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Abstract— Cooperative adaptive cruise control (CACC) is
one of the many advanced driver assistance systems (ADAS)
that utilize communication between nearby vehicles to main-
tain speed while maintaining safe following distances between
vehicles. Current CACC algorithms are designed assuming
that the communication channel is secure; however, using
communication channels make CACC susceptible to adversarial
injection attacks, such as False data injections (FDI). This
paper validates a developed, novel secure controller which can
detect and estimate FDI attacks in real-time. Experimental
results show that the designed controller and state estimation
techniques ensure accurate tracking under FDI attacks. The
effectiveness of the developed controller and detection algorithm
is shown in a simulation and tested further on a golf-cart-based
vehicle-in-the-loop (ViL) platform.

Index Terms— Secure control design; false data injection at-
tack; Lyapunov stability; Cooperative Adaptive Cruise Control;
Testing and verification;

I. INTRODUCTION

The National Highway and Traffic Safety Administration
(NHTSA) estimates that human error can be blamed for
94%-96% of the 6 million traffic collisions that occur each
year in the United States [1], [2]. Automated vehicles (AVs)
use sensors to perceive the world around them and support
the driver to improve safety. Connected automated vehicles
(CAVs) improve upon the foundation of AVs by enabling
communication with each other and infrastructure to maxi-
mize efficiency in terms of traffic, energy, and safety [3].

CAVs are expected to provide numerous benefits, from
improved efficiency and traffic flow to safer and less stressful
commutes. CAVs can achieve higher efficiency by forming
platoons that coordinate movements to reduce accelerations
and decelerations and follow closely to take advantage of
lower aerodynamic drag [4], [5]. Platoons also have the
benefit of increasing roadway utilization which effectively
increases capacity.

Adaptive cruise control (ACC) is an advanced driver
assistance system (ADAS) that adjusts the speed of a vehicle
based upon feedback from sensors (i.e., radar, lidar, and
cameras) to maintain a safe following distance from the
leader vehicle. ACC, however, proves unsuitable for forming
vehicle strings and platoons. The average data transmission
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delay for AVs is 1.5s per vehicle length due to onboard sen-
sors, processors, control, and actuation [6]. To address this
issue, vehicle-to-vehicle (V2V) connectivity was added to
the foundation of ACC to create cooperative adaptive cruise
control (CACC) [7], [8]. Data is broadcast continuously to
other vehicles in the loop to provide information in real-time
[9].

CACC enables shorter following distances, time gaps, and
improved stability against oscillations in the flow of traffic
[10]. ACC is susceptible to oscillations in traffic flows that
are compounded further along in the vehicle string. CACC
mitigates the majority of this problem. In a favorable envi-
ronment, CACC vehicles will acquire information sent from
the leading vehicle and adjust accordingly, which greatly
reduces the delay between vehicles, resulting in improved
energy efficiency, reduced travel time, and reduced collisions
[11].

Even with all the benefits of CACC, this technology is
unproven and vulnerable to unique threats caused by connec-
tivity and continuous data transmission. These systems are
cutting-edge and uncommon in the real-world. Of the many
reasons for this, cost, complexity, and infrastructure readiness
are some of the key hurdles to traverse. Furthermore, the
V2V communication that CAVs and CACC rely upon is sus-
ceptible to attacks that could result in widespread disruption.
The three primary attack vectors for CACC systems include
time delay switch (TDS), denial of service (DoS), and false
data injection (FDI). FDIs attacks aim to compromise the
integrity of a sensor’s data in order to give false readings
[12]. TDS attacks will delay the transmission of sensor
readings by a given time, relaying outdated information
to the control system [13]. DoS attacks aim to render the
CACC system unavailable and unable to process the flow
of information from other vehicles [14]. This paper focuses
on FDI attacks, which are the most probable to occur on
a CACC system, which has been an active area of study
in recent years [15]–[23]. Existing literature has focused on
the detection of FDI attacks. However, unlike the existing
works, this research designs and implements a Lyapunov-
based controller that combines model-based and learning-
based algorithms. This results in a CACC that uses an
observer and controller to maintain real-time tracking of a
lead vehicle while the follower vehicle is under FDI attack.
Understanding why and how these systems fail is vital to
ensuring that this technology fulfills its promises of safety.

