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Abstract—In this paper, we present our first experimental
results on self-driving vehicles using high-definition maps. We
will start with the CAN bus based Drive-By-Wire subsystem, on
board computers, and the sensors used in this study. Then, we
discuss the sensor fusion and vehicle guidance algorithms, and
finally present our experimental results. We also have a video
recording of our experiment, and its YouTube link is shared in
the paper. All of the experimental results and plots presented
in the paper, and the video link refer to the same self-driving
experiment that we did on the Florida Polytechnic University
campus. The autonomous vehicle (AV) methodology adopted in
this work has some similarities with the Cruise AV’s approach
and the use of high definition (HD) maps. The research vehicle
used in this work is equipped with radar, lidar, camera, GPS, and
IMU sensors, but in this work we use only the GPS, wheel rotation
and camera sensors. After presenting our first experimental AV
results, we comment on sensor fusion related issues, and possible
future steps for improvement.

Index Terms—Self-driving vehicles, Sensor Fusion.

I. INTRODUCTION

In 2019, Florida Polytechnic University received an NSF
grant about autonomous vehicles research, and in this paper,
we present our first successful self-driving vehicle experimen-
tal results, see Fig. 1. We will first present the system architec-
ture, then discuss algorithm selection, and finally comment on
possible future steps. The research vehicle used in this work
is a Ford Fusion plug-in hybrid, and it has both sensors and
actuators at the steering wheel, at the throttle pedal, and at the
break pedal. These sensors and actuators are all on a CAN
network, and they enable the vehicle’s electronic control by
using the on-board computer(s).

The research vehicle used in this work has three separate
computers, two of which are GPU equipped and have the
lambda Al stack, and one SpeedGoat Real-time target ma-
chine. There is a CAN bus network connecting all sensors,
actuators, and the computers. There is also a high-speed
ethernet bus connecting all computers to each other. The GPS,
radar, lidar and camera sensors are treated differently, as they
are on different high-speed buses. The GPS data volume is
not high, and it is currently using a direct USB connection to
one of the Intel x86-64 computers. The radar has CAN bus
interface, and is it connected to one of the CAN ports of the
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PCle add-on of the computer inside the trunk, see Fig. 2 for
details. Lidars and cameras have Gigabit ethernet interfaces,
and are connected to the Gigabit Ethernet ports of a different
PCle add-on of the same computer inside the trunk. Use of
separate PCle add-on cards for both CAN and Gigabit ethernet
provides a much larger bandwidth and lower delay compared
to USB based wiring. Basically, the research vehicle’s speed is
mainly limited by how fast the sensor data can be transferred
to the on-board computers, how fast the sensor data can be
processed, sensor fusion can be completed and finally how
fast these decisions can be sent to the actuators. Therefore,
USB based sensors are kept at a minimum.

Figure 1. Our first self-driving vehicle experiment demo video, https://www.
youtube.com/watch?v=2kEqh4 AuMGo

The AV methodology adopted in this work is based on
high-definition mapping. The literature on high definition
maps is really immense, and it is not possible to provide a
comprehensive review in a single paragraph. But, we would
like to cite [1] where a lidar based high-definition mapping
technique is presented using scan-matching. High-definition
map creation is a demanding task, and its automation or
semi-automation is of extreme importance. In [2], a machine
learning based HD-map creation approach is introduced to
streamline this complex process. Use of GPS/GNSS together
with HD-maps can be quite effective for self-driving vehicles,
see [3]. In [4], a crowd sourcing approach is used for high-
definition map creation, again a practical and quite useful
idea for streamlining the creating and maintenance of high-
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definition maps. We also would like to cite [5] as a related
work for use of HD-maps for autonomous robotic systems.

This paper is organized as follows: In Section II, we start
with System Hardware. System software is presented in Sec-
tion III, Sensor Fusion approach is presented in Section IV, and
the experimental results are presented in Section V. Finally, we
make some concluding remarks in Section VI.

