximated [5], [6].

Several researchers have proposed different methods for

handling uncertainty in the inputs of a GP. In [5], Monte

Carlo sampling and Laplace’s method were proposed to

approximate the posterior predictive statistics of GP regres-

sion for sensor networks with observations under localization

uncertainty. The authors of [6] proposed an algorithm that

combines Jacobi over-relaxation and discrete-time average

consensus for use for distributed sensor networks under

localization uncertainty. In [7], GP regression models where

inputs are subject to measurement errors were investigated

and a kernel that accounts for localization error was in-

troduced. The authors of [8], [9] considered GP training

with noisy input that is corrupted by i.i.d. Gaussian noise.

In [10], the authors proposed an upper-confidence bound

Bayesian optimization algorithm that uses a GP with proba-

bility distributions as inputs to deal with problems where the

measurement and test locations are uncertain. An approach

that uses the expectation of covariance matrices and keeps an

analytical posterior distribution over functions is investigated

to make predictions for uncertain inputs with Gaussian

processes and learn from uncertain training sets in [11]. The

previous works largely consider a constant noise distribution

and do not focus on tasks where a mobile sensor is used to

reconstruct a measurement field.

In this work, we aim to design an exploration algorithm

for scalar measurement fields that accounts for and achieves

accurate reconstruction under localization uncertainty. The

problem is motivated by applications such as finding hotspots

or mapping harmful algae blooms with underwater vehicles

such as underwater gliders [12]±[14] and gliding robotic

fish [15], [16]. These robots have energy-efficient motion

that allows them to operate for long periods of time, but

requires that they spend significant time underwater, which

often causes them to experience large localization errors from

the loss of access to the GPS signal. In many cases, standard

adaptive sampling algorithms based on GP regression pro-

duce sample locations for a vehicle to visit and collect data.

Due to the necessity of vehicles to travel between sampling

locations, intermediate data can be collected along the way.

Most works disregard this data. Even when such data have

associated locational uncertainties, the data may still provide

valuable information and collecting it could save resources

such as time and energy, especially for slow moving vehicles

such as underwater gliders and gliding robotic fish.

The key contribution of this work is a simple, yet effective

approach for incorporating intermediate data associated with
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possibly uncertain locations into a GP. To do this, we propose

an approach that leverages multifidelity GP regression to

model the environment through multiple correlated GPs

associated with different levels of localization uncertainty.

The key novelty in our approach lies in the use of the

multifidelity GP framework based on the accuracy of the

localization.

The idea of multifidelity GPs stem from the works of

[17], [18] and have gained attention in recent years as a

modeling tool [3], [19]±[22]. The original motivation for

the multi-fidelity GPs is to approximate the high-fidelity

data in computationally efficient manner by using surrogate

models whose accuracy drops as they become computation-

ally cheaper. Recent works have shown that the multifidelity

GP model extends nicely to sensing with downward facing

cameras where fidelity is dependent on the vertical distance

from a 2D field being surveyed by a vehicle [3], [22].

A notable difference between the present work and the

multifidelity models presented in [17], [18] is the source of

the difference in fidelity levels. In the aforementioned works

[3], [17], [18], [22], the fidelity level is caused by the output

data from less accurate models or lower quality sensing given

the true input data, whereas the fidelity in the present work

is due to inaccurate input data. The present work seeks to

leverage this lower fidelity input data to aid in efficiently

reconstructing a spatial measurement field. Leveraging the

proposed approach and the ergodic metric [23], we design

an adaptive sampling algorithm and show that the proposed

approach is able to lower the reconstruction error when

measured by the root-mean-squared error.

The remainder of this paper is structured as follows.

Section II gives a brief review of GP regression. Section III

describes the problem and presents the proposed multifidelity

model, followed by a description of an adaptive sampling

algorithm in IV. A simulation study is conducted in the

Section V and concluding remarks are given in Section VI.

II. REVIEW OF GAUSSIAN PROCESS REGRESSION

GP regression is a tool for function approximation that

is commonly used to reconstruct spatial fields. It is popular

due to its basis in Bayesian statistics and ability to not only

predict the value of a function at an unmeasured sample

point, but also provide a confidence level associated with

the prediction.

