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Abstract
Predicting and mitigating changes in soil carbon (C) stocks under global change re-
quires a coherent understanding of the factors regulating soil organic matter (SOM) 
formation and persistence, including knowledge of the direct sources of SOM (plants 
vs. microbes). In recent years, conceptual models of SOM formation have empha-
sized the primacy of microbial-derived organic matter inputs, proposing that microbial 
physiological traits (e.g., growth efficiency) are dominant controls on SOM quantity. 
However, recent quantitative studies have challenged this view, suggesting that 
plants make larger direct contributions to SOM than is currently recognized by this 
paradigm. In this review, we attempt to reconcile these perspectives by highlighting 
that variation across estimates of plant- versus microbial-derived SOM may arise in 
part from methodological limitations. We show that all major methods used to es-
timate plant versus microbial contributions to SOM have substantial shortcomings, 
highlighting the uncertainty in our current quantitative estimates. We demonstrate 
that there is significant overlap in the chemical signatures of compounds produced 
by microbes, plant roots, and through the extracellular decomposition of plant lit-
ter, which introduces uncertainty into the use of common biomarkers for parsing 
plant- and microbial-derived SOM, especially in the mineral-associated organic matter 
(MAOM) fraction. Although the studies that we review have contributed to a deeper 
understanding of microbial contributions to SOM, limitations with current methods 
constrain quantitative estimates. In light of recent advances, we suggest that now is 
a critical time to re-evaluate long-standing methods, clearly define their limitations, 
and develop a strategic plan for improving the quantification of plant- and microbial-
derived SOM. From our synthesis, we outline key questions and challenges for future 
research on the mechanisms of SOM formation and stabilization from plant and mi-
crobial pathways.

K E Y W O R D S
amino sugars, biomarkers, microbial-derived organic matter, mineral-associated organic matter, 
molecular fingerprinting, plant-derived organic matter, soil carbon
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1  |  INTRODUC TION

Soil organic matter (SOM) is the largest actively cycling reservoir of 
carbon (C) on Earth, serving as an important terrestrial C sink, as well 
as a source of carbon dioxide (CO2) to the atmosphere (Batjes, 1996; 
Jobaggy & Jackson,  2000). Climatic changes (e.g., warming) and 
human alteration of landscapes (e.g., land-use change for agriculture) 
can stimulate the loss of C from soils, accelerating already rising lev-
els of atmospheric CO2 (Crowther et al., 2016; Melillo et al., 2017; 
Sanderman et al.,  2017). The management of soils for SOM accu-
mulation is therefore seen as a necessary effort in mitigating cli-
mate change and in maintaining soil fertility (Minasny et al., 2017; 
Paustian et al., 2016). For instance, regenerative land management 
practices have been promoted as one key strategy for sequester-
ing atmospheric CO2 and building SOM (e.g., Jordon et al.,  2022). 
However, the identification of specific approaches that are likely to 
result in SOM accumulation at scales relevant to climate change mit-
igation is hindered by fundamental uncertainties around the primary 
mechanisms of SOM formation and its proximate sources (Cotrufo 
& Lavallee, 2022).

Over the last two decades, the conceptual model of SOM for-
mation and persistence has shifted from a focus on the selective 
preservation of seemingly recalcitrant plant C to a microbial-centric 
model that emphasizes decomposer access to substrates in soils, 
regulated by biotic (e.g., microbial traits) and abiotic factors, includ-
ing soil mineralogy, pore architecture, and environmental conditions 
(Baldock & Skjemstad,  2000; Lehmann & Kleber,  2015; Schmidt 
et al., 2011). Under this new model, plant inputs are extracellularly 
decomposed by soil microorganisms into simpler plant compounds, 
as well as assimilated by microbes and transformed to various mi-
crobial products. These partially decomposed plant compounds, as 
well as the microbial cells and extracellular products (i.e., microbial 
“necromass”) generated through microbial assimilation and biosyn-
thesis go on to form plant-derived and microbial-derived SOM, re-
spectively (Liang et al., 2017; Schmidt et al., 2011).

Recent approaches developed to quantify the microbial contri-
bution to SOM have suggested that microbial necromass is the direct 
source of as much as ~30% and 80% of SOM, with variation observed 
across different ecosystems and soil types (Angst et al., 2021; Khan 
et al.,  2016; Liang et al.,  2019; Simpson et al.,  2007), soil depths 
(Kaiser & Kalbitz, 2012; Kalbitz & Kaiser, 2008), and across differ-
ent soil fractions (Angst et al., 2021). For this reason, the microbial 
contribution to SOM has gained widespread recognition in recent 
years (Liang et al., 2020), and increasingly, its primacy is emphasized 
in putatively stable pools of SOM, such as mineral-associated or-
ganic matter (MAOM) (Bradford et al., 2013; Buckeridge et al., 2020; 
Cotrufo et al., 2013; Cotrufo & Lavallee, 2022; Creamer et al., 2019; 
Liang et al.,  2020; Oldfield et al.,  2018; See et al.,  2022). Current 
SOM theory therefore posits that microbial physiological traits (e.g., 
growth efficiency) are major controls on SOM formation (Buckeridge 
et al.,  2020; Cotrufo et al.,  2013; Kallenbach et al.,  2016; Malik 
et al., 2019), and this perspective has been incorporated into a new 
generation of microbially explicit SOM models (Sulman et al., 2014; 

Wieder et al., 2014). However, the role of direct plant contributions 
to SOM should not be overlooked. Current quantitative estimates 
suggest that plant-derived SOM can comprise between 20% and 
70% of SOM (e.g., Angst et al., 2021; Liang et al., 2011, 2019), and 
the direct sorption or occlusion of plant-derived compounds to 
soil minerals or within soil aggregates may decouple certain micro-
bial physiological traits from these more persistent pools of SOM 
(Craig et al., 2022). Indeed, a recent meta-analysis of amino sugar 
data across various ecosystems indicated that on average ~60% of 
MAOM-C is directly plant-derived (Angst et al.,  2021), suggesting 
that the direct incorporation of plant compounds into SOM may play 
a greater role in its formation than is currently recognized by domi-
nant conceptual paradigms.

An accurate accounting of plant- versus microbial-derived SOM 
is necessary because these two pathways imply different controls 
on SOM formation and persistence (Cotrufo & Lavallee, 2022; Liang 
et al., 2017; Sokol et al., 2022). Although microbial SOM formation is 
controlled by microbial traits involved in the assimilation and anab-
olism of plant inputs (e.g., growth rates and efficiency; Kallenbach 
et al.,  2016), the formation of plant-derived SOM may instead be 
controlled by microbial traits related to the depolymerization and 
extracellular transformation of plant inputs (e.g., extracellular en-
zyme activities) or, independent of microbial transformation, by 
the sorptive affinity of plant compounds (Sokol et al., 2019, 2022). 
Accurately accounting for the quantitative importance of these two 
pathways, and the processes that control them, has critical impli-
cations for modeling and projections of SOM cycling under global 
change (Blankinship et al., 2018; Wieder et al., 2014), and in the ef-
fective management of SOM stocks in natural and agricultural eco-
systems (Cotrufo & Lavallee, 2022; Kallenbach et al., 2019).

