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Abstract—Overlay networks serve as the de facto network
virtualization technique for providing connectivity among dis-
tributed containers. Despite the flexibility in building customized
private container networks, overlay networks incur significant
performance loss compared to physical networks (i.e., the native).
The culprit lies in the inclusion of multiple network processing
stages in overlay networks, which prolongs the network process-
ing path and overloads CPU cores. In this paper, we propose
MFLOW, a novel packet steering approach to parallelize the
in-kernel data path of network flows. MFLOW exploits packet-
level parallelism in the kernel network stack by splitting the
packets of the same flow into multiple micro-flows, which can
be processed in parallel on multiple cores. MFLOW devises new,
generic mechanisms for flow splitting while preserving in-order
packet delivery with little overhead. Our evaluation with both
micro-benchmarks and real-world applications demonstrates the
effectiveness of MFLOW, with significantly improved performance
– e.g., by 81% in TCP throughput and 139% in UDP compared
to vanilla overlay networks. MFLOW even achieved higher TCP
throughput than the native (e.g., 29.8 vs. 26.6 Gbps).

Index Terms—Packet Processing, Kernel Network Stack, Con-
tainer Overlay Networks

I. INTRODUCTION

Due to high portability, high density, low performance

overhead, and low operational cost, containers have quickly

gained popularity and become adopted by high performance

computing systems (HPC) [1]–[9]. Unlike VMs, containers

achieve lightweight virtualization by running directly on the

host operating systems (OS) – i.e., no guest OSes and virtual

hardware emulation involved – while isolation between con-

tainers remains enforced through kernel-level features such as

namespaces [10], cgroups [11], and seccomp [12].

However, containers are no longer lightweight with regard

to peripheral components, especially for networking. Recent

studies [13]–[15] revealed that compared to the native (i.e.,

no virtualization), containers achieved ∼50% less network

throughput and suffered much higher packet-level processing

latency. The culprit of the poor container network performance

lies in the complexity of constructing network connections:

Containers rely on overlay networks – the de facto network vir-

tualization technique in containers – allowing each container to

have its own network namespace and private IP address while

being independent of the host network. The construction of

overlay networks requires a set of software network devices,

such as VxLAN [16] for packet encapsulation/decapsulation,

veth for virtual network interfaces of containers, and virtual

bridges (e.g., Linux bridge or Open vSwitch [17]) to connect

them. The involvement of multiple software network devices

prolongs the data path of container network packets, inevitably

incurring additional overhead and delays to packet processing

with high CPU usage [13], [15].

Worse, since the Linux kernel typically squeezes all the

processing stages of a single flow on a single CPU core [13],

the computation of packet processing can easily overload

the core, thus throttling the network throughput of the flow.

This negatively impacts the performance and scalability of

many HPC workloads, such as live HD streaming, distributed

machine learning tasks, and big data processing tasks – typi-

cally generating long-lived, high-throughput flows, known as

“elephant” flows. For example, due to such a CPU bottleneck,

distributed machine learning tasks stopped scaling after only

consuming 25 Gbps out of a 100 Gbps network link [18].

This paper investigates how and to which degree in-kernel

packet processing can be optimized to accelerate container

overlay networks. Ideally, the above-mentioned CPU bottle-

neck can be addressed/mitigated if we can effectively convert

any elephant flow into multiple mouse flows, each containing

a small portion of the flow’s packets and being processed

upon a separate core. Several instant benefits are: (1) Each

mouse flow contains fewer packets, thus avoiding overloading

a single core (even for a heavyweight network device); (2)

Packets of different mouse flows can be processed in parallel,

thus accelerating packet processing speed; (3) It can more

efficiently leverage a multi-core system to mix and balance

elephant and mouse flows – i.e., an elephant flow is just

equivalent to a bunch of mice flows.

To seek the feasibility of this idea, we design and develop

MFLOW – a novel approach to parallelize in-kernel data path

of (elephant) flows. MFLOW exploits fine-grained, packet-level
parallelism based on an often overlooked fact: While existing

in-kernel packet processing requires all packets of a single

flow to be processed in a pipelined manner (in sequence), in-

order packet processing does not need to be strictly guaranteed

at all times along the stateless network path, but instead only

when necessary (for the stateful path), e.g., before packets

enter the transport layer (i.e., TCP) or are sent to user-space

applications. Upon this observation, MFLOW achieves packet-

level parallelism by splitting the packets of the same flow
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into multiple small batches, called micro-flows, which can

be processed in parallel on multiple cores. MFLOW devises

generic packet steering mechanisms for in-kernel flow splitting
that can be enabled at any point of the stateless network path.

One key challenge to MFLOW lies in that as each CPU core

may have different processing capability and/or be interrupted

by concurrent kernel tasks, packets of different micro-flows

may not preserve their arrival order after parallel processing

– out-of-order packet delivery causes incorrectness (in TCP)

or poor user experiences (in UDP). This is precisely why the

existing in-kernel network stack processes packets in order,

thus only needing to reorder a small number of packets

that are delayed during transmission. Although MFLOW can

leverage the kernel’s packet reordering mechanism to ensure

all packets are still in order after parallel processing, the

packet-level reordering incurs significant overhead. MFLOW

addresses this issue in two ways: (1) by choosing a suitable

batch size for micro-flows, the number of out-of-order packets

can be dramatically reduced; (2) instead of reordering packets

at a per-packet level, MFLOW devises a batch-based flow

reassembling mechanism incurring little overhead.