A GP is fully specified by a mean function m(x) : Rd →
R, and a covariance function K(x,x′, θ) : Rd×R

d×R
p →

R≥0 (the dependence on θ will be suppressed for brevity),

with hyperparameters θ ∈ R
p, for any input vectors x, x′ ∈

R
d. Given a set of input vectors X = [x[1], . . . ,x[n]] and, an

associated set of scalar measurements y = [ν̃[1], . . . , ν̃[n]]T

assumed to have an additive, zero-mean Gaussian noise, the

posterior mean and variance of a Gaussian process can be

predicted at any set of test vectors X∗ = [x∗[1], . . . ,x∗[q]].
The mean µ(X∗) and variance Σ(X∗) at inputs X∗ can be

predicted via the equations (see [24] for more details)

µ(X∗) = m(X∗)

+K(X∗,X)[K(X,X) + σ2
nI]

−1(y −m(X))
(1)

Σ(X∗) = K(X∗,X∗)

−K(X∗,X)[K(X,X) + σ2
nI]

−1K(X,X∗),
(2)

where σ2
n is the measurement noise variance.

In order for the GP to be a generative model of the data,

the hyperparameters θ must be chosen appropriately. If these

are not known in advance, they can be learned by maximizing

the log marginal likelihood of the observations. The optimal

hyperparameters can be found as

θ∗ ∈ argmaxθ∈Rp{−
1

2
yTK−1y −

1

2
log |K|}, (3)

where |K| represents the determinant of K. The objective

function in Eq. (3) can be optimized via gradient methods

[24]. Note that since this is a non-convex problem, the

resulting θ∗ is usually computed using multi-start gradient

ascent.

III. PROBLEM STATEMENT AND MULTIFIDELITY MODEL

A. Problem Statement

We consider an autonomous marine vehicle that moves

in a 3D space. The vehicle is tasked with sampling and

reconstructing a static scalar measurement field using a point

sensor, with resource constraints such as a budget on the

total time or total energy. We assume that there exists a

measurement model

ν̄ = f(x), (4)

where f(x) : Rd → R is an unknown function that perfectly

describes the measurement field with input x. We also

assume that its measurement ν̃ at any x is corrupted by a

zero mean Gaussian noise ϵy with variance σ2
n, i.e.,

ν̃ = f(x) + ϵy. (5)

In this work, the measurement field is assumed to be

invariant of the vehicle’s depth1 and the input x is the

location of the vehicle on the horizontal plane (x, y). The

vehicles often experience localization errors when sensing

underwater due to the loss of GPS signal. We assume that

the robot can perfectly access its location in the horizontal

plane only at the surface of the body of water. When below

the water surface, the vehicle is assumed to only have an

estimate x̂ = x + ϵx (generated from a state estimator

such as a Kalman filter) of its true location x. Here, ϵx
is the estimation error whose variance increases with time

spent underwater after the last surfacing. As a result, the

dataset z = (y, X̂) is collected, where y is defined as in

Section II and X̂ = [x̂[1], ..., x̂[n]]T . Using the dataset z and

hyperparameters θ, an estimate f̂z(x) of the measurement

field f(x) can be constructed using GP regression.

The goal of this work is to design an adaptive sampling

strategy that incorporates measurements along the vehicle’s

trajectory (including those collected underwater) to improve

the reconstruction performance as measured via root-mean-

squared error (RMSE). The problem can be formulated as

1The vehicles are assumed to have motion constraints that require them
to change depth. This is the case for robots such as underwater gliders and
gliding robotic fish.