To date, much of the data characterizing the plant and micro-
bial origins of SOM remain qualitative, whereas explicitly quanti-
tative data are sparse and derive from a limited suite of methods 
(Liang et al., 2020). Critically, there are known limitations with the 
common methods used to parse plant- and microbial-derived SOM 
(Joergensen,  2018; Liang,  2020), and no comprehensive analysis 
of the accuracy of all methodological approaches used to quantify 
plant- versus microbial-derived SOM has been conducted. To this 
end, we critically review the evidence for microbial- and plant-
derived SOM, examining the different methodologies from which 
these estimates derive, which range from biomarker analyses (e.g., 
amino sugars, lipids) to molecular fingerprinting studies (e.g., nuclear 
magnetic resonance spectroscopy, NMR) and mathematical mod-
eling (e.g., absorbing Markov chain model). Although we focus on 
published quantitative estimates, we also discuss the qualitative ev-
idence for microbial-derived SOM that emerged over time, lending 
support for the shift in SOM theory toward an emphasis on the role 
of microbial necromass as a source of SOM.

From our synthesis, we argue that all major methods used to parse 
plant- and microbial-derived SOM have key shortcomings that must be 
addressed to improve the accuracy of quantitative estimates. In par-
ticular, we focus on potential overlap between plant- and microbial-
derived compounds in the MAOM pool, given evolving understanding 
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of SOM formation processes, which includes greater emphasis on the 
contributions of plant rhizodeposits, dissolved organic C (DOC), and 
microbial extracellular products (Craig et al., 2022; Redmile-Gordon 
et al., 2020; Sokol & Bradford, 2019; Villarino et al., 2021). We iden-
tify several shortcomings common to the methods used to quantify 
SOM sources: (1) assuming that specific biomarkers will accumulate 
in soils in similar proportions as they are found in plant or microbial 
biomass, and that these biomarkers are representative of total plant 
and/or microbial contributions to SOM; (2) calculating relative con-
tributions based on the assumption that an entire compound class 
(e.g., proteins) is predominantly derived from one group (microbes or 
plants); (3) using uncertain conversion factors or ratios; and (4) indi-
rectly quantifying plant-derived SOM as the difference between total 
and microbial SOM. We conclude our review with a discussion of key 
future directions that would help resolve the quantitative importance 
of plant and microbial contributions to SOM.

2  |  QUALITATIVE E VIDENCE FOR 
MICROBIAL- DERIVED SOIL ORGANIC 
MAT TER: HISTORIC AL AND CURRENT 
EFFORTS

It is often suggested that microbial contributions to SOM were not 
recognized until recently due to the relatively small (<5%) contribu-
tion of living microbial biomass to SOC; however, a careful review of 
the literature demonstrates that this view has emerged over the last 
century (McGill et al., 1973, 1975; Oades, 1984; Waksman, 1925a, 
1925b). As early as 1925, Waksman suggested that humic acids were 
derived in part from the cells of soil microorganisms, and that mi-
crobes contribute to SOM (“humus”) stability by synthesizing “resist-
ant substances” (Waksman, 1925b). Bremner (1958, 1965) examined 
amino sugars in soils, and early isotopic labeling studies demon-
strated microbial formation of carbohydrates, amino acids, and 
amino sugars with longer retention times than the original substrate, 
and low rates of subsequent nitrogen (N) mineralization (Mayaudon 
& Simonart, 1963; McGill et al.,  1973, 1975; Shields et al.,  1973, 
1974; Sorensen & Paul, 1971; Wagner, 1968). From such isotopic 
labeling incubations, McGill et al. (1973) suggested a relationship be-
tween microbial substrate use efficiency and the C retained in SOM.

In the context of microaggregate formation, Oades  (1984) de-
scribed the potential for microbial residues to interact with soil min-
erals and accumulate as an important pool of C and N in soils over 
time. While these studies remained largely qualitative, advances 
made with molecular fingerprinting approaches (e.g., NMR) allowed 
for increasing quantitative resolution of the microbial contribu-
tion to SOM. Solid-state 13C NMR studies by Baldock et al.  (1989, 
1990) and Golchin et al.  (1996) demonstrated the capacity of mi-
crobes to generate chemically complex organic matter from simple 
C substrates (e.g., glucose) and to thus contribute to the chemistry 
of SOM. Although the concept of “humic substances” is now recog-
nized to encompass operational categories of SOM that are arte-
facts of the extraction process (Lehmann & Kleber, 2015; Schmidt 

et al., 2011), the humic acid and fulvic acid extraction procedures 
made possible the early characterization of soil molecular structure. 
In this context, Duchaufour (1998) described “microbial humins” and 
Schnitzer  (1999) discussed the process of “microbial humification,” 
or the synthesis of microbial residues in soils, contributing to SOM 
(see also Schnitzer & Monreal,  2011). Researchers also observed 
significant quantities of microbial polysaccharides and protein-
aceous N in humic acid extracts (Gleixner et al.,  1999; Kelleher & 
Simpson,  2006; Ladd & Brisbane,  1967; McGill et al.,  1973, 1975; 
Schulten & Schnitzer,  1997). Over time, these discoveries led to 
shifts in SOM theory toward the “continuum model” (sensu Lehmann 
& Kleber, 2015), where SOM was recognized as a complex mixture 
of plant and microbial residues at various stages of decomposition 
(Kelleher & Simpson,  2006; von Lützow et al.,  2006; Marschner 
et al., 2008; Piccolo, 2001; Sutton & Sposito, 2005).

The detailed characterization of SOM chemistry was extended 
to soil size and density fractions, the simplest approach being 
the fractionation of SOM into particulate organic matter (POM; 
>20–63 μm or <1.6–1.85 g cm3) and MAOM (<20–63 μm or >1.6–
1.85 g cm3), which were found to have distinct properties and 
turnover times (Baldock & Skjemstad,  2000; Christensen,  2001; 
Lavallee et al.,  2020). Although POM was accepted to be largely 
plant-derived (Grandy & Neff, 2008; Six et al., 2001), emergent data 
on the chemical and isotopic signatures of MAOM pointed toward 
a more microbial origin (Gleixner et al., 2001; Grandy & Neff, 2008; 
Sollins et al.,  2006). Such evidence included high concentrations 
of N-containing compounds in MAOM (e.g., proteins, peptides) 
(Clemente et al., 2011; Dümig et al., 2012; Grandy et al., 2007; Kögel-
Knabner, 2002), and correspondingly, a low C:N ratio that aligned 
closely with that of microbial biomass (Baldock et al., 1992; Schmidt 
& Kögel-Knabner, 2002; Sollins et al., 2006, 2009). Biomarkers at-
tributed to microbial origins (e.g., proteins, hexoses) were observed 
to have longer mean residence times in soils than plant-derived com-
pounds (e.g., lignin phenols) (Gleixner et al.,  1999, 2002), and the 
𝛿15N and 𝛿13C ratios of MAOM corresponded closely with those of 
microbial biomass (Baisden et al., 2002; Boström et al., 2007; Dijkstra 
et al., 2006; Sollins et al., 2006). Imaging techniques provided addi-
tional evidence for the microbial contribution to SOM (Herrmann 
et al., 2007; Keiluweit et al., 2012; Miltner et al., 2012), with SEM 
images showing patchy organic matter from microbial cell debris at-
tached to mineral surfaces (Miltner et al., 2012; Schurig et al., 2013). 
Together, these streams of evidence led many researchers to infer 
that microbes were a dominant source of SOM, and potentially the 
primary source of MAOM (e.g., Bol et al., 2009; Gleixner et al., 2001; 
Grandy & Neff, 2008; Miltner et al., 2012).

3  |  QUANTITATIVE ESTIMATES OF 
PL ANT- AND MICROBIAL- DERIVED SOIL 
ORGANIC MAT TER

Although the qualitative or semiquantitative evidence clearly 
shows an important microbial contribution to SOM formation and 
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4  |    WHALEN et al.

stabilization, truly quantitative evidence continues to lag behind. 
There are three primary approaches that have been used to derive 
quantitative estimates of the relative plant and microbial contribu-
tion to SOM: (1) biomarker analyses and the use of conversion fac-
tors for extrapolation; (2) “molecular fingerprinting” approaches to 
characterize the chemistry of whole soils, where spectra or peaks 
are compared with those observed in plant and microbial biomass; 
and (3) mathematical modeling.