II. SYSTEM HARDWARE

Our research vehicle is a Ford Fusion plugin hybrid, and it
has total 3 separate on-board computers, see Fig. 2. The first
one, is a dual Linux/Windows laptop with Intel i7-11850H,
32GB RAM, 1TB SSD (Linux) + 1TB SSD (Windows),
NVIDIA GeForce RTX 3050 Ti. This computer is located
inside the vehicle, and is connected to a docking station. The
CAN bus access is through a Kvaser USB cable with two
seperate CAN bus endpoints. The remaining two computers
are inside the trunk, and they are all automotive grade vibration
resistant, and passively cooled devices. One of them is a
SpeedGoat Mobile Real-Time target machine with Intel i7
CPU and four separate CAN bus interfaces. This device allows
control models built in Simulink to be executed in real-time,
and its is used mainly for running non-Al algorithms. The
second computer inside the trunk is a desktop with Intel i9-
9900 hexa-core, 64GB RAM, 1TB SSD (Linux) + 1TB SSD
(Backup/Data), Quadro RTX-A4000 16GB GDDR6 140W
GPU, two Gigabit Ethernet ports, two software programmable
RS232/422/485 ports, a PCle add-on providing four additional
Gigabit Ethernet ports for high speed cameras, and lidars,
another PCle add-on providing four low-latency CAN bus
end points. Both Linux computers have Ubuntu 20 LTS
distribution of Linux, and have the lambda Al stack installed
for CPU accelerated Al processing. There is also an on-board
router connecting all of these computers to each other over a
dedicated Gigabit ethernet.

Figure 2. On the right, the Intel x86-64 laptop with NVIDIA GPU located
inside the vehicle, and on the left a more powerful Intel x86-64 desktop with
NVIDIA GPU, a SpeedGoat Mobile Real-Time target machine (Intel x86-64
based), and an a Samlex inverter located inside the trunk.

A. CAN bus network, sensors and actuators

Our research vehicle is equipped with several sensors and
actuators. These include a torque sensor and an angular posi-
tion sensor connected to the steering wheel, a motor connected
to the steering wheel; position sensors connected to the throttle
pedal, and the break pedal, and electromechanical actuators

connected to the throttle pedal, and the break pedal. All of
these sensors and actuators are on a CAN bus, and there is
a breakout box, see Fig 3, that allows multiple DB9 CAN
connectors to be connected to the system. In Fig. 3, there are
two CAN cables: (1) A Kvaser USB CAN cable with a single
end-point, and can be used by a laptop, and (2) A regular CAN
bus cable (purple color) connected to an STM32 ARM Cortex-
MA4F microcontroller board operating in bare-metal mode, i.e.
no operating system just an embedded C/C++ code running
on the controller.

Figure 3. On the right, CAN breakout box that provides five DB9 CAN
connectors, a Kvaser USB CAN cable with a single end point (black color),
and a regular CAN bus cable (purple color). On the left, a STM32 board
running an embedded C/C++ code for low-speed longitudinal control.

III. SYSTEM SOFTWARE

In this section, we will summarize our system software and
the development workflow adopted by our research team. To
explore different design ideas, we do use different simulators
that are based on MATLAB/Simulink or Python. Ideas proven
to be effective in a simulation study are considered for proto-
typing experiments. During the prototyping phase, we mostly
use Python to implement different ideas and only when tested
and proven to be really effective, then implement in C/C++
and execute either on the on-board computers as standalone
apps, or on the STM32 ARM Cortex-M4F boards in bare-
metal mode, see Fig. 3. Since we are still at the relatively at
early stages of our research, majority of our code is still in
Python. SpeedGoat Real-time target machine, being Simulink
based, is also used for rapid prototyping but it is mainly for
non-Al related control loops. All Al related decision making
currently use GPU acceleration with the help of lambda Al
stack.

A. Software for CAN network access

At the lowest level of abstraction, we need the ability to
send a CAN message, and to read a CAN message with the
possibility of hardware filtering. Our research vehicle’s CAN
network can be used in the following three different ways:

1) An STM32 ARM Cortex-M4F microcon-
troller ~ operating in  bare-metal form, and
using HAIL_CAN_AddTxMessage and
HAL_CAN_GetRxMessage functions which are
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simply wrappers for the CAN peripheral access using
special function registers. Basically, below this level we
have assembly instructions. Full details are available in
the STM32Cube documentation.

