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Exploration of Unknown Scalar Fields with Multifidelity Gaussian
Processes Under Localization Uncertainty
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Abstract— Autonomous marine vehicles are deployed in
oceans and lakes to collect spatio-temporal data. GPS is often
used for localization, but is inaccessible underwater. Poor
localization underwater makes it difficult to pinpoint where
data are collected, to accurately map, or to autonomously
explore the ocean and other aquatic environments. This paper
proposes the use of multifidelity Gaussian process regression to
incorporate data associated with uncertain locations. With the
proposed approach, an adaptive sampling algorithm is devel-
oped for exploration and mapping of unknown scalar fields.
The reconstruction performance based on the multifidelity
model is compared to that based on a single-fidelity Gaussian
process model that only uses data with known locations, and
to that based on a single-fidelity Gaussian process model that
ignores the localization error. Numerical results show that
the proposed multifidelity approach outperforms both single-
fidelity approaches in terms of the reconstruction accuracy.

I. INTRODUCTION

With increasingly complex mobile robotic systems, au-
tonomous exploration has grown into a linchpin problem
with varying complexity. It has applications including local-
ization and mapping [1], search and rescue [2], multi-target
search [3], and adaptive sampling [4]. When exploring a
spatial field, Gaussian process (GP) regression is a common
tool used to efficiently reconstruct the field as a function
of the position without measuring every point. It enables the
development of sampling strategies that help decide the most
informative points to sample based on previously observed
data. These strategies can be beneficial in many marine
applications where vehicles are deployed to collect spatio-
temporal data such as temperature, fish population density,
or algae concentration.

When a vehicle performs underwater sensing, poor local-
ization (GPS signal is degraded underwater) makes it difficult
to pinpoint where the data are collected. The localization
uncertainty also makes it challenging to accurately map
and autonomously explore the underwater environments. In
many cases, the position of the vehicle has to be estimated
with dead reckoning. Standard Gaussian process regression
assumes precise inputs (position and time for a spatio-
temporal process), which is no longer directly applicable.
Prediction with localization uncertainty can be obtained as
a posterior predictive distribution using Bayes’ rule, but it
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generally has no analytical closed-form solution and must
be approximated [5], [6].

Several researchers have proposed different methods for
handling uncertainty in the inputs of a GP. In [5], Monte
Carlo sampling and Laplace’s method were proposed to
approximate the posterior predictive statistics of GP regres-
sion for sensor networks with observations under localization
uncertainty. The authors of [6] proposed an algorithm that
combines Jacobi over-relaxation and discrete-time average
consensus for use for distributed sensor networks under
localization uncertainty. In [7], GP regression models where
inputs are subject to measurement errors were investigated
and a kernel that accounts for localization error was in-
troduced. The authors of [8], [9] considered GP training
with noisy input that is corrupted by i.i.d. Gaussian noise.
In [10], the authors proposed an upper-confidence bound
Bayesian optimization algorithm that uses a GP with proba-
bility distributions as inputs to deal with problems where the
measurement and test locations are uncertain. An approach
that uses the expectation of covariance matrices and keeps an
analytical posterior distribution over functions is investigated
to make predictions for uncertain inputs with Gaussian
processes and learn from uncertain training sets in [11]. The
previous works largely consider a constant noise distribution
and do not focus on tasks where a mobile sensor is used to
reconstruct a measurement field.

In this work, we aim to design an exploration algorithm
for scalar measurement fields that accounts for and achieves
accurate reconstruction under localization uncertainty. The
problem is motivated by applications such as finding hotspots
or mapping harmful algae blooms with underwater vehicles
such as underwater gliders [12]-[14] and gliding robotic
fish [15], [16]. These robots have energy-efficient motion
that allows them to operate for long periods of time, but
requires that they spend significant time underwater, which
often causes them to experience large localization errors from
the loss of access to the GPS signal. In many cases, standard
adaptive sampling algorithms based on GP regression pro-
duce sample locations for a vehicle to visit and collect data.
Due to the necessity of vehicles to travel between sampling
locations, intermediate data can be collected along the way.
Most works disregard this data. Even when such data have
associated locational uncertainties, the data may still provide
valuable information and collecting it could save resources
such as time and energy, especially for slow moving vehicles
such as underwater gliders and gliding robotic fish.

