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Abstract

Applications of machine learning are becoming increasingly common in medicine and health-
care, enabling more accurate predictive models. However, this often comes at the cost of inter-
pretability, limiting the clinical impact of machine learning methods. To realize the potential
of machine learning in healthcare, it is critical to understand such models from the perspec-
tive of multiple stakeholders and various angles, necessitating different types of explanations. In
this perspective, we motivate and explore five fundamentally different types of post hoc machine
learning interpretability. We highlight the different information they provide and describe when
each can be useful. We examine the various stakeholders in healthcare, delving into their spe-
cific objectives, requirements, and goals. We discuss how current notions of interpretability can
help meet these and what is required for each stakeholder to make machine learning mod-
els clinically impactful. Finally, to facilitate adoption, we release an open-source interpretability
library (https://github.com/vanderschaarlab/Interpretability) containing implementations of the
different types of interpretability, including tools for visualizing and exploring the explanations.

Keywords: Machine learning, Interpretability, Explainable AI, Healthcare, Medicine

Introduction

Machine learning approaches are being increas-
ingly proposed for predictive modeling in medicine
and healthcare and have the potential to revolu-
tionize medicine and become core clinical tools [1].
However, machine learning methods have failed
to make significant translational impact thus far,
with very few artificial intelligence (AI) systems
currently in clinical deployment. Furthermore,
without due care, AI approaches have the poten-
tial to be overused or misused, possibly causing
patient harm [2]. For advances in machine learning

and AI to be clinically actionable and capable of
making real-world impact, the methods proposed
by the machine learning community must be more
than highly predictive. Instead, users must be able
to understand and debug how models issue predic-
tions, and models should provide insight to further
medical knowledge.

Without a transparent understanding of how
models make predictions, they may act in unin-
tended and undesirable ways. For example, models
may learn incorrect or aberrant features unique to
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the training data, leading to biased or unfair deci-
sions [3, 4]. Indeed, uninterpretable models pose a
threat to medical ethics, with possible detrimen-
tal consequences for both individual and public
health [5]. Understanding and debugging machine
learning systems are critical steps to build model
trust [6] and necessary for medical professionals
and the broader public before clinical deploy-
ment [7]. Furthermore, a clear understanding of
computational models is now a regulatory require-
ment for deployment in many healthcare systems
globally [8, 9].

An additional challenge in medicine is the
presence of multiple stakeholder groups, namely
model developers, medical researchers, legislators
and regulators, clinicians, and patients, each with
their own backgrounds, expertise, and goals. As
a result, individuals from each group may need
different types of explanations. For example, a
clinician may want to know which features are
typically most important for the AI system when
issuing predictions, allowing them to understand
better the underlying logic behind the system. On
the other hand, a patient may primarily be inter-
ested in understanding why an AI system issued
the prediction for them and what changes they
might be able to make to change their prognosis.

Beyond inherently interpretable
models

One approach to ensure machine learning models
are not only predictive but can also be understood
is to adopt inherently interpretable models [10].
Typically, such models are either explicit in their
functional form (e.g., linear regression) or about
the logical rules used to issue a prediction (e.g.,
decision tree). However, there are limitations to
this approach. First, black-box machine learning
approaches have become de facto approaches in
several domains such as image analysis [11, 12],
natural language processing [13, 14], and multi-
modal learning [15], and have been shown to
exhibit improved performance compared to white-
box models in some other circumstances [16–18],
although this is far from always the case [19, 20].
Second, the rationale for predictions could still be
complex or not readily understood, even for such
models, leading to the interpretability require-
ments of all stakeholders not being met. Thus,
techniques that allow us to study models in a

post hoc manner are particularly important and
desirable. It has been argued that some opaque-
ness is acceptable and, further, that improved
predictive accuracy is more important than being
able to explain how a system achieved it [21].
While there is merit in this argument, we believe
that we should strive for a deeper understand-
ing of machine learning models. Additionally,
widespread clinical adoption and acceptance will
only be achieved with thorough auditing and
comprehension of machine learning models.

In this paper, we motivate and describe the
goals and requirements of five key stakeholders
in the development and administration of clin-
ical machine learning models. We then explore
how different types of explanations can begin
to address these diverse needs. We present five
distinct types of post hoc interpretability, high-
light the different information they provide, and
describe when each can be useful. As a tool for
both the clinical and machine learning communi-
ties, we provide an open-source software package
containing a suite of interpretability methods and
a visualization platform to make a range of expla-
nations readily accessible.