We know of no other kernel techniques supporting packet-

level parallelism for accelerating container overlay networks.

We have implemented a prototype of MFLOW in the Linux

network stack (with kernel version 5.7). To summarize, in this

paper, we have made the following contributions:

• We perform a detailed investigation of the performance

of container overlay networks and identify the main

performance bottleneck for elephant flows to be the lack

of sufficient network processing parallelism.

• We design and implement MFLOW, which explores

packet-level packet processing parallelism in commodity

OS kernel for fast overlay networks. Unlike existing

approaches that only parallelize packet processing at a

coarse-grained flow/device level, MFLOW allows a flow

to be parallelized at any stateless stage along the network

processing pipeline.

• Our evaluation of MFLOW using both micro-benchmarks

and real-world applications shows that MFLOW can sig-

nificantly improve network throughput (e.g., by 81% in

TCP and 139% in UDP compared to the vanilla overlay

networks) and application-level performance (e.g., by up

to 7.5x for web serving). MFLOW even achieves higher

TCP throughput under container overlay networks than

the native (e.g., 29.8 vs. 26.6 Gbps) due to packet-level

processing parallelism.

Road map: Section II discusses the background and motivates

MFLOW with performance and CPU utilization comparisons

among state-of-the-art overlay network techniques. Section III

presents the design details of MFLOW while Section IV

releases its implementation. Section V shows the experimental

results in comparison with state-of-the-art. Section VI reviews

related works and Section VII concludes the paper with a brief

discussion of future work.

II. BACKGROUND AND MOTIVATION

A. Background

Packet processing: In-kernel packet processing, as illustrated

in Figure 1, involves a complicated pipeline that traverses the

physical network interface controller (pNIC), the kernel space,

and the user space. We use packet reception as an example to

demonstrate the process: When a packet arrives at the pNIC, in

step �, it is copied (via DMA) to the kernel ring buffer, and the

pNIC triggers a hardware interrupt (IRQ). The kernel is then

invoked by the IRQ and starts the packet receiving process.

The in-kernel receiving procedure further involves two parts:

the top half and the bottom half.

The top half runs in the context of the IRQ, which simply

marks that there is an incoming packet (in request queues)

waiting for processing and notifies the bottom half (i.e., by

raising a software interrupt). The bottom half is then executed

in the form of a software interrupt (softirq) (in step �). It

serves as the main kernel network packet processing routine to

process the packet through a set of network devices (e.g., both

physical and software NICs) and network protocol layers (e.g.,

from layer 2 to layer 3/4). The Linux kernel uses a key data

structure, skb (i.e., socket buffer), to represent each packet

that can be freely manipulated and transferred across these

network devices and layers. After a packet traverses all needed

network devices and protocol layers along its path, it is finally

delivered to the user-space application (in step �) — i.e., the

packet data/payloads (stored in the kernel ring buffer) is copied

from the kernel buffer to the user-space application’s buffer.

Container overlay networks: Container overlay networks

hinge on a tunneling technique (e.g., through VxLAN [16]):

When a container sends a packet (with private IPs), the overlay

network encapsulates the packet in a new packet with the

(source and destination) host IPs as the new packet header

and the original packet as payload. When a container receives

a packet, the overlay network decapsulates the received packet

to recover the original packet and delivers it to the target

containerized application using its private IP address.

As illustrated in Figure 2, the Linux kernel constructs the

container overlay network with the help of several in-kernel

software network devices – i.e., a VxLAN network device for

packet encapsulation/decapsulation, a virtual Ethernet device

(veth) for virtual network interfaces of containers, and a

virtual bridge (e.g., Linux bridge or Open vSwitch [17]) to

connect them. Hence, before a container packet is received by

the user-space application, it needs to traverse three software

devices and goes through the network protocol stacks twice
— one for packet decapsulation and one for sending the

decapsulated packet (by veth) to the user-space application.

Throughout the whole process, one IRQ and three softirqs —

i.e., by pNIC, VxLAN, and veth — are raised. Therefore,

compared to the native, the overlay network incurs prolonged

data path with extra processing overhead.

Parallel packet processing: The prolonged data path in

container overlay networks slows down per-packet processing

and consumes more CPU cycles. By default, as the vanilla
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Fig. 2: Container overlay network. Fig. 3: Parallel packet processing.

case shows in Figure 3, the Linux kernel squeezes all stages

of a single flow’s packet processing onto a single CPU core 1.

It is because the Linux network stack has been developed

over the years and originally targeted less-powerful network

devices (e.g., 1/10 Gbps) where a single core was powerful

enough to handle a single network flow. However, in the face

of today’s high-performance, high-throughout network devices

(e.g., 100/400 Gbps), the CPU becomes the bottleneck – i.e.,

packet processing can easily saturate a single core, preventing

a single flow from achieving higher network throughput.

To leverage a multi-core system, both hardware and soft-

ware packet steering approaches have been proposed to par-

allelize packet processing:

(1) Modern physical NICs enable multiple queues and

apply receive side scaling (RSS) [19] to map different flows

to separate cores (via hash values). This achieves inter-flow
parallelism as different flows are associated with distinct hash

values and can be mapped to different cores. Note that, it is

common that one server can have more flows than available

CPU cores; multiple flows might still be mapped to the

same CPU core. The hardware-based parallelism mechanism,

however, does not parallelize a single (elephant) flow, as all

packets from the same flow are assigned with the same hash

value and hence processed on the same core.

