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Abstract

Background

Ensemble machine learning could support the development of highly parsimonious
prediction models that maintain the performance of more complex models whilst maximising
simplicity and generalisability, supporting the widespread adoption of personalised
screening. In this work, we aimed to develop and validate ensemble machine learning

models to determine eligibility for risk-based lung cancer screening.

Methods

For model development, we used data from 216,714 ever-smokers in the UK Biobank
prospective cohort and 26,616 high-risk ever-smokers in the control arm of the US National
Lung Screening randomised controlled trial. We externally validated our models amongst the
49,593 participants in the chest radiography arm and amongst all 80,659 ever-smoking
participants in the US Prostate, Lung, Colorectal and Ovarian Screening Trial (PLCO).
Models were developed to predict the risk of two outcomes within five years from baseline:
diagnosis of lung cancer, and death from lung cancer. We assessed model discrimination
(area under the receiver operating curve, AUC), calibration (calibration curves and
expected/observed ratio), overall performance (Brier scores), and net benefit with decision

curve analysis.

Results

Models predicting lung cancer death (UCL-D) and incidence (UCL-I) using three variables —
age, smoking duration, and pack-years — achieved or exceeded parity in discrimination,
overall performance, and net benefit with comparators currently in use, despite requiring only
one-quarter of the predictors. In external validation in the PLCO trial, UCL-D had an AUC of
0.803 (95% CI: 0.783-0.824) and was well calibrated with an expected/observed (E/O) ratio

of 1.05 (95% ClI: 0.95-1.19). UCL-I had an AUC of 0.787 (95% CI: 0.771-0.802), an E/O ratio
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of 1.0 (0.92-1.07). The sensitivity of UCL-D was 85.5% and UCL-I was 83.9%, at 5-year risk
thresholds of 0.68% and 1.17%, respectively 7.9% and 6.2% higher than the USPSTF-2021

criteria at the same specificity.

Conclusions
We present parsimonious ensemble machine learning models to predict the risk of lung
cancer in ever-smokers, demonstrating a novel approach that could simplify the

implementation of risk-based lung cancer screening in multiple settings.


https://doi.org/10.1101/2023.01.27.23284974
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.01.27.23284974; this version posted January 29, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY 4.0 International license .

Introduction

Screening, early detection, and disease prevention programmes are increasingly bespoke,
with risk prediction algorithms determining an individual’s eligibility and management."
Such personalisation promises to improve the benefit-to-harm profile of such interventions
and ultimately health outcomes.*® However, the delivery of these programmes at a
population scale requires two conditions of risk prediction models: that they generalise well
to contexts where there are insufficient data for model development, retraining, or validation;
and, that the trade-off between model complexity and implementation feasibility is
considered. In this work, we couple state-of-the-art ensemble machine learning and multi-
country data to explicitly maximise model parsimony and generalisability, an approach that

holds promise in multiple disease areas.

Screening for lung cancer — the foremost cause of death from cancer worldwide’ — with low-
dose computed tomography (LDCT) has been associated with a 20-24% reduction in lung
cancer-specific mortality amongst those at high risk.2° However, the ideal method to identify
those at high risk remains unresolved. The US Preventive Services Taskforce (USPSTF)
recommends the use of risk-factors — age, pack-years smoked, and quit-years for former
smokers — to select screening participants.’® Nevertheless, identifying individuals for lung
cancer screening based on risk prediction models has been shown to have both better
benefit-to-harm profiles and cost-effectiveness than using risk factors alone,"'~* leading to

risk-model-based selection criteria in European lung cancer screening pilots.'®

To date, most externally validated prediction models for lung cancer have been developed in
US datasets,'>'5?' reflecting the relatively limited availability of suitable cohorts with long-
term follow-up for prognostic modelling. This implies that most global healthcare systems
that implement risk-based lung cancer screening will use prediction models developed in a

US population, often using variables such as ethnicity, whose categorisation varies between
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countries and individual datasets, and academic qualifications that differ both over time and
between jurisdictions. In the UK, existing models have been shown to underperform in
specific groups, such as the more socio-economically deprived, where underestimation of

risk could lead to a screening programme systematically widening health inequalities.?

Furthermore, the risk models currently in use are a challenge to implement. In the UK,
eligibility for lung cancer screening pilots is based on the PLCOmM2012 and Liverpool Lung
Project risk models, requiring 19 variables, few of which are routinely available.? Collecting
these variables from an individual who is potentially eligible and explaining the results
currently averages between five and ten minutes. To determine the screening eligibility of
one million people would therefore require up to 87 full-time staff a whole year, presenting a

formidable obstacle to an effective national screening programme.

