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Abstract 

 

When aiming to make predictions over targets in the pharmacological setting, a data-

focussed approach aims to learn models based on a collection of labelled examples. 

Unfortunately, data sharing is not always possible, and this can result in many different 

models trained on disparate populations, leading to the natural question of how best to use 

and combine them when making a new prediction. Previous work has focused on global 

model selection or ensembling, with the result of a single final model across the feature 

space. Machine learning models perform notoriously poorly on data outside their training 

domain however due to a problem known as covariate shift, and so we argue that when 

ensembling models the weightings for individual instances must reflect their respective 

domains - in other words models that are more likely to have seen information on that 

instance should have more attention paid to them. We introduce a method for such an 

instance-wise ensembling of models called Synthetic Model Combination (SMC), including a 

novel representation learning step for handling sparse high-dimensional domains. We 

demonstrate the use of SMC on an example with dosing predictions for Vancomycin, 

although emphasise the applicability of the method to any scenario involving the use of 

multiple models. 

 

Introduction 

 

The ability of a model to correctly represent a population is of necessity limited by how well 

the data used to build it represents the population. Given the enormous variability within 
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and between human populations for pharmacokinetics and pharmacodynamics, this is a 

significant challenge for the use of models and their ability to make useful predictions about 

effects in humans. This problem is further increased by the variability within diseases which 

are generally not homogenous entities where all patients have exactly the same disease 

processes.  

 

When attempting to apply one or more previously developed models to make predictions 

about new patients or populations it is a very challenging task for us to know how well the 

individual models should perform, making the task of choosing the most appropriate model 

(or ensemble) difficult. This is compounded by the problem that the provided models could 

perform poorly for two main reasons: Firstly, the model itself may not have been flexible 

enough to properly capture the underlying true function present in the data; and secondly, 

in the area that they are making a prediction there may not have been sufficient training 

data used for the model to have been able to learn appropriately - i.e. the model is 

extrapolating (potentially unreasonably) to cover a new feature point (Figure 1). 

 

Various methods have been developed to address this problem. At the simplest level there 

are typically multiple models developed each using different datasets that are claimed to 

better represent the population or at least a specific subset of the population. However, the 

reference populations used to build each model are usually only small subsets of the whole. 

Methods such as Bayesian model averaging are used to combine multiple models to try to 

capture the value of each - however they usually assume the model’s performance is 

independent of the populations, ignoring their training domain. Data and model repositories 

have been proposed to allow the development of more definitive models of diseases and of 
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the PKPD of therapies [1]. There has been some success developing publicly accessible 

repositories of disease models that make the data and scope of the models more 

transparent, for example the DDMoRe model repository [2] and several academic 

institutions, charities and pharma companies make some trials data available through the 

non-profit organisation Vivli [3]. However, the extent of the data accessible is limited by 

some participants and phase 1 studies or PK data are excluded by some pharma 

participants. Sharing data brings its own challenges, not the least being that there may not 

be permission to use the data for anything other than the specific purpose for which it was 

first developed. 

 

Synthetic Model Combination (SMC) is a new machine learning method that leverages and 

combines multiple models in an effective manner. Unlike existing methods, it focuses on 

building ensembles in an instance-wise manner before any additional data has been 

collected, that is to say that for each new test point over which a prediction needs to be 

made it constructs a new ensemble. This effectively means that SMC is able to select models 

for each test case (patient) that it thinks will be most effective for the given case, based 

primarily on whether the case is likely to have been well represented in the training domain 

of each model. In this paper we introduce and describe SMC, illustrate its use through an 

example of multiple pharmacometric models and try to stimulate ideas about other possible 

applications relevant to pharmacometrics, clinical pharmacology and drug development and 

use. 

 

Background and Related Work 
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Synthetic Model Combination can be used in any situation where there are multiple 

alternative models. For the purposes of illustrating the method we chose to consider the 

common situation of multiple population PKPD models. In the case of the antibiotic 

vancomycin this is clinically important as population PKPD models are commonly used to 

guide selection of doses to achieve a target AUC and maximise the chances of effective 

therapy without nephrotoxicity and it is important to identify how best to use the multiple 

possible models [4]. We emphasise that this specific example is an illustration for the 

purposes of explaining the methodology. We anticipate there are many other situations, 

including other drugs and other cases where multiple models are available for which SMC 

may be even more useful. 