Types of Explanation

Before discussing different types of explanations,
we should first define what we mean by inter-
pretable. While we can explicitly write the com-
putation performed by a neural network, this does
not make them interpretable. Instead, we fol-
low the definition of Biran and Cotton [22], also
adopted by Miller [23] among others, where inter-
pretability is defined as the degree to which the
cause of a prediction can be understood. Further,
we define explainability as post hoc interpretabil-
ity [24] and, as a result, we will often use the two
terms interchangeably.

Broadly speaking, we can group current post
hoc explainable AI (XAI) methods into five fun-
damentally different classes, each of which offers a
different type of explanation and has a unique role
in understanding and debugging clinical machine
learning models. In particular, methods can pro-
vide explanations that are feature-based, example-
based, concept-based, model-based, or counterfac-
tual (Table 1). We begin with a brief introduction
of each.
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Feature-based explanations

Feature-based explainability methods are the
most common type of XAI and allow the user to
understand the importance of each feature. Some
feature-based methods explain individual predic-
tions (local), while others provide the global rele-
vance of features. Popular methods for determin-
ing feature importance include local methods such
as LIME [25], SHAP [26], and Integrated Gradi-
ents [27], as well as global methods such as partial
dependence plots [28] and permutation feature
importance [29, 30]. Understanding the relevance
of each feature is helpful in many contexts; as such,
feature-based explanations can provide valuable
insight throughout the model development cycle.
One limitation of such approaches is that they typ-
ically try to isolate the importance or impact of a
specific feature. However, features often act jointly
in combination [31], and this information is not
directly provided by feature-importance methods.

Example-based explanations

A second and fundamentally different type of XAI
is example-based explanations. Instead of quanti-
fying the relevance of each feature for the model,
example-based methods explain predictions by
providing the user with other instances, often from
the training set, that the model views as being
most similar to a given sample. This approach
shares similarities with the more general technique
of Case-Based Reasoning [38]. Example-based
methods include Simplex [32] and ExMatchina
[39]. One challenge with example-based methods
is understanding why the model views two samples
as similar. A recent example-based method has
tried to address this by bridging feature-based and
example-based approaches to explain the impor-
tance of each feature in the similar examples
[32].

One compelling feature of example-based
methods is that they allow the user to customize
the explanation to their expertise. This can be
particularly important when transferring models
to new settings beyond the environment in which
the model was developed [40]. For example, by
changing which examples are available, a clinician
can understand the predictions of a model in terms
of patients they know or canonical cases. In addi-
tion, example-based methods can be used to debug
models. First, if the explanation reveals that the

model views two samples as similar, but the user
disagrees, this could indicate a flaw in the model’s
logic. Second, if the model incorrectly classifies
the most similar examples, this casts doubt on the
validity of the prediction.

Concept-based explanations

Concept-based interpretability methods, such as
concept activation vectors (CAV) [33] and concept
activation regions (CAR) [34], allow users to inves-
tigate predictive models and test whether they
utilize specific concepts. Given a concept specified
by the user via a set of examples (e.g., stripes in
an image), a classifier is used to assess whether the
internal representations of a model differ between
examples where a concept is present and examples
where a concept is absent.

In some domains, such as imaging, understand-
ing the importance of individual features (i.e.,
pixels) might not be insightful since features do
not necessarily carry significant meaning alone.
In contrast, since the user provided the concept,
concept-based explanations are customizable and
understandable by design. In addition, concepts
can be specified at any level of abstraction and
allow the user to probe the model in a fundamen-
tally different way since concepts are not input
features to the model. While a strength, that the
user must currently provide concepts is also a
limitation, although we note the development of
approaches for concept discovery [41]. Addition-
ally, in general, concept-based explanations do not
take into account how much each concept plays a
role in the prediction.

Model-based explanations

While feature-based interpretability methods can
explain the predictions of a model with the contri-
butions of individual features, they do not provide
deeper insight, such as whether the model is
non-linear or interactions between features exist.
Model-based explanations use auxiliary models,
also known as meta-models, to convert a black-
box model into a different form that can be used
to analyze what the model has learned.

One model-based method to explain predic-
tions is associative classifiers [42, 43], which learn
a set of clinically-interpretable association rules
(or “if-then” clauses), similar to a decision tree.
An advantage of model-based approaches such as
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Table 1 Definition and examples of each of the different classes of explanation methods.

