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Abstract 

Introduction  
Classification of perioperative risk is important for patient care, resource allocation, and guiding shared 

decision-making. Using discriminative features from the electronic health record (EHR), machine learning 

algorithms can create digital phenotypes among heterogenous populations, representing distinct patient 

subpopulations grouped by shared characteristics, from which we can personalize our care, anticipate 

clinical care trajectories, and explore therapies. We hypothesized that preoperative digital phenotypes 

exist in pre-operative settings and are associated with postoperative adverse events including in-hospital 

and 30-day mortality, 30-day surgical redo, intensive care unit (ICU) admission, and hospital length of stay 

(LOS).  

 

Methods  
We identified all laminectomies, colectomies, and thoracic surgeries performed over a 9-year period from 

a large hospital system. Seventy-seven readily extractable preoperative features were first selected from 

clinical consensus, including demographics, medical history, and lab results. Three surgery-specific 

datasets were built and split into derivation and validation cohorts using chronological occurrence.  

Consensus k-means clustering was performed independently on each derivation cohort, from which 

phenotypes’ characteristics were explored. Cluster assignments were used to train a random forest model 

to assign patient phenotypes in validation cohorts. We reconducted descriptive analyses on validation 

cohorts to confirm characteristics similarities with derivation cohorts, and quantified the association of 

each phenotype with postoperative adverse events by using the area under receiver operating 

characteristic curve (AUROC). We compared our approach to ASA alone and investigated a combination 

of our phenotypes with the ASA score.  

 

Results  
A total of 7,251 patients met inclusion criteria, of which 2,480 were held out in a validation dataset based 

on chronological occurrence. Using segmentation metrics and clinical consensus, three distinct 

phenotypes were created for each surgery. The main features used for segmentation included urgency of 

the procedure, pre-operative LOS, age, and comorbidities. The most relevant characteristics varied for 

each of the three surgeries. Low-risk phenotype alpha was the most common (2039/2480, 82%) while 

high-risk phenotype gamma was the rarest (302/2480, 12%). Adverse outcomes progressively increased 

from phenotypes alpha to gamma, including 30-day mortality (0.3%, 2.1% and 6.0%, respectively), in-
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hospital mortality (0.2%, 2.3% and 7.3%) and prolonged hospital LOS (3.4%, 22.1% and 25.8%). When 

combined with ASA score, digital phenotypes achieved higher AUROC than ASA score alone (hospital 

mortality: 0.91 vs. 0.84; prolonged hospitalization: 0.80 vs 0.71).  

 

Conclusion 
For three frequently performed surgeries, we identified three digital phenotypes. The typical profiles of 

each phenotype were described and could be used to anticipate adverse postoperative events. 

 

Keywords 
Machine learning; Digital phenotyping; Perioperative outcomes; Outcome prediction; Artificial 
intelligence 
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Key points summary 
 

Question 

Can we use the electronic health record to attribute a digital phenotype to pre-surgical patients 

undergoing laminectomy, colectomy, or thoracic surgery, and use this phenotype to better understand a 

patient’s profile and anticipate their care trajectory? 

 

Findings 

For each of the three surgical cohorts investigated, we identified three surgical phenotypes with specific 

clinical characteristics, which can be used to predict adverse postoperative trajectories including 

mortality, prolonged hospital length of stay, admission to intensive care unit, and surgical reoperation. 

 

Meaning 

Without human inference, we can suggest pre-operative phenotypes that can inform care providers on 

the profile of patients undergoing surgery, whether further preoperative evaluation may be beneficial, 

potentially anticipate prolonged hospitalization, or to personalize the consent process. 
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Background 

More than 240 million surgeries are performed globally each year and postoperative mortality, despite 

remaining below 2%, is described as the third leading cause of worldwide mortality 1, 2. Patients considered 

to be in a high-risk surgical population will account for 80% of this mortality 3. Preoperative risk is therefore 

critical in order to risk stratify patients in order to optimize resource allocation, conduct preoperative 

interventions, and share the decision-making between the patients and their providers 3.  

 

Multiple attempts at preoperative risk stratification have been published. The POSPOM Score 

(PreOperative Score to Predict PostOperative Mortality)4 and Charlson comorbidity index5 are two scores 

focusing on mortality, while recent other risk stratification tools also aim to predict intermediate 

outcomes such as organ failure 6. Nonetheless, the ASA score developed in 1941 by the American Society 

of Anesthesiologists (ASA), remains the most widely used score due to its simplicity and generalizability. 