In total, there are five independent studies, plus three meta-
analyses that have proposed formal quantitative estimates of the 
relative plant versus microbial contribution to SOM (Table  1). The 
three meta-analyses synthesized amino sugar biomarker data across 
ecosystems (Liang et al., 2019; Wang et al., 2021) or soil size fractions 
(Angst et al.,  2021). The other quantitative estimates derive from 
NMR (Simpson et al.,  2007), pyrolysis field ionization mass spec-
trometry (Py-FIMS; Ludwig et al., 2015), and mathematical modeling 
(Fan & Liang, 2015; Liang et al., 2011). Isotope tracer studies provide 
additional semiquantitative estimates of the microbial contribution 
to SOM (e.g., Miltner et al.,  2012). There is wide variation in the 
range of estimates of microbial contributions to SOM, and this vari-
ation likely derives from differences in ecosystem type, climate, and 
soil properties (Angst et al., 2021; Liang et al., 2019), and from meth-
odological constraints. The lowest estimate of microbial-derived 
SOM (5%) was obtained for an acidic pine forest soil using NMR 
and analyses focusing on protein biomarkers (Simpson et al., 2007). 
The highest estimates were proposed by Liang et al. (2011) and Fan 
and Liang (2015) using mathematical modeling, which both empha-
sized the potential of microbes to contribute directly to up to 80% 
of SOM. Meta-analyses based on amino sugar data have reported 
average values for microbial-derived SOM between 33% and 62% 
across different ecosystems, with forests exhibiting the lowest es-
timated microbial contributions, and grasslands the highest (Liang 
et al., 2019; Wang et al., 2021). Such a wide variation in values in-
dicates that estimates of microbial and plant contributions to SOM 
are method- and context-dependent. In the following section, we re-
view each method that has been used to derive formal quantitative 
estimates. We discuss limitations associated with each approach in 
light of evolving understanding of the importance of different SOM 
sources (e.g., rhizodeposits, EPS) (Redmile-Gordon et al.,  2020; 
Villarino et al., 2021).

4  |  LIMITATIONS OF CURRENT 
QUANTITATIVE ESTIMATES

4.1  |  Amino sugars

Amino sugar analyses have emerged as the most widespread ap-
proach to estimate microbial necromass contributions to SOM, pro-
viding insight into the quantitative distribution of microbial-derived 
SOM across ecosystems (Angst et al., 2021; Liang et al., 2019; Wang 
et al., 2021). However, to generate estimates of the microbial contribu-
tion to total SOC from amino sugar concentrations, the assumptions 

required for extrapolation introduce error (Joergensen,  2018). 
One potentially large source of error arises from the formation of 
common conversion factors for bacterial and fungal necromass C. 
Bacterial necromass C is calculated by multiplying the concentration 
of soil muramic acid (an amino sugar specific to bacteria) by a conver-
sion factor of 45 (Appuhn & Joergensen, 2006). This value is based 
on the average concentration of muramic acid in cultured bacterial 
biomass (10.3 mg g−1 dry weight; Appuhn & Joergensen, 2006), and 
is calculated assuming a constant ratio of Gram-positive to Gram-
negative bacteria of 65% to 35% (derived from a single grassland 
site; Joergensen & Potthoff, 2005) as well as an average C content 
of bacterial biomass (~46%; Jenkinson, 1988). The 95% confidence 
limits around this conversion factor range from 30 to 90 (Appuhn 
& Joergensen, 2006), meaning that the estimate of bacterial necro-
mass C could either be greatly over- or underestimated. To constrain 
this error, the ratio of Gram-positive to Gram-negative bacteria 
would ideally be measured (e.g., via phospholipid fatty acid analysis 
or molecular methods) to calculate a soil-specific conversion factor 
(Joergensen, 2018); however, we are not aware of any studies that 
have done this.

Fungal necromass C is calculated in two steps: (1) by estimating 
fungal glucosamine as the difference between total and bacterial glu-
cosamine, assuming a molar ratio of 1:2 for muramic acid to glucos-
amine in bacterial cells (Engelking et al., 2007) and (2) multiplying by 
a conversion factor of 9, assuming 46% C content of fungal biomass 
(Jenkinson, 1988) and an average glucosamine concentration in fun-
gal biomass of 49 mg g−1 dry weight (Appuhn & Joergensen, 2006). 
According to Appuhn and Joergensen  (2006), the 95% confidence 
limits around this fungal conversion factor range from 8 to 10, sug-
gesting that these estimates may be more constrained than those of 
bacterial necromass C.

Yet, it is important to acknowledge general limitations of the 
amino sugar approach that apply broadly to both the estimate of 
fungal and bacterial necromass C. First, a central assumption of 
this approach is that all microbial necromass components will be 
retained in soils to the same extent, and thus converting from a sin-
gle component (amino sugars) to total microbial necromass C will be 
representative of the accumulated microbial contribution to SOM. 
However, emerging evidence suggests that certain microbial necro-
mass components are preferentially retained in mineral soils (e.g., 
proteins and other N-rich compounds) (Dümig et al., 2012; Kopittke 
et al., 2018, 2020; Miltner et al., 2009), indicating that this may not 
be an accurate assumption. Just considering amino sugar residues 
themselves, the average mean residence times of their component 
parts vary considerably—from ~4 years for the whole amino sugar 
structure (Derrien & Amelung, 2011; Glaser et al., 2006) to ~6 years 
for the C in glucosamine (Glaser et al., 2006), and up to 75–160 years 
for amino sugar-N (Liu et al., 2016).

Second, conversion factors are based on amino sugar concen-
trations in fungal and bacterial biomass and, therefore, are only 
designed to account for microbial cell debris contributions to soils. 
Extracellular products of microbes (e.g., EPS, metabolites, enzymes) 
also make substantial contributions to SOM (Costa et al.,  2018; 
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Gunina & Kuzyakov,  2015; Op De Beeck et al.,  2021; Redmile-
Gordon et al., 2020; Wang et al., 2017), suggesting that the amino 
sugar approach is insufficient to capture the entire microbial contri-
bution. Lastly, in amino sugar-based estimates, plant-derived SOM is 
commonly inferred as the difference between total and microbial-
derived SOM (i.e., 100% − microbial SOM), rather than via an inde-
pendent estimate of the plant contribution. Therefore, an inaccurate 
approximation of microbial-derived SOM necessarily leads to an in-
accurate prediction of plant-derived SOM. Additional caveats of the 
amino sugar approach have been raised, including variation in amino 
sugar extraction efficiency and detection across different substrates 
(Liang, 2020). These limitations should give researchers pause, as ex-
trapolations based on amino sugars are quickly becoming the most 
common method for approximating the microbial, and by extension, 
the plant contribution to SOM.

