
Vehicle Level Software Design of the
Florida Polytechnic Autonomous Golf-Cart

Heitor Tremura
Electrical and Computer Engineering

Florida Polytechnic University
Lakeland FL, 33805

Email: htremura3005@floridapoly.edu

Onur Toker
Electrical and Computer Engineering

Florida Polytechnic University
Lakeland FL, 33805

Email: otoker@floridapoly.edu

Abstract—In this paper, we summarize some of the design and im-
plementation related aspects of the Florida Polytechnic Autonomous
Golf-Cart, and present details of the low-level microcontroller based
subsystem, two-way non-blocking communication details, and the
lightweight software subsystem based on the co-operative multitask-
ing approach. Autonomous vehicles research is becoming a larger
field each day. As technology progresses, we want to develop more
efficient and smarter vehicles which can transport us with little
to no input from the motorist, and electric golf carts are valuable
assets towards this goal. In the scientific literature, there are several
published results and proposed architectures for autonomous golf
carts, and we will review some of major ones, describing pros and
cons of each design approach, and how they relate to our design and
implementation. However, our main focus will be the vehicle level
software design.

I. INTRODUCTION

Golf carts have always been an attractive tool for autonomous
vehicles research. Being relatively inexpensive and easy to acquire
makes them ideal for research projects [1]. Research topics
focused on golf cart-based matters often base themselves around a
combination of many systems with varying complexity. Research
is similarly performed on frameworks for autonomous systems
in educational robotics, involving many solutions to comparable
problems [2].

A great number of complex components must be involved in
creation of an autonomous vehicle. This requires some archi-
tecture which can combine different systems. Because of the
complexity of the problem, these parameters frequently require
a sensor-fusion approach to make them work [3]. Inputs must be
combined and weighed accordingly to make informed decisions
when navigating to drive the relevant motors. Inputs can range
from ultrasonic sensors, laser scanners, and thermal sensors to
devices as simple as a compass. There must also be sensors to
measure the angle of the steering wheel and speed of the wheels
[3]. All these sensors send their information to some centralized
computer which weighs the values and makes decisions based on
its understanding of the current variables dictating the golf cart’s
position and speed. Oftentimes a CAN bus is used to coordinate
the multiple sensors and devices which must communicate [3],
[2].

In this paper, we briefly summarize the Florida Polytechnic
Electric Golf-Cart and mainly focus on the low-level microcon-
troller based subsystem, two-way non-blocking communication
between the microcontroller and the vehicle computer, and the

lightweight software subsystem based on the co-operative multi-
tasking approach.

This paper is organized as follows: In Section II we present
a short summary of previously published autonomous golf-cart
architectures, and in Section III we present the design and
implementation related aspects of the Florida Polytechnic Au-
tonomous Golf-Cart, details of the low-level microcontroller based
subsystem, two-way non-blocking communication system, and the
lightweight co-operative multitasking based software subsystem.
In Section IV, we make some concluding remarks and discuss
future research directions.

II. REVIEW OF AUTONOMOUS VEHICLE SYSTEMS

Regarding the use of the word “Autonomous” there are several
levels of autonomy as defined by SAE International [4]:

• Level 0: No Driving Automation.
• Level 1: Driver Assistance.
• Level 2: Partial Driving Automation.
• Level 3: Conditional Driving Automation.
• Level 4: High Driving Automation.
• Level 5: Full Driving Automation. Permits engagement of the

Automated Driving System in all road conditions manageable
by a human driver.

Organized on all the vehicles is an assortment of sensors. The
following sensors are most commonly present on autonomous golf
cart vehicles:

• Stereo RGB Cameras, [1], [2], [5], [6]. These are used in
conjunction with sensor fusion to determine distance from
vehicle.

• LiDAR, [1], [2], [6], [7]. LiDAR is used in much the same
way as the RGB Camera setup. Light waves are emitted and
return times are measured to determine distance from vehicle.

• GPS (Global Positioning System), [1], [3], [2], [5], [6], [7].
Likely one of the most crucial sensors for a great bulk of
autonomous vehicles research. The GPS can determine the
vehicle’s position on the planet Earth.

Also present on many of the testbed golf carts is some way
for a human operator to interact with the vehicle and provide
immediate input. Often this is due to the autonomous golf cart
vehicles being below or at Level 3 automation as defined by SAE
[2], [4].

In the various golf cart architectures, there is a great difference
in what algorithms and implementations are used for localization

SoutheastCon 2021
So

ut
he

as
tC

on
 2

02
1

|
97

8-
1-

66
54

-0
37

9-
5/

21
/$

31
.0

0
©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SO
U

TH
EA

ST
CO

N
45

41
3.