 

With multiple models our goal is to combine them in the most appropriate way, taking the 

form of constructing ensembles. Here we differentiate between what we firstly describe as 

Naive Ensembling (NE), where multiple models have been trained (through bootstrapping or 

on different datasets) in order to reduce the expected bias or get an estimate of 

distributional uncertainty. Performance-based Model Averaging (PBMA) on the other hand 

works by selecting models with higher weights based on an estimate of the performance of 

the model; a practical and common approach being Bayesian Model Averaging (BMA) [5] 

Given an appropriate (usually uniform) prior, we calculate the posterior probability that a 

given model is the optimal one - and once this is obtained the models can be marginalised 

out during test time predictions, creating an ensemble weighted by each model's posterior 

probability. The posterior being intractable, the probability is approximated using the 

Bayesian Information Criterion (BIC) [6] - which requires a likelihood estimate over some 

validation set and is estimated as: 
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p(ℳ𝒾|𝒟) = exp ቆ− 12 BIC(ℳ𝒾)ቇ / ෍ exp ቆ− 12 BIC(ℳ𝒾)ቇ୒
୧ୀଵ  

 

With this it is important to note the subtle difference in setup to the problem we are trying 

to work with. In all cases, it is assumed that there is some ordering for the models that holds 

across the feature space and so a global ensemble is produced with a fixed weighting 𝑤ෝ  

such that w(x) = wෝ ∀x ∈ 𝒳. This causes failure cases when there is variation in the models 

across the feature space, since it is a key point that BMA is not a model combination 

method [7]. This being an important distinction and one of the main reasons BMA has been 

shown to perform badly under covariate shifted tasks [8] - that is to say tasks where the 

testing distribution differs from the training distribution, a scenario that is well known to 

affect the quality of a model’s predictions [9]. That being said, it can be extended by 

considering the set of models being averaged to be every possible combination of the 

provided models [10], although this becomes even more computationally infeasible. 

 

This has led to a family of ensemble methods that calculate their weights slightly differently, 

replacing the 𝐵𝐼𝐶(ℳ𝒾) term in the above equation with other measures of the ``quality’’ of 

the model, such as AIC, log likelihood, or negative sum of squared errors - all of which are 

explored in the work of Uster et al. [11]. This appears to be the extent of the exploration in 

model averaging in the clinical pharmacological setting. We have summarised the properties 

of these methods in Table 1. 

 

Traditionally PBMA models would not be used for instance-wise predictions, since in a 

typical supervised learning setting each patient would only have a single set of covariates 
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and outcome associated with them and so it would not be possible not be able to get an 

estimate of the performance for a given individual that would be different from the 

population as a whole. This reflects the central problem with global ensembles that run on 

the assumption that the measure of ‘goodness’ of each individual model holds the same 

across the feature space. That is to say that each model will be just as effective at predicting 

for old diabetics as it would for infants, however this is unlikely as models are often trained 

in different subpopulations and it is expected that they might all react differently to a drug. 

Global ensembles implicitly assume that this covariate shift is not the case and as such 

suffer when it is - they apply the same ensemble of models to every single new test point 

regardless of what data the model was trained on. 

 

However, in PopPK settings, we sometimes wish to predict a patient's AUC having already 

observed one or multiple observations - in this case we would be able to use these few 

observations to get a performance estimate and thus weight models via PBMA. Despite this, 

we will likely still only have at most single digit observations for a patient and so there is a 

risk that we don’t have enough signal to fit appropriate models and may potentially overfit. 

We still may want to make predictions without any observations, and as noted in [11], this is 

an area that PBMA does not handle and simply reduces to a naive ensemble. 

 

Methods 

 

Synthetic Model Combination 
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Unlike the previously mentioned methods, even without any observations at all, SMC does 

not search for a global ensemble - rather it asks the question; for a given individual 𝑥௜, what 

do we think is the best ensemble? This could naturally vary quite considerably from 

individual to individual, especially if the models were trained on data from relatively 

disparate populations 

 

We explain at a high level the method here but refer the interested reader to [12] for more 

in depth detail. The method can be broken down into essentially three main steps. 

 

The first step in SMC is to use the demographic information reported alongside published 

models to produce a density estimate such that we can sample from each model's effective 

support.  