3297



selecting a discretized trajectory2 X = [x1, x2, ..., xN ] that

minimizes the RMSE between the true field f(D) ∈ R
|D|

and an estimate f̂z(D,X ) ∈ R
|D| of the measurement field

for each x ∈ D given a trajectory X , subject to a finite

budget B on the total available resources for motion, such

as energy or time. Here |D| is the cardinality of the set D
of all positions in a finite space of interest. In practice, we

take D as a uniform grid that sufficiently covers the space

of interest. f(D) ∈ R
|D| and f̂z(D,X ) are column vectors

containing values of the true field f(x) and its estimate f̂z(x)
based on the trajectory X , respectively, evaluated at all points

x ∈ D. The problem can be written as

J(X ∗) ∈ argminXE







√

√

√

√

1

|D|

|D|
∑

i=1

(f(Di)− f̂z(Di,X ))2







subject to
N
∑

i=1

S(xi, xi−1) ≤ B,

(6)

where Di is an element of D, f̂z(Di,X ) is the estimate

of true field predicted at a location Di conditioned on the

trajectory X , and S(xi−1, xi) is the resource consumed while

moving between xi−1 and xi. Note that the trajectory X will

be subject to constraints based on dynamics of the chosen

vehicle, but we forego explicitly discussing these to place

focus on the proposed usage of the multifidelity GP model

and the adaptive sampling algorithm.

When using a zero-mean GP prior with a measurement

field whose value is zero throughout most of the field,

the RMSE can be deceptive. To avoid this issue, δ-RMS

is introduced. δ-RMS is the RMSE disregarding locations

where the magnitude of both the true field and the estimated

field prediction are less than some δ > 0. It is calculated as

δRMS =

√

√

√

√

∑|D|
i=1 Ii(f(D), f̂z(D), δ)(f(Di)− f̂z(Di))2

∑|D|
i=1 Ii(f(D), f̂z(D), δ)

,

where I(ζ1, ζ2, δ) is an indicator function that produces a

column vector whose i-th entry satisfies Ii = (
√

ζ21i > δ)∨
(
√

ζ22i > δ) and ∨ is the logical or operation.

B. Multifidelity Model

One drawback of GP regression is that it assumes the input

x to be precisely known. For this work, the input is perturbed

by the estimation error ϵx. It is shown in [7] that if the

measurements in a GP are accessed with inputs perturbed

by a Gaussian noise, then these measurements correspond to

another GP defined over perturbed inputs. These perturbed

inputs lead to a warped prediction of the measurement field

when using a GP, but the robot needs to accurately predict

the true function ν̄ = f(x) for each location x ∈ D
to effectively plan new sample locations. The estimation

error ϵx corresponds to variable levels of uncertainty on the

2Note that elements of X in R
3, but only the horizontal components are

used in f̂z

position estimate x̂. The dataset z = (y, X̂) can be split into

separate datasets based on the level of uncertainty in X̂. This

motivates the idea of using a multifidelity GP to create the

estimate f̂z(x) for all x ∈ D of the measurement field.

We propose a multifidelity GP representation of the field

whose fidelity levels are dependent on the localization

uncertainty. In the proposed approach, uncertainty in the

location estimates are binned into M + 1 fidelity levels,

where uncertainty increases with the fidelity level, i.e, level

0 corresponds to the lowest uncertainty. Multiple datasets

(yi, X̂i) are constructed where measurements and input

locations are assigned to a particular dataset based on the

uncertainty in the input location. Each dataset will be used

to construct a corresponding Gaussian process and these

GPs are coupled through a nested structure on their means

and covariance. The proposed model is consistent with the

recursive auto-regressive multifidelity model3

fi(X) = ρi+1(X)fi+1(X) + ξi+1(X), (7)

presented in [18], where ξi are bias terms that are indepen-

dent from levels of lower fidelity. The mean of the GP at

each fidelity level is expressed as

µi(X
∗) = ρi+1(X

∗)µi+1(X
∗)

+Ki(X
∗,Xi)Ki(Xi,Xi)

−1(yi − ρi+1(Xi)µi+1(Xi)),
(8)

for some fidelity i, 0 ≤ i ≤ M , where M + 1 is the total

number of GP models considered. The functions ρi(X) are

scaling coefficients relating the outputs yi of the different

fidelity levels and Ki is the kernal for ξi+1. The variance at

each fidelity level is calculated as

Σi(X
∗) = Σ̄i(X

∗) + ρ2i+1(X
∗)Σ̄i+1(X

∗), (9)

where Σ̄i, for i = 0, ...,M is calculated using Eq. (2) and the

appropriate dataset (yi,Xi). The GPs and datasets (yi,Xi)
are assumed to be ordered according to increasing levels of

uncertainty in the position estimate with GP0 corresponding

to the data associated with the measured positions which

are assume to have the highest certainty. GPM will be

considered as a constant, zero-mean function. The predictive

mean and the variance of the multifidelity GP are taken as

µMF (X
∗) = µ0(X

∗), (10)

ΣMF (X
∗) = Σ0(X

∗) (11)

with µ0(X
∗) and Σ0(X

∗) calculated as in Eqs. (8) and (9).

