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Abstract

When aiming to make predictions over targets in the pharmacological setting, a data-
focussed approach aims to learn models based on a collection of labelled examples.
Unfortunately, data sharing is not always possible, and this can result in many different
models trained on disparate populations, leading to the natural question of how best to use
and combine them when making a new prediction. Previous work has focused on global
model selection or ensembling, with the result of a single final model across the feature
space. Machine learning models perform notoriously poorly on data outside their training
domain however due to a problem known as covariate shift, and so we argue that when
ensembling models the weightings for individual instances must reflect their respective
domains - in other words models that are more likely to have seen information on that
instance should have more attention paid to them. We introduce a method for such an
instance-wise ensembling of models called Synthetic Model Combination (SMC), including a
novel representation learning step for handling sparse high-dimensional domains. We
demonstrate the use of SMC on an example with dosing predictions for Vancomycin,
although emphasise the applicability of the method to any scenario involving the use of

multiple models.

Introduction

The ability of a model to correctly represent a population is of necessity limited by how well

the data used to build it represents the population. Given the enormous variability within



and between human populations for pharmacokinetics and pharmacodynamics, this is a
significant challenge for the use of models and their ability to make useful predictions about
effects in humans. This problem is further increased by the variability within diseases which
are generally not homogenous entities where all patients have exactly the same disease

processes.

When attempting to apply one or more previously developed models to make predictions
about new patients or populations it is a very challenging task for us to know how well the
individual models should perform, making the task of choosing the most appropriate model
(or ensemble) difficult. This is compounded by the problem that the provided models could
perform poorly for two main reasons: Firstly, the model itself may not have been flexible
enough to properly capture the underlying true function present in the data; and secondly,
in the area that they are making a prediction there may not have been sufficient training
data used for the model to have been able to learn appropriately - i.e. the model is

extrapolating (potentially unreasonably) to cover a new feature point (Figure 1).

Various methods have been developed to address this problem. At the simplest level there
are typically multiple models developed each using different datasets that are claimed to
better represent the population or at least a specific subset of the population. However, the
reference populations used to build each model are usually only small subsets of the whole.
Methods such as Bayesian model averaging are used to combine multiple models to try to
capture the value of each - however they usually assume the model’s performance is
independent of the populations, ignoring their training domain. Data and model repositories

have been proposed to allow the development of more definitive models of diseases and of



the PKPD of therapies [1]. There has been some success developing publicly accessible
repositories of disease models that make the data and scope of the models more
transparent, for example the DDMoRe model repository [2] and several academic
institutions, charities and pharma companies make some trials data available through the
non-profit organisation Vivli [3]. However, the extent of the data accessible is limited by
some participants and phase 1 studies or PK data are excluded by some pharma
participants. Sharing data brings its own challenges, not the least being that there may not
be permission to use the data for anything other than the specific purpose for which it was

first developed.

Synthetic Model Combination (SMC) is a new machine learning method that leverages and
combines multiple models in an effective manner. Unlike existing methods, it focuses on
building ensembles in an instance-wise manner before any additional data has been
collected, that is to say that for each new test point over which a prediction needs to be
made it constructs a new ensemble. This effectively means that SMC is able to select models
for each test case (patient) that it thinks will be most effective for the given case, based
primarily on whether the case is likely to have been well represented in the training domain
of each model. In this paper we introduce and describe SMC, illustrate its use through an
example of multiple pharmacometric models and try to stimulate ideas about other possible
applications relevant to pharmacometrics, clinical pharmacology and drug development and

use.

Background and Related Work



Synthetic Model Combination can be used in any situation where there are multiple
alternative models. For the purposes of illustrating the method we chose to consider the
common situation of multiple population PKPD models. In the case of the antibiotic
vancomycin this is clinically important as population PKPD models are commonly used to
guide selection of doses to achieve a target AUC and maximise the chances of effective
therapy without nephrotoxicity and it is important to identify how best to use the multiple
possible models [4]. We emphasise that this specific example is an illustration for the
purposes of explaining the methodology. We anticipate there are many other situations,
including other drugs and other cases where multiple models are available for which SMC

may be even more useful.