Unlike other papers in the literature, this paper aims to
develop a secure Lyapunov-based controller. We combined
model-based and learning-based algorithms to design a novel
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observer and controller, which are able to maintain the
real-time tracking of the lead vehicle while the following
vehicle is under FDI attack. Additionally, this paper, unlike
others, will also validate its controller and detection accuracy
through the use of a real-time target machine. The contribu-
tions of this paper are summarized as follows: (i) a novel
control strategy is developed which is resilient under FDI
attacks, (ii) an FDI attack estimation technique is developed
which is able to detect abrupt FDI attacks in real-time with
high accuracy, (iii) the stability of the developed controller
is illustrated using Lyapunov stability.

A. Testing and Validation Methods

For testing CAV’s and ADAS, there are several approaches
[24]–[28]. Under the umbrella of simulated testing, there
are offline and real-time methods. Offline testing seeks
to maximize the execution speed of tests while real-time
simulations focus on testing accuracy in a bounded response
time [24]. Real-time methods also ensure access to testing
data, accelerating the validation phase of the testing process
and increasing certainty during development [25]. Real-time
simulations consist of Software-in-the-Loop (SiL), Vehicle-
in-the-Loop (ViL), and Hardware-in-the-Loop (HiL) testing.

SiL testing is often employed in situations where tradi-
tional testing is infeasible due to cost, safety, or other limiting
factors [26]. SiL, however, is simply unable to match the
accuracy and resolution of other methods that incorporate
physical hardware and components. HiL, on the other hand,
subjects physical components to virtual stimuli in order to
explore how a system reacts in real-time [27]. Due to the
inclusion of the physical system, HiL is capable of higher
quality results compared to purely simulated testing. In terms
of vehicle testing, however, HiL lacks the incorporation of
the real-time dynamics and motion of the test subject. ViL
fills this gap by integrating the entirety of the physical vehicle
into the simulated testing environment. The downside of
ViL testing, however, is that this method can only consider
the events and data generated by the simulation, resulting
in lower accuracy and resolution compared to real-world
testing. While real-world testing is regarded as the best in
terms of accuracy and resolution due to the inclusion of
vehicle dynamics and motion, this method is costly in regard
to time and capital [29]–[31]. Real-world testing also proves
incapable of investigating the myriad of unsafe or infeasible
scenarios, particularly edge cases that involve pedestrians.

II. DYNAMIC MODEL OF CACC UNDER FDI ATTACKS

This paper describes the linear model for CACC. The ac-
celeration, velocity, and position data from the lead vehicle is
assumed to be relayed to the following vehicles. For a string
of homogeneous vehicles with CACC systems following a
leader using a dynamic velocity profile; the dynamics model
of vehicles are described as{

ẋi(t) = vi(t),

v̇i(t) = − bi
mi
vi(t) + ui(t),

(1)

where i ∈ {1, · · ·n} and denotes the follower vehicles, n is
the maximum number of follower vehicles, and i−1 indicates
the leader vehicle. In addition, mi ∈ R is the vehicle’s mass
and bi ∈ R is the friction force between the road and tires.
Also vi ∈ R, xi ∈ R, and ui ∈ R represent the velocity,
position, and control input, respectively.

A. FDI Attack Representation

Adversaries inject FDI attacks into the communication
network of connected vehicles, so that, vehicles accessing
that information are obtaining incorrect data. This causes
instability in a platoon of vehicles, resulting in possible
collisions. In this paper we assume that acceleration is the
only parameter affected by the attack, understood as equation
(2). We also assume that the leading vehicle’s velocity,
position, and acceleration data is sent to its followers. The
attack affects the output, which converts it into the observed
output

πi(ai−1(t))
∆
= ai−1(t) + di(t), (2)

where πi ∈ R is the attack function, di ∈ R is the bounded,
unknown, continuous, and time-varying FDI attack, and ai−1

is the leader acceleration.

Assumption 1. The FDI attack, di, is assumed to be bounded
and differentiable such that |di(t)| ≤ d̄i, where t ≥ t0 and
d̄i is a positive constant.

III. PROBLEM STATEMENT

The main objective of this paper is to take a designed
secure controller that regulates CACC under FDI attacks and
implement in a ViL scenario. The controller is designed such
that safe distance between the leader and follower vehicles
is maintained under the presence of an FDI attack. The
CACC algorithm requires an acceleration signal from the
lead vehicle in real-time. However, this process is challenged
by adversary manipulation, which can lead to potential
collisions. Therefore, our second objective is to design an
observer and FDI attack detection mechanism to estimate
the FDI attack in real-time. To quantify these objectives we
define an error signal, ei : [t0,∞) → R as

ei(t)
∆
= xi(t)− xi−1(t) +Di + xdi

(t), (3)

where Di ∈ R is the length of vehiclei, and xdi
∈ R is the

desired distance between vehicles.