Despite not being developed originally to predict complications, it has been shown to correlate with post-

operative risks 7, 8. However, the ASA score has several significant weaknesses: it disregards the type of 

surgery as a risk factor, relies on the anesthesiologist’s experience, and an ASA score of 3 (intermediate) 

is overutilized 8-10. Recently, machine learning (ML) algorithms have been applied to electronic health 

record (EHR) data and have demonstrated the potential to improve risk prediction11-15. However, to date, 

most studies have presented models with supervised learning trained to predict specific post-operative 

complications, including mortality, cardiorespiratory adverse events, allergic reaction, as well as the ASA 

score itself16-18.  

 

Digital phenotyping is a machine learning methodology that can be applied to heterogeneous populations 

to identify subgroups sharing common characteristics19-21. Phenotyping algorithms can identify 

discriminating features and discover homogeneous subgroups, uncovering patterns and commonalities 
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that may not be perceptible to the individual or by classical statistical techniques. The features identified 

from these types of  algorithms can then be interpreted by clinicians22. By defining the digital phenotype 

of each population subgroup, one can then suggest future behaviours based on the behaviour of the other 

members in the subgroup 19, 23. This strategy has been explored primarily in psychiatric and neurological 

conditions 24, but recent studies have expanded towards specific cohorts within perioperative medicine25, 

such as patients undergoing joint arthroplasty26, 27 

 

In this manuscript, we hypothesized that unsupervised ML algorithms, specifically consensus k-means 

clustering, can create digital phenotypes of preoperative patients who share common key pre-operative 

characteristics, and that these phenotypes are associated with postoperative complications, including 30-

day mortality, in-hospital mortality, 30-day reoperation, ICU admission, and prolonged hospital length of 

stay (LOS) defined by LOS greater than the 90th percentile. To confirm the generalizability and scalability 

of our approach across the spectrum of surgeries, we selected three non-cardiac surgeries based on two 

criteria: 1) frequently performed surgeries in the United States, and 2) presenting a different perioperative 

risk profile to ensure that our phenotyping algorithm remains relevant in a wide spectrum of risk.  We 

created surgery-specific phenotypes for laminectomy, colectomy, and thoracic surgery with thoracotomy 

or thoracoscopy. 
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Methods 
This retrospective study was approved by the University of California in Los Angeles (UCLA) Institutional 

Review Board (UCLA-A IRB#15-000518); patients’ written consent was waived due to the retrospective 

approach of this study. This research was conducted and reported in accordance with guidelines 28, which 

we adapted for phenotyping, an unsupervised task. Further details regarding the methods are included in 

the supplementary material. 

 

Database 

The data was extracted from the Patient Data Warehouse (PDW), a custom-built database described in a 

previously in detail, containing perioperative data from all surgeries completed within University of 

California Los Angeles (UCLA) Health System since the inception of EHR in March 201329. To populate the 

PDW, the data is first extracted from the EPIC Clarity database (EPIC Systems, Madison, WI, USA) before 

being extracted and validated into the PDW, comprising more than 4,000 distinct perioperative features.  

 

We extracted all surgical records that were performed between March 1st, 2013 and April 1st, 2022 

containing “laminect”, “colectom”, “thoracotom”, or “thoracosc” in the scheduled procedure name as 

free text, or the CPT codes. Patients were excluded if younger than 18 years, if the patient was not 

discharged at the time of data extraction, or if the surgery lasted <10 minutes. The latter was used as a 

safety net to exclude cancelled cases.   If a single patient underwent multiple surgeries in the same 

dataset, only the first surgery was used. From the 533,408 procedures recorded in the PDW, 7,251 

matched our criteria, resulting in datasets for laminectomy, colectomy, and thoracic surgery containing 

2,328, 2,245, and 2,678 patients, respectively. This represents only 1.3% of the procedures recorded in 

the PDW because of the number dilution by all frequently performed minimally and non-invasive 

procedures, including endoscopies, cataract surgeries, interventional cardiology, and radiology, among 
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others. The features in the PDW are readily obtainable from the EHR and several come from tables 

specifically designed to assist with preoperative evaluation. For example, features for determining the 

possible presence of heart failure are drawn from multidimensional areas: medications, laboratory values, 

ICD codes, problem list, medical history, prior surgeries, echocardiogram results, and notes. To 

understand the data entry process and preoperative evaluations made to populate the PDW, essential to 

understand the generalizability of use in other institutions, we refer the reader to a recent publication 

summarizing this process30. 

 

Based on similar work on digital phenotype, this sample size and amount of data are sufficient to build 

reliable models. While some publications used significantly more patients (i.e. 16,552 unique patients to 

phenotype sepsis 23; 134,252 for arthroplasties27), other authors published relevant results with smaller 

number of patients (608 patients for COVID-19 19; 300 patients for breast cancer 31, 105 patients for spine 

disease 32) by compensating with increased number of data points.  