(2) Receive packet steering (RPS) [20] in the Linux kernel

is a software implementation of RSS, which realizes packet

steering in the context of the first softirq (raised by pNIC’s

IRQs) and again achieves inter-flow parallelism – i.e., each

flow is identified using a distinct hash value and mapped to

a separate core. As the “RPS” case shows in Figure 3, for a

single flow, RPS only separates the “top half” (as well as the

first softirq) and the remaining “bottom half” onto two cores.

(3) Recent effort, FALCON [13], observed the lack of single-

flow parallelization and enabled device-level and function-
level parallelization for a single flow. As the “FALCON” case

shows in Figure 3, packet processing stages associated with

distinct network devices (pNIC, VxLAN, vNIC, etc.) can

1The kernel thread for packet delivery – i.e., copying data from the kernel
ring buffer to the user-space buffer – is bonded with the core where the
application thread runs; it can run on a separate core other than the in-kernel
packet processing core(s).

be distinguished and placed on separate cores by FALCON.

However, one limitation of FALCON lies in that if a network

device is heavy (e.g., VxLAN), it can still saturate one CPU

core and becomes the bottleneck. Further, the processing of a

network packet in FALCON spans across multiple CPU cores,

resulting in reduced data locality and extra queuing delays.

Last, function-level parallelization in FALCON seems hard-

coded and requires in-depth kernel code analysis.

B. Motivation

Experimental settings: To quantitatively analyze the effec-

tiveness of existing parallel packet processing approaches,

we evaluated the throughput and CPU utilization of the

VxLAN-based overlay network using sockperf [21] (i.e.,

a TCP/UDP traffic generator) between a pair of client and

server machines. The machines were connected with Mellanox

ConnectX-5 EN 100-Gigabit Ethernet adapters. Both the client

and server had sufficient CPU and memory resources. More

details of the configurations are presented in Section V.

Performance analysis: Figure 4 depicts the performance and

CPU utilization comparisons between the native (i.e., no con-

tainers), VxLAN-based container overlay network, RPS [20],

and FALCON [13] using a single flow. We enabled the Linux

kernel’s default RPS mechanism. We downloaded FALCON’s

source code from its Github repository [22] and deployed its

two parallelization approaches – at the device or function level.

Compared to the native, container overlay networks incurred

higher performance overhead with significant performance

drops – 40% for TCP and 80% for UDP under large message

sizes (e.g., 64 KB). The main reason is that: (1) container over-

lay networks entail prolonged data path with more software

network devices as shown in Figure 2; (2) the Linux kernel

by default places all packet processing of these devices on

a single core, which easily overloads the core as indicated

in Figure 4b (the container vanilla case) – softirqs of all

network devices overloaded core one (close to 100%). Note

that, Figure 4b shows average CPU utilization (e.g., over 30

seconds). Although the average CPU% is under 100%, instant

peak CPU% could reach 100% and throttle the performance,

preventing a single flow from achieving higher throughput.
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(a) Throughput under TCP/UDP.
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Fig. 4: Performance and CPU utilization comparisons between native, container, and parallel optimizations.

Compared to the vanilla overlay case, RPS slightly im-

proved the throughput of container overlay networks – by 6%

for UDP and 24% for TCP under large message sizes (e.g.,

64 KB). It is because, as shown in Figure 4b (the RPS case),

RPS steered part of the softirqs from core one to core two,

making core one capable of serving more packets. However,

core one remained the bottleneck with high CPU usage, as the

heavyweight network device – VxLAN (i.e., part of the first

softirq) – were still processed on core one.

To mitigate this, FALCON [13] distinguished different net-

work devices and dispatched them onto separate cores, namely

the device-level pipelining. As the example in Figure 4 shows,

FALCON dispatched VxLAN to core two and placed the re-

maining devices on core three. In this way, FALCON increased

the UDP throughput of container overlay networks signifi-

cantly — by 80% (compared to vanilla overlay). However, it

was still far below the native (only within 30%), because the

device-level pipelining is still coarse-grained — i.e., a heavy

device/function can still saturate a single core.

Worse, the device-level pipelining merely worked for TCP

with similar performance as RPS (in Figure 4a). The reason

is that, under TCP, heavyweight functions – e.g., per-packet

skb allocation and generic receive offload (GRO) 2 – remained

on core one and overloading it, as depicted in Figure 4b (i.e.,

the FALCON-dev case). To overcome this, the function-level
pipelining in FALCON can further separate these functions

onto separate cores. For example, by dispatching the GRO
function (and all the following softirqs) on core two, FALCON

increased the throughput of TCP – by 20% (compared to RPS).

Meanwhile, core one again was overloaded – now purely

by the skb allocation function (i.e., the FALCON-fun case

in Figure 4b) that cannot be parallelized by FALCON or any

existing approaches.

Summary: Overlay networks incur non-trivial performance

overhead for both TCP and UDP. State-of-the-art approaches

can parallelize packet processing to a certain degree but en-

2GRO reassembles small packets into larger ones to reduce per-packet
processing overhead. We observed that the Linux kernel’s GRO is mainly
effective for TCP connections but not for UDP.

Fig. 5: MFLOW achieves single device scaling or full path

scaling via exploiting packet-level parallelism.

counter new bottlenecks. Hence, the performance of container

overlay networks remains significantly lower than the native.