Explanation
class

Definition Examples

Feature-based Provides the importance of each feature to model predictions LIME [25],
SHAP [26]

Example-based Explains model predictions with reference to other examples SimplEx [32]
Concept-based Explains model predictions with reference to human-defined

concepts
CAV [33], CAR
[34]

Model-based Explains model predictions via auxiliary meta-models Symbolic pur-
suit [35, 36]

Counterfactual Explains model predictions by generating synthetic example(s)
that are similar but with a different prediction

MOC [37]

associative classifiers is that they not only pro-
vide interpretations of the model behavior but
also distill clinical insights from the base model’s
underlying prediction rules (e.g., [44]).

An alternate approach is using symbolic
regression to convert a black-box model into
a closed-form equation [35, 36]. This approach
allows us to elucidate the precise functional forms
by which a model captures non-linearities in
the data, identifying which features interact and
how strongly. In addition, by converting to an
equation, we can quantify the importance of each
feature, demonstrating a link between the different
types of interpretability. Finally, after converting
a machine learning model into an equation, we
have access to the entire range of mathematical
techniques classically used to analyze equations,
allowing deep and rigorous analysis not possible
for the machine learning model directly. Like other
explainability approaches, model-based methods
suffer from only being a proxy for the underlying
model. In particular for model-based approaches,
there is a natural complexity-accuracy tradeoff
between the two models.

Counterfactual explanations

Counterfactuals are local explanations that offer
insight into the reasoning behind specific predic-
tions by identifying alterations to the input fea-
ture values that result in a different model output.
Unlike example-based explanations, counterfactu-
als are typically not actual samples. However,
generally, it is desirable for counterfactuals to be

plausible samples from the underlying data dis-
tribution and to modify the fewest number of
features.

Compared to many other explanations, a ben-
efit of counterfactuals is the lack of additional
assumptions. In particular, to construct coun-
terfactuals, the user only needs to be able to
query the system and receive the output. However,
generating counterfactuals is a multi-objective
optimization problem and depends on the user’s
preferences. In addition, counterfactuals are not
unique. Generating multiple counterfactual expla-
nations often provides additional insight into the
model behavior by uncovering multiple viable
ways of altering the original sample to achieve a
different prediction. However, this lack of unique-
ness can also be a downside since a feature being
unaffected does not mean that changing its value
would not alter the prediction.

Finally, by interpreting the features as causing
a model’s prediction, counterfactual explanations
can be seen as causal for the model, even if
they are not necessarily counterfactuals for the
underlying joint distribution. As a result, the
interpretation of counterfactuals is clear, and they
can be particularly useful in scenarios where it
is possible to modify the underlying features via
interventions.

Stakeholders

There are multiple stakeholders in medicine, each
with different goals and requirements for machine
learning systems and explanations. To meet these
diverse requirements, we must engage with mul-
tiple types of explanations. However, while the
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Table 2 Representative questions for each of the key stakeholders in healthcare and which type of explanation can be
used to provide the appropriate insight.

Stakeholder Representative questions Explanation
type

Model Which features should be included in the model? Feature-based
Developer Do the features used by the model make sense? Feature-based

Does the model use established medical concepts? Concept-based

Medical Which features are predictive? Feature-based
Researcher What are the relationships between features? Model-based

Does this feature provide additional information? Feature-based
What is the impact of changing this feature? Counterfactual

Regulator What features does the model use to issue its predictions? Feature-based
Does the model understand known medical concepts? Concept-based
What explicit equations could be used instead? Model-based
Does the model see these patients as similar? Example-based
What is the impact of changing this feature? Does it agree with
current understanding?

Counterfactual

Clinician What features does the model use to issue its predictions? Feature-based
Does the model understand known medical concepts? Concept-based
What previous patients is this patient similar to? Example-based
What effect would changing this characteristic have on the
prediction?

Counterfactual

Patient What characteristics led to the predictions? Feature-based
What other patients are similar? Example-based
What can I change to alter the prediction? Counterfactual

machine learning community has developed a
diverse range of explanations, the uptake by the
medical community has largely been limited to
feature-based explanations.

In this section, we discuss five key stakeholders
in healthcare and present their unique perspec-
tives. We then outline how different types of expla-
nations can help address their various goals. Note
that the aims of each stakeholder are not mutu-
ally exclusive, and individuals may, and often will,
adopt multiple roles (e.g., model developer and
medical researcher). In addition, the characteri-
zation presented herein may not fully capture all
views of each stakeholder and instead is intended
to be representative of the breadth and nature
of interpretability requirements. We provide a set
of representative questions for each of the stake-
holders together with which type of explainability
could be used to address the questions in Table 2.