20
21

.9
40

18
91

978-1-6654-0379-5/21/$31.00 ©2021 IEEE
Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:43:04 UTC from IEEE Xplore. Restrictions apply.

of the vehicle. They must also, using this localization, execute
some decision making to determine the best course towards the
goal while encountering the least obstacles. Examined in the
papers are the following approaches:

• NDT-matching algorithm, [1]. Mapping and localization
is handled using an open source Autoware “Normal-
Distributions-Transform” laser scan matching [8]. Informa-
tion from the Velodyne LiDAR is processed and aligned with
a pre-computed 3D environment map.

• SLAM Algorithm, [2]. While in the designated autonomous
mode the vehicle will drive by itself using SLAM (Simulta-
neous localization and mapping) in conjunction with Google
Cartographer and a robot localization package in ROS (Robot
Operating System) using the Velodyne LiDAR VLP-16, IMU
VN-100, and Garmin GPS 18x.

• Wheel Odometry and Waypoint Navigation, [5]. By using a
predefined starting position, it is possible to do localization
with data obtained from wheel odometry. Using encoders on
the wheels combined with circumference of the wheel, the
final positioning is determined. This is used by navigation
and path-planning algorithms to establish the current position
and desired subsequent positions as waypoints.

• AMCL in ROS, [6]. An autonomous golf cart is simulated
within Gazebo and researchers use this environment to im-
plement AMCL, which is a localization system for a robot
moving within a 2D space.

• Branch-and-bound algorithm, [7]. Using a node-based map-
ping system and a branch-and-bound algorithm, the computer
can eliminate all of the paths which are not the shortest path.

After this review of published autonomous vehicle architec-
tures, we are now ready to summarize some of the design details
of the Florida Polytechnic Autonomous Golf-Cart System, which
is presented in the next section.

III. FLORIDA POLYTECHNIC AUTONOMOUS GOLF-CART

Florida Polytechnic Autonomous Golf-Cart project is a joint re-
search effort consisting of a large group of faculty and researchers.
In this paper, we will focus on the low-level microcontroller
system, and communication related issues.

Florida Polytechnic Autonomous Golf-Cart is a complex system
with multiple subsystems, see Fig. 1. The final project objective
is to have an autonomous vehicle testbed. The system developed
in [9] has an on-board x86 PC as the master computer, and
a stereo camera, a depth camera, a GPS/GNSS receiver, IMU
sensors, and a Velodyne VLP-16 Lidar. This design is flexible to
be used with various mechanical base systems. In [10], a low cost
hardware-in-the-loop agent-based simulation testbed is proposed.
In [11], an electric golf cart is first converted into a drive-by-
wire system, and then using on-board computers various self-
driving algorithms are tested. The autonomous vehicle system
presented in [12] has Nvidia Drive PX2 as the master computer,
and dSPACE Microautobox as the low-level control unit. Another
interesting electric golf cart based design is discussed in [13].

The high-level block diagram of our proposed design is pre-
sented in Fig 2.

There will be an ARM Cortex-M4F based low-level controller
directly interfaced to the linear actuators, and the DC motor

Fig. 1. Florida Polytechnic Autonomous Golf-Cart.

Battery operated Golf Cart

Linear servo for steering

Linear servo for brakes

ARM
Cortex M4F

Sensor

Nvidia
Jetson Xavier

Sensor

Camera

Laptop PC
Matlab/Simulink

DC Motor
Controller

Sensor

Fig. 2. High-level system block diagram for the proposed golf cart system.

controller of the golf cart. This will be a bare-metal system, and
will support optional SPI and/or I2C sensors.

There will be also an on-board Nvidia Jetson Xavier, interfaced
to a camera. The on-board Nvidia computer will have USB/Serial
connection to the ARM Cortex-M4F board. Furthermore, the same
Nvidia computer will support optional sensors, and can also be
used a the master computer to run various AV algorithms without
the help of the laptop PC. In this case, the AV algorithm has to
be implemented in C/C++, Python, or in ROS framework.

Finally, there will be a laptop PC running Matlab/Simulink
interfaced to both the Nvidia computer and the ARM Cortex-
M4F board. The laptop PC will also support optional sensors, for
example a lidar unit. Basically, the laptop PC can be used as the
master computer to run AV algorithms, with or without the help
of the Nvidia computer. The Nvidia computer can be completely
turned off, or it can function as a slave computer. A typical
application can be the Nvidia computer doing computer vision
as a slave computer, and the master computer (laptop PC) using
this Nvidia computer simply as another sensor block/subsystem.