III. DESIGN OF MFLOW

To exploit in-kernel packet processing parallelism, we de-

sign and develop MFLOW with the key ideas as follows:

Instead of following the long-established pipelined, in-order

processing, MFLOW exploits packet-level parallelism by split-

ting packets of the same flow into multiple small batches,

called micro-flows, each being able to be processed on a

separate core, called splitting cores. By doing this, multiple

micro-flows of the same flow can be processed in paral-
lel along the stateless network path and only reassembled

before entering the stateful processing stage or user-space

applications. As depicted in Figure 5, MFLOW can scale a

heavyweight network device or even the full network path for

a single flow. In the following sections, we present MFLOW’s

splitting mechanisms (in Section III-A) and how MFLOW

efficiently preserves in-order packet delivery (in Section III-B).

A. Flow Splitting

MFLOW does not re-design existing well-tested, mature

kernel network stack, but instead realizes novel packet steer-
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(a) Flow-splitting function. (b) IRQ-splitting function. (c) In-order flow reassembling.

Fig. 6: Design of MFLOW: (a) Flow-splitting function; (b) IRQ-splitting function; and (c) In-order flow reassembling.

ing mechanisms to exploit packet-level parallelism. MFLOW

devises two generic mechanisms for in-kernel flow splitting –

i.e., depending on whether the per-packet skb data structure is

created or not. These splitting mechanisms enable MFLOW to

either split a flow at a very early stage (i.e., right after the first

IRQ) or at any point along the stateless network processing

path (i.e., layer 2/3 and UDP layer).

Splitting mechanism along stateless network path: MFLOW

splits a single flow by leveraging in-kernel stage transition
functions. Specifically, during packet processing, a network

packet – represented in the form of a skb data structure – is

transferred from one processing stage (i.e., a network device)

to another via a stage transition function (e.g., netif_rx).

The stage transition function enqueues the packet (i.e., skb)

into the queue of the device to be processed next on the same

core. In this way, stage transition functions multiplex multiple

stages of the flow in a pipelined manner on the same core –

i.e., once scheduled, each stage can process a batch of packets;

stages are processed in an interleaved manner.

MFLOW re-purposes the stage transition functions into a

flow-splitting function for heavyweight network devices (in

Figure 6a): During network device initialization, for any net-

work device (e.g., VxLAN) that needs the packet-level par-

allelism, MFLOW creates per-core, per-device splitting queues
(�). During packet processing, before any identified (elephant)

flow enters the heavyweight network device, MFLOW divides

the packets of the flow into multiple small batches (�). Each

batch is called a micro-flow and covers a portion of the

consecutive packets in the original flow. Then, MFLOW can

select a distinct splitting core for a micro-flow and enqueues

the packets of the micro-flow into its target core’s splitting

queue (�). Meanwhile, a softirq is raised on the target splitting

core via inter-processor interrupt (IPI). In this way, the bottom

half of the network device will be executed later on all the

involved splitting cores in parallel (�).

This flow-splitting function works upon the per-packet skb
data structure and can parallelize the processing of any state-

less heavyweight network devices (or functions, e.g., GRO).

However, similar to the “FALCON-func” case in Figure 4, after

MFLOW scales the heavyweight VxLAN device in container

overlay networks via the flow-splitting function, we observed

that the construction of the skb data structure (in the first

stage of packet processing) became a heavy process – i.e., it

overloaded a single core. To scale these heavyweight func-

tions, we need a flow splitting mechanism that works at the

earliest point of the network stack:

Splitting mechanism for the first stage: Splitting the packets

of a flow before skb allocation is challenging due to two

factors: (1) It requires the support of the physical network

device driver to locate raw packets. (2) As there is no skb,

it needs a lightweight data structure to represent each raw

packet, thus being able to dispatch them onto separate cores.

To overcome these, MFLOW devises an IRQ-splitting function
to split/parallelize packet processing at the first stage:

As depicted in Figure 6b, during the initialization of a flow

that needs first stage parallelization, MFLOW creates per-core

request ring buffers on the splitting cores that will parallelize

the first stage processing (�). Then, the IRQ-splitting function

divides the first stage – i.e., the softirq context of the pNIC
– into two halves. The first half (1) locates the incoming

packet requests from the driver’s request queue (�) – e.g.,

each request represents an incoming packet and contains

information for the skb creation; (2) dispatches the requests

onto target cores (�) – similar to the above micro-flow based

dispatching 3; and (3) raises softirqs on target splitting cores

(via IPIs). Finally, the second half will be invoked on the

splitting cores to finish the remaining part of the original

first stage – e.g., skb allocation (�). With this, MFLOW can

split and scale heavyweight functions at the earliest network

software point by taking advantage of multiple cores. Note

that, the design of the IRQ-splitting function relies little on

3Note that the IRQ-splitting function dispatches packet requests rather than
skbs; it relies on the data structure of packet requests, created by device
drivers, to represent each raw packet, hence being lightweight.
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of micro-flows (TCP with 64KB packets).

a specific network device driver – i.e., it only needs to know

the driver’s request queue and the way to locate its requests –

making it portable to different network devices.

Parameters for packet-level parallelism: The degree of

packet-level parallelism in MFLOW is mainly determined by:

(1) the number of outstanding packets; (2) the batch size of

micro-flows; and (3) the number of splitting cores. We discuss

the implications of each parameter as follows:

For both TCP and UDP workloads, a number of outstanding
packets could arrive at the receiver side approximately at

the same time, especially for elephant flows. For example,

given a TCP connection under the throughput of ∼ 30 Gbps,

the sender (e.g., iperf3 [23]) can issue ∼2,000 outstanding

packets (with the size of MTU being 1,500 bytes) without

receiving an ACK from the receiver. As there is no acknowl-

edgment mechanism in UDP, a sender theoretically can issue

as many outstanding packets as possible to the receiver.4 As

the outstanding packets arrive at the receiver approximately at

the same time, dispatching them onto multiple cores enables

packet-level parallelism. Therefore, the “heavier” a flow is,

the more outstanding packets it produces and the higher the

packet-level parallelism degree can be exploited.