Assumption 2. The desired distance, its first, and second
derivatives are assumed to be bounded by positive known
constants, xdi , ẋdi , ẍdi ∈ L∞ [32].

To facilitate the stability analysis and design process, an
auxiliary error equation is proposed as

ri(t)
∆
= ėi(t) + αiei(t), (4)

where αi ∈ R>0, is a user-specified known gain.
The follower vehicles are relayed false information from

the leader during an FDI attack. Therefore, the accuracy of
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the observer needs to be measured and maintained. A state
estimate error x̃i−1 : [t0,∞) → R, can be described as

x̃i−1(t)
∆
= xi−1(t)− x̂i−1(t), (5)

where x̂i−1 ∈ R denotes the estimated position of vehicle.
To facilitate the stability analysis for the state estimation,

another auxiliary error signal r̃i−1 : [t0,∞) → R is defined
as

r̃i−1(t)
∆
= ˙̃xi−1(t) + αi−1x̃i−1(t), (6)

where αi−1 ∈ R>0 is a user-defined gain.
For determining the accuracy of the control signal estimate

an estimation error for the control signal, ũi−1 : [t0,∞) →
Rni , is defined as

ũi−1
∆
= ui−1 − ûi−1, (7)

where ûi−1 ∈ R and ui−1 ∈ R are the estimated and actual
control signal of the leader, respectively.

Defining ūi−1 ≜ ui−1 + di and ûi−1 ≜ ūi−1 − d̂i yields

ũi−1 = ui−1 − ūi−1 + d̂i, (8)

where d̂i ∈ R is the estimated FDI attack.
To measure the accuracy of the FDI attack estimation, the

estimation error for the FDI attack, d̃i : [t0,∞) → Rni , is
defined as

d̃i(t)
∆
= di(t)− d̂i(t), (9)

where d̃i is bounded such that d̃i ≤ ¯̃
di, where ¯̃

di ∈ R>0.

IV. PROPOSED SOLUTION

A. Controller Design

The control signal was designed using the Lyapunov
stability analysis in Section V as

ui(t)
∆
=
bi
mi

vi(t)−
bi−1

mi−1
vi−1(t) + ūi−1(t)− d̂i(t)

− ẍd(t)− αiri(t) + α2
i ei(t)− ei(t)−K1iri(t),

(10)
where K1i ∈ R>0 is a gain specified by the user.

Taking the derivative of equation (4) and substituting (3)
yields the closed loop form of the system as

ṙi(t) = ẍi(t)− ẍi−1(t) + ẍd(t) + αiėi(t). (11)

Replacing ẍi and ẍi−1 and (8) into (11) produces

ṙi(t) =− bi
mi

vi(t) + ui(t) +
bi−1

mi−1
vi−1(t)− ūi−1(t)

+ di(t) + ẍdi(t) + αiėi(t).

(12)

Substituting (10) into (12) results in

ṙi(t) = d̃i(t)−K1iri(t)− ei(t). (13)

B. FDI Attack Estimation

The detailed observer design in the ensuing subsection in-
cludes a neural network-based FDI attack detection algorithm
and state estimator, based on the work done in [33]. Based on
their research Nni

is bounded such that Nni
≤ n̄ni

, where
n̄ni ∈ R>0 [33].

Considering respect to the spatial domain, the NN estima-
tion of FDI attack can be described as

d̂i
∆
= ŴT

i σ(V̂
T
i δi), (14)

where Ŵi ∈ R(ni+1)×ni , V̂i ∈ R(ni+1)×nn represent the
estimated ideals weights, and δi is given as

δi
∆
= [1, d̂Ti ]

T . (15)

A Taylor’s series approximation is applied resulting

d̃i = W̃T
i σ(V̂

T
i δi) + ŴT

i σ
′(V̂ T

i δi)Ṽ
T
i δi +Nni . (16)

The updating laws for the NN weights written in [33] are
redescribed as

˙̂
Wi = proj(Γ1i(V̂

T
i δi)ri), (17)

and
˙̂
Vi = proj(ΓT

2iriŴ
T
i σ(V̂

T
i δi)), (18)

where Γ1i ,Γ2i ∈ Rni×ni are definite positive matrices.