2) Linux kernel has built-in support for CAN devices using
the so called SocketCAN framework. SocketCAN is
similar to the Berkeley socket API, and implements the
CAN device drivers as network interfaces. Therefore,
SocketCAN devices can be used, read or written similar
to a network socket. This greatly simplifies the software
development, but it limits us to computers running Linux
only.

3) There are also third-party companies like Kvaser, and
they have their own API for reading or writing CAN
messages, and configuring the CAN network. These
third party companies provide the same API for both
Linux and Windows platforms, which makes AV re-
search and prototyping easier.

In this research, we used all of these CAN network access
techniques at various different stages. The first one is prob-
ably the best for final deployment, but the last one is more
practical during the early stages of system development. For
this last alternative, our experience suggests the use of PCle
over USB, and this is mainly to minimize latency, maximize
control loop sampling frequency and maximize the upper limit
imposed on the vehicle speed because of computational and
communication related delays.

In our research vehicle, CAN messages generated by the
sensors are called CAN reports, and CAN messages sent to
the actuators are called CAN commands. In the following, we
present two representative samples.

B. CAN steering command

For a self-driving vehicle application, there will be a control
loop running on the on-board computers. It will start with
sensor data acquisition, then continue with processing and
decision making. But at the end, these decisions should
be “sent” to something/somewhere to physically change the
steering angle. This last step is done by generating a CAN
packet, and writing it to the CAN network. Such packets are
called CAN commands, because they contain actuator related
”commands” which will be interpreted and executed by the
actuator hardware.

The CAN message sent to the motor controlling the steering
wheel is called the CAN steering command. This message has
the message ID 0x064, receive rate of 20ms, and timeout of
100ms. The payload of the CAN packet is 8-bytes, the first
two bytes are interpreted as a 16-bit signed integer in 2’s-
complement format and the steering angle floating point value
is obtained by multiplying this signed number by 0.1 degrees.
The steering angle is physically limited to 470 degrees. If a
CAN message is not received within timeout period, then the
Drive-By-Wire system disengages as a safety feature and the
system returns back to full manual-control mode.

Basically, at the end of our control-loop, we write a CAN
steering command type CAN packet to the CAN bus to re-

adjust the steering wheel. With careful coding, we were able
to achieve about 10+Hz control-loop frequency.

C. CAN wheel-speed report

For a self-driving vehicle, the control loop will start with
sensor data acquisition. For cameras, we do use dedicated
high-speed Gigabit ethernet cables between the camera and
the computer that will process the camera data. Information
from vehicle sensors like wheel-speed sensors, steering wheel
torque sensor, etc are all transmitted to the control-loop
hardware using the CAN bus network. Once all sensor data
is acquired, then the control-loop will start processing and
decision making, and finally transmit control decisions to the
actuators. A CAN packet generated by the sensor hardware
and carrying sensor measurement data is called a CAN report.

The CAN message sent by the wheel sensors has the
message ID 0x06A, and transmit rate of 10ms or 100 Hz.
The payload of the CAN packet is 8-bytes, and the first two
bytes correspond to the front-left wheel speed, the second two
bytes are front-right wheel speed. The rest of the four bytes in
the CAN packet payload is used for the rear wheel speed. For
each wheel, the 16-bit quantity is interpreted as a 16-bit signed
integer in 2’s-complement format and the actual floating point
value of the wheel speed is obtained by multiplying this signed
number by 0.01 rad/s.

IV. SENSORS AND SENSOR FUSION

In this section, we will go over the basics of our sensors,
and the sensor fusion approach adopted in this work. Literature
on sensor fusion is really immense and it has applications
in almost all engineering disciplines, [6]. Kalman filtering
approach to sensor fusion [7] is highly popular because
the cases addressed by Kalman filtering are quite common,
equations are easy to use in a real application, and objectives
are also quite relevant for a good number of real applications.
For our self-driving vehicle experiment, we do have multiple
sensors with different update rates, therefore an “extended”
version of the Kalman filtering approach is really needed [8].