The key contribution of this work is a simple, yet effective
approach for incorporating intermediate data associated with
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possibly uncertain locations into a GP. To do this, we propose
an approach that leverages multifidelity GP regression to
model the environment through multiple correlated GPs
associated with different levels of localization uncertainty.
The key novelty in our approach lies in the use of the
multifidelity GP framework based on the accuracy of the
localization.

The idea of multifidelity GPs stem from the works of
[17], [18] and have gained attention in recent years as a
modeling tool [3], [19]-[22]. The original motivation for
the multi-fidelity GPs is to approximate the high-fidelity
data in computationally efficient manner by using surrogate
models whose accuracy drops as they become computation-
ally cheaper. Recent works have shown that the multifidelity
GP model extends nicely to sensing with downward facing
cameras where fidelity is dependent on the vertical distance
from a 2D field being surveyed by a vehicle [3], [22].

A notable difference between the present work and the
multifidelity models presented in [17], [18] is the source of
the difference in fidelity levels. In the aforementioned works
[31, [17], [18], [22], the fidelity level is caused by the output
data from less accurate models or lower quality sensing given
the true input data, whereas the fidelity in the present work
is due to inaccurate input data. The present work seeks to
leverage this lower fidelity input data to aid in efficiently
reconstructing a spatial measurement field. Leveraging the
proposed approach and the ergodic metric [23], we design
an adaptive sampling algorithm and show that the proposed
approach is able to lower the reconstruction error when
measured by the root-mean-squared error.

The remainder of this paper is structured as follows.
Section II gives a brief review of GP regression. Section III
describes the problem and presents the proposed multifidelity
model, followed by a description of an adaptive sampling
algorithm in IV. A simulation study is conducted in the
Section V and concluding remarks are given in Section VI.

II. REVIEW OF GAUSSIAN PROCESS REGRESSION

GP regression is a tool for function approximation that
is commonly used to reconstruct spatial fields. It is popular
due to its basis in Bayesian statistics and ability to not only
predict the value of a function at an unmeasured sample
point, but also provide a confidence level associated with
the prediction.

A GP is fully specified by a mean function m(x) : R —
R, and a covariance function K (x,x’,6) : R x RY x RP —
R>¢ (the dependence on 6 will be suppressed for brevity),
with hyperparameters 6 € RP, for any input vectors x, x’ €
R<. Given a set of input vectors X = [x[' ... x["]] and, an
associated set of scalar measurements y = [p11, ... ol")T
assumed to have an additive, zero-mean Gaussian noise, the
posterior mean and variance of a Gaussian process can be
predicted at any set of test vectors X* = [x*1 . x*[9],
The mean p(X*) and variance 3(X*) at inputs X* can be
predicted via the equations (see [24] for more details)

§(X*) = m(X")

LR X)EXX) 4 o2y - m(X)

S(X*) = K(X*,X*)

LR XK (X X) + 021K (X, X,

where 02 is the measurement noise variance.

In order for the GP to be a generative model of the data,
the hyperparameters 6 must be chosen appropriately. If these
are not known in advance, they can be learned by maximizing
the log marginal likelihood of the observations. The optimal
hyperparameters can be found as

0* € argmaxeeRp{—inK ly — B log|K[},  (3)

where |K| represents the determinant of K. The objective
function in Eq. (3) can be optimized via gradient methods
[24]. Note that since this is a non-convex problem, the
resulting 6* is usually computed using multi-start gradient
ascent.