C. Observer Design

Based on the stability analysis in section V, the observer
for vehicle i is designed as

¨̂xi−1(t) =− bi−1

mi−1
vi−1(t) + ūi−1(t)− d̂i(t) + L1i r̃i−1(t)

+ αi−1r̃i−1(t)− α2
i−1x̃i−1(t) + x̃i−1(t),

(19)
where L1i represents a user-defined gain.

Taking the derivative of (6) with respect to time yields

˙̃ri−1(t) = ¨̃xi−1(t) + αi−1
˙̃xi−1(t). (20)

More simplification and variable substitution results in

˙̃ri−1(t) =− bi−1

mi−1
vi−1(t) + ui−1(t)− ¨̂xi−1(t) + αi−1r̃i−1(t)

− α2
i−1x̃i−1(t).

(21)
Exchanging (19) the final error equation can be further

simplified into

˙̃ri−1(t) = −L1i r̃i−1(t)− x̃i−1(t)− d̃i(t). (22)

V. STABILITY ANALYSIS

For simplicity (t) was dropped in further calculations.
Consider VLi : R5 × [0,∞) → R≥0, a radially unbounded,
positive definite, continuously differentiable Lyapunov func-
tion displayed as

VLi
=

1

2
e2i +

1

2
r2i +

1

2
x̃2i−1 +

1

2
r̃2i−1 +Hi, (23)
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where Hi : [t0,∞) → R≥0 is defined as

Hi
∆
=

1

2
tr(W̃T

i Γ−1
1i
W̃i) +

1

2
tr(Ṽ T

i Γ−1
2i
Ṽi). (24)

Since W̃i and Ṽi are bounded, Hi is bounded by |Hi| ≤
Hi,max where Hi,max ∈ R>0. Furthermore, let pi ∈ R4ni

be define as

pi
∆
= [eTi , r

T
i , r̃

T
i−1, x̃

T
i−1]

T , (25)

and let ψ1i and ψ2i be defined as

ψ1i
∆
=

1

2
pi

2, (26)

and
ψ2i

∆
= pi

2. (27)

Taking the derivative of (23) results

V̇Li
=eiėi + riṙi + x̃i−1

˙̃xi−1 + r̃i−1
˙̃ri−1

− tr(W̃iΓ
−1
1i

˙̂
Wi)− tr(ṼiΓ

−1
2i

˙̂
Vi).

(28)

The Lyapunov function satisfies the following inequality

ψ1i ≤ VLi
≤ ψ2i +Hi,max. (29)

Substituting (4) and (13) into (28) yields

V̇Li =ei(ri − αiei) + ri(d̃i −K1iri − ei)

+ x̃i−1
˙̃xi−1 + r̃i−1

˙̃ri−1 − tr(W̃iΓ
−1
1i

˙̂
Wi)

− tr(ṼiΓ
−1
2i

˙̂
Vi).

(30)

Further substitution of (16) in results in

V̇Li
=− αie

2
i + ri(W̃

T
i σ(V̂

T
i δi) + ŴT

i σ
′(V̂ T

i δi)Ṽ
T
i δi

+Nni
) + ri(−K1iri)− r̃i−1d̃i − αix̃

2
i−1 − L1i r̃

2
i−1

− tr(W̃iΓ
−1
1i

˙̂
Wi)− tr(ṼiΓ

−1
2i

˙̂
Vi).

(31)
Young’s Inequality is applied to select terms in (31) and

given as

riNni
≤ 1

2ε0
ri

2 +
ε0
2
Nni

2,

r̃i−1d̃i ≤
1

2ε1
r̃2i−1 +

ε1
2
d̃2i .

(32)

Applying Young’s Inequality and the updated laws from
(17) and (18), the equation (31) becomes

V̇Li ≤− αiei
2 +

1

2ε0
ri

2 + φi +
1

2ε1
r̃2i−1

−K1iri
2 − αi−1x̃

2
i−1 − L1i r̃

2
i−1,

(33)

where φi is defined as

φi
∆
=
ε0
2
n̄2ni

+
ε1
2

¯̃
d2i . (34)

Combining like terms results in

V̇Li ≤− (αi−1)x̃
2
i−1 − (αi)ei

2

− (L1i −
1

2ε1
)r̃2i−1

− (K1i −
1

2ε0
)ri

2.

