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Disco“finuous Galerkin parabolic PDEs. The latter two correspond to Maxwell-Cattaneo-Vernotte (MCV) and Fourier heat conduction

ipacsnlx?ne problems. The method is called the tent-pitcher spacetime DG method (tpSDG) due to its resemblance to the
arabolic

causal spacetime DG method (cSDG) wherein the solution advances in time by pitching spacetime patches. The
tpSDG method extends the applicability of such methods from hyperbolic to parabolic and hyperbolic PDEs. For
problems with a spatially uniform mesh, a transfer matrix approach is derived wherein the inflow, boundary, and
source term values are mapped to the solution coefficient and output values. This resembles a finite difference
scheme, but with grid points at the Gauss points of the spatial elements and arbitrarily tunable order of accuracy
in spacetime. The spectral stability analysis of the method provides stability correction factors for the parabolic
case. Numerical examples demonstrate the applicability of the method to problems with heterogeneous material

Transfer matrix
Spectral stability

properties.

1. Introduction

Discontinuous Galerkin (DG) methods have several advantages over
(continuous) Finite Element Methods (FEMs) including element-level
satisfaction of balance laws, exceptional flexibility in h-, p-, and hp-
adaptive operations, and more compact element communication stencil
that lends itself to better parallel computing. Moreover, when an ex-
plicit time integrator is used for transient problems, their block diagonal
mass matrix directly leads to an element-by-element solution process.
Finally, their discontinuous solution nature is suitable for hyperbolic
Partial Differential Equations (PDEs) where discontinuities and shocks
persist or are generated mid simulation for nonlinear PDEs. Conse-
quently, DG methods are widely used for the solution of parabolic and
especially hyperbolic PDEs. We refer the reader to [1-5] for further dis-
cussion on these aspects.

Four desirable features pertained to temporal advance of the solu-
tion for transient PDEs are discussed and referred to in the remainder
of this section. First, the temporal order of accuracy is easily tunable
to high values. Second, ideally there is the flexibility to adjust such or-
der at the element level, as opposed to the entire spatial domain. Third,
the time advance is adjustable for individual elements, as opposed to
taking a globally uniform time advance. Fourth, these aspects, i.e., tem-
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poral order and step size, and the spatial mesh layout can change as
solution features and wave fronts travel in the spacetime domain. Fea-
tures three and four can be viewed as local 4- and p-adaptivity in time.

There are several approaches to achieve these desirable features.
First, a Spacetime Discontinuous Galerkin (SDG) method often refers to a
discretization where the space domain is extruded in time, with the pos-
sibility of some nodal perturbation, to form spacetime elements [6-13].
Since the solution is directly interpolated in spacetime, the first two fea-
tures are easily achieved with SDG methods. In their adaptive versions
[14], the latter two features can be achieved too. Second, some space
DG methods use the Cauchy-Kovalewski (CK) or Lax-Wendroff procedure
to achieve arbitrarily high orders of accuracy in time as in [15] and arbi-
trary high-order derivatives (ADER) DG methods [16-19]. This achieves
feature one, and in fact in versions of these methods with Local Time
Stepping (LTS) option features two and three are achieved. Specifically,
pertained to feature three, each element can achieve its maximum sta-
ble time advance which is quite impressive. However, we note that the
CK approach becomes quite challenging for nonlinear PDEs [19]. Third,
there is a group of spacetime DG methods for hyperbolic PDEs, wherein
the boundaries of elements (or groups of elements called patches) are
causal resulting in a local solution process, capable of achieving all the
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four features above. These methods, referred to as causal SDG (cSDG)
from hereon, will be discussed next.

The ¢SDG methods were first presented for 1D hyperbolic PDEs in
[20,21]. The Tent-Pitcher algorithm [22,23] advances the solution by
erecting a patch of elements around vertices with local time coordinate
for 2D and 3D problems. Similar to the SDG methods, direct discretiza-
tion of spacetime achieves features one and two above. Feature three
is very naturally achieved as the time advance of each patch is only
based on the geometry and element sizes of the patch. As will be dis-
cussed in §4.2, this time advance is optimal and superior to that of
the ADER DG methods mentioned above. Finally, mesh adaptive oper-
ations in [23,24] achieve feature four. In fact, the richer vocabulary of
spacetime meshing operations makes it feasible to track complex mov-
ing interfaces such as crack surfaces in spacetime [25,26]. Its due to
these unique features that various novel integration schemes and Tre-
fftz methods are proposed in [27-32].

This work extends prior works in two respects. First, all ¢SDG
methods are formulated for hyperbolic PDEs. Herein, we present the
so-called Tent-Pitching SDG (tpSDG) method that not only applies to hy-
perbolic PDEs, but also extends to parabolic PDEs, with the potential of
achieving most or all of the features discussed above even for parabolic
PDEs. Second, a particular implementation for 1D case is considered,
where the spacetime meshing starts from a spatial grid with uniform
element size. This provides a quadrature-free solution advance method
using transfer matrices that map Initial Conditions (ICs) / predecessor
element solutions, Boundary Conditions (BCs), and source terms to the
outflow facets of patches. This is motivated by the derivation of finite
difference schemes from low order discontinuous Galerkin methods as
discussed in [27,33], with the difference that herein the grid points are
the Gauss points of interiors and facets of spacetime elements and the
order of accuracy in spacetime is easily tunable.

The outline of the paper is as follows. The DG formulation for three
hyperbolic and parabolic linear PDEs for heat conduction and wave
equation is presented in §2, followed by the derivation and implemen-
tation of the transfer matrix method for uniform 1D grids in §3. The
stable time advance limits for hyperbolic and parabolic cases are ob-
tained in §4. The importance of extension of SDG method to dH and P
PDEs and extension of the transfer matrix approach to 2D and 3D prob-
lems is discussed in §5. Convergence studies and a few numerical results
are presented in §6, before drawing the final conclusions in §7.

2. Formulation

We present the formulation for the tpSDG method for a 1D and lin-
ear hyperbolic or parabolic PDE. The patch-level formulation of the
weak statement results in the proposed quadrature-free transfer matrix
approach.

2.1. Governing equations

Motivated by the 1D heat conduction problem, consider the follow-
ing system of equations,

CT,+q,=0 (1a)

7q, +«T, =-nq, (1b)

where T is temperature, g heat flux, O heat source, C volumetric heat
capacity, r relaxation time and x heat conductivity. Equation (1a) is the
strong form of balance of energy and (1b) is the constitutive equation
for heat flux q.