We hope that explicitly defining a set of key
stakeholders and presenting a set of tools facil-
itates better conversations between the machine
learning and clinical communities.

Model developers

We refer to anyone developing a new machine
learning model as a “model developer”. The pri-
mary goal for model developers is to produce
highly predictive models. While understanding
how a model issues its predictions might not seem
strictly necessary for this goal, selecting a subset
of features or performing feature engineering using
feature-based explainability methods has been
shown to improve performance, simplify models,
and reduce deployment costs [45, 46].

Separately, model developers need to ensure
that models are operating as expected and have
the potential to be deployed in the real world. In
particular, shortcut learning [47], where the model
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learns a spurious relationship, must be avoided,
as seen in several machine learning applications
in healthcare [4, 48, 49]. This can involve the use
of multiple types of XAI. For example, feature-
based explanations can be used to check that
the most important features are consistent with
current scientific knowledge, while concept-based
explanations allow developers to check whether
the model is using established medical concepts.

Medical researchers

Machine learning models are beginning to be used
as a tool for medical and scientific discovery, mak-
ing machine learning useful even if the models
themselves are never deployed. This is achieved
by training a machine learning model and then
analyzing it using techniques from XAI. Medical
researchers can use feature-based explanations to
test hypotheses about the importance of features
or discover new predictive features. Sometimes,
researchers may desire more precise relationships
between features. In this case, model-based expla-
nations can elucidate highly-performant black-
box models and uncover feature interactions and
equations for their relationships. Lastly, counter-
factual explanations offer an alternate way to
understand the importance and impact of certain
features, while enabling researchers to test and
form hypotheses about potential interventions.

Medical researchers’ use of machine learn-
ing, and consequently XAI, may differ from
other stakeholders. For example, while optimiz-
ing performance may be desired by clinicians and
patients, medical researchers instead may seek
models that can be used to generate hypotheses
or give insight into underlying biological mecha-
nisms.

As a specific example of how XAI is being
used to facilitate medical research, take liquid
biopsy for cancer screening. While many potential
biomarkers can be screened during preliminary
sequencing studies, a much smaller number must
be used during device implementation due to prac-
tical hardware limitations [50]. As a result, XAI
has been used to select the most important fea-
tures and reveal the interactions between selected
genes [51].

Regulators

Regulatory checks on machine learning models
before deployment in high-stakes medical envi-
ronments are rightly becoming more onerous and
rigorous [52]. For example, a detailed understand-
ing of how computational models function is now
a requirement for deployment in many health-
care systems. In the United States, the Food
and Drug Administration (FDA) demands “trans-
parency about the function and modifications of
medical devices” as a critical safety aspect [8],
while in the European Union, Article 22 of GDPR
legislation requires that “meaningful information
about the logic involved” be provided [9].

Since each type of explanation offers a unique
angle, all can be valuable to regulators as
they probe and debug machine learning mod-
els in healthcare. In particular, regulators can
use feature-based methods to understand what
variables the model is using to issue predic-
tions, while concept-based approaches can check
whether the model respects established medical
concepts. For example, fairness and bias are two
important considerations in healthcare [53], and
existing biases in the data should not be rein-
forced by models [54]. XAI tools can be used to
assess fairness and bias, as well as understand
their origin. XAI can be used to understand if
these biases occur and to what extent. Beyond
this, some regulators may place restrictions on
the type of models deemed acceptable. For exam-
ple, the American Joint Committee on Cancer
requires explicit risk equations [55]. Model-based
explainability can enable complex machine learn-
ing models to be used to discover better explicit
equations (e.g. [56]). Finally, regulators can use
example-based and counterfactual explanations to
probe the model on an instance-wise basis and
check for local pathologies in the model.