With multiple models our goal is to combine them in the most appropriate way, taking the
form of constructing ensembles. Here we differentiate between what we firstly describe as
Naive Ensembling (NE), where multiple models have been trained (through bootstrapping or
on different datasets) in order to reduce the expected bias or get an estimate of
distributional uncertainty. Performance-based Model Averaging (PBMA) on the other hand
works by selecting models with higher weights based on an estimate of the performance of
the model; a practical and common approach being Bayesian Model Averaging (BMA) [5]
Given an appropriate (usually uniform) prior, we calculate the posterior probability that a
given model is the optimal one - and once this is obtained the models can be marginalised
out during test time predictions, creating an ensemble weighted by each model's posterior
probability. The posterior being intractable, the probability is approximated using the
Bayesian Information Criterion (BIC) [6] - which requires a likelihood estimate over some

validation set and is estimated as:



N

p(M;ID) = exp (—%BIC(MJ) /) exp (—%BIC(M;))

i=1

With this it is important to note the subtle difference in setup to the problem we are trying
to work with. In all cases, it is assumed that there is some ordering for the models that holds
across the feature space and so a global ensemble is produced with a fixed weighting W
such that w(x) = W Vx € X . This causes failure cases when there is variation in the models
across the feature space, since it is a key point that BMA is not a model combination
method [7]. This being an important distinction and one of the main reasons BMA has been
shown to perform badly under covariate shifted tasks [8] - that is to say tasks where the
testing distribution differs from the training distribution, a scenario that is well known to
affect the quality of a model’s predictions [9]. That being said, it can be extended by
considering the set of models being averaged to be every possible combination of the

provided models [10], although this becomes even more computationally infeasible.

This has led to a family of ensemble methods that calculate their weights slightly differently,
replacing the BIC (M) term in the above equation with other measures of the “quality”’ of
the model, such as AIC, log likelihood, or negative sum of squared errors - all of which are
explored in the work of Uster et al. [11]. This appears to be the extent of the exploration in
model averaging in the clinical pharmacological setting. We have summarised the properties

of these methods in Table 1.

Traditionally PBMA models would not be used for instance-wise predictions, since in a

typical supervised learning setting each patient would only have a single set of covariates



and outcome associated with them and so it would not be possible not be able to get an
estimate of the performance for a given individual that would be different from the
population as a whole. This reflects the central problem with global ensembles that run on
the assumption that the measure of ‘goodness’ of each individual model holds the same
across the feature space. That is to say that each model will be just as effective at predicting
for old diabetics as it would for infants, however this is unlikely as models are often trained
in different subpopulations and it is expected that they might all react differently to a drug.
Global ensembles implicitly assume that this covariate shift is not the case and as such
suffer when it is - they apply the same ensemble of models to every single new test point

regardless of what data the model was trained on.

However, in PopPK settings, we sometimes wish to predict a patient's AUC having already
observed one or multiple observations - in this case we would be able to use these few
observations to get a performance estimate and thus weight models via PBMA. Despite this,
we will likely still only have at most single digit observations for a patient and so there is a
risk that we don’t have enough signal to fit appropriate models and may potentially overfit.
We still may want to make predictions without any observations, and as noted in [11], this is

an area that PBMA does not handle and simply reduces to a naive ensemble.

Methods

Synthetic Model Combination



Unlike the previously mentioned methods, even without any observations at all, SMC does
not search for a global ensemble - rather it asks the question; for a given individual x;, what
do we think is the best ensemble? This could naturally vary quite considerably from
individual to individual, especially if the models were trained on data from relatively

disparate populations

We explain at a high level the method here but refer the interested reader to [12] for more

in depth detail. The method can be broken down into essentially three main steps.

The first step in SMC is to use the demographic information reported alongside published
models to produce a density estimate such that we can sample from each model's effective

support.

This aims to create a crude estimate of the region on which the model was trained on in the
original feature space - for example, the general distribution of heights, weights, sex etc..
We will often expect this feature space to be high dimensional and the information available
to be not hugely detailed, limiting our ability to use this original space to make meaningful

predictions.

Given the flexibility in the form of what we allow the information to take, SMC must remain
relatively agnostic to this step. A common example of the type of information we expect will
simply be example feature samples, and in this case a simple kernel density estimate [13] or
other density estimation method could be employed. On the other hand, when models are

published, authors will often also provide demographic information on the patients that



were involved in the study, such as the mean and variance of each covariate recorded. In
this case we may simply want to approximate the density using a Gaussian and moment-

matching for example.

The second step is to learn a representation space for the individual features which will be
maximally informative for considering which models will be effective at making accurate
predictions on an individual. The principal aim is to lower the relevant dimensionality of the
data such that density modelling is effective in the learnt space - but this can also be
effective in bending and compressing the space such that regions of model training data are
moved closer together or further apart based on whether they produce useful and
transferable models. In cases when the dimension of covariates is already low, this step is

not always

Learning the representation takes the form of a Variational / Regular Autoencoder [14] with
additional auxiliary losses. This is trained on the features of the testing set as well as
samples from the densities for individual models that were generated in the first step.
Choosing the latent dimension to be low results in learning a representation space that
compresses the useful information in the features and aims to move training regions that

are transferable closer together.