The three cases of the PDE correspond to different forms of (1b)
and are summarized in Table 1. First, if n =1 and 7 =0, (1b) corre-
sponds to the classical Fourier heat conduction model, and the system
of equations (1) is the parabolic heat conduction model, expressed
as CT, — (xT,), = Q in terms of the temperature field only. Second,
if the relaxation time is positive (r > 0) and n = 1, heat flux cannot
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Table 1
The classification of PDEs corresponding to (1).
PDE and symbol conditions Example
Parabolic (P) 7=0,n=1 Fourier heat conduction
Damped hyperbolic (dH) >0,n=1 MCV
Undamped hyperbolic (H) >0,7=0 Wave equation

A4

Ty

8Dpor 8Dy or 0Dp
8Dpor 8Dy or 8Dp

D

Y 8

X=X, aD; Xp=Xo+1L

Fig. 1. Space-time domain D x [0,7,] and an arbitrary volume e inside the
domain.

simply obtained from the temperature and requires the solution of
the differential equation (1b). The system of equations (1) is called
the Maxwell-Cattaneo-Vernotte (MCV) heat conduction equations af-
ter [34,35]. Expressed in terms of temperature, the MCV equation is
CT, +CT, - (kT,) . = Q +7Q, [36]. This is a hyperbolic PDE with a
wave speed of ¢ = \/g . It is one of several models that correctly cap-
ture the wave-like propagation of thermal energy at small space and
time scales. Finally, the case = > 0, but # =0 does not correspond to a
heat model and is added to compare the solutions of the previous mod-
els with this undamped hyperbolic PDE, CT,, — (xT ), = 7Q,. From
hereon, these cases are labeled as parabolic (P), damped hyperbolic (dH),
and undamped hyperbolic (H), respectively.

The problem is considered for a 1D spatial domain D = [X;, Xz] =
[Xy. X, + L] for the time interval [0,T ] as shown in Fig. 1. The Initial
Boundary Value Problem (IBVP) includes the differential equations (1)
and the following ICs and BCs,

T(x,0) =Ty(x), ondD; (2a)
q(x,0) = gy(x), ondD; (only for dH and H cases)
(2b)
T(x,t)=T(x,1), ondDp x[0,T,], (20)
4n(x, 1) = q(x, 1 (X) = G, (x, 1), ondDy x[0,T]. (2d)

In addition to Dirichlet and Neumann BCs in (2c) and (2d), the peri-
odic boundary condition (PBC) may be used on 0Dp = {X;, Xy}, where
T(Xg)=T(X;) and ¢(Xg) = q(X;). These boundaries are mutually dis-
joint and satisfy 0D, UdDy U0Dp =0D ={X, Xg}. The boundaries of
the spacetime domain D are shown in Fig. 1.

2.2. Weak statement

The Weighted Residual Statement (WRS) is obtained by multiplying
(1a) and 1/« times of (1b) with temperature and heat flux weight func-
tions 7" and 4, respectively, and integrating over an arbitrary spacetime
domain e (see Fig. 1),
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/ (TCT +a,- 0+ a0 7q, + T +x71n) v+

e

/ (T [(CT* —CT)n, +(q; - qnx)] + 3

de
q[x—l (" — )n, + (T* — T)nx] )ds =0,

where n, and n, are the spatial and temporal components of the space-
time normal vector as shown in the figure. The jump terms in the second
line, are the corresponding jump terms of the differential equations in
(1) and are expressed relative to T* and ¢*, the target values for tem-
perature and heat flux, respectively. The integrals in the second line
ensure weak enforcement of the jump conditions and continuity of the
solution in this DG method. The target values are specified based on
the ICs and BCs on the boundaries of the spacetime domain, and their
values are provided in (6).

There are two comments about (3) and Fig. 1. First, in other ¢SDG
formulations for various solid, fluid, thermal, and electromagnetics
problems [36-40], the jump conditions and the PDEs are directly de-
rived from the balance law statements in spacetime. Second, the defini-
tion of spacetime normal is problematic due to the lack of metric and
dealing with length and time scales. In the aforementioned cSDG ref-
erences, differential forms notation is used to address this challenge.
However, such normal vectors are used in other DG methods that deal
with slant interfaces in spacetime, see for example [6-8]. For brevity,
we directly start with the PDEs (1) and do not resort to differential
forms notation herein, but refer the reader to [38,40] for further details
on these aspects.

After the application of the Gauss theorem on (3), the weak state-
ment for the spacetime domain e is obtained as,

/( - f—:ICT - T,xq -To- Kﬁlﬂi,rq -4.T+ Kﬁl”l‘i‘])dV*’

e

(C))
/(T [CT*n, + q:] + é[K‘qu*n, + T*nx] )dS =0
de

The solution (T, q) is sought for a broken Sobolev space corresponding
to a partition of open spacetime domains {e,} where the restriction of
solution on each e in the partition belong to the Hilbert space H'(e,).
The weight functions also belong to this space.

2.3. 1D discretization

The weak statement (4) can be applied to any discretization of
spacetime domain with finite elements {e,}. For example, in [36],
2D discretization of (1) for the dH case (MCV) is considered and in
[23,24] h-adaptive schemes are proposed, all for the cSDG method. The
¢SDG method can only be applied to hyperbolic PDEs, where elements
are arranged in patches whose boundaries (except those on 0D) are
causal, i.e., all characteristics enter or exit a patch of elements through
the given boundary. As mentioned in §1, this work advances the ear-
lier SDG works by solving a parabolic PDE (P in Table 1), this time
in the absence of a causality constraint, and developing a quadrature-
free transfer matrix solution approach for 1D. This section discusses the
structured spacetime meshing and solution discretization.

2.3.1. 1D geometry

Fig. 2 shows the discretization of the spacetime domain D x [0,7]
in Fig. 1 into triangular elements. The spatial domain is divided into N
segments of size h = L /N, where L is the spatial size of D. The spatial
position of N + 1 base vertices X = X[ to Xy = Xp are X; = X + jh.
The temporal advance size is At =T,/M, where M is the number of
asynchronous time advances from time / layer O to time / layer M + 1.
For example, M =4 in the figure.

The elements are grouped in patches of one or two triangular ele-
ments. The number of elements in a patch is denoted by n,. For example,
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n, = 1 for the patches on the left (1) and right (r) side of the domain and
n, =2 for the patches inside (i) the domain. Temporally, the patches
are on the bottom (b), top (t), or middle (m) of the domain, colored in
red, blue, or green for a few patches. Consequently, there are 9 types
of patches, labeled by two letters referring to the temporal and spatial
position of the patch. For example, bi corresponds to the (geometry of)
a patch, temporally at the bottom of the domain, spatially in the inte-
rior of the domain. The treatment of the PBC requires combining the
elements labeled left and right as interior patches.

2.3.2. Basis functions and element coefficients
For an element e, the primary fields 7" and g are discretized in space-
time as,

T(x,t) =T, ¢)T,, (5a)

q(x, 0 =qx’,1)q;, (5b)

where T'(x',#') and q(x’,") are spacetime basis functions, and T, and
q, are their corresponding vectors of coefficients (unknowns). The basis
functions are expressed in terms of (x,7") = ((x — x;)/h, (t — 1,)/At), the
local scaled Cartesian coordinate of the elements in a patch, relative to
its base spacetime point (x,,?,). Spatially, x, is the position of the base
point (x;) from which the patch is erected. Temporally, ¢, is equal to
zero and T, for bottom and top patches, respectively, and is the center
temporal position for middle patches. The position of the base point is
shown by solid circle for the 9 types of patch in Fig. 2. The basis func-
tions T and q span polynomials of order p; and p, < py in spacetime,
respectively. In all the numerical examples provided in subsequent sec-
tions we use equal order polynomials p, = pr, but other choices such as
p, = pr — 1 can be considered. The basis vectors are expanded in terms
of monomials. For example, T(x,?) = [1,x',#',x'2,x't',#'?] for p; =2.