A. GPS and Wheel rotation-speed sensors

Our GPS sensor is U-blox F9 high precision GNSS module
operating at 115,200 bps baud rate. It provides both position,
and heading information at a rate of 4Hz or 250ms update pe-
riod. Whereas the wheel rotation-speed sensors are providing
sensor data every 10ms or at 100Hz refresh rate. These sensors
do not have synchronized clocks, which makes the problem
even more complicated. In other words, we do know that the
update rate of the wheel sensor is approximately 25 times
faster than the GPS, but since clocks are not synchronized
and may run at slightly different speeds, a rigorous analysis
is more complicated compared to a standard Kalman filtering
problem.

For the kinematic model of the vehicle, we assume Acker-
man steering to be able to use the simplified bicycle model
[9], [10]. We also assume that between two GPS readings,
there will be no wheel slip. A four wheeled vehicle’s equations
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of motion are not simple linear state-space equations of the
form ©# = Axz 4+ Bu, indeed it is highly nonlinear with
complicated constraints [11]. But, when considered in a small
time-window, they are usually linearized to simplify the sensor
fusion problem.

Our initial approach was to use a semi-heuristic compli-
mentary filtering approach [12]. In summary, if we have two
sensors with one being more accurate/reliable but with a
slower response, and another one being less accurate/reliable
but with faster response, a good compromise solution is to
use what is known as the complimentary filtering approach.
Note that, our GPS sensor can be viewed as 100 Hz refresh
rate position sensor when “missing” points are calculated via
interpolation. We also intentionally delay GPS sensor data by
0.25 seconds to be able to get a smooth interpolated sensor
output without using any extrapolation technique which may
lead to possible jumps or discontinuities. Furthermore, we also
make the simplifying assumption that clock rate between two
sensors are exactly 25, and ignore the small phase difference
between two sensor clocks. These are mild assumptions for
a self-driving vehicle experiment at low-speeds and simpli-
fies the math considerably. However, at higher speeds these
assumptions will not be justifiable, and may lead to larger
tracking errors and/or catastrophic results during a self-driving
experiment.

If z; is the sensor with a more accurate/reliable output
but with a relatively slower response (Our interpolated GPS
sensor), and w9 is the wheel-speed sensor, with less accu-
rate/reliable output but much faster response, then the equation

xe = H1(2)z1 + B(zo)Ha(2) 22

can be used for sensor fusion. Here we have chose Hi(z) as
a discrete-time low-pass filter with cut-off frequency of 5 Hz,
and Hy(z) as the complimentary high-pass filter. The term
B is a matrix computed by using all of that state variable
of the vehicle, including the position, heading, steering angle,
and may include complex tire-models as well. The augmented
state variable z,, represents the augmented state which contains
both position/heading, and all other state variables used in the
vehicles kinematic model. Finally, z. represents the result of
the sensor fusion process.

B. Camera and Semantic Segmentation

Our self-driving vehicle also has a 50 Hz update rate hi-
resolution machine vision camera, and we run Al models to
find the center of the drivable area. Use of AI models for
steering control has a long history going back to 1990s [13].
More recent results, [14], are based on the use of convolutional
neural networks for steering angle control. These end-to-end
control approaches are different than our proposed approach
based on semantic segmentation. One can argue that the Al
problem is possibly simpler in our approach, because the Al
model need not learn the vehicle’s dynamical model. But
compared to the complexity of semantic segmentation, the
vehicle’s dynamical model will be a simpler complexity thing
to learn. Therefore, a rigorous comparison is not easy, but we

would like to re-iterate that we are not using an end-to-end
steering control approach.

In Fig. 4, a sample camera image captured during a self-
driving experiment is presented.

Figure 4. Front camera view while driving on the campus loop.

The image obtained from this camera is fed to a semantic
segmentation model to generate the segmented image shown in
Fig. 5. In this particular case, we are using the PSP (Pyramid

Figure 5. Semantic segmentation of the camera view shown in Fig. 4. The
purple color represents the pixels associated with the drivable road.

Scene Parsing Network) Resnet101 trained with the cityscapes
dataset. Based on our experience, we recommend the use of
the Apache MXNet library and models available in its model
zoo. Otherwise, one may need to resolve issues related to
version differences linked to tensorflow and all other additional
tools. Although this may limit us to the models available in
the MXNet model zoo, it greatly streamlines the Al related
software.