In the next section, we describe an algorithm that uses the

multifidelity model to collect data and build a spatial map

while exploring an initially unknown measurement.

IV. ADAPTIVE SAMPLING ALGORITHM

The psuedo code for the adaptive sampling algorithm is

given in Algorithm 1. The algorithm takes as inputs the

initial robot position p0, an expected information density

3The original auto-regressive model presented in [17] takes ρi(X) as con-
stants that can be learned along with the covariance kernel hyperparameters.
This is generalized to an input-dependent function in [18].
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(EID) Φ(x), a number ns of sample points to be planned, a

list of user-defined fidelity level thresholds that are used to

assign data, a budget function S(X ) =
∑N

i=1 S(xi, xi−1)
on the trajectory X and a budget constraint B on the

available resource. The EID is an important part of the

algorithm that drives the exploration. Several quantities such

as Fisher information, the upper confidence bound, mutual

information, or entropy may be used to construct the EID.

Here, it is based on the multifidelity mean (Eq. (10)) and

variance (Eq. (11)) and will be defined later (see Eq. (13)).

The algorithm plans the sample points on a rectangular

domain D = [L1 × L2] and calculates a path that vis-

its each sample point. The SelectSamplePoints function

outputs an ordered set of ns sample locations that form

the path. The robot follows the path collecting data at the

selected sample locations and intermediate locations along

the path. The robot maintains an estimate of its position p̂

and the collected data (ν̃, p̂) is assigned to an appropriate

fidelity level by comparing the quantity ηp̂ (representing the

amount of uncertainty in the localization) to the user-defined

thresholds [ϕ0, ..., ϕm−1]. The robot is required to sample the

ns sample locations from the SelectSamplePoints function

at high fidelity by returning to the surface. The GOTO

function assumes that there is a controller capable of han-

dling the navigation of the robot to the sampling locations.

Localization error may cause the robot to surface at an

incorrect location. In this case, the robot will then proceed

to navigate to the correct location o the surface. After all

sample points have been visited, the Gaussian process is

updated with the new data and the hyperparameters of the

Gaussian processes are trained in reverse sequence (i.e θM−1,

θM−2, ..., θ0) according to Eq. (3). This is a heuristic that

treats fi(x)−ρi+1µi+1(X) as a measurement of ξi+1. Then

a new set of sample points are selected based on the updated

EID. The process is repeated until the resource is exhausted.

The next section explains the sample selection process.

A. Sampling and Path Planning Algorithm

This work uses the ergodic metric proposed by [23] to

plan the sample points to visit. The metric compares the

spatial statistics of a trajectory to a spatial distribution of

an EID, naturally balancing exploration and exploitation.

Minimizing the metric leads to a trajectory that distributes

time spent in specific regions of the domain proportionally

to the information in those regions [25], [26].

The ergodic metric is given by [23]

ω(x(t)) =

K
∑

k=0

∆k|ck(x(t))− Φk|
2 (12)

where Φk and ck are the Fourier coefficients of basis

functions approximating a spatial distribution Φ(x) and a

time-averaged trajectory x(t), respectively. K determines the

number of coefficients used to measure the distance from er-

godicity along each dimension of a n-dimesional rectangular

domain and k ∈ K is a multi-index (k1, k2, ..., kn). The coef-

ficients can be calculated as Φk =
∫

x
Φ(x)Fk(x)dx and ck =

Algorithm 1

Input:

Initial robot pose p0
Domain of exploration D
Expected information density Φ(D)
Number of planned sample points locations ns

Gaussian Process fidelity thresholds [ϕ0, ϕ1, ..., ϕM−1]
Budget constraint B

Budget S(X )