 

This aims to create a crude estimate of the region on which the model was trained on in the 

original feature space - for example, the general distribution of heights, weights, sex etc.. 

We will often expect this feature space to be high dimensional and the information available 

to be not hugely detailed, limiting our ability to use this original space to make meaningful 

predictions. 

 

Given the flexibility in the form of what we allow the information to take, SMC must remain 

relatively agnostic to this step. A common example of the type of information we expect will 

simply be example feature samples, and in this case a simple kernel density estimate [13] or 

other density estimation method could be employed. On the other hand, when models are 

published, authors will often also provide demographic information on the patients that 
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were involved in the study, such as the mean and variance of each covariate recorded. In 

this case we may simply want to approximate the density using a Gaussian and moment-

matching for example.  

 

The second step is to learn a representation space for the individual features which will be 

maximally informative for considering which models will be effective at making accurate 

predictions on an individual. The principal aim is to lower the relevant dimensionality of the 

data such that density modelling is effective in the learnt space - but this can also be 

effective in bending and compressing the space such that regions of model training data are 

moved closer together or further apart based on whether they produce useful and 

transferable models. In cases when the dimension of covariates is already low, this step is 

not always  

 

Learning the representation takes the form of a Variational / Regular Autoencoder [14] with 

additional auxiliary losses. This is trained on the features of the testing set as well as 

samples from the densities for individual models that were generated in the first step. 

Choosing the latent dimension to be low results in learning a representation space that 

compresses the useful information in the features and aims to move training regions that 

are transferable closer together. 

 

In the final step, we remodel the original densities in the feature space now in the 

representation space, so that we can calculate ensemble weights for individuals based on 

their density under each model. Given model densities in the feature space 𝑝௝𝒳(𝑥), we 

construct a corresponding density in the representation space 𝑝௝𝒵(𝑧) - this can be achieved 
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simply by sampling from 𝑝௝𝓍(𝑧), passing through the encoder 𝑓஘ and modelling the new 

density with a kernel density estimate. 

 

From here, we calculate weights as the relative density a feature representation has under 

the densities in the new space: 

𝑤௜(𝑥) = 𝑝௜𝒵൫𝑓஘(𝑥)൯ + γ∑ 𝑝௝𝒵൫𝑓஘(𝑥)൯ே௝ୀଵ + γ 

 

with a regularisation hyperparameter γ chosen to be very small such that an outlier's 

weights are not dominated by the closest model. 

 

This step simply weights models by an individual’s density in the new representation space, 

meaning that models that are more likely to have seen features similar to the individual (or 

ones with transferable features) will play a bigger part in the ultimate prediction for the 

given individual. 

The quantity can be used to inform the confidence of any prediction made by SMC. 

Particularly low values will indicate that the feature had low density under all the domains 

and as such it may be likely that none of the models were accurate. We note as well that 

assuming a hierarchical generative model for the test data where one of the models training 

data distributions is selected and then sampled from - this can be interpreted as the 

posterior probability that a test instance was sampled from a model's domain and is thus 

well represented by it. 

 

Interacting with PBMA 
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The key thing to note is that unlike PBMA methods, SMC does not need any sort of 

observation in order to individualise the weights of the ensembles. This means that it can be 

applied in areas that PBMA cannot, such as making direct a priori predictions about a 

patient’s AUC before any observations have been observed. However, when PBMA can be 

applied, since both it and SMC fundamentally use different signals to generate their weights, 

they can reasonably be combined at the same time in order to achieve the benefits of both 

models - i.e., the weights from both methods can be calculated individually and then 

combined in order to produce a final weighting. Interestingly, in the case of BMA we can 

potentially see this as a case of SMC learning an appropriate prior distribution for the 

weights that is then updated based on the performances of the models on the new 

observations, allowing for a natural integration into the current framework that allows for 

the best of both methods. 

 

 

Results 

 

A Case Study in Vancomycin 

 

For vancomycin, the latest consensus dosing guidelines from the Infectious Diseases Society 

of America [15] recommend adjusting dose to achieve a target area under the curve (AUC). 