In this study, we hypothesized that using ensemble machine learning with training data
spanning different geographic regions, populations, and average risk levels, we could
develop predictive models for lung cancer screening with a minimum number of features that
has broad applicability. In so doing, we aimed to combine the simplicity of risk-factor-based
criteria with the improved predictive performance of risk models, whilst maintaining

generalisability to new settings.

Methods

Data sources and study population
Development and internal validation datasets

For model development, we first used data on 216,714 ever-smokers without a prior history
of lung cancer from the UK Biobank?* before creating a multi-country dataset that combined

UK Biobank and US National Lung Screening Trial (NLST)? data (n=26,616) (Figure 1 and
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eFigures 1-2 in the Supplement). We selected the NLST because it is geographically

distinct, includes a higher risk cohort, and has greater ethnic diversity than the UK Biobank.

External validation datasets

For model validation, we used data from 40,593 ever-smokers without a prior history of lung
cancer from the chest radiography arm of the U.S. Prostate, Lung, Colorectal and Ovarian
Cancer Screening (PLCO)? trial (eFigure 3 in the Supplement). This allowed benchmarking
against comparator models that were developed in the control arm of the PLCO trial. Chest
radiography was found to have no impact on lung cancer mortality, nor a statistically
significant impact on lung cancer incidence.?® In sensitivity analyses presented in the

Appendix, we report model performance in the full PLCO dataset (n=80,659).

Missing data

We used multiple imputation by chained equations (MICE) with predictive mean matching to
generate imputed development and validation datasets.?® We generated 10 imputed sets of
the UK Biobank and NLST, based on an average missingness amongst candidate predictors
in the UK Biobank of 11%. As missingness was <1% for all relevant variables in the PLCO,
we created five imputed PLCO datasets. See Appendix (Table S1, eFigures S4-6) for further

details.

Outcomes

We developed models to predict the absolute cumulative risk of two outcomes within five
years from baseline: diagnosis of lung cancer, and death from lung cancer. Lung cancer
status and primary cause of death in the UK Biobank were determined by linked national

cancer registry and Office for National Statistics data.?* In the NLST and PLCO, lung cancer
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diagnosis and primary cause of death were confirmed by review of medical records and

death certificates, respectively.?>?’

Model development

We developed ensembles of machine learning pipelines using AutoPrognosis, open-source
automated machine learning software.?®% In this analysis, AutoPrognosis was used to
optimise pipelines consisting of a variable pre-processing step followed by model selection
and training. These optimised pipelines were subsequently combined and a single prediction
for any individual generated by a weighted combination of the predictions made by each of
the four pipelines independently, with weighting by Bayesian model averaging (Figure 1).%°
We trialled model algorithms including logistic regression, random forests and state-of-the-
art Gradient Boosting approaches (see eMethods, eFigures 7-8, and eTables S2-3).
Throughout, pipelines were trained and selected to maximise model discrimination,

measured with the area under the receiver operating curve (AUC).

Model explanation

We used the Kernel Shapely Additive Explanations (SHAP)®' algorithm for model
explanation and analysis of predictor interactions (Figure 1). Kernel SHAP is a permutation-
based method theoretically based in coalitional game theory. In summary, each variable is
passed to a model one-by-one, with the change in predictions that occurs attributed to this

model.??3® Further details are available in the Appendix.
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Figure 1: Developing the UCL models to determine lung cancer screening eligibility