Clinicians

For clinicians to use complex machine learning
models to assist in making high-stakes decisions,
they need to trust the predictions being issued.
This requires clinicians to understand how the
model operates both globally and locally. Global
trust can be built via feature-based, concept-
based, and model-based explanations, allowing
clinicians to gain insight into the general function
of the model beyond estimates of performance.
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However, a global understanding of a model
is insufficient – clinicians need to understand the
rationale behind the prediction for the current
patient. Instance-wise, or local, feature impor-
tance can help clinicians understand what features
are driving the prediction for a specific patient,
while example-based explanations can relate the
current prediction to previous patients or canon-
ical cases. Example-based explanations can be
particularly important when debugging models or
deciding whether deviate from their predictions.
For example, if the examples have incorrect pre-
dictions, the clinician might not trust the issued
prediction. Alternatively, if the clinician disagrees
that the examples are similar, this could indicate
an issue with the predictive model. Finally, coun-
terfactuals can help guide clinicians as to what
change in the patient’s covariates would lead to an
improvement or deterioration in their condition or
outlook.

On the other hand, distilling more complex
models into alternate, simpler forms can aid clin-
ical practice both from a usability and inter-
pretability perspective. For example, an associa-
tive classifer was used to extract clinically inter-
pretable rules using 3 variables from a machine
learning model utilizing 115 variables [44]. While
there is an undoubted tradeoff, the ability to con-
vert arbitrarily complex models into a form that
is clinically actionable is of substantial benefit.

One prominent example of XAI is in medical
image analysis, where both AI systems and expla-
nations of predictions are becoming increasingly
commonplace [57]. When using ML for triage, clin-
icians require information as to why a patient has
been referred, while when AI is used as a sec-
ond reader, XAI is particularly critical to resolve
discrepancies between radiologists and ML predic-
tions. Furthermore, in many cases, for example
pneumonia, a clinical diagnosis alone is of limited
use and it is important to understand how the
imaging should be used in clinical management,
such as when and with what types of antibiotics
to treat.

Finally, the use of XAI is not limited to expla-
nations to help clinicians understand models, but
can be used to facilitate human-machine partner-
ships and improve clinical outcomes. For example,
a study on the diagnosis of tuberculosis on chest
X-rays showed that 10 out of the 13 participating

physicians had better diagnostic accuracy when
assessing chest X-rays with XAI than without [58].

Patients

Patients primarily wish to understand why a pre-
diction was issued for them. Feature-based expla-
nations can identify the patient’s characteristics
that led to the prediction, while example-based
methods can allow the patient to see similar
patients and their outcomes. Finally, counterfac-
tual explanations can allow the patient to under-
stand what would need to be different to change
the prediction, which could be helpful in circum-
stances where the patient can influence certain
covariates (e.g., smoking, diet, or alcohol con-
sumption). To a lesser extent, patients also wish
to understand and trust models more generally.
Similar methods to clinicians (see above) can be
used.

Other stakeholders

While we discuss five primary medical stakehold-
ers above, this is by no means exhaustive and
other stakeholders exist. For example, we have
not explored the role of funders of ML systems
or industry. While distinct, there is significant
overlap between these stakeholders and those we
have discussed. Industry often conducts medi-
cal research, and before decisions are taken to
fund projects such as clinical trials of ML sys-
tems, decision makers will want to gain a deep
understanding of the model.

Discussion

Significant work is still needed to improve the
quality of both machine learning models and
explanations before such systems can become
commonplace in clinical practice [5, 59]. Like
the models they explain, interpretability methods
are imperfect; they do not exactly capture pre-
cisely how a model works [10, 24] and different
approaches of analysing the same model have been
shown to lead to different conclusions [60]. Indeed,
there have been several criticisms of explainable
AI in healthcare, with some arguing that using
interpretability methods to understand individual
predictions offers “false hope”, in part due to an
“interpretability gap” [61] resulting from both the
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choice of XAI method and how the explanation is
interpreted. As a result, Ghassemi et al. cautioned
“against having explainability be a requirement
for clinically deployed models” [61]. While we
agree with this word of warning and acknowl-
edge the issues that have been demonstrated with
some explainability methods (e.g., saliency maps
[10, 61]), we believe XAI has much to offer the
medical community, and others agree [5, 62, 63].
Even Ghassemi et al. concede that “explanations
can be extremely useful when applied to global
AI processes” [61] and the much-maligned saliency
maps have also been successfully used to further
medical knowledge [64, 65].