III. PROBLEM STATEMENT AND MULTIFIDELITY MODEL
A. Problem Statement

We consider an autonomous marine vehicle that moves
in a 3D space. The vehicle is tasked with sampling and
reconstructing a static scalar measurement field using a point
sensor, with resource constraints such as a budget on the
total time or total energy. We assume that there exists a
measurement model

V= f(x)a “)

where f(x): R? — R is an unknown function that perfectly
describes the measurement field with input x. We also
assume that its measurement o at any x is corrupted by a

zero mean Gaussian noise €, with variance JEL, ie.,

U= f(x)+ ¢ (5)

In this work, the measurement field is assumed to be
invariant of the vehicle’s depth! and the input x is the
location of the vehicle on the horizontal plane (z,y). The
vehicles often experience localization errors when sensing
underwater due to the loss of GPS signal. We assume that
the robot can perfectly access its location in the horizontal
plane only at the surface of the body of water. When below
the water surface, the vehicle is assumed to only have an
estimate X = X + €x (generated from a state estimator
such as a Kalman filter) of its true location x. Here, ey
is the estimation error whose variance increases with time
spent underwater after the last surfacing. As a result, the
dataset z = (y,X) is collected, where y is defined as in
Section II and X = [%[!, ... %["]T. Using the dataset z and
hyperparameters 6, an estimate fz(x) of the measurement
field f(x) can be constructed using GP regression.

The goal of this work is to design an adaptive sampling
strategy that incorporates measurements along the vehicle’s
trajectory (including those collected underwater) to improve
the reconstruction performance as measured via root-mean-
squared error (RMSE). The problem can be formulated as

IThe vehicles are assumed to have motion constraints that require them
to change depth. This is the case for robots such as underwater gliders and
gliding robotic fish.
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selecting a discretized trajectory’ X = [x1, T2, ..., ] that
minimizes the RMSE between the true field f(D) € RIP!
and an estimate f,(D, X) € RI?! of the measurement field
for each x € D given a trajectory X', subject to a finite
budget B on the total available resources for motion, such
as energy or time. Here |D| is the cardinality of the set D
of all positions in a finite space of interest. In practice, we
take D as a uniform grid that sufficiently covers the space
of interest. f(D) € RIP| and f,(D, X) are column vectors
containing values of the true field f(x) and its estimate f,(x)
based on the trajectory X, respectively, evaluated at all points
x € D. The problem can be written as

J(X*) € argminE

subject to

N
Z S(xi,xi—1) < B,
- (6)

where D; is an element of D, f.(D;,X) is the estimate
of true field predicted at a location D; conditioned on the
trajectory X, and S(z;_1,x;) is the resource consumed while
moving between x;_; and x;. Note that the trajectory X will
be subject to constraints based on dynamics of the chosen
vehicle, but we forego explicitly discussing these to place
focus on the proposed usage of the multifidelity GP model
and the adaptive sampling algorithm.

When using a zero-mean GP prior with a measurement
field whose value is zero throughout most of the field,
the RMSE can be deceptive. To avoid this issue, J-RMS
is introduced. J-RMS is the RMSE disregarding locations
where the magnitude of both the true field and the estimated
field prediction are less than some § > 0. It is calculated as

SIPL T (£(D), £.(D), 8)(f(D;) — f.(Di))?
SIPLT(£(D), £.(D), )

where Z((1,(2,9) is an indicator function that produces a
column vector whose i-th entry satisfies Z; = (/(3; > 6) V
(1/¢3;, > 0) and V is the logical or operation.

B. Multifidelity Model

One drawback of GP regression is that it assumes the input
x to be precisely known. For this work, the input is perturbed
by the estimation error ex. It is shown in [7] that if the
measurements in a GP are accessed with inputs perturbed
by a Gaussian noise, then these measurements correspond to
another GP defined over perturbed inputs. These perturbed
inputs lead to a warped prediction of the measurement field
when using a GP, but the robot needs to accurately predict
the true function 7 = f(x) for each location x € D
to effectively plan new sample locations. The estimation
error ex corresponds to variable levels of uncertainty on the

OrMS =

)

2Note that elements of X in R3, but only the horizontal components are
used in fz

position estimate X. The dataset z = (y, X) can be split into
separate datasets based on the level of uncertainty in X. This
motivates the idea of using a multifidelity GP to create the
estimate f,(x) for all x € D of the measurement field.

We propose a multifidelity GP representation of the field
whose fidelity levels are dependent on the localization
uncertainty. In the proposed approach, uncertainty in the
location estimates are binned into M + 1 fidelity levels,
where uncertainty increases with the fidelity level, i.e, level
0 corresponds to the lowest uncertainty. Multiple datasets
(yi, XL) are constructed where measurements and input
locations are assigned to a particular dataset based on the
uncertainty in the input location. Each dataset will be used
to construct a corresponding Gaussian process and these
GPs are coupled through a nested structure on their means
and covariance. The proposed model is consistent with the
recursive auto-regressive multifidelity model?