 

Clinical endpoints 

We believe that the best way to ensure the relevance of the phenotypes was to demonstrate their 

association with clinically important outcomes for the patient, the clinician, and the hospital. Even if a 

very solid segmentation had been achieved, based on high Silhouette and AMI scores, the real-world 

relevance of these phenotypes would remain low if they were not associated with clinically relevant 

outcomes, or if the association with these outcomes was lost when the phenotype was attributed to new 

patients. 

 

To evaluate the clinical relevance of the phenotypes attributed to patients, we explored the association 

of each phenotype with five adverse outcomes: (1) in-hospital mortality; (2) 30-day mortality; (3) 
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reoperation within 30 days; (4) intensive care unit (ICU) admission; and (5) prolonged postoperative 

hospital length of stay (LOS). These adverse outcomes were not used to create phenotype, but only to 

validate their clinical relevance. 30-day mortality and in-hospital mortality were defined by a death 

recorded in the EHR within 30 days following surgery, and at hospital discharge, respectively 12. 

Reoperation was defined as the occurrence of any surgery performed by the same service (i.e. general 

surgery for colectomy) within 30-days following surgery, to avoid considering unrelated surgery. A patient 

was defined as being admitted to ICU if any hour was spent in the ICU following surgery. Finally, prolonged 

hospital LOS was defined as postoperative LOS greater than the 90th percentile, established in the 

derivation dataset of each surgical cohort. 

 

Patient features 

Despite considering three distinct surgery-specific datasets, we first extracted the same dataset of 77 

preoperative features (see supplementary material) for all three datasets. The features included 

demographics (e.g. weight), specific comorbidities (e.g., diabetes), labs, medication, and preoperative 

surgery or anesthesia features. These features were first selected by clinical experts’ consensus (PLL, TW, 

MC) based on their availability in the preoperative setting and their potential clinical influence on 

postoperative evolution. Per our objectives, we aimed for preoperative risk stratification and excluded 

intraoperative features despite their established influence on postoperative outcomes 33.  

 

Outcome-driven feature elimination 

Unsupervised machine learning algorithms, such as k-means, typically attribute equal weight to all input 

features regardless of their clinical importance. For example, the feature “eye color”, if included, could 

weigh as much as “diabetes” to segment into subpopulations. Therefore, we used an outcome-driven 

approach and only retain features presenting a statistically significant Pearson’s correlation (P = 0.05) with 
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at least one of the clinical endpoints. The counterpart of this approach is the elimination of features 

correlated non-linearly to the endpoints. Categorical variables were one-hot encoded to calculate the 

correlation. We eliminated highly correlated features to avoid overweighting the condition linked to these 

features. 

 

Data preprocessing 

The data was preprocessed independently for each dataset by following the same approach. Values 

outside a physiological range (e.g., arterial pressure of 0- or 300-mm Hg) were considered registration 

artefacts and treated as missing values, similarly to recent publications8. If missingness was over 40%, a 

clinical consensus (PLL, TW) evaluated the relevance of keeping the feature (supplementary table 1). For 

example, left ventricular ejection fraction (LVEF) is rarely available prior to laminectomy but remains 

relevant. Multivariate imputation by chained equations was used to account for missing data 34. 

Continuous features were normalized. The final surgery-specific datasets contained 34, 36, and 33 

features for laminectomy, colectomy, and thoracic surgery, respectively (supplementary table 2 for 

included features, and supplementary table 3 for excluded features). 

 

Separation into derivation and validation cohorts 

Each surgery-specific dataset was separated into derivation and validation cohorts based on chronological 

occurrence to mimic the prospective attribution of phenotypes to the new patients to future patients (see 

supplementary figure 1). During anonymization of the data, the institution solely retains the year of 

occurrence. By losing this granularity, we could not precisely separate our cohorts with a fixed percentage 

and thus, we separated by using on the year to hold out between 30 and 40% of the patients in the 

validation cohort. The validation cohort remained untouched throughout model derivation. For each 
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validation cohort, we confirmed that the occurrence of all endpoints (adverse outcomes) was similar to 

the incidence found in the derivation datasets.  

 

By adopting a chronological validation approach, we aimed at mimicking a prospective attribution of 

phenotypes to future patients, based on a model built on previous patients.  

 

Derivation of phenotypes 

Supplementary figure 1 provides an overview of the derivation and validation methods. In accordance 

with data preprocessing, we independently derived three distinct phenotyping models for each surgery, 

by using their respective datasets. We used a 10-iterations consensus clustering approach 35 with K-

means36. This approach was previously used for clinical modelling35, but we compared its performance to 

other segmentation strategies (DB-Scan, hierarchical descending, k-means) to obtain the optimal 

consistency and robustness (supplementary tables 4-5). The optimal number of clusters was established 

by using a combination of Silhouette score, normalized mutual info (NMI) score, homogeneity score, 

adjusted Rand index (ARI), consensus matrix heatmaps, pairwise-consensus values for all patients, and 

characteristics of the consensus cumulative distribution function plots (see supplementary figure 2). 