Simply dispatching the outstanding packets of the same

flow onto multiple cores may cause out-of-order delivery as

different cores may not have a uniform processing speed.

Though MFLOW’s flow reassembling mechanism (detailed in

Section III-B) eventually preserves packet orders, more out-of-

order delivery means additional effort for order preservation.

We observed that, in Figure 7, the number of out-of-order

delivery after splitting reduced significantly as the batch size

of micro-flows increased. When the batch size was set to

256 or above, little overhead was incurred for packet order

preservation in MFLOW. Having a large batch size also pre-

serves optimizations in packet processing. For example, GRO

reassembles small packets into larger ones, thus reducing the

number of packets to be processed. GRO can merge more

consecutive small packets given a larger batch size. Batch size

also has implications on load distribution: If all micro-flows

4Practical UDP workloads implement congestion control upon the UDP
protocol, which adjusts sending rate based on the observed quality of service
such as packet loss, delay, jitter, etc.

have the same batch size and MFLOW evenly distributes them

on multiple splitting cores, CPU utilization of each core would

be similar (as packets go through similar processing).

Ideally, MFLOW can leverage as many cores as possible to

exploit packet-level parallelism. However, in practice, the per-

formance benefit may diminish as the core number increases

due to multiple factors, such as the number of outstanding

packets, batch size, queuing delay, and reassembling overhead.

Our evaluation (in Section V) shows that using two cores

for parallel packet processing greatly accelerates container

overlay networks performance – e.g., even higher than the

vanilla native case. Further, as the original packet processing

bottleneck has been mitigated by MFLOW, a new bottleneck

arises due to data copying from the kernel to the user-space

application. We will discuss this issue in detail in Section V.

B. Flow Reassembling

A key design goal of MFLOW is not to involve out-of-order

packet delivery due to MFLOW’s splitting mechanisms and

parallel processing. We note that splitting a single flow into

micro-flows ensures that packets in each micro-flow naturally

preserve their arrival orders. However, since each core may

have different processing capability and/or be interrupted by

other concurrent kernel tasks, packets of different micro-flows

may not preserve their arrival orders after parallel processing.

To preserve the original sequences of micro-flows, MFLOW

devises an efficient batch-based flow reassembling mecha-

nism. As depicted in Figure 6c, for heavyweight network de-

vices (or functions) that need packet-level parallelism, MFLOW

creates per-core, per-device buffer queues (�). Then, for

each splitting core that finishes the processing of a packet,

it enqueues the packet to its buffer queue (�), instead of

directly sending it to the next processing stage. Meanwhile,

each micro-flow is associated with an identifier which is

incremented based on the position of the micro-flow in the

original flow 5. In other words, the ID reflects each micro-

flow’s order in the original flow. MFLOW uses a global merging
counter to keep track of the ID of the micro-flow being

merged. To merge a micro-flow, MFLOW (1) locates the buffer

queue that stores the packets having the ID same as the

merging counter; (2) fetches the packets from the buffer queue;

and (3) sends them to the next processing queue/stage (�
and �). MFLOW keeps consuming packets from the same

buffer queue until the next packet stores a different ID than

the merging counter, indicating that MFLOW should move to

consume the next micro-flow. After MFLOW increments the

merging counter, it repeats step (1).

MFLOW’s batch-based flow reassembling approach has the

following advantages: (1) The per-core, per-device buffer

queues (used to cache intermediate micro-flows) ensure that

each core can keep processing packets without being blocked

by the merging process. (2) Packets are “re-ordered” on a per-

batch basis, which is extremely efficient, especially compared

to the kernel’s existing per-packet reordering mechanism using

5MFLOW stores the ID information in each packet’s skb data structure.
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an out-of-order queue. It also indicates that using a large batch

size can significantly reduce merging overhead – i.e., MFLOW

does not need to frequently switch between buffer queues to

locate the next micro-flow.

Note that, although it makes intuitive sense to merge micro-

flows right after a heavy device/function and before the next

processing stage, we find that micro-flows can actually be

merged as late as possible as long as the following packet

processing is stateless (i.e., no inter-packet processing de-

pendency). For example, for UDP flows, micro-flows can be

merged right before being delivered to user-space applications.

The advantages for the late merging are as follows: (1)

MFLOW can reuse existing in-kernel backlog queues 6 as

buffer queues with reduced queuing delay. (2) MFLOW can

parallelize the full packet processing path with fewer splitting

cores (in Figure 5). (3) Packets are being processed on the

same core with good data locality.

IV. IMPLEMENTATION

We have implemented MFLOW on the Linux network stack

with kernel version 5.7 (∼600 LoC of addition or modifica-

tion) with the focus on the presented splitting and reassembling

mechanisms as stated in Section III. MFLOW is available at:

https://github.com/jlei23/mflow.git.