[i(X) = pir1(X) fir1(X) + &1 (X), (7

presented in [18], where &; are bias terms that are indepen-
dent from levels of lower fidelity. The mean of the GP at
each fidelity level is expressed as

1 (X5) = pig1 (X )pig1 (X5)

+ K (X5, X0) K (X4, X5) "y — pi+1(Xz’),ui+1(Xi))(78)
for some fidelity i, 0 < ¢ < M, where M + 1 is the total
number of GP models considered. The functions p;(X) are
scaling coefficients relating the outputs y; of the different
fidelity levels and K; is the kernal for &; 1. The variance at
each fidelity level is calculated as

Bi(XF) = Ei(X*) + piyq (XF) 8541 (X5), )

where %;, for i = 0, ..., M is calculated using Eq. (2) and the
appropriate dataset (y;, X;). The GPs and datasets (y;, X;)
are assumed to be ordered according to increasing levels of
uncertainty in the position estimate with GP( corresponding
to the data associated with the measured positions which
are assume to have the highest certainty. GPj; will be
considered as a constant, zero-mean function. The predictive
mean and the variance of the multifidelity GP are taken as

pamr(X5) = po(X7), (10)

Cpr(XY) =30(XY) (11)

with p(X*) and Xo(X*) calculated as in Egs. (8) and (9).
In the next section, we describe an algorithm that uses the

multifidelity model to collect data and build a spatial map
while exploring an initially unknown measurement.

IV. ADAPTIVE SAMPLING ALGORITHM

The psuedo code for the adaptive sampling algorithm is
given in Algorithm 1. The algorithm takes as inputs the
initial robot position py, an expected information density

3The original auto-regressive model presented in [17] takes p; (X) as con-
stants that can be learned along with the covariance kernel hyperparameters.
This is generalized to an input-dependent function in [18].
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(EID) ®(z), a number ng of sample points to be planned, a
list of user-defined fidelity level thresholds that are used to
assign data, a budget function S(X) = Zf\il S(xi, xi—1)
on the trajectory X and a budget constraint B on the
available resource. The EID is an important part of the
algorithm that drives the exploration. Several quantities such
as Fisher information, the upper confidence bound, mutual
information, or entropy may be used to construct the EID.
Here, it is based on the multifidelity mean (Eq. (10)) and
variance (Eq. (11)) and will be defined later (see Eq. (13)).
The algorithm plans the sample points on a rectangular
domain D = [L; X Ls] and calculates a path that vis-
its each sample point. The SelectSamplePoints function
outputs an ordered set of ng sample locations that form
the path. The robot follows the path collecting data at the
selected sample locations and intermediate locations along
the path. The robot maintains an estimate of its position p
and the collected data (#,p) is assigned to an appropriate
fidelity level by comparing the quantity 7, (representing the
amount of uncertainty in the localization) to the user-defined
thresholds [¢y, ..., ¢m—1]- The robot is required to sample the
ng sample locations from the SelectSamplePoints function
at high fidelity by returning to the surface. The GOTO
function assumes that there is a controller capable of han-
dling the navigation of the robot to the sampling locations.
Localization error may cause the robot to surface at an
incorrect location. In this case, the robot will then proceed
to navigate to the correct location o the surface. After all
sample points have been visited, the Gaussian process is
updated with the new data and the hyperparameters of the
Gaussian processes are trained in reverse sequence (i.e 071,
Opri—2, ---,0p) according to Eq. (3). This is a heuristic that
treats f;(x) — pi+1pi+1(X) as a measurement of &; 1. Then
a new set of sample points are selected based on the updated
EID. The process is repeated until the resource is exhausted.
The next section explains the sample selection process.