1: p̂← p0
2: X ← {p̂}
3: (yi, X̂i)← {} for i = 0, ...,M
4: Xs ← SelectSamplePoints(X ,Φ(D))
5: is ← 0
6: xs ← Xs[is]
7: while B > S(X ) do

8: if ||p̂− xs|| < ϵ then

9: is ← is + 1
10: if is > ns then

11: Xs ← SelectSamplePoints(X ,Φ(D))
12: is ← 0

13: xs ← Xs[is]

14: if ηp̂ ≤ ϕ0 then

15: (y0, X̂0)← (y0, X̂0) ∪ {(ν̃, p̂)}
16: else if ϕk ≤ ηp̂ ≤ ϕk+1 then

17: (yk+1, X̂k+1)← (yk+1, X̂k+1) ∪ {(ν̃, p̂)}

18: GOTO(p̂, xs)
19: Update p̂

20: X ← X ∪ {p̂}

1
T

∫ t0+T

t0
Fk(x(t))dt, where Fk(x) = 1

hk
Πn

i=1 cos(
kiπ
Li

xi)
are the Fourier basis functions used to approximate the

spatial distribution Φ(x) and the trajectory x(t) over n

dimensions. hk is a normalizing factor and xi is the i-

th component of x. ∆k = 1

(1+||k||2)
n+1
2

is used to place

larger weight on lower frequency information. The reader is

referred to [23], [26] for more details on the ergodic metric.

In the SelectSamplePoints function, the ergodic metric is

used to select a finite number of sample locations given

the robot’s current trajectory x(t). While in theory x(t)
is a continuous function, in practice, it is approximated

by X . Population-based optimization techniques are used

to generate sets of sampling points. Then the algorithm

estimates the trajectory taken to reach the sampling points

by assuming a constant speed through an open Traveling

Salesman Tour over the graph of sample points with edges

being the distances between points. The set of sampling

points that results in the minimum value for the ergodic

metric is chosen. The spatial distribution Φ(x) used to drive

the exploration is based on the multifidelity mean (Eq. (10))

and variance (Eq. (11)). It is chosen as a combination of the

mean and variance in order to treat unsampled locations and

locations with a large mean as informative locations. It is
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calculated as

Φ(x) = αµMF (x) + (1− α)Σ̄MF (x) (13)

for each point x ∈ D, where α ∈ [0, 1] is a parameter to be

chosen by a user and

Σ̄MF (x
∗) = Σ̄0(x

∗) +

M
∑

i=1

Πi
j=0Σ̄j(x

∗)
∏i−1

j=0 max(Σ̄j(D))
, (14)

where Σ̄i, for i = 0, ...,M is calculated as

Σ̄i = Ki(X
∗,X∗)−Ki(X

∗,Xi)Ki(Xi,Xi)
−1K(Xi,X

∗),

Σ̄MF pre-multiplies lower fidelity predictive variance with

the normalized predictive variances of all higher fidelity

models. Eq. (14) encodes a heuristic rule: measurements

associated with higher uncertainty in the location are less

informative if that location has been measured with lower

uncertainty in the location. As an example, Eq. (14) becomes

Σ̄MF (x) = Σ̄0(x) +
Σ̄0(x)

max(Σ̄0(D))
Σ̄1(x)

+
Σ̄0(x)Σ̄1(x)

max(Σ0(D))max(Σ̄1(D))
Σ̄2(x)

with two fidelity levels. Note that the EID need not change

with time in general, but does so here because the Gaussian

process is updated with the data collected at each point along

the trajectory X after reaching all of the selected sample

locations.

The next section discusses simulation of the adaptive

sampling algorithm and compares the reconstruction perfor-

mance of the proposed multifidelity GP to two alternative

methods.

V. SIMULATION STUDY

A. Setup

In simulation, a measurement field is generated by placing

H sources in a 20×40 meter rectangular domain. The

source intensities are generated using the formula f(xp) =
∑H

h=1 s1e
(−(s2(xh−xp))

2) where xp ∈ R2 is the position of

the robot and xh is one of H source locations within the

field. s1 and s2 are positive constants. For the simulations

in this work, H , s1, and s2 are chosen as 5, 10, and 0.5,

respectively.