A multi-country dataset comprising the UK Biobank and NLST was used to develop new models
before external validation in the PLCO chest radiography arm (allowing benchmark comparison with
existing models developed in the PLCO control arm) and the full PLCO cohort. The ensemble
modelling approach involves optimising individual modelling pipelines before combining their results
as a single prediction for each individual. (b) shows details of the UCL-D model, including the weights
attributed to each pipeline in generating a single prediction for the five-year risk of lung cancer for any
individual. (c) shows the contribution of different variables to overall predictions as well as interactions
between predictors, analysed using Shapely Additive Explanations (SHAP).*? The first subfigure in (c)
shows that smoking duration was the most important variable when making predictions of an
individual’s risk of dying from lung cancer, followed by pack-years smoked, and finally age. The three
subsequent dependence subplots show the relationship between the predictor (x-axis) against the
outcome (y-axis) — the importance of knowing that predictor value when making a prediction. The
vertical dispersion shows the degree of interaction effects present, whilst the colour corresponds to a
second variable. The plots show that smoking for less than approximately 35 years had relatively little
impact on model predictions, with a steep inflection and increasing interaction between smoking
duration and pack-years after this point. Interestingly, in the subsequent subfigure showing the
relationship between pack-years and lung cancer death, we see that there are distinct clusters of
individuals based on their smoking duration projecting as a fan. This relationship between smoking
duration and pack-years mirrors that seen in the previous sub-figure, with duration trumping quantity
of cigarettes smoked unless both are high. In other words, those individuals who smoke for short
periods of time have a lower predicted risk, even if they smoke relatively large quantities. This reflects
our understanding of lung biology and the ability of the lung to repair itself if an individual stops
smoking.%? Lastly amongst subfigures of (c) we see that age has relatively limited impact on the model
under the age of 60. In (d), we explain an individual at the proposed risk threshold (0.68% five-year
risk of death from lung cancer) for this model. Relative to the average, this individual’'s predicted
probability is lowered by their age (55) but raised by their smoking duration and pack-years, leading to
a predicted probability above the average for this dataset. This can provide a useful check on the
model and improve trustworthiness. Further details can be found in the Appendix.
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Variable selection

For pragmatic reasons, we considered candidate predictors from the UK Biobank that were
also present in the NLST and PLCO. We settled on our final list of predictors based on the
literature, domain expertise, variable distributions, generalisability to multiple settings, and

model discrimination in the UK Biobank.

Statistical analysis

We considered a model’s overall performance with the Brier score,** discrimination with the
area under the receiver operating curve (AUC), calibration with calibration curves and the
ratio of expected-to-observed cases, and clinical usefulness with decision curve analysis.>®
Calibration curves were calculated by splitting individuals into ten risk deciles based on their
predicted risk before compared predicted probability against observed risk, the latter
calculated using a Kaplan-Meier model. For a measure of clinical utility, we considered the
net benefit of models across a range of risk thresholds.* We compared model discrimination
with a two-tailed bootstrap test using the methods of Hanley and MacNeil, modified by Robin
and colleagues.®**” To determine potential risk thresholds for our models, we used a fixed
population strategy, comparing the number of individuals eligible for screening in the entire

PLCO external validation dataset using the USPSTF-2021 criteria.

In both internal and external validation, we generated 1,000 bootstrap resamples with
replacement for all analyses; central estimates and 95% confidence intervals were
calculated with the percentile method. We used optimism-corrected metrics for internal

validation. All analyses were conducted with R*® and Python®°.

Model comparisons

For benchmark comparisons, we compared our new models to the USPSTF-2021 criteria

(age 50-80, 220 pack-year smoking history, and quit within the last 15 years if a former
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smoker),'® as well as existing risk models that are either in use (PLCOm2012"® and
Liverpool Lung Project (LLP) version 2*°) or have been externally validated and consistently
shown to outperform other risk models (the Lung Cancer Death Risk Assessment Tool
[LCDRAT] and Lung Cancer Risk Assessment Tool [LCRAT]') (eTable 4 in the
Supplement).’®224142 Al comparator models predict the five-year risk of death (LCDRAT) or
developing lung cancer (LCRAT, LLP) except for the PLCOm2012 which predicts the six-
year risk of lung cancer occurrence. A third, recalibrated, version of LLP has been
developed. Because it is not currently in use, we present full comparative analyses in the
Appendix but note that in using the same predictors and coefficients as LLP version 2, its
discrimination is equivalent. Further, we also compared against Cox models developed using
the same dataset (see eMethods), and the constrained versions of the LCDRAT, LCRAT,

and PLCOmM2012 models.

All variables were available for comparator models except the LLP. For the LLP, in the UK
Biobank, data were not available for age at which a family member developed lung cancer.
Following ten Haaf and colleagues,*' and reflecting UK lung cancer epidemiology,** we
assumed that all with a family history of lung cancer were aged over 60. In the PLCO
dataset, asbestos exposure and prior history of pneumonia were not available and were set
to zero. We used the Icmodels package in R to calculate predictions for the PLCOmM2012,

LCRAT and LCDRAT models.**

Code and model availability

To facilitate use of the UCL models, we have developed a website and have made the

models themselves available (https://github.com/callta/lung _cancer risk _models) as a

package. The underlying code for AutoPrognosis is available from

https://qgithub.com/vanderschaarlab/AutoPrognosis.
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Results

The descriptive characteristics of the UK Biobank and NLST development datasets, and the
PLCO external validation dataset are presented in Table 1. Characteristics by outcome are
presented in eTables 5-8 in the Appendix. The number of cancers diagnosed and deaths

from lung cancer are presented by follow-up period in eTable 9.