2.3.3. Element interior and boundary

Fig. 3 shows the breakdown of the elements to their interior and
boundary facet types. There are two types of patches: 1) Boundary
patches that are comprised of one element. For these patches n, = 1. Ex-
amples are patches formed by elements D and C if the vertical boundary
of these elements are on Dirichlet or Neumann boundary of the domain;
cf. (2); 2) Interior patches are comprised of two elements. The patch
comprised of elements A and B is an example of all the patches with
base points in the interior of the domain (X ; for 0 < j < N in Fig. 2).
Another possibility is for periodic boundary where the elements C and
D play a similar role to elements A and B in the A,B patch.

We decorate any quantity associated with the interior coefficients
and integrals of the patch by 7. The boundary of the element is broken
down to nonvertical and vertical facets, de = de,,,Ude,,. As shown in Fig. 3,
de,,, = de; Ude,, where the inflow and outflow refers to whether the time
direction enters or exits the element through the facet. There are four
labels for possible vertical facets: 1, 2) The vertical facet that couples
two element patches; that is de,; the vertical interior facet for patch A,B
and de,p for the vertical facet of patch C,D if dealing with a problem
with PBC; 3,4) de, and dey for the vertical boundary of elements C and
D. In these cases, the vertical boundary of element C or D is entirely
Dirichlet or Neumann.

2.3.4. Target values for 1D

For brevity, the space and time dependence of all temperature and
heat flux quantities are dropped in this section. The target values for
different types of the facet are provided below,

T,, de; N 0D; .
(T*,¢") = {( 0-40)  omJe inflow boundary de;, (6a)

(T~,q~) onoae;\dD;

(T*,q")=(T,q) outflow boundary de,, (6b)
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Fig. 2. The spacetime discretization of the domain shown in Fig. 1. The structured spacetime mesh includes 9 types of element erected from left (X, = X, ), right
(X y = Xg) and interior vertices, in bottom (red), middle (green), or top (blue) of the temporal axis. The specific labels of the elements are shown in colored elements.

dep or dey or Oep

Fig. 3. Labeling of the interior or boundary of elements in spacetime for the possible forms of patches encountered. The characteristics directions (arrows) only

apply to the hyperbolic PDE cases (H and dH).

on de, N oD
on de, N 0Dy

(T.qny)
(T*.q)=1(T.q,)
(T, q"n,) on ode,; Ude,p

vertical boundary de,. (6¢)

As can be seen the target values are provided for the three groups of
inflow, outflow, and vertical facets. For inflow facets, if the facet is on
the initial boundary of the domain, i.e., =0 in Fig. 1, n, = 0 and the ICs
provide the target values. For the parabolic PDE case, r =0 and ¢* is not
needed in the second line of (4); c¢f. (2b). When there is a predecessor
neighbor element for an inflow facet, the exterior traces of temperature
and heat flux are used as target fluxes in the second line of (6a). That
is, for element A, the exterior traces from element E provide the target
fluxes in Fig. 3. For the outflow boundaries, the interior traces provide
the target values. For inflow and outflow facets g = ¢*n,.

For vertical facets n, = 0, hence only ¢’ is needed in (4). There are
three cases for target values of vertical facets. If the facet lies on the
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Dirichlet boundary of the domain, prescribed temperature T provides
T* whereas g, is set to its interior trace gn,. For X, and Xy, n, = —1 and
1, respectively. In contrast, for the Neumann boundary of the domain,
q; = g, and this time target temperature takes the interior trace value.
Finally, for the interior vertical facet of 2-element patches, numerical
fluxes (T", ¢") are used to obtain the target fluxes.

The numerical fluxes (7, ") depend on the traces of the fluxes from
the two sides of the interface. The left and right side traces on the two
sides of the interior vertical facet of a 2-element patch are denoted by
(T',q¢" and (T",q"), respectively. These correspond to elements A and
B for patch A,B and C and D for patch C,D (periodic BC) in Fig. 3,
respectively. For the hyperbolic PDE cases (H and dH), these target
values are expressed as,

9-q
VARSYAL

v Z'T'+Z'T"

= 7a
zZ'+zr 72)
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Py

Py

Fig. 4. The use of solutions at inflow facets, prescribed BCs, and source terms, all specified at their corresponding Gauss quadrature points, to advance the solution

to the quadrature points on the outflow facets of sample patches 1 to 5.

qul + Zlqr Z[ zr
V= + T -T" 7b
1 zZ'+zr Z'+zr ( ) 7b)
where Z = c¢C = 4/kC/7 is the impedance of the material and can po-

tentially be distinct for the two sides of the interface for bi-material in-
terfaces. These target values are based on Riemann solutions in [41,42]
and preserve the underlying characteristic structure of hyperbolic PDEs.

For the parabolic (P) PDE case, the alternating fluxes of the Local
Discontinuous Galerkin (LDG) method [43] are used,

T =T", (8a)

¢°=4. (8b)

The alternating fluxes are used in [44,45] for parabolic PDEs. They are
preferred over the central fluxes T" = (T' + T")/2 and ¢° = (¢' + ¢")/2,
as they provide optimal convergence rate for all polynomial orders,
whereas optimal convergence rate is only achieved for even orders p;
for the central flux option.

3. Transfer matrix method

The objective of this section is to use the earlier solution at inflow
facets of the patch, boundary conditions on the part of the patch that
coincides with the boundary of the domain, and the source term inside
the patch to update the solution on the outflow facets of a patch. Fig. 4
shows this process. Five sample patches in the domain are labeled by
numbers 1 to 5. In this example, the vertical facet of patch 1 is on
0D, and the vertical facet of patch 4 is on 9D, For these patches the
solution at the quadrature points on the outflow facet depends on BCs.
For all patches, the solution also depends on the solution on the inflow
facets of the patch and source term inside the elements.

3.1. Quadrature points

Recall that T and ¢ are interpolated with polynomial orders p; and
p,- Using pr > p, means that the integration order of 2p; is sufficient
to integrate the facet and interior terms in (4) exactly. This corresponds
to numbers n,, = p, and n,; of Gauss quadrature points for facet and
interior integration of elements, respectively. The quadrature points for
p, =2 are shown by solid circles in Fig. 4, where n,, =2 and n,; =6.
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The Gauss quadrature points are labeled as g ¢ where p is the patch
number, e is the element number within a patch a is the integration
cell type, where a =i, 0,0, I correspond to inflow, outflow, and vertical
facets of the element, and I correspond to the interior of the element.
Finally, j is the position of the Gauss quadrature point in its set. For
a =i,o for each element, the numbering starts from the point closest to
the vertical facet of the patch and increases outward. For vertical facet,
the ordering is the from earlier to later times. The ordering of interior
a = I quadrature points is based on the ordering of points in a Gauss
quadrature point table. These quadrature orderings are shown for the
all the patches in Fig. 4. The total quadrature weight for the quadrature
point g” 1s denoted by w”’ and is equal to the Gauss quadrature weight
for the parent line (a = z 0 v) or triangle (a = I) times the Jacobian
determinant from the parent to real geometry.