Many population PK models have been developed to adjust the doses on an individual 

patient basis taking into account important patient covariates. 
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We base our experiment around those of [11] who themselves consider a model averaging 

approach through the application of model averaging. We use simulated patients provided 

by the authors to evaluate the effectiveness of SMC in the accuracy of predicting the AUC 

across a number of settings when a number ∈ {0 (A priori), 1,2,3} of concentration 

measurements are taken in a 48-hour period. Ultimately, we have six models, each from a 

separate subpopulation {extremely obese [16], critically ill post heart surgery [17], trauma 

patients [18], intensive care patients [19], septic [20], hospitalised patients [21]}, as well as a 

variety of demographic information for each. In our experiments we focus on the age, 

height, weight, and creatinine clearance levels as have been shown to be strongly 

associated with drug response [11] and are provided for each model. 

 

We use the exact same test simulations as the original authors in order to more accurately 

explore the impact of SMC on the predictions made - we refer the interested reader to their 

paper for exact details of how the simulations were produced. In summary though, 

covariates were sampled from a global population before AUC observations being sampled 

for 1000 patients from each of the PopPK models used for a total cohort of 6000 simulated 

patients. 

 

In Table 2 we report the relative root-mean-square error RMSE of the predictions - the 

lower, the better. We can see that SMC consistently performs competitively, especially 

when combined with PBMA, although it does not appear to be outperforming the 

competition in any significant sense. However, we note that the simulation setup here is not 

based on the underlying assumption that we make. I.e., when simulating patients based on 

the model of Adane et al. [16] for clinically obese patients, the current simulations still 
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generate covariates from a normal population, and actually only a small minority of the 

patients would be considered obese. Consequently, in order to evaluate the performance of 

SMC in what we consider a more realistic setting we develop a method to subsample the 

original simulations in order to obtain a population for each model that more accurately 

reflects the population on which each model was developed.  

 

In order to select a smaller sample of 1000 patients, we first modelled the density of each of 

the patient populations based on the demographic statistics provided in each of the original 

papers. Then for each of the 6000 simulated patients we evaluated the likelihood that their 

covariates came from each model and selected the model with the highest likelihood. If this 

selected model matched the model from which the AUC observations were simulated, then 

the patient was kept and otherwise discarded. This mimics a rejection sampling method for 

the covariates from the original model demographics using the sampling method of [11] as 

the base distribution. This results in a population where each model only simulated data for 

patients whose covariates were likely under their reported demographic information. 

 

In Table 3 we report the relative root-mean-square error RMSE again of the predictions. In 

this situation it becomes clear that SMC can take advantage of the setting where our 

assumptions more appropriately line up with the simulations. Still, in the question of only 

using SMC or PBMA, we can see that they both seem to perform roughly equivalently - 

except in the ‘A Priori’ setting where PBMA cannot be applied properly and as such SMC 

significantly improves upon it. What is clearer however, is that when both are used in 

combination they can each take advantage of their different properties and outperform the 

other methods individually. 
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Discussion 

 

Existing methods for ensembling multiple models all promote models based on an estimate 

of their global performance - i.e., identifying which models on average work best. This can 

be a problem if our estimate of performance does not coincide with the particular 

population that we ultimately want to make predictions about, given models often perform 

poorly on data outside of the domain on which they were trained. SMC aims to overcome 

this problem by specifically modelling the regions of the space where it believes individual 

models should perform well. It works by learning a special representation of the feature 

space that we can map new test cases to, before modelling in that space which regions each 

model works on. With this, SMC constructs a unique ensemble for each test case, using only 

the models it feels appropriate - allowing it to ignore models that may perform well in 

general but not be very effective for a specific case. As a result, we expect then for SMC to 

bring some benefit where the goal is to predict a target when given a number of models, 

each of which have been developed in different, heterogeneous, populations and it is not 

clear which models are better than others. 

 

It should be pointed out as well that in cases where you have no labelled data it can be hard 

- or impossible - to obtain such an estimate of global performance, meaning that often this 

approach may not even be possible in the first place, as is pointed out in [11]. However, 

when it is possible, it does not interfere with SMC in that you can calculate weights 

according to both methods and then combine them as you like. 
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The key take-away being that by introducing SMC, you do not need to give up the benefits 

of global ensembling for identifying good average models. 

 

To explain and illustrate SMC and how it differs from existing model ensembling methods 

we used an example of multiple population PK models. However, SMC is not limited to use 

only with population PK models. It can be used in any situation where multiple models have 

been developed to address the same issue, for example multiple disease progression 

models of the same disease. It is likely there are other situations too and we hope to inspire 

ideas for other applications. 