We found that age, smoking duration (years), and pack-years of smoking, drove most
predictions. This led us to focus our analyses on developing two models: UCL-D and UCL-I,
that used just these three variables. UCL-D predicts the five-year risk of dying from lung
cancer and was a weighted ensemble consisting of four modelling algorithms: AdaBoost*>¢,
LightGBM*', Logistic Regression and Linear Discriminant Analysis. UCL-I predicts the five-
year risk of developing lung cancer and included AdaBoost***®, LightGBM*’, Bagging, and
CatBoost*® algorithms. Details of the ensemble pipelines, their weightings and algorithm

hyperparameters are presented in the Appendix (eFigures 7-8 and eTable S2-3). Using an

ensemble approach led to higher discrimination than equivalent Cox models (eTable 10).

UCL models

In internal and external validation, UCL-D and UCL-| showed good discrimination (Table 2),
overall performance (Appendix Table S11), and calibration (Figure 2), both overall and
across subgroups. In external validation in the PLCO radiography arm, UCL-D had an AUC
of 0.803 (95% CI: 0.783-0.824), an expected/observed (E/O) ratio of 1.05 (95% CI: 0.95-
1.19), and a Brier score of 0.0084 (95% CI: 0.0075-0.0093). UCL-I had an AUC of 0.787
(95% CI: 0.771-0.802), an E/O ratio of 1.0 (0.92-1.07), and a Brier score of 0.0153 (0.0142-

0.0164).
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Table 1: Descriptive characteristics of development and validation cohorts

Characteristic

Development cohorts

Validation cohort

UK Biobank
n=216,714

NLST controls
n=26,616

PLCO radiography

arm n=49,593

Age (n, %)
<50 43,170 (19.92) - -
50-54 30,077 (13.88) - -
55-59 39,539 (18.24) 11,384 (42.77) 13,965 (34.41)
60-64 57,295 (26.44) 8,170 (30.7) 12,623 (31.1)
65-69 45,520 (21.0) 4,741 (17.81) 9,117 (22.46)
270 1,113 (0.51) 2,321 (8.72) 4,879 (12.02)
Missing 0 (0.0) 0(0.0) 9 (0.02)
Sex — Female (n, %) 103,698 (47.85) 10,919 (41.02) 16,892 (41.61)
Missing 0 (0.0) 0(0.0) 0(0.0)
Ethnicity — White (n, %) 208,255 (96.47) 24,165 (91.50) 35,818 (88.29)
Missing 830 (0.38) 206 (0.77) 23 (0.06)
Highest qualification (n, %)
Degree 59,705 (28.07) 8,213 (31.03) 13,149 (32.44)
Some college 16,501 (7.76) 6,072 (22.94) 9,434 (23.27)
Post-secondary school 33,588 (15.79) 10,100 (38.17) 14,403 (35.53)
Secondary school 57,646 (27.11) 1,211 (4.58) 3,083 (7.61)
None of the above 45,231 (21.27) 868 (3.28) 464 (1.14)
Missing 4043 (1.87) 152 (0.57) 60 (0.15)
Household income (GBP £)
<18,000 49,067 (26.45) - -
18,000-30,999 49,023 (26.42) - -
31,000-51,999 46,120 (24.86) - -
52,000-100,000 33,020 (17.8) - -
>100,000 8,296 (4.47) - -
Missing 31,188 (14.39) - -
Body mass index
<18.5 1,084 (0.50) 240 (0.91) 310 (0.77)
18.5-24 62,715 (29.1) 7,302 (27.65) 12,743 (31.78)
25-29 94,272 (43.75) 11,442 (43.33) 17,280 (43.1)
30-34 41,469 (19.24) 5,219 (19.76) 7,035 (17.55)
235 15,954 (7.40) 2,205 (8.35) 2,726 (6.80)
Missing 1,220 (0.56) 208 (0.78) 499 (1.23)
Smoking status
Former 164,714 (76.01) 13,764 (51.71) 8,073 (19.89)
Current 52,000 (23.99) 12,852 (48.29) 32,520 (80.11)
Missing 0 (0.0) 0(0.0) 0(0.0)
Pack-years of smoking (n, %)
<10 35,222 (23.59) 0(0.0) 6,609 (16.63)
11-19 39,914 (26.73) 0(0.0) 7,605 (19.13)
20-29 29,471 (19.74) 4 (0.02) 5,839 (14.69)
30-39 20,596 (13.79) 6,865 (25.79) 5,108 (12.85)
240 24,125 (16.16) 19,747 (74.19) 14,592 (36.71)
Missing 67,386 (31.09) 0(0.0) 840 (2.07)
Personal history of cancer (n, %) 19,386 (8.95) 1,197 (4.5) 1,837 (4.53)
Missing 0 (0.0) 0(0.0) 5(0.01)
COPD / Emphysema / Bronchitis (n, %) 6,616 (3.06) 4,617 (17.35) 3,617 (8.91)
Missing 454 (0.21) 0(0.0) 0(0.0)
Family history of lung cancer (n, %) 28,765 (13.52) 5,734 (21.54) 4,566 (11.71)
Missing 3,944 (1.82) 0 (0.0) 1602 (3.95)