4.2  |  Molecular fingerprinting approaches

Molecular fingerprinting approaches, such as NMR, py-GC/MS, and 
py-FIMS, generate a detailed picture of SOM chemical composition, 
providing quantitative information on bonding structures and/or rel-
ative abundances of individual molecules and chemical compound 
classes in SOM (Grandy et al., 2007; Ludwig et al., 2015; Simpson 
et al., 2007). Historically, these approaches were limited by an in-
ability to characterize the chemistry of SOM in whole soils due to 
inconsistent pyrolysis, limitations in compound databases, or reli-
ance on soil extraction into a liquid phase for analysis (Kelleher & 
Simpson, 2006; Leinweber et al., 1999; Schulten et al., 1996). Today, 
methodological developments have allowed for increasingly com-
prehensive characterizations of SOM chemistry (Chassé et al., 2015; 
Grandy et al., 2007; Kallenbach et al., 2016; Neurath et al., 2021; 
Olivelli et al.,  2020); however, such approaches are still hindered 
by their inability to assign origins to compounds that are produced 
by both microbes and plants. To circumvent this issue, the chemical 
fingerprints of SOM have been compared with those of microbial 
and plant reference materials, often relying on specific compound 
classes or biomarkers from within the larger dataset to infer a plant 
or microbial origin (e.g., Ludwig et al., 2015; Simpson et al., 2007). 
Yet, this approach also introduces uncertainty. We offer two exam-
ples that illustrate these broader challenges with approaches based 
on molecular fingerprinting.

In a pioneering study, Simpson et al.  (2007) used 1H NMR to 
characterize SOM chemistry, comparing its chemical profile to that 
of microbial biomass (cultured and extracted) and plant biomass 
(native prairie grass). The authors provided early evidence of a sig-
nificant microbial contribution to SOM using a subtraction-based 
approach, which suggested that microbial-derived compounds com-
prised >50% of NMR signal intensity in some soils. Drawing on the 
widely held assumption that soil proteins were primarily microbial-
derived, the calculation of microbial-derived SOM was based on the 
total signal intensity of two peaks indicative of protein and peptide 
structures—phenylalanine (amino acid) and methylated side chains A
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(another resonance associated with proteins/peptides)—rather than 
on the entire NMR spectra. As a complementary analysis, total 
correlation spectroscopy (TOCSY) was used to demonstrate that 
protein/peptide structures accounted for up to 50% of the total 
NMR signal in some samples, offering this as further evidence of a 
microbial contribution to SOM of ~50%. Therefore, while Simpson 
et al. (2007) present detailed data on the chemical structure of SOM, 
their quantitative estimates rely on similar assumptions about pro-
tein origin as some of the more correlational and inferential studies 
described in previous sections (e.g., Grandy & Neff,  2008; Kögel-
Knabner, 2002; Miltner et al., 2012).

The idea that SOM chemistry is comparable with that of plant 
or microbial biomass relies on the assumption that compounds will 
accumulate in SOM in similar proportions as they are found in their 
source materials, which we increasingly recognize is unlikely to be 
the case (Kleber et al., 2015; Kopittke et al., 2020). Furthermore, bio-
mass reference materials are unlikely to encompass the full range of 
compounds derived from plant litter with varying chemistries (e.g., 
low vs. high C:N litter, and litter DOC) and are unable to account for 
the suite of compounds produced by living roots (e.g., rhizodepos-
its) and microbes (e.g., EPS, metabolites), which may accumulate in 
soils over time. Lastly, the accuracy of individual methods may vary 
by ecosystem type. Based on protein/peptide abundances, Simpson 
et al. (2007) proposed microbial contributions to SOM ranging from 
52% in a grassland soil down to 5% in an acidic pine forest soil. 
Protein/peptide abundance may be low in certain soils due to dom-
inant vegetation, edaphic properties, feedbacks to microbial com-
munity composition and soil mineralogy, not necessarily because of 
low microbial contributions to SOM. As such, the potential for eco-
system and soil characteristics to confound comparisons across sites 
should be considered.

In a later study, Ludwig et al. (2015) used Py-FIMS to character-
ize SOM chemistry and similarly focused on a subset of molecular 
data (in this case, carbohydrates and fatty acids). To estimate mi-
crobial and plant contributions to carbohydrates, the ratio of galac-
tose + mannose to arabinose + xylose (i.e., GM/AX) was calculated 
(sensu Oades,  1984). The GM/AX ranged from 1.3 to 2.5 across 
their bulk soil samples, and generally increased from POM (~1.7) 
to MAOM (2.3) fractions. Values <0.5 are traditionally attributed 
to plant dominance and >2 to microbial dominance (Oades, 1984), 
and values intermediate to this range require interpretation. In this 
study, the authors interpreted intermediate values as representing 
a relatively equal contribution from plants and microbes to total 
SOM (~50% each). Consistent with previous studies, the high GM/
AX ratio of MAOM (>2) was interpreted as an indication of its dom-
inant microbial origin (e.g., Cheshire & Mundie, 1981; Guggenberger 
et al., 1995; Solomon et al., 2000; Spielvogel et al., 2007). As a sec-
ond metric, Ludwig et al. (2015) calculated the chain-length ratio of 
even-numbered n-fatty acids as the sum of ion intensities from C4 
to C26 fatty acids (assumed to largely represent the microbial con-
tribution) divided by the sum of ion intensities from C26 to C38 fatty 
acids (assumed to represent the plant contribution; sensu Schnitzer 
et al.,  1986). The authors concluded that the C4–26/C26–38 further 

corroborated an important microbial contribution to SOM, espe-
cially MAOM, with ratios between 5.8 and 12.4 observed in POM 
and up to 240 in the MAOM fraction.

There are several notable limitations associated with the use of 
GM/AX and the chain-length ratio of fatty acids. First, using GM/
AX as a proxy of the relative microbial versus plant contribution 
to SOM relies on the assumption that the galactose and mannose 
in soils derive primarily from microorganisms; however, galactose 
and mannose are also present in some plant tissues, as well as in 
root exudates (especially galactose; Gunina & Kuzyakov, 2015; Sher 
et al., 2020). Ludwig et al. (2015) addressed this limitation by compar-
ing the GM/AX of their soils to local plant biomass reference mate-
rials; however, as previously discussed, the use of biomass reference 
materials cannot account for the contributions of rhizodeposits or 
microbial extracellular products and their potential accumulation 
in soils over time. Second, short-chain fatty acids can derive from 
varied sources, not just microbial biosynthesis. Plant roots produce 
short-chain lipids directly (Angst, John, et al., 2016), and microbial 
exocellular modification of plant materials has been shown to reduce 
the C chain lengths of plant lipids into at least the C16–C24 range 
(Holloway, 1983; Saiz-Jimenez et al., 1996), causing overlap with that 
of microbial-derived compounds. The incorporation of these heavily 
transformed compounds into MAOM could help to explain the dom-
inance of short-chain fatty acids in fine fractions, which is instead 
attributed to microbial biosynthesis (Amelung et al.,  2008; Jandl 
et al., 2004). Taken together, these persistent limitations may help 
explain why more researchers have not ventured to propose formal 
quantitative estimates of the relative plant and microbial contribu-
tions to SOM, despite collecting similar data.

4.3  |  Isotope tracer and artificial soil experiments

In isotope tracer experiments, isotopically labeled material is added 
to soils to trace its incorporation into SOM. In cases where labeled 
microbial necromass or simple substrates assumed to be fully in-
corporated by the microbial community (e.g., glucose) are added to 
soil, the 13C that is incorporated into SOM can be assumed to derive 
from microbial cells or the products of microbial activity (Creamer 
et al., 2019; Golchin et al., 1996; Throckmorton et al., 2012, 2015). 
For example, Miltner and colleagues incubated soils with 13C-labeled 
Escherichia coli cells for 224 days and evaluated the fate of 13C using 
a C mass balance approach (Kindler et al., 2006) as well as its spe-
cific redistribution into microbial amino acids (Miltner et al., 2009) 
and fatty acids (Kindler et al., 2009). Drawing on these data, Miltner 
et al. (2012) concluded that ~40% of the 13C label had been incorpo-
rated into SOM, either through the direct sorption of labeled E. coli 
cells, or through microbial recycling of this necromass and biosyn-
thesis of new biomass and other microbial products. Although 13C 
tracer studies clearly point to the large potential of microorganisms 
to contribute to SOM formation, their quantitative insight is limited, 
as they do not directly measure the relative abundances of plant and 
microbial compounds present in situ in natural soils.
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However, when paired with molecular fingerprinting approaches, 
isotope tracer studies have provided evidence of a significant micro-
bial contribution to SOM chemistry. For instance, Miltner et al. (2009, 
2012) analyzed incubated soils via NMR and demonstrated that the 
chemistry of 13C-amended SOM did not differ from that of field 
soils, suggesting a substantial microbial contribution to the chemi-
cal composition of SOM in the field. Similarly, Baldock et al. (1989) 
tracked the incorporation of 13C-glucose into a fine sandy loam soil 
during a 30-day lab incubation, finding that microbes synthesized 
alkyl, O-alkyl and carboxyl C with resonances similar to those found 
in field soil using solid-state 13C CP/MAS NMR.