In the final step, we remodel the original densities in the feature space now in the
representation space, so that we can calculate ensemble weights for individuals based on

their density under each model. Given model densities in the feature space p]x(x), we

construct a corresponding density in the representation space pj'-Z(Z) - this can be achieved



simply by sampling from p7'(z), passing through the encoder fg and modelling the new

density with a kernel density estimate.

From here, we calculate weights as the relative density a feature representation has under

the densities in the new space:

p? (fo()) +v
?]=1 p]Z(fe(x)) +y

w;(x) =

with a regularisation hyperparameter y chosen to be very small such that an outlier's

weights are not dominated by the closest model.

This step simply weights models by an individual’s density in the new representation space,
meaning that models that are more likely to have seen features similar to the individual (or
ones with transferable features) will play a bigger part in the ultimate prediction for the
given individual.

The quantity can be used to inform the confidence of any prediction made by SMC.
Particularly low values will indicate that the feature had low density under all the domains
and as such it may be likely that none of the models were accurate. We note as well that
assuming a hierarchical generative model for the test data where one of the models training
data distributions is selected and then sampled from - this can be interpreted as the
posterior probability that a test instance was sampled from a model's domain and is thus

well represented by it.

Interacting with PBMA

10



The key thing to note is that unlike PBMA methods, SMC does not need any sort of
observation in order to individualise the weights of the ensembles. This means that it can be
applied in areas that PBMA cannot, such as making direct a priori predictions about a
patient’s AUC before any observations have been observed. However, when PBMA can be
applied, since both it and SMC fundamentally use different signals to generate their weights,
they can reasonably be combined at the same time in order to achieve the benefits of both
models - i.e., the weights from both methods can be calculated individually and then
combined in order to produce a final weighting. Interestingly, in the case of BMA we can
potentially see this as a case of SMC learning an appropriate prior distribution for the
weights that is then updated based on the performances of the models on the new
observations, allowing for a natural integration into the current framework that allows for

the best of both methods.

Results

A Case Study in Vancomycin

For vancomycin, the latest consensus dosing guidelines from the Infectious Diseases Society
of America [15] recommend adjusting dose to achieve a target area under the curve (AUC).
Many population PK models have been developed to adjust the doses on an individual

patient basis taking into account important patient covariates.

11



We base our experiment around those of [11] who themselves consider a model averaging
approach through the application of model averaging. We use simulated patients provided
by the authors to evaluate the effectiveness of SMC in the accuracy of predicting the AUC
across a number of settings when a number € {0 (A priori), 1,2,3} of concentration
measurements are taken in a 48-hour period. Ultimately, we have six models, each from a
separate subpopulation {extremely obese [16], critically ill post heart surgery [17], trauma
patients [18], intensive care patients [19], septic [20], hospitalised patients [21]}, as well as a
variety of demographic information for each. In our experiments we focus on the age,
height, weight, and creatinine clearance levels as have been shown to be strongly

associated with drug response [11] and are provided for each model.

We use the exact same test simulations as the original authors in order to more accurately
explore the impact of SMC on the predictions made - we refer the interested reader to their
paper for exact details of how the simulations were produced. In summary though,
covariates were sampled from a global population before AUC observations being sampled
for 1000 patients from each of the PopPK models used for a total cohort of 6000 simulated

patients.

In Table 2 we report the relative root-mean-square error RMSE of the predictions - the
lower, the better. We can see that SMC consistently performs competitively, especially
when combined with PBMA, although it does not appear to be outperforming the
competition in any significant sense. However, we note that the simulation setup here is not
based on the underlying assumption that we make. l.e., when simulating patients based on

the model of Adane et al. [16] for clinically obese patients, the current simulations still

12



generate covariates from a normal population, and actually only a small minority of the
patients would be considered obese. Consequently, in order to evaluate the performance of
SMC in what we consider a more realistic setting we develop a method to subsample the
original simulations in order to obtain a population for each model that more accurately

reflects the population on which each model was developed.

In order to select a smaller sample of 1000 patients, we first modelled the density of each of
the patient populations based on the demographic statistics provided in each of the original
papers. Then for each of the 6000 simulated patients we evaluated the likelihood that their
covariates came from each model and selected the model with the highest likelihood. If this
selected model matched the model from which the AUC observations were simulated, then
the patient was kept and otherwise discarded. This mimics a rejection sampling method for
the covariates from the original model demographics using the sampling method of [11] as
the base distribution. This results in a population where each model only simulated data for

patients whose covariates were likely under their reported demographic information.