The gliding robotic fish is chosen as the robot to be

simulated in the space. Details on the dynamic model can be

found in [15], [27]. Algorithm 1 is applied as the exploration

strategy for the robot with B = 150 minutes being a fixed

time limit. We take ns = 10 as the number of sample points

to plan during each planning step. The cost of traveling to

all ns sample points depends on the robot’s speed and the

distances between the planned sample points. While traveling

between sampling locations, the robot glides between the

surface and a prescribed reference depth with fixed reference

pitch angles as depicted in Fig. 1, which is a standard

behavior for the robot. The localization uncertainty will

periodically be reset to zero whenever the robot surfaces

and grow once underwater again. Here, the prescribed depth,

Fig. 1. Depiction of gliding robotic fish navigating to a sampling location.
Intermediate measurements taken between sample locations may be assigned
to imprecise locations due to loss of GPS.

is chosen so that the robot is unlikely to surface between

sampling points. When the robot is believed to be at a

selected sampling location, it is required to collect a sample

at the surface which causes it to surface if underwater. The

robot’s position is estimated via an extended Kalman filter

using model parameters that were randomly perturbed with

a maximum of 2% from their true values.

The multifidelity Gaussian process model described in

Section III-B with ρ(X) = 1 is used to reconstruct the

field based on the location and intensity measurements.

The covariance used for the GP is the squared exponential

kernel, with entries Kij(xi,xj) = σse
−(xi−xi)

T∆−1

l
(xi−xj),

where ∆l is an identity matrix multiplied by the inverse of

the squared length scale and σs is the signal noise. The

number M of fidelity levels is taken as 5. A data pair

(yi,Xi) is assigned to a dataset by comparing the value

ηp̂ in Algorithm 1 to the thresholds ϕi, i = 0, ...,M − 1
for the fidelity levels. Here the average standard deviation

of the expected localization error, ηp̂ = mean(
√

diag(Pxy))
is used to determine the appropriate dataset. Pxy is the sub-

matrix of the estimation error covariance matrix from the

extended Kalman filter associated with the (x, y) position.

The vector to assign the fidelity level is taken as a percentage

of the smallest dimension of the domain (e.g., 20 m). The

percentages are chosen as [2.5%, 7.5%, 10%, 15%, 25%].
The simulation is run 50 times with a start location of

(0,0), fixed source locations, and a fixed perturbation to the

model parameters for the robot. After the simulations are

run, the field reconstruction performance of the proposed

multifidelity model is compared with two other methods:

1) Noisy input single fidelity (NISF), which ignores local-

ization errors and adds all data to a single GP model,

2) Disregarded low fidelity (DLF), which throws out

lower fidelity measurements and only uses the data

with known location in a single GP model.

B. Results

The performance is measured in terms of the δ-RMS error

(see Section III) for the field reconstruction with δ = 0.005.

The different field representations are compared to the true

field and to a GP reconstruction using perfect inputs for all

collected data termed the perfect input (PI) GP model. While

the hyperparameters were tuned online for the proposed
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Fig. 2. Mean and standard deviation over 50 trials for δ-RMS reconstruc-
tion error comparison for each method with baselines being a Gaussian
process with perfect input for all collected data (PI) and the true field.

TABLE I

δ-RMS RECONSTRUCTION ERROR COMPARISON SIMULATION IN FIGS. 3

AND 4

Model/ PI NISF DLF Prop
Baseline

True Field 0.0868 1.6618 2.2959 1.1672

PI 0 1.6383 2.2116 1.1617

approach, they are re-tuned offline using all of the collected

data with the same initialization strategy as used in the

other methods for fair comparison. Fig. 2 shows the average

δ-RMS reconstruction error with error bars depicting the

standard deviation for each method after the 50 trials. It also

shows the average RMS reconstruction error for the GP with

perfect input for comparison. Out of the 50 trials, the RMS

error was lower for the proposed method than for NISF 42

of 50 times when compared to the true field and 40 times

when compared to the Gaussian process with perfect input

(PI). The RMS error was lower than the DLF model 44 of

50 times and 42 of 50 times, respectively. The DLF model

had a lower RMS error than NISF model 15 of 50 times

when compared to the ture field and 16 of 50 times when

compared to the Gaussian process with perfect input (PI).