These results, combined with the clinical consensus, established that consensus k-means with three 

clusters was the optimal segmentation strategy.  

 

Based on the results of our model exploration, a consensus k-means modelling with three clusters (k=3) 

was applied to all the patients from each derivation cohorts. A first exploration of the phenotype’s 

characteristics and the association with adverse outcomes was explored. 
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Model validation 

By definition, a consensus k-means algorithm will always succeed at segmenting a population in a pre-

established number of clusters. To confirm that our model derived consistent phenotypes, we validated 

the model by exploring if prospectively attributed phenotypes maintained the similar phenotyping profile 

and their relation with adverse post-operative outcomes.  

 

To account for the impracticality of clustering a new patient after consensus k-means, we used patients’ 

features to establish which phenotype should be attributed to new patients. We applied a train-test split 

within the derivation and used phenotypes attribution to train a random forest to predict and attribute a 

phenotype to the patients within in the validation cohort 37 . Recent publications confirmed that the 

strategy of using patients’ features to prospectively attribute digital phenotypes was effective, even if the 

algorithm explored were slightly different37.  

 

We compared the distributions of phenotypes across the derivation and validation sets. The inter-cluster 

difference for each endpoint was studied by clinical experts (PLL, TW, MC). The main characteristics of 

each phenotype were explored and compared to the main characteristics found within the derivation 

cohort. We explored the association between the phenotypes of the validation cohort, and the occurence 

of adverse outcomes. We used the area under the receiver operating characteristic curve (AUROC) to 

compare our approach to ASA score alone and we investigated a combination of our phenotypes with the 

ASA score (supplementary table 7). By considering this combination, we aimed to evaluate their 

complementary nature and explore potential synergies in improving patient risk stratification. 

 

The ASA score was chosen as a suitable comparator in our study due to its widespread use and acceptance 

within the medical community. It served as an appropriate benchmark because, like our developed 
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phenotypes, each ASA score represents a distinct group of patients, sharing more than a common risk 

profile, but also health-related characteristics.  
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Results 
The validation cohorts for laminectomy, colectomy, and thoracic surgery contained 999 patients (30.5% 

of total), 768 (34.2%), and 1,003 (37.5%), respectively. All results in this section refer to the validation 

cohort unless otherwise specified.  

 

Patients 

Table 1 presents patient characteristics in the validation sets for all three surgeries (see supplementary 

table 6 for derivation set characteristics). The median ASA score was 3, and scores of 2 and 3 were the 

most prevalent. Patients undergoing thoracic surgery had the most complications for all adverse 

outcomes recorded.  

 

Derivation of phenotypes 

Three phenotypes (k = 3) provided the optimal fit for all three surgical groups. After reordering 

phenotypes from low to high risk based on the relative occurrence of adverse outcomes, the low-risk 

phenotype alpha consistently grouped most patients (65% to 75% of the patients depending on the 

surgery). For each surgery, the distribution of each phenotype was compared between the derivation and 

the validation datasets to validate our prospective attribution (supplementary figure 2). Both colectomy 

and thoracic surgery presented a similar distribution, but a difference existed for laminectomy: the high-

risk phenotype gamma was not attributed to any patients in the validation dataset despite representing 

9% of the laminectomy derivation dataset. As further addressed in the discussion, the descriptive analysis 

revealed a significant difference in the comorbidity profile between the patients in the derivation and the 

validation datasets. These comorbidities were key factors to define the gamma phenotype. 
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Adverse outcomes 

The occurrence of adverse outcomes increased consistently from the most common phenotype alpha to 

phenotype beta and gamma. The combined in-hospital mortality increased from 0.2% with phenotype 

alpha to 2.3% and 7.3% for phenotypes beta and gamma, respectively. Despite being attribute nearly five 

and seven times more often than the other phenotypes, the low-risk phenotype alpha presented a similar 

absolute count of adverse events (figure 1.a), resulting in a significantly lower rate of adverse events for 

each patient with phenotype alpha (figure 1.b). A similar progression existed across all surgeries and 

across all outcomes, with phenotype alpha systematically representing the largest cohort and at least two 

thirds of the patient. Only reoperation exhibited a less consistent progression (see supplementary figure 

5). 

 

Clinical characteristics of phenotypes 

Given the notable differences between the three surgeries studied, we conducted individual exploration 

for each surgery to identify the most influential features contributing to the attribution of phenotypes. 