Laboratory incubations with artificial soils (i.e., mixtures of sand, 
silt and/or clay that are initially organic matter-free) are another ap-
proach that has been used to circumvent the analytical challenges 
associated with differentiating plant- versus microbial-derived SOM 
in natural soils. Golchin et al.  (1996) incubated artificial soils with 
a microbial inoculum and a simple sugar (glucose), finding that mi-
crobes synthesized novel O-alkyl, alkyl, carbonyl, and some aro-
matic structures, with O-alkyl (carbohydrates/polysaccharides) and 
alkyl (e.g., lipid) structures dominating. More recently, Kallenbach 
et al.  (2016) used artificial soils incubated with glucose and other 
simple substrates for 18 months to demonstrate microbial formation 
of chemically complex SOM that was biologically and chemically sta-
ble (36%–93% of SOM). Py-GC/MS analysis revealed that microbes 
formed SOM composed of proteins, lipids, N-bearing compounds, 
aromatics, and polysaccharides, which resembled the chemistry of 
a field soil (Kallenbach et al., 2016). Although such studies are often 
suggested to show that microbial anabolism can explain the chemi-
cal composition of a large fraction of SOM, potential overlap in the 
chemical resonances of microbial-derived compounds with heavily 
decomposed plant compounds, litter DOC, or root-derived com-
pounds (as discussed above) limits the quantitative inferences that 
can be drawn from these studies about SOM sources in the field.

4.4  |  Numerical modeling studies

In the context of plant and microbial contributions to SOM, numeri-
cal modeling studies have emphasized the vast potential for microbes 
to contribute to SOM formation (47%–80%; Fan & Liang, 2015; Liang 
et al., 2011). Numerical models integrate theoretical understanding 
and empirical measurements to make predictions about pool sizes 
and process rates, and to simulate the effects of perturbations on 
these pools and processes (Kyker-Snowman et al., 2021). Modeling 
studies can therefore provide valuable insights to guide future 
theoretical and empirical work (Blankinship et al., 2018). However, 
models are limited in their scope and generalizability, as they are 
parameterized with values derived from the literature—sometimes 
from a single study within a particular soil type or ecosystem con-
text. For instance, the absorbing Markov chain model employed by 
Liang et al. (2011) to estimate the potential contribution of microbial 
necromass to SOM (up to 80%) used values for model parameters 
selected from individual publications. Such parameters included a 

fixed CUE value set at 0.6 (Allison et al., 2010), a fixed probability 
of microbial death equal to 0.5 (Feng, 2009), and a fixed probability 
of microbial necromass transfer to the living microbial biomass pool 
(0.000114; Feng, 2009).

The results of models should therefore be interpreted as rep-
resenting a possible microbial contribution to SOM, given the suite 
of limitations inherent to model parameterization (e.g., selection of 
factors to be included implicitly or explicitly in the model structure), 
and under the specific ecosystem context simulated in the model. As 
discussed by Liang et al. (2011), such models are limited by analyti-
cal and technical challenges with quantifying pool sizes and rates of 
transformation between pools. Improving quantitative estimates of 
microbial traits (e.g., CUE) and transformation rates between pools 
(e.g., biomass turnover rates, or necromass decomposition and im-
mobilization rates) in a range of ecosystems will aid in model vali-
dation, and the use of variable (e.g., probabilistic) rather than fixed 
parameter values will provide insight into the range of microbial con-
tributions to SOM under different contexts.

5  |  DECIPHERING THE PL ANT AND 
MICROBIAL ORIGINS OF MINER AL-
A SSOCIATED ORGANIC MAT TER

Taken together, the limitations of current quantitative approaches 
raise fundamental questions about our ability to ascribe a plant or 
microbial origin to SOM. Distinguishing compound origin is particu-
larly challenging for the MAOM pool, where compounds are more 
heavily decomposed, and/or derived from relatively low molecular 
weight compounds that can be produced directly by both microbes 
and plants (Grandy & Neff, 2008; Lavallee et al., 2020). Formal quan-
titative estimates of plant and microbial contributions to MAOM are 
scarce, and those that exist suggest relative contributions are con-
text- and method dependent (Table 1) (Angst et al., 2021; Ludwig 
et al., 2015). Growing evidence for the importance of dissolved and 
low molecular weight plant compounds (e.g., root exudates, litter 
DOC) as sources of MAOM-C (Cotrufo et al., 2022; Craig et al., 2022; 
Sokol & Bradford, 2019; Villarino et al., 2021) creates uncertainty 
around the plant versus microbial origins of simple, low C:N com-
pounds in MAOM. Given these uncertainties, we review data on the 
chemical composition of MAOM and discuss major challenges asso-
ciated with determining its plant and microbial sources.

5.1  |  The chemical composition of mineral-
associated organic matter and its plant and 
microbial sources

Polysaccharides, lipids, and proteins are dominant components 
of the silt- and clay-sized fractions that constitute the MAOM 
pool. Polysaccharides and lipids can each comprise up to half of 
the C in the MAOM pool, with values observed between ~18% 
and 52% and 3%–45%, respectively (Angst et al.,  2017; Angst, 
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    |  9WHALEN et al.

Kögel-Knabner, et al.,  2016; Bol et al.,  2009; Geng et al.,  2019; 
Grandy & Neff,  2008; Schnecker et al.,  2016; Spielvogel 
et al.,  2008). Amide N (proteins/peptides) commonly makes up 
~10%–40% of MAOM-C and between 60% and 90% of MAOM-N 
(Angst et al., 2017; Bol et al., 2009; Geng et al., 2019; Grandy & 
Neff, 2008; Knicker, 2011; Schnecker et al., 2016). Lignin and its 
identifiable derivatives generally comprise <10% of MAOM-C 
(Angst et al., 2017; Bol et al., 2009; Geng et al., 2019; Grandy & 
Neff, 2008; Knicker, 2011), although this proportion may be higher 
in soils with abundant short-range order Fe and Al hydroxides (e.g., 
in Andosols developed on volcanic ejecta; Kramer et al.,  2012). 
Compounds with aromatic and phenolic moieties not assigned to 
the aforementioned categories can each comprise an additional 
1%–12% of MAOM-C (Dümig et al.,  2012; Grandy et al.,  2007; 
Schnecker et al.,  2016). Aside from lignin, which is exclusively 
plant-derived, the remaining compound classes are produced by 
both plants and microbes, making their comprehensive assign-
ment to particular origins a challenge (Figure 1).