Flow-splitting function: MFLOW implements the flow-

splitting function by re-purposing a state transition function,

netif_rx. Originally, such a state transition function en-

queues a packet (i.e., its skb) into the current core’s backlog
queue for future processing on the same core. MFLOW, instead,

splits received packets of a flow – that requires packet-level

parallelism for a heavy network device – into micro-flows (�
in Figure 6a) and enqueues each micro-flow’s packets onto

one selected splitting core (� in Figure 6a). MFLOW creates

and associates the per-core, per-device splitting queues to the

device’s NAPI structure napi_struct (� in Figure 6a),

which can be easily accessed by the network device’s softirq

handler once executed on the splitting cores (� in Figure 6a).

IRQ-splitting function: MFLOW implements the IRQ-

splitting function in the Mellanox NIC driver – its softirq

handler (mlx5e_napi_poll). The IRQ-splitting func-

tion relies on two inputs from the driver code: a re-

quest queue (mlx5e_rq), and the way to retrieve re-

quests (mlx5e_poll_rx_cq) (� in Figure 6b). With this,

MFLOW, once enabled, can retrieve any available incom-

ing packet requests in the context of the physical NIC’s

softirqs and dispatch them onto selected splitting cores (�
in Figure 6b). MFLOW creates and associates the per-core

request buffer to Linux kernel’s per-core data structure,

softnet_data, which can be easily accessed in a softirq

context (� in Figure 6b). MFLOW implements the second half

(� in Figure 6b) as a regular softirq handler (scheduled by

kernel’s NAPI scheduler and executed on the splitting cores).

6In delivering packets to a user application, the kernel uses a backlog queue
to store packets temporarily while the receive queue is being used by the
application’s receiving thread.

The second half can be processed in parallel most of the time

except when it needs to update the driver that a packet request

has been consumed (i.e., after its skb has been created) and

can be released (i.e., can be reused for another incoming

request). To reduce any possible contention, MFLOW updates

the driver once in a while (e.g., every 128 requests).

Flow reassembling: The implementation of batch-based flow

reassembling uses two queues – the backlog queue for receiv-

ing packets from the previous network processing stage and the

receive queue for delivering packets to user-space applications.

Under UDP, sk_receive_queue serves as the backlog

queue, while reader_queue serves as the receive queue.

Under TCP, sk_backlog serves as the backlog queue, while

sk_receive_queue serves as the receive queue. MFLOW

extends the backlog queue into per-core buffer queues (�
in Figure 6c), with each serving one splitting core. Thus,

all packets from the previous stage are first cached in the

buffer queues (� in Figure 6c) before merging. MFLOW does

not create a new kernel thread for executing the merging

functionality (Section III-B). Instead, it adds the merging

functionality in the existing kernel thread for packet delivery,

i.e., tcp_recvmsg for TCP and udp_recvmsg for UDP

(� and � in Figure 6c). These threads will be woken up

when new packets arrive, during which MFLOW checks which

micro-flow’s packets should be merged.

V. EVALUATION

We have evaluated the effectiveness of MFLOW. Results

with micro-benchmarks demonstrate that: (1) MFLOW signif-

icantly improves the throughput of an elephant single flow

– by 81% for TCP and 139% for UDP compared to vanilla

overlay networks; (2) MFLOW achieves even higher throughput

than the native under TCP (29.8 vs. 26.6 Gbps); (3) MFLOW

reduces average and tail latency for both TCP and UDP.

Results with real-world applications demonstrate significant

application-level performance benefits brought by MFLOW–

the performance of a web serving application increases by up

to 7.5x, while the latency of a data caching application reduces

by up to 48%, compared to vanilla overlay networks.

Experimental configurations. The experiments were per-

formed on two PowerEdge R740XD servers, each with 2×16-

core Intel Xeon Gold 5218 processors (2.30 GHz) and 384 GB

memory. The two machines were connected directly by Mel-

lanox ConnectX-5 EN 100-Gigabit Ethernet. We used Ubuntu

20.04 (with the kernel version 5.7) as the host OSes and the

Docker overlay network mode (with Docker version 19.03) as

the container overlay network. Docker overlay network uses

Linux’s builtin VxLAN. We evaluated the following cases:

(1) native: the physical host network (i.e., no containers); (2)

vanilla overlay: containers with the default docker overlay

network (VxLAN); (3) RPS: containers with Linux RPS [20]

enabled; (4) FALCON: containers with FALCON [22] enabled

– the state-of-the-art in-kernel parallelization optimization for

container networks; and (5) MFLOW.

For MFLOW, unless otherwise specified, we set the batch

size to 256 and the number of splitting cores to 2, evenly
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Fig. 8: (a) Performance comparisons between state-of-the-art approaches and MFLOW. (b) CPU utilization breakdown.
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Fig. 9: Latency comparisons between state-of-the-art approaches and MFLOW under different message sizes.

distributed micro-flows to the splitting cores and enabled full

path scaling for TCP and device scaling for UDP (in Figure 5).

For all tests, CPU and memory resources were sufficient. All

experiments were run multiple times to mitigate variation.

A. Micro-benchmarks

Single-flow throughput: To measure the throughput of a

single flow, we used sockperf [21] to generate traffic with

various message sizes. Note that when a message is larger than

MTU (1,500 bytes), it will be fragmented into multiple packets

during transmission. For TCP, we used a pair of sockperf
client and server. However, the client under UDP was often

bottlenecked (i.e., overloading a CPU core). Hence, similar to

FALCON [13], we used three sockperf clients to send traffic

to one sockperf server to stress the network stack on the

receiver side to its limit for a UDP flow.