In Table 3 we report the relative root-mean-square error RMSE again of the predictions. In
this situation it becomes clear that SMC can take advantage of the setting where our
assumptions more appropriately line up with the simulations. Still, in the question of only
using SMC or PBMA, we can see that they both seem to perform roughly equivalently -
except in the ‘A Priori’ setting where PBMA cannot be applied properly and as such SMC
significantly improves upon it. What is clearer however, is that when both are used in
combination they can each take advantage of their different properties and outperform the

other methods individually.
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Discussion

Existing methods for ensembling multiple models all promote models based on an estimate
of their global performance - i.e., identifying which models on average work best. This can
be a problem if our estimate of performance does not coincide with the particular
population that we ultimately want to make predictions about, given models often perform
poorly on data outside of the domain on which they were trained. SMC aims to overcome
this problem by specifically modelling the regions of the space where it believes individual
models should perform well. It works by learning a special representation of the feature
space that we can map new test cases to, before modelling in that space which regions each
model works on. With this, SMC constructs a unique ensemble for each test case, using only
the models it feels appropriate - allowing it to ignore models that may perform well in
general but not be very effective for a specific case. As a result, we expect then for SMC to
bring some benefit where the goal is to predict a target when given a number of models,
each of which have been developed in different, heterogeneous, populations and it is not

clear which models are better than others.

It should be pointed out as well that in cases where you have no labelled data it can be hard
- or impossible - to obtain such an estimate of global performance, meaning that often this
approach may not even be possible in the first place, as is pointed out in [11]. However,
when it is possible, it does not interfere with SMC in that you can calculate weights

according to both methods and then combine them as you like.

14



The key take-away being that by introducing SMC, you do not need to give up the benefits

of global ensembling for identifying good average models.

To explain and illustrate SMC and how it differs from existing model ensembling methods
we used an example of multiple population PK models. However, SMC is not limited to use
only with population PK models. It can be used in any situation where multiple models have
been developed to address the same issue, for example multiple disease progression
models of the same disease. It is likely there are other situations too and we hope to inspire

ideas for other applications.

In order to identify good models on the individual level, SMC models the regions of the
feature space for which models should be able to produce good predictions based on a level
of epistemic uncertainty. This epistemic uncertainty could in turn be used in a feedback
system for identifying regions of the space for which we have no good models. This would
allow for future targeted data collection, allowing practitioners to identify subpopulations
that require more information - not wasting resources collecting information on patients

which we can already predict well for.

As we show in Figure 3, the ML community has developed a range of methods for what to
do in the cases of different amounts of information. SMC is not the definitive answer on
how to use the knowledge of model training domains, but it is the first, and highlights an
important consideration that practitioners should be aware of when making their own
predictions. We hope that this work will inspire future investigation, particularly in the task

of adapting models to new populations we have no existing data on.
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In general, we aim for the key takeaway for practitioners to be the following: If the
individual models seem unlikely to transfer well across populations then incorporating an
aspect of SMC into ensemble predictions is unlikely to damage predictive power in the worst

case and will most likely improve predictions.

To conclude, in this paper we have introduced the framework of Synthetic Model
Combination to the clinical pharmacological and pharmacometric community - an instance-
wise approach to ensembling models in order to make predictions with only models that
have seen similar individuals during their training phase. We demonstrated how it can be
applied in the averaging of PopPK models with the real case study of estimating the
effectiveness of vancomycin precision dosing, and the impact that could have in terms of

the appropriate treatment of patients.

Study Highlights

What is the current knowledge on the topic? Model averaging population pharmacokinetic
models is known to improve the predictive accuracy when informing optimal dose selection.
What question did this study address? Appropriately averaging models is challenging, and
current methods ignore important information about the demographics of which population
a model is based on, a concept this study leverages for improved performance.

What does this study add to our knowledge? Incorporating demographic information into
model averaging methods allows us to improve the quality of predictions while maintaining

the gains of current methods.

16



How might this change drug discovery, development, and/or therapeutics? The algorithms
described in the study may increase the accuracy of precision dose calculations among other

targets.
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Figure Legends

Figure 1: a) Instance-wise Ensembles. Here we represent the density of the training
features for three separate models - M1, M2, and M3. Given new test points A, B, and C, we
need to construct predictions from these models. A is well represented by both M2 and
M3while B only has significant density under M3. C looks like none of the models will be
able to make confident predictions.

b) Different models are useful for new patients. PopPK models are often trained on certain
demographic groups given the studies that are designed for data collection. For a new
patient who doesn’t necessarily fit into one of the existing demographics, different models
may be more or less relevant and accurate. Naive ensembles ignore this fact and always
incorporate evenly the predictions of each model, SMC on the other hand aims to up-weight

the models that would appear to be more relevant.