3.2. Vectors of dof

We discuss the degrees of freedom (dof) vectors and their sizes for
solution, inflow, outflow, BC, and source term groups. We start with
the solution coefficient vectors T, and q; in (5). The number of dofs for
T and g per elements are ny = (py + pr/2 and n, = (p, + 1)p, /2. The
vector of dof (coefficients) for a patch, a,, and corresponding number
of dofs per patch, n,, are,

= [Tivqif"’Tz’e’q?e] (9)

where the superscript corresponds to the element number from one to
n, =1 or 2 in Fig. 4.

The inflow and outflow dof vectors are denoted by a;, and a, and
follow the quadrature point numbering discussed in §3.1, i.e., starting
from element one to n, and for each element moving away from the
vertical facet of the patch. The Dirichlet and Neumann BC vectors are
denoted by aj and ay for elements with boundaries on 0D}, and 0Dy,
respectively. They contain prescribed temperature 7 and g in the order
of quadrature points on these facets. Finally, the source term vector a;
contains the source term values Q from element one to element n, and
for each in the order of interior quadrature points.

Examples of dof vectors are provided in Table 2 for patch 2 in
Table 2. In this example the left and right side of the domain use Dirich-
let and Neumann BCs. Correspondingly, patch 1 and 4 have nonzero

ng=n,(nyp + nq)
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Table 2
Examples of vectors of dof for the transfer matrix method, referring to Fig. 4. The superscript for patch number is
dropped for brevity.
dof type Patch dof vector dof size
solution 2 a =T, Tl al o dh e T2 To 4] ng=n,(ny +n,)=24
inflow 2 a, =T . a(g} ). T}, a(e},). T(g} ). a8} ). T(8},). a(8},)] n=2nn,, =8
outflow 2 a,=1[T(g},).q(e) ). T8, ) a(8) ) T(e? ). ael - T (82, 4(g2,)] n,=2n,n,; =8
source term 2 a; =[0(g) )., 08 ). Oe7 ), O8] o) nyp=nyng =12
Dirichlet BC 1 ap=1[T(g, ). Tl np=ngy =2
Neumann BC 4 ay =1[4,(8),).4,(e,,)] ny =hg =2

Dirichlet and Neumann dof vectors in the last two rows of the table.
The last column shows the general expressions of the size of dof vectors
and numerical values for this example where p; = p, = 2. The last two
rows only apply to 1-element patches whose vertical facets are on 0D,
and 0D, . In row one, overbar refers to predecessor element or IC val-
ues for T and g, for example solutions from patches 2 and 3 for patch
4. The overbar in the last two rows corresponds to prescribed Dirichlet
and Neumann BCs; cf. (6).

3.3. Transfer matrices

The discretization of (4) for a patch results in a linear system of
equations Ka; = F, where K is the stiffness matrix and F is the right
hand side force vector with contributions from the source term inside
the element, target values on inflow facets, and Dirichlet and Neumann
boundaries of the patch. The force vector F can be expressed as the sum-
mation of corresponding stiffness matrices times dof vectors as shown
below,

Ka, =F=K;a; +K;a, + Kpap, + Kyay. 10)

The stiffness matrix K is of size n, X n,. Its computation for the space-
time DG method is straightforward and can be found in [36,38,40]. The
matrix K; is of size n, xn;. Its j™" column corresponds to the evaluation
of T' at the j® interior quadrature point of the patch times its corre-
sponding quadrature weight; cf. the fifth row of Table 2. The matrix K;
is of size n, x n;. Its j column corresponds to the evaluation of the neg-
ative of the second line of (4) for the corresponding quadrature point
times its quadrature weight, where (T* = 1, ¢* = 0) for odd columns and
(T* =0, ¢* =1) for even columns. For example, referring to Table 2, for
patch 2, the first column is the second line of (4) at gl,l, . for (T* =1,

q* =0) times —w} " the second column is evaluated at the same point

but for (T* =0, ¢* = 1) again times —w'.ll, all the way to column 8 (last
2

i2°
When Dirichlet BC is present, K, is an n, X n;, matrix, whose j* column
is —gn, at the quadrature point gi, ; times wll)_j. Finally, when applica-

column) for (T* =0, ¢* = 1) in the second line of (4) at gl.z2 times —w

ble, Ky is an n, X n; matrix, whose j" column is —T at the quadrature
point g/ ; times w) .
By premultiplying (10), K~!, we obtain,

a = TI—>saI + Ti—»xai + 7’D—m'aD + TN—m'aN’ (11)

s = K’lKa, for a € {1,i,D, N} are the transfer matrices from
source term, inflow boundary exterior trace, Dirichlet BC, and Neumann
BC to solution coefficients of the patch.

Finally, once the vector of solution dof of the patch a, is obtained,
the vector of dofs on the outflow facets a, is obtained as,

where 7,

a, = Ts—»oax = (123)
a, = Tl—mal + Ti—»oai + TD—maD + TN—»oaN’ (1 2b)

oo IS an n, X n; matrix, whose j column is 7' (odd ) or ¢ (even
Jj) at the corresponding outflow Gauss quadrature point. For example,

where T,
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referring to Table 2, for patch 2 in Fig. 4, first and second columns are T’
at g at g;,l, all the way to the eighth (last) column equal to ¢ at g§,2’ all
as evaluation of the vector of solution dofs a,. Clearly, 7,_,, = 7,_,, Ty
forae {I,i,D,N} in (12b).

—0

3.4. Implementation of transfer matrix method

The implementation is described referring to Fig. 2. The spatial
points range from X, = X; to X, = Xi. From previous section, we
deal with transfer matrices for a« € {I,i, D, N} to solution dofs, 7,_, in
(11), and to outflow dofs 7,_,, in (12b). These along with 7;_ , in (12a)
are superscripted in the general format, 7/7 where j € {0,---, N} is the
spatial vertex index and r € {b,m,t} is the temporal shape of a patch,
referring to colors red, green, and blue in the figure, respectively. For
example, the transfer matrix from inflow to outflow dof vectors for j = 1
and middle type patch is denoted by Tll_::’ and the inflow to solution
transfer matrix for j =2 and bottom type patch is denoted by T,i'; .

The algorithm for the solution of the spacetime is as follows:

1. Spatially discretize the domain to equal size elements, resulting in
N spatial elements and N + 1 vertex. The extension to nonuniform
spatial domain is discussed in §7.

2. Use a stable time advance At for all vertices. This is based on the
stability analysis in §4 and the desired final time, resulting in the
number of layers M =T, /At.

3. For each spatial position j € {0, -, N} compute transfer matrices
771/_1,5 and Tj_,a for a € {1,i, D, N} that are applicable for the given ;.
For example, for non-periodic domain boundaries only one of a = D
or N applies, whereas for inside and periodic boundary patches
neither one applies. Moreover, if the problem has zero source term
a = I is not needed. The calculations are for all = = {b,m,}.