In Figure 8a, MFLOW improved the throughput of a single

flow significantly, especially with large message sizes (e.g.,

64 KB), by 81% for TCP and 139% for UDP, compared to

vanilla overlay. Under TCP, MFLOW even achieved higher

throughput than the native – 29.8 Gbps vs. 26.6 Gbps. It

is because although the native network was much simpler

than overlay network, a single core (for skb_allocation)

was overloaded at the high throughput. In contrast, MFLOW

leveraged multiple cores to process a single flow in parallel.

For UDP (under 64 KB), MFLOW achieved lower throughput

than the native. The reason is that, under UDP, the clients were

throttled after they overloaded client-side CPU cores.

Compared to FALCON, MFLOW achieved 22% more

throughput under TCP and 21% more under UDP (with 64

KB). It indicates that exploiting packet-level parallelism can

keep pushing the in-kernel network stack to achieve higher

network performance. For UDP under small message/packet

size (16B), MFLOW achieved even higher performance than

FALCON – more than 40%. For TCP with a small packet size

(16B), both FALCON and MFLOW did not help much (similar

to the vanilla overlay). This is because the TCP client became

the bottleneck. This also indicates that further optimization

focus should be placed on the sender side.

Single-flow splitting and CPU utilization: Figure 8b shows

how MFLOW splits the TCP and UDP flows and the breakdown

of average CPU utilization on each core (with 64 KB).
For TCP, we tested MFLOW’s full path scaling scenario –

i.e., splitting occurred in the first stage and merging occurred

before packets entered the stateful TCP transport layer. Core

one was used for dispatching raw packet requests to two

separate cores – splitting core two and three. We noticed that,

if all network processings were placed on one splitting core,

the splitting core was easily overloaded (as MFLOW increased

TCP throughput significantly). Hence, to scale the perfor-

mance of a single TCP flow, we further split and pipelined

the processings on two cores for each parallel branch – i.e.,

we used core two only for skb allocation and dispatched the

remaining processings on core four. The same configuration

was applied to core three and five. With this, MFLOW achieved

extremely high TCP throughput for container overlay network

as shown in Figure 8a. Now, we observe that core zero – upon

which a single kernel thread copies data from the kernel ring

buffer to the user-space application – was fully utilized and

became the new bottleneck.
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(a) Message Size: 16B (b) Message Size: 4KB (c) Message Size: 64KB

Fig. 10: Accumulated network throughput with multiple TCP flows under different packet sizes.

(a) Success operation. (b) Average response time. (c) Average delay time.

Fig. 11: MFLOW improves the throughput of a web serving application with reduced response time.

For UDP, we tested MFLOW’s single device scaling sce-

nario – i.e., splitting occurred before the heavyweight VxLAN
device and merging occurred before packets were copied to

applications. As shown in Figure 8b, we placed all network

devices after VxLAN on the same core as they consumed way

less CPU utilization. Core one was used for the first stage

and dispatching packets in the form of skbs to two separate

cores – splitting core two and three. With this configuration,

MFLOW achieved higher UDP throughput than FALCON for

container overlay network (Figure 8a). We noticed that none

of these cores were fully utilized. Instead, the three clients

overloaded their sender-side cores and were the bottleneck.

Single-flow latency: Figure 9 depicts the per-packet latency

of a single TCP or UDP flow with various message sizes.

We measured the latency in the “overloaded” scenario (using

sockperf), in which each case was driven to its maximum

throughput before packet drops occurred. We observe that,

under all cases, MFLOW reduced per-packet processing latency

compared to vanilla overlay, RPS, and FALCON. For example

with 64 KB, compared to vanilla overlay, MFLOW reduced the

median latency by ∼46% and 99th percentile latency by ∼21%

for TCP. It is because MFLOW’s packet-level parallelism

reduces the latency resulting from the pipelined processing

(i.e., the processing of the following packet depends on the

completion of its previous packet). We observe that there

remained a gap in latency between MFLOW and the native

due to prolonged data path in container overlay networks.

Multi-flow testing: We further conducted multi-flow tests –

i.e., multiple flows co-existed within the same host machine.

Since for UDP, clients were the main bottlenecks preventing

MFLOW from saturating available network bandwidth, we

showed the multi-flow TCP case in Figure 10. The message

sizes were set to 16 B, 4 KB, and 64 KB, and the number of

flows varied from 1 to 20. In all tests, we used 5 dedicated

cores for application threads and 10 dedicated cores for

all in-kernel packet processing to have a more controlled

experimental environment for the ease of result analysis.

In Figure 10, with the small message/packet size (i.e., 16

B), all test cases scaled linearly, as the client side became

the bottleneck. With the larger message/packet sizes (i.e., 4

KB and 64 KB), MFLOW consistently outperformed vanilla

overlay – e.g., by 24% with 5 concurrent flows (under 4

KB). This benefit shrank as more flows were added – e.g.,

by 11% with 10 flows and by 5% under 20 flows. It is

because as the flow number increased, there was little CPU

resource to scale up MFLOW. This can be further verified with

the comparison between FALCON and MFLOW – MFLOW

outperformed FALCON by 5% with 10 concurrent flows (with

64 KB) while they achieved the same performance with 20

flows, where CPU was the bottleneck.
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Fig. 12: MFLOW uses CPU cores in a more balanced manner.

Fig. 13: MFLOW reduces the average and tail latency of a data

caching application (Memcached).

MFLOW overhead: Figure 12 shows the average CPU load

distribution among all used cores for the multiple TCP flow

case (with 10 flows under 64 KB). More fine-grained flow

steering in MFLOW does incur additional overhead – compared

to FALCON, MFLOW consumed 15% more CPU utilization

(among 10 cores for packet processing) in exchange for 5%

performance gains. However, this is the worst-case scenario.