A. Sampling and Path Planning Algorithm

This work uses the ergodic metric proposed by [23] to
plan the sample points to visit. The metric compares the
spatial statistics of a trajectory to a spatial distribution of
an EID, naturally balancing exploration and exploitation.
Minimizing the metric leads to a trajectory that distributes
time spent in specific regions of the domain proportionally
to the information in those regions [25], [26].

The ergodic metric is given by [23]

K
w(a(t) =) Aglex(a(t) — Bk (12)
k=0

where ®;, and c; are the Fourier coefficients of basis
functions approximating a spatial distribution ®(x) and a
time-averaged trajectory x(t), respectively. K determines the
number of coefficients used to measure the distance from er-
godicity along each dimension of a n-dimesional rectangular
domain and k£ € K is a multi-index (kq, ko, ..., k5,). The coef-
ficients can be calculated as ®;, = [ ®(z)Fy(z)dx and ¢, =

Algorithm 1

Input:

Initial robot pose pg

Domain of exploration D

Expected information density ®(D)

Number of planned sample points locations 7
Gaussian Process fidelity thresholds [¢q, @1, ..., dar—1]
Budget constraint B

Budget S(X)

1: < Do

2 X {ﬁ}

3 (yi, Xi) « {} fori=0,....,M

4: X ¢ SelectSamplePoints(X, &(D))

5: 15 < 0

6: T < Xslis]

7. while B > S(X) do

8 if ||p — z4|| < € then

9: i ¢ 1s+ 1

10: if i, > n, then

11 X « SelectSamplePoints(X, ®(D))
12: 15 <0

13: xs — Xis]

14: if Mp < E{)o then ~

15: (¥0,Xo0) < (yo0,Xo0) U{(7,p)}

16: else if ¢y, §A p < Prt1 thenA

17: (Vi1 Xit1) < (Yra1, Xey1) U{(7,9)}
18: GOTO(p, zs)

19: Update p

20: X+ XU {p}

1 [to+T 1 k;

T Jig Fk.(:?(t))dt,' where Fk(:v) = -, C.OS( 1)
are the Fourier basis functions used to approximate the
spatial distribution ®(z) and the trajectory z(t) over n
dimensions. hj is a normalizing factor and x; is the i-

th component of x. Ay = ﬁ is used to place
. (A+[Ikl12) = .
larger weight on lower frequency information. The reader is

referred to [23], [26] for more details on the ergodic metric.

In the SelectSamplePoints function, the ergodic metric is
used to select a finite number of sample locations given
the robot’s current trajectory x(¢). While in theory xz(t)
is a continuous function, in practice, it is approximated
by X. Population-based optimization techniques are used
to generate sets of sampling points. Then the algorithm
estimates the trajectory taken to reach the sampling points
by assuming a constant speed through an open Traveling
Salesman Tour over the graph of sample points with edges
being the distances between points. The set of sampling
points that results in the minimum value for the ergodic
metric is chosen. The spatial distribution ®(z) used to drive
the exploration is based on the multifidelity mean (Eq. (10))
and variance (Eq. (11)). It is chosen as a combination of the
mean and variance in order to treat unsampled locations and
locations with a large mean as informative locations. It is
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calculated as
®(x) = apuarr(x) + (1 - a)Syrr(x)

for each point x € D, where o € [0, 1] is a parameter to be
chosen by a user and

13)

+§ 0% ()

= 11— max(%5(D))

M is calculated as

Sar(x* , (14

where 3;, for i = 0, ...,
8= KX, X)) — K(X5, X0) K (X, X,) T K (X, X7,

Yrr pre-multiplies lower fidelity predictive variance with
the normalized predictive variances of all higher fidelity
models. Eq. (14) encodes a heuristic rule: measurements
associated with higher uncertainty in the location are less
informative if that location has been measured with lower
uncertainty in the location. As an example, Eq. (14) becomes
Yo(x =
Sarr(x) = So(x) + nm(oz(o()zmzl(x>
EO(X)El(X)_ EQ(X)
max(Xo(D)) max(% (D))
with two fidelity levels. Note that the EID need not change
with time in general, but does so here because the Gaussian
process is updated with the data collected at each point along
the trajectory X after reaching all of the selected sample
locations.

The next section discusses simulation of the adaptive
sampling algorithm and compares the reconstruction perfor-
mance of the proposed multifidelity GP to two alternative
methods.