4. For solution layer 0 to M transfer solution to the outflow of the

patches. After each advance, the outflow solution of one layer
serves as the inflow for the next layer.
For example, in Fig. 2 a typical spacetime mesh is shown for even
N and M =4. In solution step 0, all even numbered j vertices
are pitched to 7 = Ar using the bottom shape and the solution is
advanced to their outflows using bottom transfer matrices. For
solution layer 1, middle patches are erected on odd numbered ver-
tices from time O to 2A¢ and middle transfer matrices are used to
transfer the solution to their outflow facet. Solution step 2 advances
the solution of middle patches for even j from At to 3At. Solution
step 3, advances the solution of middle patches for odd j from 2Az
to 4Ar. Finally, in solution step 4, the solution of top patches is
used to advance the solution for even j from 3Ar to 4At. A similar
layer-by-layer process is used for other N and M.

There are a few clarifications for step 3. First, for inside j vertices
that have identical materials on the two sides, the transfer matrices
need to be computed only for one vertex. For example, for a problem
with homogeneous material properties, only one inside the domain set
of transfer matrices is needed. Second, material properties can be het-
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erogeneous with constant values in spatial elements or even varying
inside the elements (quadrature order can be increased). In this case,
distinct transfer matrices are needed for all spatial vertices. Third, some
transfer matrices are not needed, for example, T,l_)bY in Fig. 2 for an inho-
mogeneous problem set-up. However, algorithmically it may be easier
to compute transfer matrices for all = for all spatial vertices that need
calculation. Fourth, the indirect transfer from all « to the solution, then
from the solution to outflow dof vector is only necessary if the solution
coefficients are needed, for example for solution visualization. Other-
wise, one can directly use inflow to outflow dof vector transfer matrices
in (12b).

The transfer from the outflow of previously solved patches to the
inflow of current patches in step 4 can more clearly be explained using
Fig. 4. In this figure, the inflow of patch 5 is formed by the outflow
of patches 2 and 3. The 8 row vector of inflow values for patch 5 is
referred to as a). It is comprised of the first 4 rows of [0,,,|J,]a2 from
patch 2 outflow dof vector and the second four rows of [J|0,,,]a> from
patch 3 outflow dof vector. For this example with p; =2 the matrix J,
is,

J, = (13)

(= = =]

0
0
0
1

S O O =
S O = O

whereas for other pr, J; is an anti-block diagonal 2p; X 2p; size matrix,
with blocks of [1,0;01] repeating along the upper-right to lower-left di-
agonal. Practically, these matrix products are avoided and the solutions
from prior solutions are juxtaposed to the correct inflow dof vector po-
sitions for a new patch solution.

4. Stability analysis
4.1. Formulation of transfer matrix

For the spatially discretized form of a linear transient PDE, there
exists a linear map 7;_,,,

a,= Ti—mai’ (14)

that relates the initial vector of dofs a; to the final vector of dofs a,.
The spectral stability of the solution for this map corresponds to the
condition [46],

(T £ 1, (15)

where p(7;_,,) is the spectral radius of 7;_,,. In case of equality p(7;_,) =
1, the geometric and algebraic multiplicity of the eigenvalues of 7;_,,
and its normal Jordan form are needed to determine if the solution is
stable or weakly, i.e., linearly, unstable.

This approach is used in [47] for 1D and 2D domains with periodic
boundaries to determine the stability limit of a spatial DG, temporal CK
method for the parabolic heat conduction problem (P in Table 1). Uni-
form grids for 1D line [48] and 2D square [49] with periodic BCs are
also used to study the stability (and dispersion errors) of space DG meth-
ods with Runge-Kutta and Lax-Wendroff time advancing schemes. To
our knowledge, the stability analysis provided below is the first for fully
discretized spacetime DG methods with temporally non-extruded girds,
e.g. using tent-pitching meshes as the one shown in Fig. 2. This is also
the very first use and stability analysis of such methods for parabolic
PDEs, albeit for the 1D heat conduction problem and the type of reg-
ular grid shown in Fig. 2. As mentioned in §1, we refer to this as the
tpSDG method to encompass the SDG formulations for both hyperbolic
and parabolic PDEs.

Fig. 5 shows sample 1D spacetime meshes used for stability analysis
of the method. The coloring convention is similar to Fig. 2. The spatial
domain contains two elements of size 2 and PBC is used on domain
boundaries. Different number of layers M from one to four are shown
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in the figure. Similar to Fig. 4, sample polynomial order of p; =2 is
used in this figure.

Using the transfer matrices in §3.3 and time advancing procedure in
§3.4, the transfer matrix in (14) is,

Jrb

i—o

Ti—)o

=7!

i—o

)M—l 16)

where 7% , 7™ and 7!  are the transfer matrices for bottom (red),
middle (green), and top (blue) patches, as shown in the figure. The
middle and top patches pitched from the periodic boundary are shown
with lighter green and blue colors, respectively. The are pitched on the
vertex X, = X and the right side of the patch is the corresponding far
left portion of the spacetime mesh on the vertex X, = X . These patches
have identical transfer matrices to the middle and top patches pitched
on X, with darker colors, as they have the same continuity condition
and target solutions ((7) and (8) for H/dH and P PDE cases) for vertical
facets. Finally, the matrix J =[0,J,;J,,0], where J, is given in (13) for
pr =2. This matrix maps the previous patch outflow facets to new patch
inflow facets transfer and its an anti-block diagonal 4p; x 4p; size, with
blocks of [1,0;01] repeating along the upper-right to lower-left diagonal.

4.2. Stability analysis for the hyperbolic PDE

First, we investigate the stability limit for the (undamped) hyper-
bolic PDE case, i.e., H in Table 1. We consider a time advance in the
form,
Ar= ﬂg, an
where h and Ar are spatial and temporal sizes for the tent pitching
meshes in Fig. 5. The coefficient g is the Courant-Friedrich-Lewy (CFL)
[50] time advance correction factor, where #/c is time advance dictated
by the wave speed ¢ = \/K/_TC

To obtain the stability limit for the H case, a particular value for M
is chosen. Then, the correction factor g is varied and for each value of
B, p(T;_,,) is computed. The stability limit corresponds to the value of g
for which the stability condition (15) is about to be violated. This limit
is denoted by f;; that is, p(7;_,,(#)) > 1 for § > p and p(7;_,,(p)) < 1 for
p < Py . The spectral radius versus g is shown in Fig. 6. First, in Fig. 6a
the spacetime polynomial order of p; = p, = 4 is chosen and the stability
limit is obtained for different number of layers. Clearly, independent of
M, By = 1. Second, in Fig. 6b, motivated from the earlier result, the
number of layers is fixed to M =10 and the stability limit is analyzed
for different polynomial orders py = p,. Clearly, again g, =1 is the
stability limit.

The fact that the stability (CFL) limit g5 =1 is independent of the
polynomial order (and the number of layers) is expected, as for g =1
the spacetime inflow and outflow facets are aligned with the character-
istics directions of the underlying hyperbolic PDE. These facets separate
the domains of independence and influence. Under these conditions, the
characteristics only enter an element through its inflow facets in Fig. 3,
thus the predecessor values comprise all upstream characteristic solu-
tions and provide the target values in (6a). Similarly, for the outflow
facets, interior trace of the elements’ solution provides the upstream
values of all characteristics, thus resulting in interior trace target val-
ues in (6b). The stability limit g, =1 is sharp and geometric only. That
is, independent of p; the scheme is stable for g <1 and is unstable for
p>1.