 

In order to identify good models on the individual level, SMC models the regions of the 

feature space for which models should be able to produce good predictions based on a level 

of epistemic uncertainty. This epistemic uncertainty could in turn be used in a feedback 

system for identifying regions of the space for which we have no good models. This would 

allow for future targeted data collection, allowing practitioners to identify subpopulations 

that require more information - not wasting resources collecting information on patients 

which we can already predict well for. 

 

As we show in Figure 3, the ML community has developed a range of methods for what to 

do in the cases of different amounts of information. SMC is not the definitive answer on 

how to use the knowledge of model training domains, but it is the first, and highlights an 

important consideration that practitioners should be aware of when making their own 

predictions. We hope that this work will inspire future investigation, particularly in the task 

of adapting models to new populations we have no existing data on. 
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In general, we aim for the key takeaway for practitioners to be the following: If the 

individual models seem unlikely to transfer well across populations then incorporating an 

aspect of SMC into ensemble predictions is unlikely to damage predictive power in the worst 

case and will most likely improve predictions. 

 

To conclude, in this paper we have introduced the framework of Synthetic Model 

Combination to the clinical pharmacological and pharmacometric community - an instance-

wise approach to ensembling models in order to make predictions with only models that 

have seen similar individuals during their training phase. We demonstrated how it can be 

applied in the averaging of PopPK models with the real case study of estimating the 

effectiveness of vancomycin precision dosing, and the impact that could have in terms of 

the appropriate treatment of patients. 

 

Study Highlights 

What is the current knowledge on the topic? Model averaging population pharmacokinetic 

models is known to improve the predictive accuracy when informing optimal dose selection. 

What question did this study address? Appropriately averaging models is challenging, and 

current methods ignore important information about the demographics of which population 

a model is based on, a concept this study leverages for improved performance. 

What does this study add to our knowledge? Incorporating demographic information into 

model averaging methods allows us to improve the quality of predictions while maintaining 

the gains of current methods. 
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How might this change drug discovery, development, and/or therapeutics? The algorithms 

described in the study may increase the accuracy of precision dose calculations among other 

targets.  

 

Acknowledgements 

AC would like to acknowledge and thank Microsoft Research for its support through its PhD 

Scholarship Program with the EPSRC. This work was additionally supported by the Office of 

Naval Research (ONR) and the NSF (Grant number: 1722516). 

 

Author Contributions 

AC helped conceive the research problem, designed and completed the experiments, and 

wrote the manuscript. 

 

RP helped write the manuscript as well as guide the research direction and experiments. 

 

MG helped write the manuscript as well as guide the research direction. 

 

MVS conceived the research problem and oversaw the project. 

 

References 

1. Powell JR, Cook J, Wang Y, Peck RW, Weiner D. Drug Dosing recommendations for all 

patients: A roadmap for change. Clin Pharm Ther. 2021;109:65-72. 



 18

2. The Drug Disease Model Resources Foundation (DDMoRe). 

https://www.ddmore.foundation. Accessed 12th August 2022 

3. Vivli - Center for Global Clinical Research Data. https://vivli.org. Accessed 16th 

August 2022. 

4. Broeker A, Nardecchia M, Klinker KP, Derendorf H, Day RO, Marriott DJ, Carland JE, 

Stocker SL, Wicha SG. Towards precision dosing of vancomycin: a systematic 

evaluation of pharmacometric models for Bayesian forecasting. Clinical Microbiology 

and Infection. 2019 Oct 1;25(10):1286-e1. 

5. Raftery AE, Madigan D, Hoeting JA. Bayesian model averaging for linear regression 

models. Journal of the American Statistical Association. 1997 Mar 1;92(437):179-91. 

6. Neath AA, Cavanaugh JE. The Bayesian information criterion: background, derivation, 

and applications. Wiley Interdisciplinary Reviews: Computational Statistics. 2012 

Mar;4(2):199-203. 

7. Minka TP. Bayesian model averaging is not model combination. Available 

electronically at http://www.stat.cmu.edu/minka/papers/bma.html. 2000 Dec:1-2. 

8. Izmailov P, Nicholson P, Lotfi S, Wilson AG. Dangers of Bayesian model averaging 

under covariate shift. Advances in Neural Information Processing Systems. 2021 Dec 

6;34:3309-22. 