V. SIMULATION STUDY
A. Setup

In simulation, a measurement field is generated by placing
H sources in a 20x40 meter rectangular domain. The
source intensities are generated using the formula f(z,) =
S s1e(-(2@n=22))) where x,, € R? is the position of
the robot and x;, is one of H source locations within the
field. s; and sy are positive constants. For the simulations
in this work, H, s;, and sy are chosen as 5, 10, and 0.5,
respectively.

The gliding robotic fish is chosen as the robot to be
simulated in the space. Details on the dynamic model can be
found in [15], [27]. Algorithm 1 is applied as the exploration
strategy for the robot with B = 150 minutes being a fixed
time limit. We take ns = 10 as the number of sample points
to plan during each planning step. The cost of traveling to
all n, sample points depends on the robot’s speed and the
distances between the planned sample points. While traveling
between sampling locations, the robot glides between the
surface and a prescribed reference depth with fixed reference
pitch angles as depicted in Fig. 1, which is a standard
behavior for the robot. The localization uncertainty will
periodically be reset to zero whenever the robot surfaces
and grow once underwater again. Here, the prescribed depth,

Fig. 1. Depiction of gliding robotic fish navigating to a sampling location.
Intermediate measurements taken between sample locations may be assigned
to imprecise locations due to loss of GPS.

is chosen so that the robot is unlikely to surface between
sampling points. When the robot is believed to be at a
selected sampling location, it is required to collect a sample
at the surface which causes it to surface if underwater. The
robot’s position is estimated via an extended Kalman filter
using model parameters that were randomly perturbed with
a maximum of 2% from their true values.

The multifidelity Gaussian process model described in
Section II-B with p(X) = 1 is used to reconstruct the
field based on the location and intensity measurements.
The covariance used for the GP is the squared exponential
kernel, with entries K;;(x;,x;) = Use_(xi_xi)TAfl(xi_xf),
where A; is an identity matrix multiplied by the inverse of
the squared length scale and o is the signal noise. The
number M of fidelity levels is taken as 5. A data pair
(vi,X;) is assigned to a dataset by comparing the value
7p in Algorithm 1 to the thresholds ¢;, ¢ = 0,...,M — 1
for the fidelity levels. Here the average standard deviation
of the expected localization error, 7; = mean(y/diag(Pyy))
is used to determine the appropriate dataset. P, is the sub-
matrix of the estimation error covariance matrix from the
extended Kalman filter associated with the (z,y) position.
The vector to assign the fidelity level is taken as a percentage
of the smallest dimension of the domain (e.g., 20 m). The
percentages are chosen as [2.5%, 7.5%, 10%, 15%, 25%).

The simulation is run 50 times with a start location of
(0,0), fixed source locations, and a fixed perturbation to the
model parameters for the robot. After the simulations are
run, the field reconstruction performance of the proposed
multifidelity model is compared with two other methods:

1) Noisy input single fidelity (NISF), which ignores local-
ization errors and adds all data to a single GP model,

2) Disregarded low fidelity (DLF), which throws out
lower fidelity measurements and only uses the data
with known location in a single GP model.

B. Results

The performance is measured in terms of the §-RMS error
(see Section III) for the field reconstruction with 6 = 0.005.
The different field representations are compared to the true
field and to a GP reconstruction using perfect inputs for all
collected data termed the perfect input (PI) GP model. While
the hyperparameters were tuned online for the proposed
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Fig. 2. Mean and standard deviation over 50 trials for §-RMS reconstruc-
tion error comparison for each method with baselines being a Gaussian
process with perfect input for all collected data (PI) and the true field.