In fact, the geometric stability limit of the tpSDG method for hy-
perbolic PDEs is one of its major advantages. For space DG methods
with an explicit time marching scheme, the stability (CFL) limit g is
severely reduced as the spatial order p, of the method increases. For
example, for Runge-Kutta (RK) time-marching schemes, g 1/ pi [49].
The situation is slightly improved for Strong stability-preserving (SSP) RK
time integrators [51] and ADER DG method (p, = p,) [52] where the
weaker scaling of f « 1/(2p, + 1) is observed [49].
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Fig. 5. Periodic domains with two spatial elements used for stability analysis of the method. The number of layers increases from one to four for a) to d). The red,
green, and blue colors correspond to bottom, middle, and top patches. Lighter green and blue colors are used for patches constructed on periodic boundary X, = X,

which pairs with X = X,.
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(a) The effect of number of layers M for pp = 4.

Fig. 6. Stability analysis for the undamped hyperbolic (H) PDE case: p(7..

The ¢SDG method (tpSDG method for hyperbolic PDEs) satisfies the
causality condition and as shown in Fig. 6, has the optimum stability
limit of py = 1. The energy dissipation relations of the ¢cSDG method
have been used to prove this sharp stability limit for elastodynamics
[38] and electromagnetics [40]. Consequently, the cSDG method time
advances are about 25 to 10 times larger than those with conventional
RKDG method and SSP RK / ADER DG time integrators, respectively, for
the modest space and time order of p; =5. The disparity increases as
the space and time order of the method increases. Moreover, the formu-
lation and implementation of time marching schemes with high order
of accuracy have their own technical challenges, whereas the treatment
of high spacetime orders in ¢cSDG methods is trivial. These advantages
for hyperbolic PDEs have been the motivation of formulation of other
¢SDG methods in [27-32].
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4.3. Stability analysis for the parabolic PDE

Next, we investigate the stability limit for the parabolic PDE case.
One main difference with the hyperbolic PDE cases is that for the
parabolic case, the IC only involves initial temperature T, in (2a) and
initial heat flux ¢, is not enforced for the parabolic case in (2b). This
is consistent with having no ¢* on initial front 0D; in (4) since = =0.
Thus, n; =2n,, rather than 4n,, for the hyperbolic PDE cases as only
initial temperatures are used in Fig. 5 at t = 0; ¢f. Table 2. Otherwise,
the propagation of solution from 7= 0 to T is similar to the hyperbolic
cases and uses (16) to derive 7;_,,. Finally, at r = T, the size of a, is re-
duced by half by removing heat fluxes at the Gauss points. Thus, the
spectral radius of n; X n; matrix 7;_,, for reduced n; =2n,, is used in
subsequent discussion.
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Fig. 7. Stability analysis for the parabolic hyperbolic (P) PDE case: p(7;

As common for explicit parabolic time marching schemes and ev-
ident from dimensional analysis, we consider a time advance in the
form,
h2
Ea
where v =« /C is the diffusion coefficient and f is the time advance cor-
rection factor. The limit for which p(7;_,,(8)) exceeds from one is called
the stability correction factor for the parabolic case and is denoted as
pp. Unlike the hyperbolic case, the stability limit will depend on p;. The
objective is to obtain fp(py) for different polynomial orders p; = p,.

The spectral radius versus # is shown in Fig. 7. First, in Fig. 7a
the spacetime polynomial order of p; = p, =4 is chosen and the stabil-
ity limit is obtained for different number of layers. While the stability
limit is tighter for M < 3, the actual unstable range of § is obtained as
M increases, that is, many time advances are taken. We observe that
the stability limit stabilizes for M > 4. Based on these observation, in
Fig. 7b, 10 layers are used and p;- is varied to numerically obtain fp(pr)
for different polynomial orders. As expected, fp(py) decreases as py in-
creases.

The stability correction factor fp(py) is provided in Table 3 for poly-
nomial orders 1 to 5. Similar to the tpSDG method presented here,
the method in [47] is arbitrary high order in space and time by us-
ing the CK solution expansion in time. Accordingly, it provides a good
comparison for the stability limits in the table. The absolute values of
the correction factors are very close for p; = 1. Interestingly, in [47],
Pp(5)/Bp(1) = 0.0143, whereas in Table 3, this decay is about 10 times
larger at 0.143. That is, while the two methods start with roughly the
same stability correction factors at pr =1, the tent-pitcher spacetime
DG method shows a more gradual decay of fp versus p;. We believe
the gradual tapering of elements in bottom and middle patches in Fig. 5
is favored over vertical boundaries of element in spatial DG methods
(implied by explicit integration of the space solution in time) and could
be a contributing factor in more gradual decay of f, observed here.
We pursue to further study this aspect in subsequent publications for
nonuniform grids and 2D/3D problems.

At=p (18)

5. Discussion

We discuss importance of modeling P (and dH) PDEs using the
tpSDG method and the extension of the transfer matrix method to
higher dimensions.

5.1. Limitation of ¢cSDG method to hyperbolic PDEs

As discussed in §1, one main shortcoming of the ¢SDG method is
that it can only be applied to hyperbolic PDEs. Denoting the H and P
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Table 3

The stability limit correction factor f(p;) for the parabolic (P)
PDE case.

1 2 3 4 5

0.35 0.23 0.10 0.08 0.05

Bp(pr)

time advances from (17) and (18) as Atp and Ary, respectively, we
observe Atp/Aty « h/L, where L =v/c = ct is the characteristic length
implied from (1). We will next discuss the effect of observation size (L)
and characteristic element size 4 on behavior of the MCV equation.

At small L, the equation is suitable to model wave-like heat conduc-
tion. As L and corresponding 4 increase such that h/L = O(1) or slightly
larger, Atp starts to be larger than Arj;. While the cSDG method in [36]
with its hyperbolic time step can still be used for all element sizes, its
time advance starts to become too restrictive. As discussed in [53], for
an Asymptotic Preserving (AP) explicit time advancing implementation
of such problems, time advance should tend to the more relaxed Azp as
the element size increases. Indeed, our stability analysis for the tpSDG
method yields a loser time advance than the hyperbolic limit of the orig-
inal ¢SDG implementation of the MCV in [36]. Finally, at much higher
observation scales the MCV equation (and many other hyperbolic heat
conduction models) can be very accurately represented by the parabolic
heat model. Clearly, in this regime the original cSDG method cannot be
applied.

The analysis proposed in the paper, albeit in 1D and for a linear PDE,
is a significant advancement for the tent-pitcher spacetime DG methods
and paves the way for solving more challenging and nonlinear tran-
sient PDEs such as Navier-Stokes (NS) equations in higher dimensions.
Two key advantages of the proposed method are: 1) It can be applied
to parabolic equations, e.g. NS and Fourier heat conduction; 2) For hy-
perbolic PDEs with viscous/diffusion terms and in regimes where the
wave-like phenomena are still important (e.g. moderate sizes in the dis-
cussion of MCV), much higher time advances can be achieved by the
proposed tpSDG method.