5.1.1  |  Carbohydrates

Carbohydrates constitute 4%–60% of microbial biomass, with the 
upper range generally observed in chitin-rich fungal biomass (Kleber 
et al.,  2007; Kögel-Knabner,  2002). Cellulose and hemicellulose 
comprise 15%–60% and 10%–30% of vascular plant biomass, re-
spectively (Kleber et al., 2007). While carbohydrates are therefore 
important constituents of both plant and microbial biomass, their 
presence in MAOM is commonly attributed to a microbial origin 
(Gleixner et al., 2002; Grandy & Neff, 2008). Microbes generate a 
diversity of cellular and extracellular polysaccharides (e.g., galactose 
and mannose) with functional groups that can sorb to mineral sur-
faces via cation or water bridging (Chenu, 1995; Feng et al., 2005; 
Kleber et al., 2015; von Lützow et al., 2007), whereas plant carbo-
hydrates are thought to be rapidly decomposed and transformed 
(Amelung et al., 1997; Gleixner et al., 2002). Cellulose is the dominant 
structural plant carbohydrate in soils and is readily depolymerized 
to glucose (Amelung et al., 2008); similarly, glucose is the dominant 
sugar in plant exudates (Jones et al.,  2004). Glucose is commonly 
reported to be rapidly mineralized in soils and to show low sorptive 
affinity (Fischer et al., 2010; Gunina & Kuzyakov, 2015); however, in 
soils rich in iron (hydr)oxides, glucose may be strongly protected by 
mineral surfaces (Porras et al., 2018). The relative abundance of glu-
cose can also exceed that of galactose and mannose in the MAOM 
fraction (Dümig et al., 2012; Poirier et al., 2005), and its origin could 
be either plant or microbial.

Adding to this uncertainty, the metric used in many studies to 
describe the plant and microbial sources of carbohydrates (i.e., GM/
AX, or the ratio of galactose + mannose to arabinose + xylose; e.g., 
Amelung et al.,  1999; Dümig et al.,  2012; Roberson et al.,  1995) 
may not be a robust determinant of polysaccharide origin. 
Hemicellulose can include galactose and mannose as constituent 
sugars, and rhizodeposition is an important source of hexoses in soil, 

especially galactose (Figure 2) (Gunina & Kuzyakov, 2015; Pett-Ridge 
et al.,  2021). Given that rhizodeposits are increasingly recognized 
for their contributions to MAOM (Sokol & Bradford, 2019; Villarino 
et al., 2021), it may be time to revise our use of the GM/AX ratio 
in determining polysaccharide origin. Indeed, the higher concentra-
tions of galactose and mannose in MAOM compared with that of 
arabinose and xylose could represent a preferential accumulation of 
these compounds through sorption, rather than definitive evidence 
of a dominant microbial contribution. At present, the relative plant 
and microbial contributions to the pool of hexoses in soils is poorly 
constrained. As such, Gunina and Kuzyakov  (2015) recommended 
measuring galactose and mannose concentrations of plant materi-
als for individual study sites and adjusting calculations accordingly. 
Similarly, the concentrations of these compounds in rhizodeposits 
should be taken into account (Sher et al., 2020).

Based on pentose biomarkers, Angst et al. (2021) estimated that 
plant-derived carbohydrates comprise ~10% of MAOM-C. By com-
parison, polysaccharides that are commonly attributed to microbial 
sources account for ~15%–25% of MAOM-C. These include galac-
tose and mannose (~60–90 and 30–70 mg g−1 C, respectively), amino 
sugars (~59–66 mg g−1 C) and uronic acids (6–20 mg g−1 C) (Amelung 
et al., 1999; Angst et al., 2021; Dümig et al., 2012; Guggenberger 
et al., 1995; Solomon et al., 2000). While it may therefore be tempt-
ing to suggest that microbes are the dominant source of carbohy-
drates in MAOM, uncertainty around the source of hexoses in soil 
(discussed above) continues to limit our ability to precisely differ-
entiate and quantify microbial and plant contributions to this pool 
(Figure 2).

5.1.2  |  Lipids

Lipids constitute up to ~40% of microbial cell dry mass (Kleber & 
Reardon, 2017; Kleber et al., 2007) and 3%–20% of aboveground plant 
biomass (Nelson & Baldock, 2005). As illustrated by our summary of 
Ludwig et al. (2015) described above, the ratio of short-to-long even 
chain n-fatty acids has been applied to estimate the relative contri-
butions of microbes and plants to the lipid pool in SOM. The ratio 
increases substantially from POM to MAOM, which is interpreted to 
represent a dominant contribution of microbial lipids to the MAOM 
fraction (Amelung et al., 2008; Jandl et al., 2004; Ludwig et al., 2015; 
Rovira & Grasset, 2019). Incubation studies where microbes are the 
only source of new organic matter corroborate the high potential 
for microbes to contribute to this lipid pool (Golchin et al.,  1996; 
Kallenbach et al.,  2016; Kindler et al.,  2009; Olivelli et al.,  2020). 
Yet, as discussed above, there can be substantial overlap in the chain 
lengths of even-numbered n-fatty acids derived from plants and mi-
crobes (Figure 2). Roots are a significant source of n-fatty acids in 
the C14–C18 range (Angst, John, et al.,  2016), which overlaps pre-
cisely with the most common n-fatty acids produced by microbes 
(Amelung et al., 2008). Microbial exocellular decomposition of plant 
lipids can also reduce C chain length (Quénéa et al., 2006), causing 
them to overlap with the range traditionally viewed as “microbial” 
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10  |    WHALEN et al.

(Holloway, 1983; Saiz-Jimenez et al.,  1996), despite being directly 
plant-derived. Adding to this uncertainty, long-chain n-alkanoic acids 
(i.e., >C20, even) in soils are often attributed to a plant origin; how-
ever, fungi also produce n-alkanoic acids with chain lengths in a simi-
lar range (C12–C32, even; Amelung et al., 2008), and some long-chain 
n-alkanoic acids (up to C30) observed in sediments have been attrib-
uted to bacteria (Makou et al., 2018). Therefore, a ratio relying on 
the assumption that short-chain lipids (e.g., C4–C26) derive from mi-
crobes and long-chain lipids (e.g., C26–C38) derive from plants (sensu 
Ludwig et al., 2015; Schnitzer et al., 1986) is insufficient to delineate 
the microbial versus plant contribution to MAOM.

Additional lipid biomarkers that are commonly used to as-
sess plant lipid contributions to soils are the n-alkanes, n-alkanols, 

α-hydroxyalkanoic acids, ω-hydroxyalkanoic acids, and the α, ω-
alkanedioc acids. Although the latter two categories are exclusively 
plant-derived, there is some uncertainty around the sources of 
n-alkanes, n-alkanols, and α-hydroxyalkanoic acids in soils. For in-
stance, long-chain, odd-numbered n-alkanes are commonly said to 
derive from the waxes of higher plants (e.g., Mueller et al., 2012; Otto 
et al., 2005); however, some longer chain n-alkanes (C23–C35, odd) 
may also be present in fungal tissues (Feng & Simpson, 2007; Huang 
et al.,  2012) and in fungal spores (Oró et al., 1966). Similarly, C18 
n-alkan-1-ol is present in both suberin and microbial spores (Naafs 
et al., 2004; Quénéa et al., 2006), and there is substantial overlap 
in the C chain lengths of α-hydroxyalkanoic acids produced by fungi 
and plants (Amelung et al., 2008). Synthesizing lipid biomarker data, 

F I G U R E  1  Plants and microbes as sources of the compounds commonly observed in mineral-associated organic matter (MAOM), 
including carbohydrates, proteins, short-chain lipids, and aromatics. Although many of the compounds in MAOM have historically been 
attributed to microbial sources, they could also derive directly from plant roots (e.g., galactose in root exudates), plant litter DOC, or from 
the extensive extracellular decomposition of plant litter, releasing compounds such as proteins and fragmented lipid chains. Although 
phenols have historically been associated more with plant-derived SOM (e.g., lignin), microbes also produce various phenolic and aromatic 
compounds (e.g., melanin) that could help explain their presence in MAOM. Specific pathways and MAOM sources illustrated in this diagram: 
(a) extracellular decomposition of leaf litter, releasing smaller structural units of plant biomolecules, as well as litter DOC; (b) root 
rhizodeposition of relatively low-molecular-weight compounds; (c) microbial biosynthesis of cellular residues; (d) microbial EPS production. 
At bottom: Depiction of the chemistry of MAOM, with average relative abundances of major compound classes represented by mineral size. 
Lignin is represented in red because it is exclusively plant-derived. All other compound classes are represented in purple, highlighting their 
mixed and uncertain sources.
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    |  11WHALEN et al.