This approach facilitated a more nuanced understanding of the influential features within each surgical 

domain. Figure 2 summarizes (a) the two-by-two analysis of the phenotypes’ characteristics for colectomy 

(laminectomy and thoracic surgery found in supplemental), and (b) the median and mean values for the 

most relevant features of each phenotype, and in each surgery. Figure 2 summarizes the following section, 

in which we present the key characteristics of each surgery-specific phenotypes. 

 

Laminectomy 

When compared to intermediate-risk phenotype beta, we notice that patients undergoing laminectomy 

with a digital phenotype alpha were older (69 vs 44 years old), scheduled for shorter surgery (185 vs 263 

minutes), had not been hospitalized preoperatively (0 vs 2 days of preoperative hospitalization), and had 
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lower preoperative pain (2 vs 5 on a visual analog scale). Interestingly, the lower risk alpha phenotype had 

more respiratory flag (41% vs 20%) and CHF flag (13% vs 7%) than beta phenotype. 

 

Colectomy 

When compared to phenotype beta, phenotype alpha was attributed mostly to younger (58 vs 73 years 

old) and healthier patients (CHF flag: 11% vs 91%; respiratory flag: 26% vs 57%) undergoing an elective 

procedure. Both alpha and beta phenotypes had similar baseline preoperative heart rate (75 vs 76 bpm), 

had no total parenteral nutrition (0% for both) and no preoperative hospitalization. On the other hand, 

gamma phenotype comprised most non-elective surgeries and, when compared to the two other 

phenotypes, had more a longer pre-surgical hospitalization (median duration of 7 days), higher baseline 

heart rate (85 bpm) and increased use of parenteral nutrition (22%). They were usually younger and had 

less comorbidities than beta phenotype.  

 

Thoracic surgery 

Patients with phenotype alpha underwent elective surgery, were often the first case scheduled for the 

day (61%), had less cardiac or endocrine flags of comorbidities (12% and 8% respectively) and none had a 

pre-surgical stay. Phenotype beta was highly characterized by diabetes (100%) and cardiac flag (30%) and 

exhibited a mixture elective and non-elective cases. As seen with colectomy, phenotype gamma was 

mostly attributed to patients undergoing non-elective surgeries and had stayed at the hospital for a longer 

preoperative stay (median 10 days). They were more often female (65%), their heart rate was significantly 

faster (90 bpm) and they exhibited more pain in the preoperative setting (7 on VAS).   

 

 



19 
 

 

Comparison With ASA Score 

Most patients with an ASA score of 2 were attributed phenotype alpha (82.2%) and, as ASA score 

increased, the proportion of higher-risk phenotype gamma also increased (ASA 4: 49%; ASA 5: 66.67%). 

Out of the 2 770 patients comprising the validation cohorts, 2 039 were attributed the low-risk phenotype 

alpha, of which 1 684 had the intermediate-risk ASA score of 3. On the other hand, most patients with an 

ASA score of 3 were classified as low-risk phenotype alpha (1267/1684; 75%). Figure 3 offers a visual 

representation of the relationship between phenotypes and ASA score. 

 
Based on the AUROC, the association between all five adverse outcomes and the three-class phenotypes 

was either similar or slightly higher than the five-class ASA score (see figure 4). Phenotyping outperformed 

ASA score most significantly when predicting ICU admission (AUROC 0.76 vs. 0.71) and prolonged LOS 

(0.75 vs. 0.71). Reoperation was the most challenging outcome to predict for both approaches (AUROC 

0.59 and 0.62).  

 

Combination With ASA Score  

Finally, the combination of ASA score and digital phenotyping outperformed either scores alone, when 

using AUROC as the comparing metric. The linear combination of phenotypes and ASA score created a 

total 15 distinct categories (ASA1 – phenotype alpha; ASA1 – phenotype beta; and so on; see 

supplementary table 7). Combining human insight and digital phenotyping improved prediction for all 

outcomes and all surgeries. This linear combination reached an AUROC of 0.91 for hospital mortality 

(phenotype 0.85; ASA: 0.84), and an AUROC of 0.80 for both ICU admission and prolonged hospitalization 

(phenotype 0.75 and 0.75; ASA: 0.71 and 0.71). 
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Discussion  
In this study, we developed a method for preoperative risk stratification by using digital phenotypes, 

which created more homogeneous subgroups from a heterogeneous population. These subgroups shared 

common characteristics and an increased association with adverse outcome when compared with ASA 

score. This association was maintained when prospectively attributed to new patients.  