9. Kouw WM, Loog M. A review of domain adaptation without target labels. IEEE 

transactions on pattern analysis and machine intelligence. 2019 Oct 7;43(3):766-85. 

10. Kim HC, Ghahramani Z. Bayesian classifier combination. In Artificial Intelligence and 

Statistics 2012 Mar 21 (pp. 619-627). PMLR. 

11. Uster DW, Stocker SL, Carland JE, Brett J, Marriott DJ, Day RO, Wicha SG. A Model 

averaging/selection approach improves the predictive performance of model-



 19

informed precision dosing: vancomycin as a case study. Clinical Pharmacology & 

Therapeutics. 2021 Jan;109(1):175-83. 

12. Chan AJ, van der Schaar M. Synthetic Model Combination: An Instance-wise 

Approach to Unsupervised Ensemble Learning. Advances in Neural Information 

Processing Systems. 2022. 

13. Terrell GR, Scott DW. Variable kernel density estimation. The Annals of Statistics. 

1992 Sep 1:1236-65. 

14. Kingma DP, Welling M. Auto-encoding variational bayes. arXiv preprint 

arXiv:1312.6114. 2013 Dec 20. 

15. Infectious Diseases Society of America. https://www.idsociety.org/practice-

guideline/vancomycin/. Accessed 13th September 2022 

16. Adane ED, Herald M, Koura F. Pharmacokinetics of Vancomycin in Extremely Obese 

Patients with Suspected or Confirmed S taphylococcus aureus Infections. 

Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2015 

Feb;35(2):127-39. 

17. Mangin O, Urien S, Mainardi JL, Fagon JY, Faisy C. Vancomycin pharmacokinetic and 

pharmacodynamic models for critically ill patients with post-sternotomy 

mediastinitis. Clinical pharmacokinetics. 2014 Sep;53(9):849-61. 

18. Medellín-Garibay SE, Ortiz-Martín B, Rueda-Naharro A, García B, Romano-Moreno S, 

Barcia E. Pharmacokinetics of vancomycin and dosing recommendations for trauma 

patients. Journal of Antimicrobial Chemotherapy. 2016 Feb 1;71(2):471-9. 

19. Revilla N, Martín-Suárez A, Pérez MP, González FM, Fernández de Gatta MD. 

Vancomycin dosing assessment in intensive care unit patients based on a population 

William Hsu
Cross-Out



 20

pharmacokinetic/pharmacodynamic simulation. British journal of clinical 

pharmacology. 2010 Aug;70(2):201-12. 

20. Roberts JA, Taccone FS, Udy AA, Vincent JL, Jacobs F, Lipman J. Vancomycin dosing in 

critically ill patients: robust methods for improved continuous-infusion regimens. 

Antimicrobial agents and chemotherapy. 2011 Jun;55(6):2704-9. 

21. Thomson AH, Staatz CE, Tobin CM, Gall M, Lovering AM. Development and 

evaluation of vancomycin dosage guidelines designed to achieve new target 

concentrations. Journal of antimicrobial chemotherapy. 2009 May 1;63(5):1050-7. 

 

Figure Legends 

Figure 1: a) Instance-wise Ensembles. Here we represent the density of the training 

features for three separate models - M1, M2, and M3. Given new test points A, B, and C, we 

need to construct predictions from these models. A is well represented by both M2 and 

M3while B only has significant density under M3. C looks like none of the models will be 

able to make confident predictions. 

b)  Different models are useful for new patients. PopPK models are often trained on certain 

demographic groups given the studies that are designed for data collection. For a new 

patient who doesn’t necessarily fit into one of the existing demographics, different models 

may be more or less relevant and accurate. Naive ensembles ignore this fact and always 

incorporate evenly the predictions of each model, SMC on the other hand aims to up-weight 

the models that would appear to be more relevant. 

 

Figure 2: a) Synthetic Model Combination Training Algorithm. Algorithm outlining the main 

steps in training for SMC. 
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b) Inference Flow Diagram. As a new case comes in the first step is to calculate all of the 

individual models’ predictions, using NONMEM for example. Then, like with any model 

averaging algorithm the weights must be calculated. Performance-based model averaging 

methods have a set of weights independent of the new case, whereas SMC maps the new 

case features to a latent space that is then used to calculate individual weights for that case. 