Angst et al. (2021) suggested that plant lipids comprise 2%–10% of 
MAOM-C. Limitations of lipid biomarkers aside, if total lipids com-
prise 3%–45% of MAOM-C as molecular fingerprinting data suggest, 
then microbial lipids make substantial contributions to the MAOM 
pool in systems where lipids are abundant. However, given overlap-
ping chain lengths for microbial and especially root-derived lipids, 
there is still a fair degree of uncertainty around lipid origins in soils 
(Figure 2).

5.1.3  |  Proteins and N-containing compounds

A crux of the correlational evidence for microbial contributions to 
MAOM is its low C:N ratio (Nelson & Baldock, 2005). As Paul (2016) 
observed, the low C:N of MAOM fractions, ranging from ~20 in some 
forest soils (e.g., Angst et al., 2017; Grandy & Neff, 2008) to as low 
as ~6 in some agricultural soils (e.g., Paul et al., 2011), does not allow 
for the presence of many N-free plant compounds. Because proteins 
only comprise 1%–15% of plant biomass, and up to 60% of microbial 
biomass (Kleber et al., 2007; Kögel-Knabner, 2002), and are gener-
ally not thought to diffuse across the root plasma membrane like 

other root exudates (Jones et al., 2004), microbes have historically 
been considered the primary source of proteinaceous N in MAOM 
(Simpson et al., 2007). Furthermore, MAOM is enriched in 15N rela-
tive to POM and plant biomass (Sollins et al., 2006, 2009), and its 
isotopic signature is closely aligned with that of microbial biomass 
(Dijkstra et al.,  2006). This pattern is now primarily attributed to 
the incorporation of microbial necromass into MAOM (Boström 
et al.,  2007; Dijkstra et al.,  2006; Melillo et al.,  1989) and is sup-
ported by nanoscale evidence of 15N-enriched compounds on min-
eral surfaces, posited to be microbial residues (Keiluweit et al., 2012; 
Kopittke et al.,  2018, 2020; Possinger et al.,  2020). However, this 
view ignores other potential direct plant contributions to the pro-
teinaceous N in MAOM.

Whereas the proportion of proteins in plant litter is low relative 
to structural carbohydrates, proteins are the most abundant com-
pounds inside plant cells (e.g., RuBisCo; Kögel-Knabner, 2002). Thus, 
plant cell lysis could introduce proteins, peptides and amino acids di-
rectly into mineral soil. Structural litter inputs can also form MAOM, 
especially when they decompose in direct contact with mineral 
surfaces (Rumpel et al., 2015; Sanaullah et al., 2011). Proteins and 
amino acids have high sorptive affinities (Feng et al., 2005; Kleber 

F I G U R E  2  Plant and microbial pathways of MAOM formation for two example compounds: galactose and short-chain lipids. Galactose in 
soils is assumed to be primarily microbial-derived, and this assumption is embedded in common ratios for determining carbohydrate sources 
(i.e., GM/AX ratio; Oades, 1984). However, galactose can also derive from plant root exudates and from the decomposition of hemicellulose 
in plant tissues, making its origins in MAOM uncertain. Similarly, the presence of short-chain lipids in MAOM is commonly attributed to 
microbial sources, as the average chain lengths of lipids observed in the MAOM fraction are more similar to those of microbial tissues 
(~C4–26) than plant tissues (~C26–38; sensu Schnitzer et al., 1986 for n-fatty acids). However, roots produce short-chain lipids (C14–18) directly, 
and small plant lipid fragments (<C26) are released when microbes decompose longer-chain plant lipids extracellularly.

 13652486, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16413 by U

niversity O
f N

ew
 H

am
pshire, W

iley O
nline Library on [08/11/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



12  |    WHALEN et al.

et al., 2007; McKnight et al., 1992; Rillig et al., 2007) and their libera-
tion from plant litter could thus contribute directly to MAOM if min-
eral sorption outcompetes microbial uptake (Dippold et al.,  2014; 
Zimmerman et al., 2004). Root exudates can also include large quan-
tities of amino acids (Canarini et al., 2019; Dietz et al., 2020) which 
can sorb directly to mineral surfaces, especially in soils with abundant 
Fe and Al (hydr)oxides (Kaiser et al., 2004; McKnight et al., 1992). 
Such N-rich DOM—produced from rhizodeposits and through the 
decomposition of low C:N plant litter (Soong et al., 2015)—is likely 
to be an important direct source of plant inputs to the MAOM-N 
pool (Craig et al., 2022). The extracellular modification of plant lit-
ter by microbes could also help explain increasing 𝛿15N and 𝛿13C 
values in clay and silt-sized fractions if microbes preferentially in-
corporate lighter isotopes during metabolism (Connin et al., 2001; 
Kramer et al., 2003). Although the extent of isotopic fractionation 
during microbial mineralization varies and is sometimes undetect-
able (Boström et al., 2007; Craine et al., 2015), it is likely that this 
process contributes to the isotopic enrichment of MAOM alongside 
incorporation of enriched microbial necromass (Connin et al., 2001; 
Dijkstra et al., 2006; Kramer et al., 2003; Lichtfouse et al., 1995).

While it therefore seems likely that plants contribute directly 
to the pool of N-containing compounds in MAOM, including those 
which are isotopically enriched, more research is needed to eluci-
date the likelihood of plant versus microbial contributions to MAOM 
quantity and persistence, and how this may differ across different 
soil regions. For instance, fungal hyphal lengths in soils are estimated 
to be 15,000 times greater than those of fine roots, suggesting that 
fungi occupy a considerably greater surface area of soil minerals 
compared to plant roots (See et al., 2022). This may increase the like-
lihood that microbes contribute to the accumulation of N-rich (and 
other) compounds in MAOM. Alternatively, in certain regions of bulk 
soil where microbial densities are low, direct plant contributions to 
these pools in MAOM may be higher, especially for compounds with 
high sorptive affinities (Sokol et al., 2019).

5.1.4  |  Lignin, aromatics, and phenolics

Lignin makes up 5%–25% of leaf litter and ~15%–40% of wood, 
and its presence in soils is exclusively plant-derived (Berg & 
McClaugherty, 2003; Campbell & Sederoff, 1996). In contrast, com-
pounds in MAOM identified as “phenolics” or “aromatics” could 
derive from either plants or microorganisms. Phenols in soils may 
derive from varied sources, including fungal melanins (Fernandez 
et al.,  2019) and other phenolic microbial metabolites (Kallenbach 
et al.,  2016; Solomon et al.,  2012; Wang et al.,  2017), as well as 
plant tannins or unidentified components of the lignin polymer 
(von Lützow et al.,  2006). Phenols (e.g., flavonoids) and aromatic 
acids (e.g., p-coumaric acid) are also present in root exudates (Pett-
Ridge et al., 2021; Zhalnina et al., 2018). If decomposed or oxidized 
to a significant extent, aromatic components of proteins and lipids 
may be included in the general aromatics or phenolics pools (e.g., 

aromatic R-groups of amino acids or phenolic ring structures from 
suberin or cutin; Kögel-Knabner,  2002). Knicker  (2011) estimated 
that non-protein aromatic C accounted for only 7%–15% of SOC in 
soil clay fractions. Similarly, our summary of molecular fingerprint-
ing data suggests that aromatic and phenolic compounds not as-
signed to lignin or protein sources comprise between 1% and 12% 
of MAOM-C (Dümig et al.,  2012; Grandy et al.,  2007; Schnecker 
et al., 2016).