Table I and Figs. 3 and 4 show the results from a single

trial. In this trial, the robot successfully plans two sets of

points. Fig. 4(b) shows the robot’s path only through the

first set of planned sample locations to highlight how the

position estimate x̂ drifts from the true position x in 3

dimensions. Table I shows that the path is sufficient for

reconstructing the field with low error if the location is

perfectly known. However, localization error degrades the

reconstruction performance.

All of the GP models initially predict a zero-mean, con-

stant variance across the field making the first set of sample

points distributed approximately uniformly throughout the

field. In Fig. 4, it can be seen that most of the sampling

points lie outside of the contours for the source intensities.

As shown in Fig. 3, this causes the DLF model (which

disregards low fidelity measurements) to predict low values

or even zero values in places where sources are located

despite the robot passing nearby. The NISF model better

predicts the locations around the sources because it includes

all of the data. However, the localization error causes artifacts

that do not exist to be predicted. The proposed method

predicts similarly to the NISF model, but some artifacts

due to localization errors are removed when high-fidelity

measurements are taken at nearby locations. This results in

the proposed model having a lower RMS reconstruction error

than both the NISF model and the DLF model.

Fig. 5 shows how the δ-RMS reconstruction error changes

when the localization error ϵx is scaled by a constant factor

for both the proposed multifidelity model and the NISF

model. For each scaling factor, the hyperparameters are

retrained on both models. Both show an approximately linear

growth with the scaling factor, but the proposed method

produces the lower δ-RMSE for most. The exception is that

with perfect localization, the NISF model produces a slightly

lower δ-RMSE.

In addition to slightly better performance in the reconstruc-

tion error, the proposed approach has a theoretical advantage

over the NISF GP model due to the Cholesky decomposition

used to compute the inverse of the covariance matrix K in

the GP prediction equations (Eqs. (1) and (2)). The data is

assigned to each fidelity level i in the propsed approach such

that N =
∑M

i=0 ni where ni is the number of samples in a

fidelity level i and N is the number of samples collected over

the course of the robot’s trajectory. Because the proposed

approach uses a recursive prediction, its computational com-

plexity is dependent on
∑M

i=0 ni compared to (
∑M

i=0 ni)
3

for the NISF GP model. Taking ni to be equal for all i leads

to a big-O notation of O(M3n3
i ) for the latter and O(Mn3

i )
for the former.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed multifidelity Gaussian process

regression as the basis of an adaptive sampling algorithm that

incorporates localization uncertainties. The approach was

shown to improve field reconstruction over an approach that

ignores localization error and an approach that ignores low-

fidelity data. The results suggest the proposed approach is

promising for incorporating intermediate, low-quality data

into adaptive sampling schemes.

In future work, we plan to theoretically analyze the

approach and also include learning the scaling functions

ρi(x). In addittion, we plan to extend the approach to

work with measurement fields that vary with 3-dimensional

space, analyze the adaptive sampling algorithm, evaluate the

performance of the adaptive sampling algorithm using the

different Gaussian process models to represent the field, and

conduct experiments on a physical robot [16], [27]. Another

future direction of this work entails designing an algorithm

to improve the lower certainty position estimates based on

the surfacing locations of the robot in order to improve
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Fig. 3. Heat maps of the reconstruction for each Gaussian process model. Blue indicates lower values and the crosses indicate the source locations.

(a)

(b)

Fig. 4. Depiction of the robot path from top down (top) and 3D (bottom)
views. The solid line represents the true path of the robot while the dashed
line represents the estimated path.ªPlanº refers to the planned path of the
current set of sampling points.
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Fig. 5. δ-RMS for NISF and proposed model when compared to the true
field with the localization error scaled by a constant factor.

prediction performance. It is also of interest to combine

the proposed scheme with the noisy input Gaussian process

framework described in [9] to improve performance and

compare single and multifidelity approaches.
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