(35)

The sufficient conditions are given as

αi−1 > 0,

αi > 0,

L1i >
1

2ε1
,

K1i >
1

2ε0
,

(36)

where ε0 and ε1 denote positive known constants.
Based on the sufficient conditions in (36), positive con-

stants, α1i and α2i can be written as

α1i ≜ L1i −
1

2ε1
, (37)

α2i ≜ K1i −
1

2ε0
. (38)

Knowing the the Lyapunov function is bounded, (35) can
be written as

V̇Li
≤ −α3i

ψ2i

VLi
+
α3i

ψ2i

Hi,max + φi, (39)

where this ensures semi-globally uniformly bounded tracking
and α3i ≜ min{αi−1, αi, α1i , α2i}.

Stability is assured given the sufficient equations provided
in (36) are satisfied.

VI. RESULTS

The following section inspects the performance of the
designed controller and detection algorithm under an FDI
attack through MATLAB/Simulink simulation. Additional
analysis was performed in simulation to explore additional
disturbance that was initially unaccounted for. The designed
controller and detection algorithm was then implemented on
a golf-cart ViL platform.

A. Model of Golf Cart

A golf cart-based ViL research platform was developed
specifically to extend the capabilities of testing and experi-
mentation of the proposed CACC. To implement the CACC
on the platform, a transfer function for the golf cart was
determined using experimental analysis. The first-order linear
model was obtained using a power supply to determine the
step response for a given input. By applying DC voltages
of 1.5V, 2.0V, and 3.0V to the motor controller’s signal
wire, it was possible to measure the response of the system
and determine the best signal to base our transfer function
on. Using a signal of 2.5 VDC, several runs were recorded
and averaged together, resulting in the plot shown in Fig.
6. From this data, the transfer function was found to be
G(s) = b

s+a = 0.245
s+.1818 . This model is implemented into the

simulation, altering the dynamic profile shown in equation
(1).

B. Testing Setup

Since we are dealing with security of a vehicle, real-
world testing is not safe to perform. Hence, we validated the
developed technique on SiL environment, HiL, and finally
ViL.
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1) SiL and HiL setup: The proposed Lyapunov-based
controller and neural network detection algorithm was imple-
mented into MATLAB/Simulink for a SiL environment. This
simulation in conjunction with a Speedgoat Baseline target
machine created a HiL environment where the controller
was further tested. Figure 1 displays the flow of information
between both MATLAB and the target machine.

Fig. 1: Hardware-in-the-Loop Connection.

2) Vehicle-in-the-Loop Setup: An automated Club Car
Precedent i2 golf cart was developed for testing the devel-
oped CACC. The platform is based upon an electric golf cart
with extensive modifications to enable programmable control
of the vehicle. The vehicle is equipped with an Arduino Uno
that feeds inputs to the golf cart to control movement. Under
testing, the Arduino is connected to the simulation and sends
the resulting voltage commands to the golf cart, depicted in
Figure 2. The golf cart then carries out these actions, feeding
dynamics and motion back into the simulation in real-time.

The modifications, while extensive, were made easier due
to the golf cart’s electric drive-train. The original throttle
system in the golf cart utilizes a potentiometer to supply
variable voltage to the DC motor. In order to replicate the
original function, an Arduino was spliced into the signal
wire of the potentiometer. The Arduino uses a pulse width
modulation (PWM) function to supply the wire with varying
voltages to simulate variable speeds. The motor controller
listens for analog inputs in the range of 0.3 VDC and 4.5
VDC, allowing for the Arduino to simply inject an analog
signal to control velocity.

The golf cart does not have a built-in speedometer; con-
sequently, we used our phone’s built-in accelerometer sensor
to determine its speed. Figure 2 portrays how the phone was
connected to our simulation and the golf cart. The phone
was connected via WiFi to MATLAB running on our laptop.
The laptop then communicated with another; through user
datagram protocol (UDP), which was running the simulation.
To run the simulation on the golf cart, an Arduino Uno was
connected to its signal wires. We also devised a first-order
linear model to convert the controller’s output signal into a
voltage reading that the golf cart can receive. That output
signal is sent to the Arduino, which would power the motor.

With this platform, the value of HiL and ViL, combined,
will be demonstrated. Relative to a full-size vehicle, our golf

cart-based platform is simple, compact, easily accessible,
and low-cost. This allows for ADAS, such as the developed
CACC, to be tested on the golf cart prior to scaling testing
up to a real, full-size vehicle.