 

We explored our method among three populations undergoing three frequently performed surgeries, 

specifically selected to cover a wide range of perioperative risks. Across all three surgical groups, the low-

risk phenotype alpha was the most frequently attributed phenotype (over two thirds of the patient 

population), corresponding to what is statistically expected in a general population. The occurrence of 

adverse events increased progressively from the phenotype alpha to the higher-risk phenotype gamma. 

The consistency of these two finding across all three surgical populations supports the generalizability and 

scalability of the model to other surgical populations, which will have to be investigated in future 

publications.  

 

This methodology is in contrast with most published strategies, in which supervised machine learning 

models are trained to predict specific complications. A similar strategy of using supervised models 

predicting mortality and hospital LOS could have been explored, before categorizing the predictions in 

three groups: low, moderate, and elevated risk 38. Nonetheless, digital phenotyping is an alternate, 

complementary strategy that merits exploring due to its ability to track digital signatures and inform the 

clinician of the key characteristics of each phenotype instead of solely providing a risk score, built by 

forcing the model into selecting the features relevant to pre-defined outcomes and thus lose the ability 

to predict other distinct relevant outcomes unless the model is retrained. By phenotyping patients, we 

can theoretically predict unrelated complications, for example post-operative anemia and patient 
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readmission, which are two additional outcomes to explore in future works. Moreover, phenotyping can 

be used to personalize new therapies, as seen in sepsis and psychiatric conditions, or help match new 

patients with previous similar patients who could offer mentoring and support. This has been successfully 

explored in other fields of medicine characterized by heterogenous populations, including sepsis, in which 

digital phenotype based on labs and organ dysfunction predicted mortality and relevance of fluid 

therapies23. Similarly in psychiatric conditions, digital phenotypes built from symptoms and ambulation 

was used to predict relapse and dangerousness, guiding requirement for hospitalization 39-41. Overall, we 

suggest that digital signatures and phenotypes have the potential to yield a higher-level of understanding 

of our patients, instead of solely focusing on classic outcomes like mortality and LOS.  

 

ASA score, one of the most widely used score, could be considered a phenotype considering that is is 

based on patient’s characteristics and is not directly of percentage of risk of mortality. Kowing that a 

patient has an ASA score of 1 is an efficient way to inform an anesthesiologist on the patient’s status, but 

ASA score of 3, more commonly attributed, is much more heterogeneous. This challenge is partly solved 

with digital phenotypes, with which the low-risk phenotype alpha is the most frequentlyattributed cluster. 

Based on the ROC curve profiles (figure 4), patients with ASA 2 and 3 scores benefit the most from digital 

phenotyping due to their heterogeneity and common use. Compared to ASA score, digital phenotyping 

eliminates the reliance on experts and should reduce inter-user variability by being automatically 

attributed from readily extractable data. Phenotyping can be used by itself or in combination with human 

evaluation (i.e. with ASA scoring).  In clinical setting, this could be translated in an automated attribution 

of a phenotype based on EHR data, providing a first automated insight on the patient trajectory, and to 

update the patient’s risk stratification when the anesthesiologist evaluates the patient and assigns an ASA 

score. More specifically, a primary evaluation could be made before the decision of surgery is made, 

potentially influencing the surgeon’s and the patient’s choice to proceed. This primary evaluation would 
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be updated after preoperative evaluation, and after any updates until the surgery. Eventually, a model 

integrating intraoperative events would further improve the model.  

 

Interestingly, the most predictive features varied according to the surgery, an intuitive clinical concept 

learnt automatically by our models. It is important to mention that, after thorough discussion among the 

authors, we decided to exclude race and ethnicity from our models. Because race and ethnicity may be 

colinearly associated with many other features, significance and implications can be misattributed. 

Specifically, including race and ethnicity in the model could perpetuate racial behaviours or inequities, as 

the model is only able to learn from current observed data.  This topic arose recently in a study that used 

a machine learning algorithm to predict transfusion risk 42-44. 

 

When prospectively attributing phenotypes in the laminectomy validation dataset, no patients were 

attributed a phenotype gamma, despite being attributed to 9.2% of the patients in the derivation dataset 

(supplementary figure 2). A descriptive analysis of these patients revealed that on average a patient in the 

derivation cohort with a phenotype gamma had 3.5 comorbidities while no patients presented any 

comorbidities in the laminectomy validation cohort. The profile of the population significantly changed 

during the COVID-19 pandemic for this kind of elective functional surgery and, by using a temporal split 

to create our validation cohort, our results showed accordingly that highly comorbid patients were not 

operated on during the pandemic. Other approaches could have been adopted to compensate for the 

changes of population during COVID-19. However, we considered it of higher interest and more 

generalizable to create the phenotypes within a “usual” population without pandemic-related changes 

and to analyse how these phenotypes subsequently performed in a population modified by COVID-19.  
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Throughout this research, the methodology has been selected to be applicable to any surgical population. 