 

Figure 3: Methods based on varying information. A selection of methods from the 

spectrum of information available to a practitioner. SMC lies quite far towards the little 

information end, aiming to only take use of some demographic information from each of 

the models and not require any labelled training points. 

 

Table 1: Comparison of modern model averaging/ensembling methods. 

 

Table 2: RMSE for AUC predictions from models for a number of concentration 

measurements over a 48-hour period on the full cohort of 6000 simulated patients. 

 

Table 3: RMSE for AUC predictions from models for a number of concentration 

measurements over a 48-hour period on 1000 subsampled patients. 

 

 



 

 

Method Instance-wise? Require new data? Weights 

Naive Ensemble No No 𝑤 = 1/𝑁 
 

PBMA No Yes 𝑤௜ ∝ 𝐵𝐼𝐶ሺℳ𝒾ሻ 
 

Model Selection No Yes N/A 

Synthetic Model Combination Yes No 𝑤௜ሺ𝑥ሻ ∝ 𝑝௜𝒵൫𝑓஘ሺ𝑥ሻ൯



 

 A Priori One Two Three 

Adane et al.  52.4 ± 0.3 32.9 ± 0.2 32.7 ± 0.3 27.4 ± 0.3
Mangin et al. 57.4 ± 0.2 27.8 ± 0.1 25.5 ± 0.3 17.7 ± 0.1 

Medellin-G et al. 51.4 ± 0.2 25.7 ± 0.1 22.8 ± 0.1 17.3 ± 0.1 

Revilla et al. 35.1 ± 0.1 20.8 ± 0.1 18.5 ± 0.1 15.4 ± 0.1
Roberts et al. 31.7 ± 0.1 18.7 ± 0.1 18.1 ± 0.1 14.7 ± 0.1 

Thomson et al. 34.5 ± 0.1 22.9 ± 0.1 20.6 ± 0.1 16.8 ± 0.1 

Ensemble 38.4 ± 0.1 21.9 ± 0.1 20.0 ± 0.1 16.1 ± 0.1
PBMA 38.4 ± 0.1 19.0 ± 0.1 17.4 ± 0.1 13.9 ± 0.1
SMC 36.4 ± 0.1 21.0 ± 0.1 19.3 ± 0.1 15.4 ± 0.1 

SMC + PBMA 36.0 ± 0.1 19.0 ± 0.1 17.6 ± 0.1 14.1 ± 0.1



 

 A Priori One Two Three 

Adane et al. 80.0 ± 0.7 47.3 ± 0.4 40.9 ± 0.6 32.5 ± 0.3 

Mangin et al. 83.3 ± 0.6 36.2 ± 0.3 33.0 ± 0.3 21.4 ± 0.2 

Medellin-G et al. 76.5 ± 0.6 33.5 ± 0.2 28.5 ± 0.2 20.9 ± 0.2
Revilla et al. 32.7 ± 0.4 21.6 ± 0.2 20.0 ± 0.2 16.7 ± 0.2
Roberts et al. 35.8 ± 0.3 20.6 ± 0.1 20.0 ± 0.2 16.1 ± 0.1 

Thomson et al. 48.2 ± 0.4 30.2 ± 0.2 25.8 ± 0.2 20.9 ± 0.1 

Naive Ensemble 55.7 ± 0.4 28.5 ± 0.2 24.9 ± 0.2 19.3 ± 0.2
PBMA 55.7 ± 0.4 20.8 ± 0.2 19.3 ± 0.2 15.2 ± 0.2 

SMC 41.8 ± 0.5 22.1 ± 0.2 19.6 ± 0.2 15.2 ± 0.2 

SMC + PBMA 47.5 ± 0.5 20.5 ± 0.1 18.7 ± 0.2 14.6 ± 0.2



Patient 
Demographics

Predicted 
Models

Weights

New Patient
SMCNaïve 

Ensemble

b)a)



b)a)



Naïve Average
- No information at 
all, just models

SMC
- Some demographic 

information, no 
labelled data

Performance Based 
Model Averaging
- Measure of how 
‘good’ a model is, 
often through a 
validation set of 
labelled examples

Transfer Learning / 
Domain Adaptation
- Some data from all 
the different domains

New Models
- All data available for 
all trained models and 

different domains

Amount of information available to the practitioner 
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