Figure 2: a) Synthetic Model Combination Training Algorithm. Algorithm outlining the main

steps in training for SMC.
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b) Inference Flow Diagram. As a new case comes in the first step is to calculate all of the
individual models’ predictions, using NONMEM for example. Then, like with any model
averaging algorithm the weights must be calculated. Performance-based model averaging
methods have a set of weights independent of the new case, whereas SMC maps the new

case features to a latent space that is then used to calculate individual weights for that case.

Figure 3: Methods based on varying information. A selection of methods from the

spectrum of information available to a practitioner. SMC lies quite far towards the little

information end, aiming to only take use of some demographic information from each of

the models and not require any labelled training points.

Table 1: Comparison of modern model averaging/ensembling methods.

Table 2: RMSE for AUC predictions from models for a number of concentration

measurements over a 48-hour period on the full cohort of 6000 simulated patients.

Table 3: RMSE for AUC predictions from models for a number of concentration

measurements over a 48-hour period on 1000 subsampled patients.
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Method Instance-wise? | Require new data? | Weights

Naive Ensemble No No w=1/N
PBMA No Yes w; < BIC (M)
Model Selection No Yes N/A

Synthetic Model Combination | Yes No w;(x) « pZ(fo(x))




A Priori One Two Three
Adane et al. 524 £03 329 +£0.2 32.7 £ 0.3 274 +0.3
Mangin et al. 574 £0.2 278 £ 0.1 255 +£0.3 17.7 £ 0.1
Medellin-G et al. 514 £0.2 25.7 £ 0.1 228 £ 0.1 173 £ 0.1
Revilla et al. 351 £0.1 208 £0.1 18,5 £ 0.1 154 +0.1
Roberts et al. 31.7 £ 0.1 18.7 £ 0.1 18.1 +£0.1 14.7 £ 0.1
Thomson et al. 345 £ 0.1 229 +£0.1 206 £0.1 168 +£0.1
Ensemble 384 +£0.1 219 +£0.1 20.0 £0.1 16.1 +0.1
PBMA 384 +0.1 19.0 £ 0.1 174 +£0.1 139 £ 0.1
SMC 364 +£0.1 21.0 £ 0.1 193 £ 0.1 154 + 0.1
SMC + PBMA 36.0 £ 0.1 19.0 £ 0.1 176 £ 0.1 14.1 £ 0.1




A Priori One Two Three
Adane et al. 80.0 + 0.7 47.3 +0.4 409 +0.6 325 £0.3
Mangin et al. 83.3 £ 0.6 36.2 £0.3 33.0 £ 0.3 214 £0.2
Medellin-G et al. 76.5 £ 0.6 33.5 £0.2 28,5 £0.2 209 +£0.2
Revilla et al. 327 £ 04 21.6 £0.2 20.0 £0.2 16.7 £ 0.2
Roberts et al. 358 £0.3 20.6 +0.1 20.0 £0.2 16.1 £ 0.1
Thomson et al. 48.2 + 0.4 30.2 £0.2 258 £ 0.2 209 +0.1
Naive Ensemble 55.7 £ 0.4 28,5 £0.2 249 +£0.2 193 +£0.2
PBMA 55.7 £ 0.4 20.8 +0.2 193 +£0.2 15.2 £0.2
SMC 41.8 £ 0.5 221 £0.2 19.6 £ 0.2 152 £0.2
SMC + PBMA 475 £ 0.5 20.5 £ 0.1 18.7 £ 0.2 14.6 £ 0.2
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a) Algorithm 1: Synthetic Model Combination

Result: Test predictions using mapping from
data to model weights
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5. Calculate weights in new space;

6. Make predictions {§; } | over test set;

Return: {9;},

b)

Calculate all individual models’ predictions using NONMEM

New case
comes in —
—

New Ensemble Prediction

Calculate model
weights

I

W_

Calculate latent
representation

Estimate density
under models

SMC'’s unique steps

Model global
performance
information



SMC

- Some demographic
information, no
labelled data

Naive Average
- No information at
all, just models

Performance Based

Model Averaging
- Measure of how
‘good’ a model is,
often through a
validation set of
labelled examples

Amount of information available to the practitioner

New Models

- All data available for
all trained models and
different domains

Transfer Learning /

Domain Adaptation
- Some data from all
the different domains
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