It is noted that in many instances implicit methods are favorable for
problems whose explicit time advance is severely limited by parabolic
operators; that is, it is affected by polynomial order and scales as
h*> (as opposed to h for hyperbolic PDEs). Examples, are the MCV
equation at high observation sizes, its Fourier heat model limit, other
parabolic models and idealizations, and many viscous-dominated fluid
problems. However, for convection-dominated fluid problems, the pro-
posed tpSDG method may be a viable choice by having more severe time
advance limits in refined elements located in boundary layers where vis-
cous effects are not negligible, whereas in the remainder of the domain
time advances tend to those of an inviscid fluid (i.e., Euler equations
in [37]). These elements can be solved locally in small patches of el-
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ements, as opposed to a globally coupled implicit solver, and can be
arbitrarily high order in spacetime.

5.2. Extensibility of the transfer matrix method to higher dimensions

The extension of the transfer matrix approach to 2D and 3D prob-
lems can be challenging. One approach is the derivation of these matri-
ces for uniform grids. The advantage is that all the relevant matrices can
be precomputed and tabulated similar to FD update equations. A similar
approach is proposed in [54], where certain transformations of a Tre-
fftz method on a uniform 2D rectangular grid are precomputed. Therein,
5 shapes of spacetime elements are encountered inside the domain. A
2D/3D version of the proposed transfer matrix requires precomputing
certain number of patch geometries with vertices inside the domain, on
surfaces (3D), on boundary lines, and corners, which can be a challeng-
ing task.

The second approach is more practical by precomputing transfer
matrices for any given mesh at the beginning of the simulation. Not
only unstructured spatial meshes can be used in 2D and 3D with het-
erogeneous material fields, the precomputation of transfer matrices is
algorithmically much simpler in this approach; for each vertex in the
spatial domain only bottom, middle, and top (if flat final fronts are
desired) patches with a chosen layer time advance of Az need to be pre-
computed. All further patch solutions simply uses these precomputed
transfer matrices. This approach is deemed to be faster than Trefftz
methods as it requires minimal calculations at the quadrature points and
no matrix solution is required. In addition, similar to all other spacetime
DG methods it can be arbitrarily high order (by choosing a given p in
precomputation stage).

The drawbacks of the transfer matrix approach are its applicability
to linear PDEs in the present form and using a global layer time advance
At, that is determined by stability limit of all spatial elements. Still, all
the linear PDEs discussed in DG Trefftz method [27-32] can also benefit
from fast calculations of extensions of this transfer matrix method in 2D
and 3D.

6. Numerical examples

We first examine the accuracy of the transfer matrix approach by
solving problems with exact solution. For this purpose, the orders of
accuracy of all PDE types are numerically investigated in §6.1. This is
followed by a 1D heat conduction problem in §6.2 for the three PDE
types. The second set of examples in §6.3 apply the method to an in-
homogeneous domain. Time advances for H and dH cases satisfy the
causality condition g <1 in (17), and for parabolic PDEs f# < fp(py) (see
Table 3) is used. For the examples in §6.3, the stability correction factor
is taken as the smallest value across all spatial elements in the domain.

6.1. Convergence rate study

For the convergence studies, we consider harmonic exact solutions
T(x,1) = R(exp(i(kx — wt))), where R is the real part operator, i = \/—_1 s
k is the wavenumber, and w is the frequency. We choose k = 2z, cor-
responding to a full spatial wave in the domain [0, 1]. Dirichlet BCs at
x=0and 1, and IC for T are applied based on T'(x, ). All nonzero mate-
rial properties in Table 1 are equal to one. The complex-valued w(k) is
obtained by plugging harmonic temperature (and heat flux) in (1). For
example, for H and P types, we have w(k) = ck and —ivk?, respectively.
The final time is 7, = 1 for all PDEs and the L2 errors between exact
(T and ¢) and discrete (T" and ¢") solutions are computed over the en-
tire spacetime volume. Spatial mesh resolutions of h=1/2 to h=1/128
with powers of 2 and polynomial orders of p; =0 to pp =5 are used for
this study. The base of logarithms in the plots is 10. The same order is
used for heat flux; that is Py = Pr- Riemann fluxes (7) are used for H
and dH PDEs and alternating fluxes (8) are used for the P PDE. The CFL
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Table 4

The number of layers for the examples in §6.2 for all PDE types.
PDE\n, 2 4 8 16 32 64 128
H, dH 6 12 15 30 60 100 195
P,pr=1 48 150 600 Not used
P,p, =3 120 480 1920

number of f =1 is used for H and dH PDEs and the time advance of P
PDE is determined based on correction factors in Table 3.

Fig. 8 shows the convergence rates for all PDE types. As can be ob-
served, the convergence rate for T is p; + 1 for all cases, which is the
optimal convergence rate. We note that in terms of energy dissipation
error, we had obtained optimal convergence rates for hyperbolic elas-
todynamic [38] and electromagnetic [40] PDEs. There is, however, a
nuanced behavior for the P PDE; as shown in (8d) the odd polynomial
orders have the suboptimal convergence order of p; for q. While the
detailed mathematical analysis of such suboptimal convergence rate in
this context is lacking, we refer to discussions in [44] in that certain
flux options for parabolic PDEs can result in such subptimal orders for
odd orders pr (= p,) in space DG methods. For H and dH types, the con-
vergence rates for ¢ is optimal at p; + 1 for all polynomial orders (not
shown for brevity).

6.2. Heat conduction from left to right of a 1D domain

The heat conduction from the left to the right side of the domain
is considered. Dirichlet BC is used on both sides with 7 =1 and 0 on
the left and right side of the domain, respectively. ICs are T, =0 and
go =0 in D. dH, H, and P cases are considered in order, although the
H case is a wave equation, it is included for comparison with the MCV
and Fourier heat models. The material properties are = =1 (for hyper-
bolic cases), k =1, and C = 1. Before discussing the results, we present
the number of layers used for each PDE type and mesh resolution in Ta-
ble 4 to demonstrate much master growth of the number of layers for
the parabolic case. As mentioned earlier, for H and dH cases, the CFL
number of one is used whereas for the parabolic case the correction fac-
tors from Table 3 are used to determine At from (18). In all cases, the
time step is decreased to have tent pole tops at sampling times of 0.5
and 1.5 to more easily extract the discrete solution at these times.

6.2.1. Damped hyperbolic solution

Fig. 9 shows the solutions of the damped hyperbolic equation for
pr =1 and 3 at times r = 0.5 and 1.5 for n, =2 to 256. The spatial do-
main is D = [0,1]. The exact solution is provided in [55]. As evident,
there is a sharp wave front at x = 0.5 for 7 = 0.5 as the wave speed is
1. The reflected front wave is again at x = 0.5 for t = 1.5. As expected,
numerical solutions tend to the exact solution as the mesh resolution in-
creases, and p; = 3 solutions are superior to those for p; = 1, especially
for low mesh resolutions.

The effect of polynomial order on solution is studied in Fig. 10 for a
domain with n, =32 and p; =0 to 4. The solution does not exhibit over
and undershoot for p; =0, but is overly damped. The solution tends to
the exact solution as p; is enriched with local over and undershoot for
all p; > 0. Finally, Fig. 11 depicts the solution in spacetime for n, =32
and p; = 3. The clear wave front along x =t line and its reflection from
the right interface can clearly be seen in the figure. The decay of the
temperature along the x axis is attributed to the damped nature of the
MCV equation.