Abbreviations: GBP, British Pounds; COPD, Chronic Obstructive Pulmonary Disease.
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Discrimination

Despite using approximately one-quarter of the variables, UCL-D achieved parity in
discrimination with the LCDRAT (AUC: 0.811, 95%: 0.793-0.829, p=0.18 for difference with
UCL-D). UCL-I achieved parity with PLCOmM2012 (AUC: 0.792, 0.779-0.808, p=0.15 for

difference in AUCs) and showed greater discrimination than LLP versions 2 and 3 (p<0.001).
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Figure 2: Calibration curves

Calibration curves showing UCL and comparator models in the UK Biobank (dark blue dashed lines)
and US PLCO radiography arm (light blue line). Curves were generated by splitting individuals into
ten risk deciles based on their predicted risk. Each curve shows the mean predicted risk against the
observed risk by risk decile. Observed risk was calculated using a Kaplan-Meier estimator. UCL
models showed good calibration in external validation in the PLCO intervention arm, particularly at
predicted risk between 1-2% at which risk thresholds are commonly set. At these thresholds there
was modest underprediction with the LCDRAT, LCRAT, and PLCOmM2012 models in the PLCO
intervention arm. All models modestly overpredicted risk in the UK Biobank, with the exception of the
Liverpool Lung Project (LLP) version 2 model, which strongly overpredicted risk.

Calibration
The UCL models were well calibrated across risk thresholds at which eligibility for screening
is typically set, tending modestly towards underprediction in the highest risk decile in the

PLCO radiography arm (Figure 2). By contrast, PLCOm2012 and LCRAT tended modestly
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towards underprediction at deciles corresponding to observed risks of 1-4%, which is more
clinically disadvantageous than overprediction. As the PLCOm2012, LCDRAT and LCRAT
models were developed in the control arm of the PLCO trial, the strong relative performance
of the UCL models is notable. All models modestly overpredicted risk in the UK Biobank

cohort, with the extent of overprediction most notable for the LLP version 2.

Overall performance

When considering Brier scores, an overall measure of model performance comparing the
closeness of predicted probabilities and observed outcomes,*® there was little or no
distinction between the models in the UK Biobank and PLCO radiography arm (Appendix
Table S11). In the PLCO radiography arm, both models predicting the five-year risk of death,
UCL-D and LCDRAT had a Brier score of 0.0084 (95% CI: 0.0075-0.0093). Brier scores vary
with prevalence; consequently, models predicting the risk of developing lung cancer had
higher scores. Nevertheless, the same pattern was observed: UCL-I had a Brier score of
0.0153 (95% CI: 0.0142-0.0164), LCRAT a score of 0.0152 (95% CI: 0.0143-0.0164), and

LLP version 2 a score of 0.0153 (95% CI: 0.0143-0.0165).
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Table 2: Discriminative accuracy (AUC) overall and by subgroup in the UK Biobank and PLCO radiography cohorts

Risk of death from lung cancer

Risk of developing lung cancer

UCL-D

LCDRAT

UCL-I

LCRAT

PLCOmM2012

LLPv2

Overall

Age category
40-49
50-59
60-72

Sex
Female
Male

Smoking status
Former
Current

Ethnicity
Other
White

Household income
<18,000
18,000 to 30,999
31,000 to 51,999
52,000 to 100,000
>100,000