With minor modifications, the same method can be translated to 1) identify and attribute phenotypes 

prior to any surgery frequently performed, 2) include new features, and 3) predict other relevant 

outcomes. Adopting a temporal validation supports the applicability of the algorithm over time and as 

observed with laminectomy, react adequately despite significant changes in the surgical population. 

However, both the derivation and validation cohorts originated from the same database, and 

generalizability to other populations needs to be confirmed. From a machine learning standpoint, the low 

occurrence and limited number of adverse outcomes remain a challenge both during derivation and 

validation of phenotyping approaches. All the analysis and conclusions rely on the veracity of the data 

extracted; as such, our results are vulnerable to any possible artefacts and errors in our database. As an 

example of such an artefact, a patient who died in a hospital outside of the UCLA healthcare system would 

not necessarily be recorded as deceased. In our current model, the variation in the complexity of the 

procedure was not grasped despite a significant influence on postoperative outcome. Apart from a longer 

planned surgery duration, no features could help distinguish between a wedge and pneumonectomy, or 

a single-level laminectomy and a multiple-level surgery with neuromuscular comorbidities.  Finally, as for 

any machine learning algorithms developed, the clinical application of phenotyping requires an EHR. 

 

Conclusion 
In this analysis of patients undergoing laminectomy, colectomy, and thoracic surgery, we confirmed the 

relevance of digital phenotyping as a tool for risk stratification. For each surgery group, we obtained three 

distinct preoperative digital phenotypes with distinct clinical characteristics and postoperative care 

trajectories. Future investigations will apply this method to other surgical groups, and validate in another 

institution, and could include features collected intraoperatively to influence the digital phenotype during 

surgery.  
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Tables 
Table 1. Patients’ characteristics and occurrence of adverse outcomes in the validation sets for all 
investigated surgeries. 
 
 
 Laminectomy 

(n=999) 
Colectomy 
(n = 768) 

Thoracic 
(n=1003) 

Preoperative characteristics 
Age 
Mean (SD) 62 (16) 58 (16) 60 (17) 

Female 
N (%) 589 (59.0%) 400 (52.1%) 525 (52.3%) 

Race and ethnicity1 
     African American 
     Caucasian 
     Asian American 
     Other 
     Unknown 
 
     Hispanic 
     Non-Hispanic 
     Unknown 

 
54 (5%) 
636 (64%) 
101 (10%) 
132 (13%) 
76 (8%) 

 
113 (11%) 
892 (80%) 
84 (9%) 

 
48 (6%) 
436 (57%) 
86 (11%) 
129 (17%) 
69 (9%) 

 
130 (17%) 
587 (76%) 
51 (7%) 

 
57 (6%) 
591(59%) 
125(12%) 
147 (15%) 
83 (8%) 

 
136 (14%) 
791 (79%) 
76 (8%) 

ASA score 
Median [IQR] 3 [2-3] 3 [2-3] 3 [3-3] 

Weight 
Mean (SD) 82 (19) 76 (19) 75 (19) 

Body mass index 
Mean (SD) 28 (6) 26 (6) 26 (5) 

Max preoperative pain 
Median [IQR] 0 [0-6] 0 [0-0] 0 [0-2] 

Diabetes  
N (%) 344 (26.5%) 167 (23.3%) 195 (21.4%) 

Smoking 
N (%) 60 (6.3%) 47 (6.3%) 49 (5.1%) 

Respiratory pathology 
N (%) 334 (36.2%) 202 (28.2%) 348 (38.2%) 

Chronic heart failure 
N (%) 109 (11.8%) 81 (11.3%) 147 (16.1%) 

Ischemic heart disease 
N (%) 158 (17.1%) 113 (15.8%) 181 (19.8%) 

Last ICU stay (hours) 
Median [IQR] 0 [0 – 0] 0 [0 – 0] 0 [0 – 0] 

Preoperative LOS (days)  
Median [IQR] 0 [0 – 0] 0 [0 – 0] 0 [0 – 0] 

Total parenteral nutrition in 
previous 48h - N (%) 1 (0.1%) 27 (3.5%) 5 (0.5%) 

Elective surgery 
N (%) 835 (83.6%) 644 (83.9%) 803 (80.1%) 

Preoperative heart rate 
Mean (SD) 74 (13) 77 (15) 75 (16) 

Preoperative mean arterial 
pressure - Mean (SD) 96 (12) 91 (12) 90 (12) 

Scheduled minutes 
Median [IQR] 180 [165-240] 240 [180-300] 240 [180-300] 
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Postoperative adverse outcomes 
30-day mortality 
N (%) 8 (0.8%) 4 (0.5%) 21 (2.1%) 