We note that for almost all solutions in Fig. 9 and Fig. 10, there are
overshoots and undershoots around the discontinuity that do not tend
to zero as the mesh resolution increases. We refer the reader to [37] for
more detailed discussion of tendency of p > 0 solutions to overshoot and
undershoot around solution discontinuities. For nonlinear PDEs, lim-
iters [37], and artificial diffusion [56] are used in the SDG method to
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Fig. 8. Convergence rates of the L2 error norm of the numerical solution versus the exact solution for the three PDE types.

improve the accuracy of the solution around shocks and contact discon-
tinuities and, when applicable, prevent such over/undershoots render
the solutions unstable. However, for the linear PDEs considered herein,
these overshoots and undershoots are benign. As an alternative, p =0 so-
lutions generally eliminates these features, although with the tendency
of significantly diffusing the wave fronts; cf. Fig. 10.

6.2.2. Undamped hyperbolic solution

The undamped hyperbolic PDE corresponds to the wave equation in
Table 1. Fig. 12 shows the solutions at = 0.5 and 1.5 for p; =1 and
3. The spatial domain is D = [0, 1]. The exact solution is an undamped
wave moving to the right with speed ¢ = 1 with front and reflected front
at x =0.5 for r=0.5 and 1.5, respectively. The accuracy of numerical
solutions are qualitatively similar to the damped hyperbolic case.

The effect of polynomial order is studied in Fig. 13, where again the
solution for p; =0 is overdamped but without over and undershoot. The
spacetime solution for T is shown in Fig. 14 for n, =32 and p; = 3. The
undamped wave of magnitude one and speed one is reflected at time
one from the right boundary. The numerical solution is clean as there
is little disturbance around the moving sharp wave front.

6.2.3. Parabolic equation

For the parabolic solution, the larger domain of D = [0,3] is cho-
sen to better demonstrate the exponential decay of solution in space.
Exact solution of this problem is erfc(x/Z\/g ), where erfc is the com-
plementary error function. Fig. 15 shows the solutions for p =1 and 3
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for t = 0.5. The numerical solutions are closer to the exact solution com-
pared to hyperbolic PDE cases as for the parabolic case there is no sharp
moving wave front. This is specially true for p, =3, as unlike the hy-
perbolic cases the exact solution is sufficiently smooth. Moreover, the
solution is mathematically nonzero across the entire domain immedi-
ately after ¢ > 0. Numerically, the nonzero solution moves one element
to the right as time advances one layer at a time. But the time advance
in the form (18) and g < fp ensures the convergence to the exact so-
lution and accurate tracking of the approximate wave front, for example
when the argument of erfc is around 2.

6.3. MCV equation with inhomogeneous

This example demonstrates that the transfer matrix approach can
be applied to problems with inhomogeneous material properties. As de-
scribed in §3.4, for each vertex inside the domain, bottom, middle, and
top transfer matrices need to be precomputed. For homogeneous do-
mains, only one such precomputation is needed for all vertices inside
the domain.

Material properties are as follows: 7 =1, C =1, and for conductivity
two cases of x(x) = 10x + 1 and «(x) = (10x + 1)? are considered. These
cases correspond to wave speeds of ¢ = 4/10x+1 and ¢ = 10x + 1, re-
spectively, with the latter representing a more heterogeneous example.
The ICs are Ty = 1 and ¢, =0 in D =[0, 1], and the final time is T,=1.
The spatial element size is 4 = 0.02. The Dirichlet BCs are T =2 and 0
for the left and right sides of the domain, respectively.
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Fig. 9. Solutions for the damped hyperbolic equation for polynomial orders p, =1 and 3 at times t =0.5 and 1.5.
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Fig. 10. Comparison of solutions for n, = 32 and different p; for the damped
hyperbolic equation at 7 =0.5.

Fig. 16 shows the spacetime temperature solutions for the two «
cases. In both cases there is a region with 7" =1 above the initial con-
dition and two waves with starting temperatures of 2 and O enter the
domain from the left and right sides, respectively. These two waves col-
lide at time around 0.28 in Fig. 16a and at an earlier time around 0.15 in
Fig. 16b. From the wave fronts it is evident that the wave speed is higher
on the right side, thus the intersection positions are closer to the left side
of the domain. This effect is more pronounced for x(x) = (10x + 1)> due
to its higher and more heterogeneous wave speeds. For «(x) = 10x + 1,
the right-going wave accelerates after this intersection. This and the
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Fig. 11. Damped hyperbolic solution for T in spacetime domain [0, 1] X [0, 1.5]
(time along the vertical axis) for p, =3 and n, =32.

left-going wave reflect from the right and left boundaries at time around
0.55.

7. Conclusions

We presented a spacetime DG method where vertices from a 1D
uniform space mesh are pitched in time to advance the solution. Un-
like the ¢SDG method, this so-called tpSDG method can be applied to
both hyperbolic and parabolic PDEs. The transfer matrix approach pro-
vides a quadrature-free solution process, where during the initialization
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stage transfer matrices that map inflow, boundary, and source terms
to solution coefficients are computed. Using the solution coefficient to
outflow map, the previous values are then mapped to the outflow of
the elements, or the intermediate step is avoided if the explicit form of
spacetime solution is not sought. The resulting scheme resembles a fi-
nite difference method with the difference that the stencil points are
at the Gauss points of inflow, outflow, and domain boundary facets of
spacetime elements, hence proving a systematic way to simultaneously
increase the order in space and time. The spectral stability analysis of
the method provides the sharp CFL limit of one for the hyperbolic PDE
case, confirming the polynomial independent stability limit of cSDG

38

Fig. 14. Undamped hyperbolic solution for T in spacetime domain [0, 11X [0, 1.5]
(time along the vertical axis) for p; =3 and n, = 20.

methods [36,38-40]. The extension of the tpSDG method to parabolic
methods is new with time advances proportional to the square of ele-
ment size times now a polynomial-dependent correction factor.

Two extensions of this work are discussed next. First, the tpSDG
method can be extended to other parabolic PDEs such as the Navier-
Stokes equation. Similar to [47] this method will be asynchronous with
arbitrarily tunable spacetime order of accuracy; based on the 1D sta-
bility results presented herein, we expect it to still have looser stability
correction factors than [47]. Moreover, treatment of nonlinearities will
be much more straightforward than CK-DG and ADER-DG methods.
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Fig. 16. The spacetime temperature solutions for the MCV problem with inhomogeneous «. Time is along the vertical axis.

Second, if a temporarily uniform time advance is used for all spatial
vertices, the transfer matrix approach can be extended to higher dimen-
sions and nonuniform simplicial discretization of the spatial domain for
linear transient PDEs. Similar to the 1D case, material heterogeneity can
be modeled. During the initialization stage transfer matrices for bottom,
middle, and top patches are precomputed for each spatial vertex. The
advantage of such method will be a very fast solution update for linear
transient PDEs with arbitrarily tunable order of accuracy in spacetime.
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