Consequently, techniques that explain machine
learning models will prove invaluable for the
medical community. So far, applications of inter-
pretability in healthcare have predominantly
focused on feature-based approaches. However, to
harness the full potential of explainability, other
techniques and types of interpretability, such as
those discussed in this Perspective, are required.
In particular, there has not been sufficient engage-
ment and awareness about the capabilities of
current tools to explain machine learning mod-
els, nor how the multiple different stakeholders in
healthcare should use them. While Amann et al.
[5] provide a thoughtful discussion on the rele-
vance of explainability from multiple perspectives,
they do not offer concrete suggestions and guid-
ance on the capabilities and different types of
interpretations that are available. In addition, the
role of different stakeholders in healthcare has
been overlooked, with studies too often focused on
only one aspect. To raise awareness and promote
broader consideration, we have described the var-
ious stakeholders, highlighting their different roles
and requirements. To foster discussion and show
the different ways stakeholders can engage with
explainable AI, we have detailed the toolbox of
methods available for understanding and debug-
ging machine learning models. Finally, we have
connected the two, detailing how different stake-
holder requirements can be addressed using the
XAI toolbox.

We hope this will promote further engagement
and collaboration between the machine learning
and medical communities. Based on our discus-
sions with healthcare professionals [66], a key
impediment to adoption is a lack of a readily-
available, easy-to-use implementation of a range

of methods to explain machine learning models.
Consequently, we have developed an open-source
software package containing a suite of inter-
pretability methods and a visualization platform,
making a range of explanations accessible to both
the medical and machine learning communities.
Our open-source software package for machine
learning interpretability is provided at https://
github.com/vanderschaarlab/Interpretability. For
machine learning to realize its potential in health-
care, both communities need to experiment with
the available tools and identify missing pieces in
the puzzle.

Finally, while we have highlighted the medical
setting, consideration of multiple stakeholders is
essential in other fields, such as criminal justice,
education, and finance.

Acknowledgments. F.I. and M.vdS. are sup-
ported by the National Science Foundation (NSF),
grant number 1722516. In addition, M.vdS. is
supported by the Office of Naval Research (ONR).

Competing interests. The authors declare no
competing interests

References

[1] Topol, E.J.: High-performance medicine: The
convergence of human and artificial intelli-
gence. Nature Medicine 25(1), 44–56 (2019).
https://doi.org/10.1038/s41591-018-0300-7

[2] Volovici, V., Syn, N.L., Ercole, A., Zhao, J.J.,
Liu, N.: Steps to avoid overuse and misuse of
machine learning in clinical research. Nature
Medicine 28(10), 1996–1999 (2022). https://
doi.org/10.1038/s41591-022-01961-6

[3] Caruana, R., Lou, Y., Gehrke, J., Koch, P.,
Sturm, M., Elhadad, N.: Intelligible mod-
els for healthcare: Predicting pneumonia risk
and hospital 30-day readmission. In: Pro-
ceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery
and Data Mining, 1721–1730 (2015)

[4] Winkler, J.K., Fink, C., Toberer, F., Enk,
A., Deinlein, T., Hofmann-Wellenhof, R.,
Thomas, L., Lallas, A., Blum, A., Stolz, W.,
Haenssle, H.A.: Association between surgi-
cal skin markings in dermoscopic images and

https://github.com/vanderschaarlab/Interpretability
https://github.com/vanderschaarlab/Interpretability
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1038/s41591-022-01961-6
https://doi.org/10.1038/s41591-022-01961-6


Interpretability in Healthcare 9

diagnostic performance of a deep learning
convolutional neural network for melanoma
recognition. JAMA Dermatology 155(10),
1135–1141 (2019). https://doi.org/10.1001/
jamadermatol.2019.1735

[5] Amann, J., Blasimme, A., Vayena, E., Frey,
D., Madai, V.I., the Precise4Q consortium:
Explainability for artificial intelligence in
healthcare: A multidisciplinary perspective.
BMC Medical Informatics and Decision Mak-
ing 20(1), 310 (2020). https://doi.org/10.
1186/s12911-020-01332-6

[6] Rajpurkar, P., Chen, O. Emmaand Baner-
jee, Topol, E.J.: AI in health and medicine.
Nature Medicine 28(1), 31–38 (2022). https:
//doi.org/10.1038/s41591-021-01614-0

[7] Yoon, C.H., Torrance, R., Scheinerman,
N.: Machine learning in medicine: Should
the pursuit of enhanced interpretability
be abandoned? Journal of Medical Ethics
48(9), 581–585 (2022). https://doi.org/10.
1136/medethics-2020-107102

[8] Food and Drug Administration and others:
Proposed regulatory framework for modifica-
tions to artificial intelligence/machine learn-
ing (AI/ML)-based software as a medical
device (SaMD) (2019)
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