Overall

0.826 (0.815-0.838)

0.747 (0.659-0.838)
0.807 (0.780-0.834)
0.788 (0.772-0.802)

0.830 (0.812-0.846)
0.820 (0.805-0.838)

0.815 (0.796-0.833)
0.773 (0.751-0.793)

0.818 (0.722-0.982)
0.825 (0.812-0.837)

0.786 (0.764-0.802)
0.816 (0.791-0.837)
0.811 (0.780-0.848)
0.836 (0.789-0.877)
0.744 (0.614-0.938)

0.803 (0.783-0.824)

0.829 (0.813-0.841)

0.755 (0.616-0.904)
0.803 (0.769-0.834)
0.792 (0.769-0.805)

0.825 (0.798-0.844)
0.829 (0.808-0.845)

0.813 (0.792-0.834)
0.780 (0.759-0.802)

0.806 (0.631-0.972)
0.827 (0.813-0.840)

0.791 (0.768-0.811)
0.812 (0.787-0.836)
0.822 (0.772-0.861)

0.828 (0.763-0.883)
0.756 (0.536-0.924)

0.811 (0.793-0.829)

UK Biobank
0.810 (0.800-0.820)

0.781 (0.727-0.834)
0.777 (0.754-0.799)
0.769 (0.756-0.781)

0.812 (0.798-0.825)
0.809 (0.796-0.821)

0.794 (0.780-0.808)
0.778 (0.763-0.792)

0.810 (0.740-0.889)
0.809 (0.799-0.819)

0.769 (0.755-0.785)
0.794 (0.777-0.814)
0.791 (0.764-0.816)
0.821 (0.785-0.853)
0.808 (0.733-0.876)

PLCO radiography arm

0.787 (0.771-0.802)

0.815 (0.805-0.827)

0.793 (0.692-0.865)
0.781 (0.751-0.808)
0.776 (0.762-0.791)

0.811 (0.793-0.831)
0.819 (0.802-0.831)

0.798 (0.783-0.816)
0.787 (0.773-0.801)

0.789 (0.660-0.862)
0.815 (0.805-0.827)

0.782 (0.762-0.800)
0.803 (0.781-0.822)
0.788 (0.752-0.824)
0.808 (0.755-0.852)
0.772 (0.634-0.875)

0.798 (0.784-0.814)

0.797 (0.783-0.81)

0.797 (0.721-0.876)
0.779 (0.751-0.81)
0.765 (0.750-0.780)

0.796 (0.780-0.817)
0.798 (0.781-0.815)

0.778 (0.760-0.798)
0.767 (0.751-0.781)

0.827 (0.755-0.905)
0.796 (0.781-0.809)

0.766 (0.747-0.785)
0.785 (0.762-0.805)
0.771 (0.733-0.807)
0.798 (0.741-0.851)
0.738 (0.583-0.849)

0.792 (0.779-0.808)

0.779 (0.767-0.793)

0.672 (0.575-0.775)
0.719 (0.687-0.748)
0.740 (0.725-0.754)

0.771 (0.750-0.791)
0.783 (0.767-0.797)

0.775 (0.757-0.794)
0.743 (0.726-0.757)

0.798 (0.737-0.857)
0.778 (0.765-0.791)

0.742 (0.722-0.759)
0.749 (0.722-0.771)
0.757 (0.719-0.799)
0.790 (0.736-0.835)
0.755 (0.624-0.850)

0.743 (0.726-0.762)
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Risk of death from lung cancer

Risk of developing lung cancer

UCL-D

LCDRAT

UCL-I

LCRAT

PLCOmM2012

LLPv2

Age category
55-59
60-64
65-69
70-74
Sex
Female
Male
Smoking status
Former
Current
Qualifications
Degree
Some college
Post-secondary
Secondary school
None of above
Ethnicity
Asian
Black
Other
White

0.800 (0.745-0.844)
0.793 (0.753-0.831)
0.787 (0.747-0.823)
0.747 (0.694-0.790)

0.800 (0.771-0.828)
0.803 (0.773-0.828)

0.813 (0.787-0.842)
0.681 (0.642-0.721)

0.680 (0.323-0.921)
0.756 (0.654-0.834)
0.730 (0.632-0.825)
0.638 (0.542-0.719)
0.700 (0.671-0.725)