UDP

Fig. 2: Vehicle-in-the-Loop Connection.

C. SiL Testing

Figure 3 shows a calculation of the distance between
the leader and follower vehicles. As the speed increases,
consequently, the distance between vehicles increases as
well, shown in Figure 3. This explains why the distance
between vehicles in the SiL scenario is slightly greater than
HiL. Throughout the entirety of the simulation it remains a
positive value indicting no collision occurring. The follower
vehicle’s speed is depicted in figure 4. The lead vehicle had
an input of 0 m/s at 60 seconds which caused the following
vehicle to deviate from maintaining the desired speed and,
instead, begin slowing down to avoid a collision. As both
vehicles reach 0 m/s, the final distance between them is
a positive constant dictating that no collision occurred. The
accuracy of the detection algorithm is portrayed in figure 5.
Notably, the lower estimated value for the FDI attack does
not cause a collision.

Using Simulink, additional analysis was performed by
injecting signals directly into the leader’s acceleration data,
which is processed by the follower vehicle. These signals
were sinusoidal and pseudo-random waveforms with ampli-
tudes from 1 to 10 and a final run with an amplitude of
20. During 100 iterations of each test signal, the developed
controller was resilient to these additional disturbances.

D. HiL Testing

The HiL simulation displays a different scenario, where
the leader vehicle continues at a positive speed instead of
stopping. Figure 4 shows that the follower vehicle deviates
from its desired speed and slows to follow the leader’s speed.
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Fig. 3: Distance between Follower and Leader Vehicle.

Fig. 4: Follower Vehicle’s Speed Profile.

E. ViL Testing

This section displays the performance of the controller and
detection algorithm when implemented on a ViL platform.
The speed of the golf car is shown in Figure 7. It takes
approximately 3 seconds for the golf cart to respond to the
signal being sent. The golf cart overshoots the desired speed
at approximately 9 seconds and then slows to correct itself.
Once the desired speed rises at 15 seconds, the golf cart
follows shortly after, settling at a value lower than desired.
The golf cart then continues to attempt to follow the desired
speed, but fluctuates around the value due to the unconven-
tional ViL setup. The estimation is depicted in Figure 8. The
estimator oscillates around the actual FDI attack value. A
calculation of the RMSE of the FDI estimation resulted in a
value of 0.0277.

VII. CONCLUSION

CACC is an advanced driver-assistance system that col-
lects acceleration data from a leading car, along with its own
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Fig. 6: Golf Cart Data Used for Determining the Model.

onboard sensor data to adjust the vehicle’s speed in order
to maintain a safe distance between both vehicles. An FDI
attack occurs when incorrect data is injected into the system,
with the goal of causing instability and collisions. In order
to negate the effects of an FDI attack on a CACC system,
both a secure and resilient controller and detection algorithm
were designed. The proposed designs accurately detected the
FDI attack and negated its effects on the vehicle, causing
it to maintain a safe distance throughout the entire simu-
lation. The simulation was run through MATLAB/Simulink,
hardware-in-the-loop (HIL) using a Speedgoat Baseline real-
time target machine, and vehicle-in-the-loop using an electric
golf cart based platform. The ViL scenario maintained a
safe distance between vehicles and accurately detected the
FDI attack. However, due to the process by which we
constructed the ViL environment, the golf cart’s response
was delayed, and its speed fluctuated moderately around
the desired. Further testing using an IMU sensor to relay
the speed in real-time could potentially reduce the delay.

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:13:11 UTC from IEEE Xplore.  Restrictions apply. 



0 10 20 30 40 50
Time (sec)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
S

p
ee

d
 (

m
/s

)
Actual Follower Speed
Desired Follower Speed
Desired Leader Speed

Fig. 7: Follower Vehicle’s Speed Profile using ViL.
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Also, the Speedgoat Baseline real-time machine that we used
for the HiL environment includes an IO module that could
replace the Arduino. These modifications could improve the
delay and overall performance of the designed controllers
and estimators.

Implementing such as controller, however, comes with
some challenges. While our implementation used com-
monly available off-the-shelf components, one that would
see widespread adoption would likely be drastically more ex-
pensive and rigorously analyzed. Secondly, there is the major
issue of an infrastructure that possesses V2X capabilities to
support CACC.
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