Phenolic and aromatic compounds can undergo strong sorption 
to mineral surfaces via ligand exchange reactions, especially when 
they associate with Fe and Al (hydr)oxides and short-range order 
minerals (Mikutta et al., 2007; Sanderman et al., 2014). Although a 
number of studies have highlighted the particular sorptive affinity 
of lignin-derived phenols in this context (Chassé et al., 2015; Kaiser 
et al.,  2004; Kaiser & Guggenberger,  2000; Kramer et al.,  2012; 
Sanderman et al.,  2014), molecular fingerprinting analyses not re-
lying on soil extraction still generally show lignin contributions 
of <10% of MAOM-C (Angst et al.,  2017; Bol et al.,  2009; Geng 
et al., 2019; Grandy & Neff, 2008). Rather, it is likely that the pheno-
lic and aromatic compounds present in MAOM are derived from the 
various plant and microbial sources discussed above, including but 
not limited to lignin phenols. Owing to its low C:N ratio, there are 
clear stoichiometric limitations on the relative abundance of N-free 
plant compounds in MAOM. If aromatics and phenolics are abun-
dant in MAOM, and the C:N of MAOM is low, then aromatic pro-
tein derivatives and other N-containing compounds likely comprise 
a substantial portion of this pool (Knicker, 2011), and the origin of 
these compounds may be either plant or microbial.

6  |  SUMMARY

•	 There is compelling evidence for both significant plant and micro-
bial contributions to SOM, with variation likely across ecosystems 
and soil types. However, all major methods used to quantify plant 
versus microbial contributions to SOM have substantial limita-
tions, highlighting the uncertainty in our current estimates.

•	 We identify four key limitations common to the methods used to 
parse plant- and microbial-derived SOM (Table 1).

•	 A major source of uncertainty derives from challenges associ-
ated with parsing plant and microbial-derived compounds in the 
MAOM pool (e.g., proteins, hexoses, short-chain lipids, phenols). 
The number of truly quantitative studies examining the plant and 
microbial origins of MAOM is limited; more studies are needed 
using a variety of methodological approaches.

•	 Resolving the direct sources of MAOM (e.g., root exudates, plant 
litter DOM, microbial cell residues, EPS) will help to elucidate the 
dominant controls on SOM formation.

•	 Future research would benefit from a strategic plan for improving 
quantification of plant- versus microbial-derived SOM. Below, we 
outline several tangible steps, as well as key challenges and open 
questions for further research.
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    |  13WHALEN et al.

7  |  FUTURE DIREC TIONS

•	 Methodological recommendations:
•	 Given limitations inherent to individual methods, we call 

for future studies to use integrated approaches that draw 
on a combination of methods (e.g., amino sugars and mo-
lecular fingerprinting analysis). Researchers should eval-
uate whether the results of each analysis corroborate one 
another, and the specific limitations of each method should 
be considered within the context in which it is used. Plant-
derived SOM should be quantified directly using plant-
specific biomarkers, rather than indirectly as the difference 
between total and microbial-derived SOM, and other poten-
tial sources of SOM (e.g., soil fauna, pyrogenic OM) should 
be considered.

•	 To constrain error in amino sugar analysis (the most common 
approach for quantifying microbial-derived SOM), researchers 
should measure the ratio of Gram-positive to Gram-negative 
bacteria in their samples and calculate a site-specific bacterial 
conversion factor. Novel approaches that pair amino sugars 
with stoichiometric calculations (Deng & Liang, 2022) or iso-
topic methods (Hu et al., 2018) should be considered. Given 
that the amino sugar method targets microbial cell wall com-
ponents, it may be particularly well paired with methods that 
assess extracellular microbial compounds (e.g., EPS).

•	 In molecular fingerprinting studies, novel reference materials 
should be used that integrate the chemistry of plant or mi-
crobial biomass alongside their extracellular products (e.g., 
root exudates and other forms of plant DOC, microbial EPS). 
Data from artificial soil experiments may be especially useful 
toward this aim. The potential for preferential accumulation of 
specific compounds (e.g., proteinaceous N, phenolics) in soils 
over time should be considered when making comparisons be-
tween experimental samples and reference materials.

•	 Novel approaches should be considered for their application 
to the question of plant- versus microbial-derived SOM (e.g., 
POST-C7 NMR, Ernakovich et al., 2021; lipidomics, Neurath et 
al., 2021). Long-term isotope tracer studies in field or labora-
tory mesocosms with living plants and labeled microbial nec-
romass may be a particularly promising approach, especially 
if combined with molecular fingerprinting and/or biomarker 
approaches to corroborate estimates of plant- and microbial-
derived SOM.

•	 Key research questions and priorities:
•	 Our synthesis reveals that both plants and microbes could 

be sources of the compounds commonly found in MAOM 
(Figures 1 and 2). This observation raises questions about the 
relevance of the plant versus microbial origin of SOM. Some 
compound classes, due to shared physicochemical properties, 
may be more soluble and/or have a stronger affinity to soil 
minerals, regardless of their plant or microbial origin. In this 
case, the total rate of production and availability of specific 
compounds (e.g., certain polysaccharides, short-chain lipids, 

proteins, phenols) may matter more to MAOM formation than 
the plant or microbial origin of these compounds.

•	 However, if research reveals that either plants or microbes 
have a greater likelihood of contributing to the MAOM pool, 
then the origin of SOM has important practical implications for 
its management and representation in models. More research 
is needed to resolve the likelihood of plant versus microbial 
contributions to MAOM across different ecosystem contexts, 
and within vertical and horizontal soil space (e.g., surface vs. 
deep soil, sensu Kaiser & Kalbitz, 2012; rhizosphere vs. bulk 
soil, sensu Sokol et al., 2019).

•	 Addressing the following knowledge gaps will help to resolve 
some of these uncertainties:

•	 On average, does the persistence of microbial-derived SOM 
differ from that of plant-derived SOM?

•	 Do microbes contribute more to MAOM formation than plants 
because they interact over a larger surface area with mineral 
surfaces than do plant roots (e.g., ~102,000 cm fungal hyphae 
cm−3 soil vs. ~6.8 cm fine roots cm−3 soil; See et al., 2022)?

•	 What is the direct quantitative contribution of plant rhizode-
posits to MAOM (Figure 1b)? Although rhizodeposits are in-
creasingly recognized as an important source of plant C to the 
MAOM pool (Sokol & Bradford, 2019; Villarino et al., 2021), it 
is unclear what proportion of these plant inputs are directly 
sorbed within MAOM versus microbially assimilated and 
transformed before incorporation.

•	 What is the quantitative contribution of microbial EPS to 
MAOM (Figure  1d)? Microbial EPS are comprised of poly-
saccharides, proteins, uronic acids and lesser quantities of 
DNA and glycolipids (Flemming & Wingender,  2010), and 
thus encompass many of the major compound classes found 
in MAOM. EPS appear to be abundant in mineral soils (e.g., 
Chenu & Jaunet, 1992; Chenu & Stotsky, 2002), and continued 
advancements in EPS extraction techniques (Redmile-Gordon 
et al., 2014; Wang et al., 2019) and other methods of quantifi-
cation will help resolve their overall contribution to SOM.
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