We observed less than 5% additional overhead with 5 flows

and the same CPU utilization with 20 flows (the system was

overloaded). On the other hand, the advantage of MFLOW

lies in that, in Figure 12, MFLOW can leverage CPU cores

in a more balanced manner with even load distribution. In

contrast, CPU utilization variation under FALCON was larger

than MFLOW – i.e., the standard deviation of CPU utilization

among 10 cores was 20.5 (FALCON) vs. 11.6 (MFLOW).

B. Applications

In this section, we use two representative real-world appli-

cations, web serving and data caching, to evaluate MFLOW.

Web serving: We measured the performance of Cloudsuite’s

Web Serving benchmark [24] under vanilla overlay, FALCON,

and MFLOW. Cloudsuite’s Web Serving – the benchmark to

evaluate page load throughput and access latency – contains

four components: an nginx web server, a mysql database,

a memcached server, and clients. The web server runs the

Elgg [25] social network and connects to the cache and

database servers. The clients send different types of request

workloads, including login, chat, update, etc., to the web

server. In our experiments, all of the services were performed

inside containers that were connected via the Docker overlay

network upon the 100 Gbps NIC.

Figure 11a depicts the “success operation” rate when we

ran the benchmark with 200 users. We observe that MFLOW

improved the successful individual operation rate by 2.3x

– 7.5x compared to the vanilla overlay network. For the

same metric, MFLOW outperformed FALCON by 1.5x – 3.6x.

Figure 11b and Figure 11c present the average response time

and delay time for different operations. The response time

denotes the time to complete one request while the delay

time represents the difference between the target and actual

processing time. Compared to the vanilla overlay network,

MFLOW reduced the average response time by 35% – 65%

while the average delay time by up to 75%. Compared to

FALCON, MFLOW reduced the average response time by 22%

– 54% and the average delay time by 36% – 73%.

Data caching: We further measured the average and tail

latency using Cloudsuite’s data caching benchmark. It uses

the Memcached data caching server, simulating the behavior

of a Twitter caching server with a Twitter dataset. In our

experiments, the Memcached server was configured with 4GB

memory, 4 threads, and 550 bytes object size. The Memcached

server and clients were running under the same Docker overlay

network. As illustrated in Figure 13, compared to the vanilla

overlay network, MFLOW reduced the tail latency (99th per-

centile latency) by 26% when we used one client. When the

number of clients increased to ten, MFLOW’s benefit became

more significant – reducing the average and tail latency by

48% and 47% (99th percentile). It is because, as the number of

clients (and the request rate) increased, the in-kernel network

stack was more stressed. MFLOW improved its efficiency by

using multiple cores for parallel packet processing. In addition,

compared to FALCON, MFLOW reduced the average latency by

22% and tail latency (99th percentile) by 33%, demonstrating

a higher degree of packet processing parallelism.

VI. RELATED WORK

There is a large body of work aimed at optimizing the

in-kernel network stack for efficient packet processing. Fo-

cus has been on eliminating redundant data copy [26]–[29],

improving interrupt locality [26], [28], [30], [31] and load

balance [30], and alleviating packet processing overhead via

interrupt coalescing [32] and system call batching [33]. How-

ever, some work reported that both latency and throughput are

still many times worse than the hardware can achieve [28],

[34]. Some other papers proposed lightweight and customized

network stacks [34]–[39] to improve the network performance.

However, such designs require changes to the application-

kernel interface, not compatible with legacy applications.

Alternatively, research has shifted to bypass the OS kernel

and implements the network stack entirely in user space [37],

[40], [41]. Benefits of user-space approaches include a reduced
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number of context switches and direct hardware access that

eliminates much of the indirection and overhead in the kernel.

Intel’s Data Plane Development Kit (DPDK) [40] is one such

example of user-space libraries. In contrast, MFLOW does

not re-design in-kernel network stacks but instead focuses

on exploiting network processing parallelization at the packet

level for container overlay networks. Hence, MFLOW preserves

the current design of overlay networks and retains all existing

network management tools.

To address the inefficiencies of container overlay networks,

recent work seeks to either eliminate packet transformation

from the network stack or parallelize packet processing. For

example, Slim [15] can bypass the virtual bridge and the

virtual network device in containers, achieving near-native

performance. However, Slim does not apply to connection-

less protocols, such as UDP, and limits the scalability of

host network management as each Slim overlay network

connection needs a unique file descriptor and port created in

the host network. FALCON [13] parallelizes packet processing

in container overlay networks by pipelining software interrupts

associated with different network devices of a single flow on

multiple cores — achieving device-level parallelism. In con-

trast, MFLOW investigates unexploited packet-level parallelism

in the kernel network stack.

VII. CONCLUSIONS

We have presented MFLOW, a novel in-kernel packet steer-

ing approach to accelerate container overlay networks by

exploiting packet-level parallelism. MFLOW splits the packets

of a single flow into multiple micro-flows and processes them

in parallel by taking advantage of a multi-core system while

efficiently preserving in-order packet delivery. Our evaluation

with both micro-benchmarks and applications demonstrates

the effectiveness of MFLOW. Meanwhile, the results have

revealed new bottlenecks that prevent a single flow from

further scaling: One lies in clients/senders and the other is the

receiver-side single data-copying thread. We seek to address

these bottlenecks in our future work.
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