After semantic segmentation is completed, we have a con-
trolled erosion stage, then connected components analysis, and
finally a moments based approach to find the center of the
main drivable area. A limited smoothing is also applied to
generate a smoother curve. The final automatically generated
lane center is shown in Fig. 6. Note that this is obtained first
by using the PSP-Resnet101 Al model, followed by a couple
of openCV operations.
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Figure 6. The yellow colored line is the automatically generated lane center.
This is obtained by using the PSP-Resnet101 Al model, followed by a couple
of more analytical openCV steps.

V. EXPERIMENTAL RESULTS

In this section, we summarize our experimental results. Note
that, the video recording of the experiment is available at https:
/Iwww.youtube.com/watch?v=2kEqh4AuMGeo, see Fig. 1.

In Fig. 7, we see a map of the campus obtained from
OpenStreetMaps. Our self-driving vehicle experiment starts at
the I-4 gate of the IST building, and ends at the Wellness
Center parking lot. Unfortunately, OpenStreetMaps does not
provide a high definition map, but since the Florida Poly-
technic University Campus has a simple map consisting of
a typical campus loop with some additional side roads, it is
relatively easy to construct a simple HD-map of the campus.
Our current HD-map consists of only lane information, and
no other details like stop sign locations, speed-limit region
definitions, etc. These are considered as future work.
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Figure 7. Florida Polytechnic University campus map shown on Open-
StreetMaps. The starting point is the I-4 gate of the IST building, and
destination is the Wellness Center parking lot.

In other words, our campus HD-map is stored as a directed
graph with only direction/heading info about each node. Note
that, nodes at intersections have multiple direction/heading

possibilities. Once a destination is selected, a maze solver
is executed to extract a feasible route from the HD-map of
the campus. In the future, nodes are expected to have more
features, like proximity to a stop sign, or being a member
of a specific region. Currently, our HD-map data structure
does not support regions, but again this is considered as
future work. In Fig. 8, we have a route extracted from the
campus HD-map. Note that, in Fig. 8, we use a simple locally
linear transformation to map GPS coordinates to cartesian
coordinates in cm, and the route starts from the upper-left
end and ends at the lower-right end of the curve.
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Figure 8. Route extracted from the HD-map of the campus. GPS coordinates
are converted to cm by using a simple locally linear transformation.

In Fig. 9, we see the deviation of the vehicle trajectory
compared to the extracted route. Blue dots, and red arrows
define the route extracted from the HD map, and green dots
are vehicle’s GPS coordinates recording during the self-driving
experiment. This figure is the detailed view of a 90° degrees
turn while entering the parking lot.

e

/

-

Figure 9. HD-map of a portion of the campus. Blue dots, and red arrows are
part of the HD map, and green dots are vehicle’s GPS coordinates.
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Finally, in Fig. 10, we see the overall tracking error of the
self-driving vehicle relative to the route extracted from the
HD-map. All of the peaks in the tracking error occur when
the vehicle is making a turn. This is possibly because of the
simple guidance logic used in this preliminary work, and a
model predictive control like approach is expected to reduce
this error significantly. The initial large error is mainly because
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Figure 10. Tracking error of the self-driving vehicle relative to the HD-map.

of vehicle’s initial location not being on the road defined by
the HD-map. In other words, we started the experiment while
the vehicle was parked near but not on the road defined by
the HD-map.

VI. CONCLUSION

In this paper, we presented out first successful self-driving
vehicle experimental results and shared its video recording.
Compared to our earlier work [15], we now able to accomplish
several more complex objectives with significantly improved
autonomy. This is based on the use of high-definition maps,
and sensor fusion. Our main focus was on lateral control,
and the longitudinal dynamics was controlled separately by
an independent control loop running on an STM32 microcon-
troller device. For lateral control, we used GPS, wheel rotation
speed sensors, and a forward looking camera. Part of the
sensor fusion is based on what is known as the complimentary
filtering, and the AI processing was based on mainly the
PSP-Resnet101 trained with the cityscapes dataset. Our initial
results seem quite promising, with errors mainly occurring at
sharper turns. We plan to address this issue by considering
better sensor fusion and guidance logic, as well as more
accurate/detailed vehicle kinematic models.
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