Inpatient mortality 
N (%) 9 (0.9%) 7 (0.9%) 20 (2.0%) 

30-day reoperation 
N (%) 38 (3.8%) 18 (2.3%) 53 (5.3%) 

ICU admission 
N (%) 149 (14.9%) 44 (5.7%) 271 (27.0%) 

Prolonged hospital LOS2 
N (%) 98 (9.8%) 51 (6.6%) 94 (9.4%) 

 

For further details regarding the mapping of these characteristics and the electronic health record, please consult 
supplementary material; 1 Race and ethnicity is presented in this table but was not used as a feature for the 
derivation and validation of the model. The underlying reasons are described in the discussion; 2Defined by 
hospital length of stay higher than the 90th percentile, as measured in the derivation cohorts. Abbreviations: ASA: 
American Society of Anesthesiology; BMI: body mass index; LOS: length of stay.  
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Table 2. Incidence of adverse outcomes for each phenotype in surgery-specific validation datasets 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

1Defined by hospital length of stay higher than the 90e percentile, as measured in the derivation dataset   

Laminectomy 
 30-day 

mortality 
Inpatient 
mortality 

30-day 
reoperation ICU admission Prolonged 

hospital LOS1 
Alpha 

(N = 743) 0.1% 0.1% 2.4% 4.4% 3.1% 

Beta 
(N  = 256) 2.7% 3.1% 7.8% 45.3% 29.3% 

Gamma 
(N  = 0) - - - - - 

Colectomy 
 30-day 

mortality 
Inpatient 
mortality 

30-day 
reoperation ICU admission Prolonged 

hospital LOS1 
Alpha 

(N  = 607) 0.0% 0.0% 1.6% 2.1% 3.0% 

Beta 
(N  = 44) 2.3% 2.3% 0.0% 4.5% 6.8% 

Gamma 
(N = 117) 2.6% 5.1% 6.8% 24.8% 25.6% 

Thoracotomy 
 30-day 

mortality 
Inpatient 
mortality 

30-day 
reoperation ICU admission Prolonged 

hospital LOS1 
Alpha 

(N = 689) 0.7% 0.4% 4.4% 17.1% 4.2% 

Beta 
(N = 129) 0.8% 0.8% 2.3% 28.7% 13.2% 

Gamma 
(N = 185) 8.1% 8.6% 10.8% 62.7% 25.9% 

Global 
 30-day 

mortality 
Inpatient 
mortality 

30-day 
reoperation ICU admission Prolonged 

hospital LOS1 
Alpha 

(N = 2039) 0.3% 0.2% 2.8% 8.0% 3.4% 

Beta 
(N = 429) 2.1% 2.3% 5.4% 36.1% 22.1% 

Gamma 
(N = 302) 6.0% 7.3% 9.3% 48.0% 25.8% 
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Figures Caption 

 
Figure 1. Chord diagrams for the (a) absolute and (b) relative occurrence of adverse care 
trajectories for phenotype alpha (low-risk), phenotype beta (intermediate risk), and phenotype 
gamma (high-risk), for all surgery-specific phenotypes combined. 
 
 
Figure 2. Description of the most important features for each surgery, based on (a) random forest 
algorithm for prospective analysis and (b) heatmap grouping the surgery-specific discriminative 
features among the phenotypes. 
 
Figures 1. b) present the median value (if continuous) and the percentage of occurrence (if binary) for each of the 
most discriminative features. The features were considered highly discriminative if the normalized standard deviation 
across the three phenotypes was elevated. The color coding is based on the quintile of the value. CHF: congestive 
heart failure; ICU: intensive care unit; LOS: length of stay; VAS: visual analog scale 
 
 
Figure 3. Chord diagram comparing the attribution of ASA score and phenotypes. 

This figure depicts that low-risk phenotype alpha was the most frequently attributed phenotypes and was constituted 
mostly by patients with ASA score of 2 and 3. High-risk phenotype gamma was mostly constituted by patients with 
ASA score of 3 and 4. 
 

Figure 4. ROC curves for the prediction of clinical outcomes, based on digital phenotype, ASA 
score and the linear combination of both. a) hospital mortality; b) 30-day mortality; c) 
reoperation at 30 days; d) ICU admission; e) hospital length of stay over 90e percentile. 
 
Bootstrap analysis with 100 iteration was used to determine the 95% confidence interval, shown on the figures as 
the shade around each line. The detailed approach for combining digital phenotype with ASA score is described in 
supplementary table 7. ASA: American Society of Anesthesiologist ‘score; AUC: area under the curve; ICU: intensive 
care unit; LOS: length of stay. 
 

 