The Nvidia Jetson Xavier is an 64-bit 8-core ARM computer

SoutheastCon 2021

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:43:04 UTC from IEEE Xplore. Restrictions apply.

with 512-core Volta GPU. This will be used with an internal SSD
and a external protective case. Compared to the Nvidia Drive PX2
used in [11], it is less powerful but much more economical.

A. Communication Abstraction Layer

We are currently developing a two-layer based solution for the
microcontroller software. Our plan is to have a non-OS based
lightweight solution using the co-operative multitasking approach.
The first layer will be a communication abstraction layer, and will
have the following functions.

• is_RX_error() checks for a general receive error, which
includes but not limited to overflow, framing errors, and
parity errors. This is a non-blocking function which returns
almost immediately.

• is_RX_ready() checks whether a receive is completed,
and a packet is ready to be read. This is a non-blocking
function which returns almost immediately.

• get_RX_data() copies the complete received packet to a
given location, and returns. This is a non-blocking function
which returns almost immediately.

• is_TX_error() checks for a general transmit error, which
includes but not limited to overflow, and other types of
errors. This is a non-blocking function which returns almost
immediately.

• is_TX_ready() checks whether the transmit system has
a free buffer space to copy a new packet. This is a non-
blocking function which returns almost immediately.

• send_TX_data() copies the complete packet to be trans-
mitted from a given location to an internal buffer, and
returns. This is a non-blocking function which returns almost
immediately.

There will be certain data structures hidden from the user of this
layer, and each of the above given functions may update these data
structures if needed. Critical portions of the code will be enclosed
between interrupt disable and interrupt enable commands, to make
sure that critical sections run without any interrupts serviced
during their execution.

B. Low-level Automation Layer

This layer sits on top of the Communication Abstraction Layer.
Basically, there will be an infinite loop like code running on the
microcontroller. There will be multiple tasks, but each task is
supposed to be written as non-blocking. All tasks should return
as quickly as possible. The following pseudocode explains the
main design planned for this layer.

while (1) {
if is_RX_error() rx_err_handler();
if is_RX_ready()

get_RX_data();
// parse RX data and call relevant
// tasks based on the received data

// read sensors
if is_TX_error() tx_err_handler();
if is_TX_ready()

send_TX_data();
else

tx_err_handler();
}

Once again all tasks are non-blocking, but the error handlers
are allowed to be blocking and allowed to generate emergency
stops. Typical tasks will be update of PWM duty cycle registers,
reading or writing digital or analog ports, reading or writing timers
registers, or limited amount of floating point operations without
doing length vector/matrix type floating point calculations.

IV. IMPLEMENTATION OF THE NON-BLOCKING
COMMUNICATION SYSTEM

In this section, we will summarize our non-blocking communi-
cation system implementation. By using the hardware interrupts
of the Atmel Atmega2560 microcontroller, the computer may
send a message to the device without blocking its main program.
Using these interrupts an implementation has been made which
will accept short messages containing simple steering instructions
such as ”Turn Right 500 steps” or ”Turn Left” or ”Stop”.
The primary interrupts being used for these instructions are the
Timer/Counter3 Overflow and USART0 Rx Complete vectors.
Three pins are used to control the motor, two for direction of
rotation (Clockwise/Anticlockwise) and a disable pin which will
halt the steering motor. The final pin pulses to control the amount
of rotation.

The USART (Universal Synchronous/Asynchronous Receiver-
Transmitter) is used by the Atmega2560 as the communication
protocol with the main computer over a serial connection via USB.
The frame format is of 8bit data with 1 stopbit. These characters,
when received by the Atmega2560, are stored in a buffer until a
user-defined END OF MSG character is received. At that time
Timer3 is used to implement a PWM signal that controls the
rotation of a motor. This PWM signal is passed onto the pulsing
pin and controls the amount of movement.

The API functions based off these requirements are as follows:
• int numpulses(char *rxbuf) takes a pointer to the

buffer that holds the received message and parses the mes-
sage to extract the number of pulses, returning it as an integer.
If no number is given, then it will return 0.

• void pulse(int p) this function, when called with an
integer input, will begin pulsing the pin connected to the
steering motor the requested number of times by using
Timer3 in PWM mode. If 0 is received then it will pulse
continuously.

• void rx_done_callback(char *rxbuf) called
when END OF MSG character is received and is passed a
pointer to the message buffer. Currently parses the entirety
of the received message for the desired action as well
as whether we have a number of pulses. The developed
low-level library will call this function whenever a complete
message is received. However, it is the responsibility of the
user to define the message handling logic, e.g. see Fig.3.