0.839 (0.805-0.874)
0.805 (0.754-0.847)
0.791 (0.754-0.822)
0.734 (0.671-0.795)

0.815 (0.766-0.858)
0.799 (0.764-0.830)
0.806 (0.768-0.840)
0.725 (0.673-0.773)

0.801 (0.771-0.831)
0.818 (0.791-0.841)

0.819 (0.793-0.843)
0.705 (0.667-0.744)

0.709 (0.427-0.898)
0.796 (0.688-0.900)
0.772 (0.651-0.859)
0.650 (0.55-0.742)
0.699 (0.675-0.728)

0.857 (0.825-0.888)
0.802 (0.751-0.842)
0.789 (0.757-0.818)
0.744 (0.675-0.805)

0.797 (0.762-0.833)
0.759 (0.722-0.790)
0.781 (0.752-0.809)
0.728 (0.685-0.768)

0.771 (0.745-0.796)
0.795 (0.774-0.814)

0.791 (0.768-0.814)
0.677 (0.650-0.717)

0.610 (0.455-0.779)
0.750 (0.686-0.818)
0.753 (0.688-0.826)
0.620 (0.545-0.691)
0.673 (0.651-0.697)

0.804 (0.770-0.834)
0.804 (0.771-0.835)
0.765 (0.737-0.793)
0.735 (0.696-0.779)

0.817 (0.778-0.847)
0.776 (0.742-0.804)
0.792 (0.765-0.823)
0.723 (0.677-0.760)

0.784 (0.760-0.804)
0.807 (0.789-0.825)

0.802 (0.781-0.824)
0.698 (0.672-0.736)

0.681 (0.551-0.799)
0.771 (0.698-0.848)
0.780 (0.718-0.843)
0.644 (0.578-0.710)
0.689 (0.667-0.710)

0.823 (0.791-0.848)
0.811 (0.778-0.841)
0.774 (0.749-0.802)
0.741 (0.697-0.785)

0.794 (0.756-0.825)
0.770 (0.741-0.796)
0.798 (0.775-0.823)
0.720 (0.682-0.753)

0.784 (0.764-0.805)
0.798 (0.776-0.819)

0.793 (0.774-0.814)
0.694 (0.669-0.724)

0.629 (0.509-0.751)
0.726 (0.640-0.803)
0.763 (0.704-0.827)
0.664 (0.608-0.718)
0.693 (0.670-0.714)

0.820 (0.787-0.848)
0.800 (0.764-0.828)
0.765 (0.741-0.791)
0.755 (0.715-0.791)

0.729 (0.695-0.767)
0.716 (0.678-0.751)
0.747 (0.715-0.777)
0.675 (0.628-0.715)

0.731 (0.699-0.757)
0.755 (0.731-0.779)

0.741 (0.715-0.768)
0.651 (0.622-0.696)

0.609 (0.493-0.742)
0.663 (0.597-0.737)
0.741 (0.670-0.814)
0.643 (0.582-0.707)
0.644 (0.621-0.667)

0.752 (0.714-0.784)
0.748 (0.709-0.790)
0.728 (0.700-0.755)
0.707 (0.658-0.758)
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Figure 3: Decision curves of selected models in the PLCO validation cohort

Net benefit across a range of thresholds of models predicting 5-year risk of death from lung cancer
(A) and developing lung cancer (B) compared against USPSTF-2021 screening eligibility criteria in
the PLCO intervention arm validation dataset. The PLCOm2012 model predicts six-year risk of lung
cancer. As the performance of PLCOmM2012 over a five-year timeframe was similar to that of six-
years, for comparability, predictions over a five-year timeframe are shown here. All models studied
except the Liverpool Lung Project (LLP) version 2 had a greater net clinical benefit than using the
USPSTF-2021 criteria for screening eligibility across all risk thresholds. All other risk models had a
comparable net benefit to each other.