TABLE I
6-RMS RECONSTRUCTION ERROR COMPARISON SIMULATION IN FIGS. 3
AND 4
Model/ PI NISF DLF Prop
Baseline
True Field | 0.0868 | 1.6618 | 2.2959 | 1.1672
PI 0 1.6383 | 2.2116 | 1.1617

approach, they are re-tuned offline using all of the collected
data with the same initialization strategy as used in the
other methods for fair comparison. Fig. 2 shows the average
0-RMS reconstruction error with error bars depicting the
standard deviation for each method after the 50 trials. It also
shows the average RMS reconstruction error for the GP with
perfect input for comparison. Out of the 50 trials, the RMS
error was lower for the proposed method than for NISF 42
of 50 times when compared to the true field and 40 times
when compared to the Gaussian process with perfect input
(PI). The RMS error was lower than the DLF model 44 of
50 times and 42 of 50 times, respectively. The DLF model
had a lower RMS error than NISF model 15 of 50 times
when compared to the ture field and 16 of 50 times when
compared to the Gaussian process with perfect input (PI).

Table I and Figs. 3 and 4 show the results from a single
trial. In this trial, the robot successfully plans two sets of
points. Fig. 4(b) shows the robot’s path only through the
first set of planned sample locations to highlight how the
position estimate X drifts from the true position x in 3
dimensions. Table I shows that the path is sufficient for
reconstructing the field with low error if the location is
perfectly known. However, localization error degrades the
reconstruction performance.

All of the GP models initially predict a zero-mean, con-
stant variance across the field making the first set of sample
points distributed approximately uniformly throughout the
field. In Fig. 4, it can be seen that most of the sampling

points lie outside of the contours for the source intensities.
As shown in Fig. 3, this causes the DLF model (which
disregards low fidelity measurements) to predict low values
or even zero values in places where sources are located
despite the robot passing nearby. The NISF model better
predicts the locations around the sources because it includes
all of the data. However, the localization error causes artifacts
that do not exist to be predicted. The proposed method
predicts similarly to the NISF model, but some artifacts
due to localization errors are removed when high-fidelity
measurements are taken at nearby locations. This results in
the proposed model having a lower RMS reconstruction error
than both the NISF model and the DLF model.

Fig. 5 shows how the §-RMS reconstruction error changes
when the localization error € is scaled by a constant factor
for both the proposed multifidelity model and the NISF
model. For each scaling factor, the hyperparameters are
retrained on both models. Both show an approximately linear
growth with the scaling factor, but the proposed method
produces the lower §-RMSE for most. The exception is that
with perfect localization, the NISF model produces a slightly
lower 6-RMSE.

In addition to slightly better performance in the reconstruc-
tion error, the proposed approach has a theoretical advantage
over the NISF GP model due to the Cholesky decomposition
used to compute the inverse of the covariance matrix K in
the GP prediction equations (Egs. (1) and (2)). The data is
assigned to each fidelity level ¢ in the propsed approach such
that N = Zf\io n; where n; is the number of samples in a
fidelity level ¢ and [N is the number of samples collected over
the course of the robot’s trajectory. Because the proposed
approach uses a recursive prediction, its computational com-
plexity is dependent on Zi]\io n,; compared to (Ziﬂio n;)?
for the NISF GP model. Taking n; to be equal for all ¢ leads
to a big-O notation of O(M?>n?) for the latter and O(Mn3)
for the former.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed multifidelity Gaussian process
regression as the basis of an adaptive sampling algorithm that
incorporates localization uncertainties. The approach was
shown to improve field reconstruction over an approach that
ignores localization error and an approach that ignores low-
fidelity data. The results suggest the proposed approach is
promising for incorporating intermediate, low-quality data
into adaptive sampling schemes.

In future work, we plan to theoretically analyze the
approach and also include learning the scaling functions
pi(z). In addittion, we plan to extend the approach to
work with measurement fields that vary with 3-dimensional
space, analyze the adaptive sampling algorithm, evaluate the
performance of the adaptive sampling algorithm using the
different Gaussian process models to represent the field, and
conduct experiments on a physical robot [16], [27]. Another
future direction of this work entails designing an algorithm
to improve the lower certainty position estimates based on
the surfacing locations of the robot in order to improve
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prediction performance. It is also of interest to combine
the proposed scheme with the noisy input Gaussian process
framework described in [9] to improve performance and
compare single and multifidelity approaches.

Fig. 4. Depiction of the robot path from top down (top) and 3D (bottom)
views. The solid line represents the true path of the robot while the dashed
line represents the estimated path.“Plan” refers to the planned path of the

current set of sampling points.
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