V. CONCLUSION

In this paper, we presented the low-level microcontroller based
subsystem, two-way non-blocking communication details, and a
lightweight software subsystem based on the co-operative multi-
tasking approach for the Florida Polytechnic Autonomous Golf-
Cart. This is a centralized design with a single microcontroller,

SoutheastCon 2021

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:43:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Example message parsing and handling.

however as future research we are investigating a CAN bus like
architecture with a distributed architecture.

VI. ACKNOWLEDGEMENTS

Authors would like to thank A. Sargolzaei, M. R. Khalghani,
and Bruce Hicks for their collaboration, support, and help for
the Florida Polytechnic Autonomous Golf-Cart. We would like
to thank A. Sargolzaei for initiating the project, and coordinating
the early design efforts, M. R. Khalghani and Bruce Hicks for
the building the drive-by-wire subsystem, and M. R. Khalghani
for designing the solar panel based renewable energy subsystem.
This work has been supported in part by NSF grant 1919855,
Advanced Mobility Institute grants GR-2000028, GR-2000029,
and the Florida Polytechnic University grant GR-1900022.

REFERENCES

[1] S. El-Tawab, N. Sprague, and A. Mufti, “Autonomous vehicles: Building
a test-bed prototype at a controlled environment,” in 2020 IEEE 6th
World Forum on Internet of Things (WF-IoT), 2020, https://doi.org/10.1109/
WF-IoT48130.2020.9221222.

[2] H. Hafez, S. A. Maged, A. Osama, and M. Abdelaziz, “Platform modi-
fications towards an autonomous multi-passenger golf cart,” in 2nd Novel
Intelligent and Leading Emerging Sciences Conference (NILES), 2020,
https://doi.org/10.1109/NILES50944.2020.9257898.

[3] H. Somogyi, D. Pup, P. Koros, A. Mihaly, and A. Soumelidis, “Research
of required vehicle system parameters and sensor systems for autonomous
vehicle control,” in IEEE 12th International Symposium on Applied Compu-
tational Intelligence and Informatics (SACI), 2018, https://doi.org/10.1109/
SACI.2018.8441008.

[4] “SURFACE VEHICLE RECOMMENDED PRACTICE,” SAE International,
2018, https://www.sae.org/standardsdev/tsb/tsb004.pdf.

[5] A. Hussein, P. Marin-Plaza, D. Martin, A. de la Escalera, and J. Armingol,
“Autonomous off-road navigation using stereo-vision and laser-rangefinder
fusion for outdoor obstacles detection,” in 2016 IEEE Intelligent Vehicles
Symposium (IV), 2016, https://doi.org/10.1109/IVS.2016.7535372.

[6] I. Shimchik, A. Sagitov, I. Afanasyev, F. Matsuno, and E. Magid, “Golf cart
prototype development and navigation simulation using ROS and Gazebo,”
in MATEC Web of Conferences, 2016, https://doi.org/10.1051/matecconf/
20167509005.

[7] D. Gaynor, T. Latham, I. Anderson, and C. Johnson, “Autonomous Golf
Cart,” in Proceedings of the 2013 ASEE North-Central Section Conference,
2013, https://doi.org/10.1051/matecconf/20167509005.

[8] P. Biber and W. Strasser, “The normal distributions transform: a new
approach to laser scan matching,” in Proceedings of the 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2003),
https://doi.org/10.1109/IROS.2003.1249285.

[9] Z. Gong, W. Xue, Z. Liu, Y. Zhao, R. Miao, R. Ying, and P. Liu,
“Design of a Reconfigurable Multi-Sensor Testbed for Autonomous Vehi-
cles and Ground Robots,” in Proceedings of the 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, May 2019,
https://doi.org/10.1109/ISCAS.2019.8702610.

[10] R. Barker, A. Hurst, R. Shrubsall, G. M. Hassan, and T. French, “A Low-Cost
Hardware-in-the-Loop Agent-Based Simulation Testbed for Autonomous
Vehicles,” in Proceedings of the 2018 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM), Auckland, New Zealand, Jul.
2018, https://doi.org/10.1109/AIM.2018.8452376.

[11] N. Nie, “The Self-Driving Golf Cart Project,” https://neilnie.com/
self-driving-golf-cart/.

[12] P. Pisu, “Autonomous Golf Cart Testbed,” https://cecas.clemson.edu/
pisugroup/autonomous-golf-cart.html.

[13] L. Hardesty, “Self-driving golf carts,” http://news.mit.edu/2015/
autonomous-self-driving-golf-carts-0901.

SoutheastCon 2021

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:43:04 UTC from IEEE Xplore. Restrictions apply.