Risk thresholds to select individuals for screening

Using the USPSTF-2021 criteria, 34,654 (43.0%) of the entire PLCO dataset would be
eligible for lung cancer screening. All UCL models had higher sensitivity than the USPSTF-
2021 at an equivalent specificity, with the gains in sensitivity higher when predicting five-year
risk of death from lung cancer (eTable 12). For UCL-I at a five-year risk threshold of 1.17%,
the gains in sensitivity were 6.2% relative to the USPSTF-2021 criteria (83.9% [95% CI:
82.0-86.1%] vs 77.7% [95% CI: 75.8-80.2%]). By contrast, UCL-D at a five-year risk
threshold of 0.68% would lead to a 7.9% increase in sensitivity (85.5% [95% CI: 82.8-88.2%)]

vs 77.5% [95% CI: 74.6-80.9%)]) for the same specificity.
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At the aforementioned risk cut-offs, 96.2% of individuals selected by UCL-D would also have
been eligible for screening with UCL-I. By 10-years of follow-up, those selected for screening
with UCL-D but not UCL-I tended towards a greater risk of developing and dying from lung
cancer than those selected by UCL-I but not UCL-D, though this trend was not statistically
significant (eFigure 9; Logrank test: p=0.15 for differences in lung cancer deaths and p=0.41

for differences in lung cancers).

Clinical usefulness

Using decision curve analysis, at all risk thresholds, the net benefit of the UCL models is
greater than screening using the USPSTF-2021 criteria (Figure 3 and eFigure 10). At
suggested risk thresholds, the net benefit of compared risk models other than LLP are

equivalent.

Discussion

We have developed parsimonious models for lung cancer screening that combine the
simplicity of existing risk factor-based criteria with the predictive performance of complex risk
prediction models. Unique amongst existing risk prediction models for lung cancer
screening, we have combined large United Kingdom and United States cohorts to train our
models on over 240,000 individuals’ data with differing risk levels, to improve the
generalisability of our models. Furthermore, we show in benchmarking comparisons that
ensemble machine learning models with three predictors — age, smoking duration, and
smoking pack-years — have equivalent predictive performance and clinical usefulness to

existing models requiring eleven predictors.

In the UK, eligibility for National Health Service screening pilots is based on meeting either a
five-year absolute risk of lung cancer of 22.5% with the LLP risk score or a six-year absolute

risk of 21.51% with the PLCOmM2012.% The use of two risk scores where eligibility differs by
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more than a percentage point in predicted absolute risk, and where a higher risk is tolerated
over a five-year period than a six-year period, highlights the policy challenge in adopting the
optimal risk-based approach for a particular setting. This approach requires the collection of
19 different predictors, as well as the mapping of US educational levels and US ethnicity
categorisations to the UK. With an estimated seven million current smokers in the UK*® —
even ignoring former smokers — the time and resource requirements to determine screening
eligibility at a population scale will be challenging. Using three unambiguous variables but
with equivalent or improved performance, the UCL models could be completed more easily

online or in primary healthcare, simplifying the implementation of lung cancer screening.

In keeping with Katki and colleagues,’® we found that UCL-D, predicting the risk of death
from lung cancer, had greater discrimination than models predicting lung cancer occurrence.
In these analyses, there was >96% overlap between UCL-D and UCL-I in terms of those
selected for screening, with those selected by UCL-D but not UCL-I showing a trend towards
a greater risk of death from lung cancer with longer follow-up (eFigure 9). In microsimulation
modelling, overall outcomes differed little between a model predicting death from lung
cancer compared with models predicting developing lung cancer.” Given this, UCL-D would

be the more appropriate model to consider for implementation.

In this analysis, we used ensemble machine learning to leverage the predictions of several
optimised model pipelines. Ensemble modelling is based on the concept that different
models make different types of mistake, and their errors begin to cancel each other out, such
that combining these statistical models could be expected to improve the performance that
any one might achieve.®' By iteratively trialling and optimising a wide range of state-of-the-
art modelling approaches before subsequently creating ensembles of these approaches,
AutoPrognosis ensures that the strongest performing model for that dataset will be derived
and allows reproducibility by transparently showing how models were selected. This avoids
the need to develop multiple independent models.
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This study has several limitations. We have used retrospective data, such that findings may
differ if used to prospectively determine screening eligibility. However, both the PLCOm2012
and the LLP models have been studied in prospective settings, establishing the benefits of
risk-model against risk-factor-based screening. By benchmarking against these models, we
can be confident in the performance of our models in a screening programme. To confirm
the generalisability of our models, validation in datasets from beyond the US and UK will be
the subject of further work. Finally, our risk models exclude never-smokers. To date, no risk
model has been able to discriminate those never smokers with sufficient risk to meet existing

criteria for lung cancer screening.

In summary, we have developed prognostic models to determine lung cancer screening
eligibility that require only three variables — age, smoking duration, and pack-years — that
perform at or above parity with existing risk models in use. Further validation in alternative

datasets as well as prospective implementation should be considered.
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