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Abstract—In this paper, we introduce a novel automotive
radar sensor design resilient to cyberattacks. The proposed
design can be implemented at the firmware level of the system
which provides faster detection of cyberattacks without adding
hardware complexity or being computationally expensive. This
approach can be combined with any predictive filtering based
approach implemented at higher system layers to provide addi-
tional security. Frequency modulated continuous wave (FMCW)
radar is chosen to demonstrate the efficiency of the design in
preventing cyberattacks as will be demonstrated by simulation
results.

Index Terms—Automotive radar sensors, Cybersecurity, Phys-
ical Layer, Sensor Firmware.

I. INTRODUCTION

Over the last decade, the automotive industry has evolved
to include various levels of connectivity and autonomy in
vehicles. This fundamental transformation is supported by
multitude of advancements in electronic, communication, and
remote sensing technologies, to increase efficiency and im-
prove safety and reliability.

However, these advancements are usually accompanied by
new challenges to both researchers and the industry. One
challenge that has been front and center when talking about
connected and autonomous vehicles (CAV) is cybersecurity
[2]. It can come in the form of passive attacks attempting
to listen to the information received by the sensor, or active
attacks where unknown communication sources, in disguise,
try to spoof the sensor [2].

In this paper, we will specifically address the issue of
cyberattacks related to radar sensors utilized by CAVs for
object detection and ranging. Of special interest to the automo-
tive industry are the Frequency Modulated Continuous Wave
(FMCW) radar systems. Although there exist several radar
systems that can provide higher immunity to cyberattacks,
the relatively simple RF front-end, and low cost of FMCW
radar makes them ideal for the task at hand, and partially
justifies the research direction adopted in this paper. Thus, the
main question we are trying to answer here is how to improve
the resiliency of FMCW radars to cyberattacks, and hence
combine the best of two worlds, simplicity and resilience.
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Our approach to the solution is to study the cybersecurity
problem close to the physical layer where all signals are
analog, all measurements are noisy, and different energy levels
of signals can provide different information. This is quite
different compared to cyberattack detectors defined at higher
levels of the AV system. There are numerous papers using
model based prediction filters, including Kalman, and artificial
intelligence (AI) based estimation techniques. A common idea
in most of these papers is to “compare” the received sensor
data and a prediction filter output. Depending on how the com-
parison is done, and prediction filter is constructed, different
cyberattack detectors can be constructed. See [13] and the
references therein for Kalman filtering centered techniques.

The techniques used in this paper are similar to the main
ideas introduced in [3], [4]. In this paper, we will define a
series of detectors, and a single threshold value, 7, to detect
cyberattacks. First, we will define the mathematical model
(attack model), and then use simulations to demonstrate the
effectiveness of the proposed method. In an ideal cyberattack
detector, we would like to have both the probability of false
alarm (Pp), and the probability of miss (Pys) equal to zero.
Our design objective will be choosing the threshold value, 7,
according to the optimization problem,

min max{ P (1), Par (1)}
By using simulation results, we will experimentally compute
Pr(n), and Pys(n), for various cyberattack signal levels. It
will be demonstrated that, for “weak” cyberattacks, Pg(n),
and Py (n), curves will have significant overlap. Here “weak”
cyberattack means, the root means square (RMS) value of
the cyberattack signal is small compared to the root mean
square value of the noise. In other words, the signal level is
interpreted as the RMS value, and being “weak” is interpreted
as being small compared to the noise in the RMS sense. For
stronger cyberattacks, we observe smaller overlap between
Pr(n), and Py(n), and finally after some point, we observe
no overlap between Pr(n), and Py, (n). However, simulation
based computation/estimation of very small probabilities, e.g.
probabilities like 10!, is not a simple task. Not observing
an overlap between Pr(n), and Py/(n) simply means the
following: Despite the large number of simulated attacks, there
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is a range of n values for which detectors neither triggered
a false cyberattack alarm, nor missed an actual cyberattack.
In summary, simulation results show that for n = 1.5, no
false alarm is observed, and all cyberattacks which have attack
signal level a couple of times (3-to-5 times) of the noise
level (or larger) are always detected. Again, this does not
mean Pr = 0, and Py, = 0, it only means we were unable
to generate even a single false alarm or miss despite the
large number of simulated cases. In summary, these results
do demonstrate the effectiveness of the proposed methods.

If the cyberattack signal level is less than 3-to-5 times
the noise level, then the probability of miss could be higher.
However, these lower signal level (weaker) attacks will have
only limited effect on the AV radar system, and can safely
be ignored for most cases. An important conclusion from this
simulation based analysis is the following: An AV radar system
with lower noise level is more effective in detecting even
weaker cyberattacks. Normally, even if there is no cyberattack
possibility, a poorly designed higher noise level AV radars will
have poor target detection, and range estimation performance,
and hence should be avoided in AVs. On the other hand, given
a low noise AV radar system, the proposed method will result
an AV radar system with high cyberattack resilience and good
detection/ranging performance.

The remainder of this paper is organized as follows: In
Section 2, we review basic FMCW radar equations, and in
Section 3, Texas Instruments’ (TI) 77 GHz automotive radar
system is introduced. In Section 4, core ideas of this paper
are presented together with our mathematical model, and in
Section 5, detector design and simulation results presented.
Finally, in Section 6, we make some concluding remarks and
summarize possible future research directions.

II. REVIEW OF FMCW RADAR EQUATIONS

Compared to pulsed radars, FMCW radars can be built with
simpler and lower cost components. In a FMCW radar system,
there can be one or multiple transmit and receive antennas.
This multi-input/multi-output (MIMO) architecture can be
used for beam forming and direction finding. Regardless of
the number of antennas, FMCW radar system has a voltage
controlled oscillator (VCO) with output frequency depending
on the input voltage. Normally this relationship is nonlinear,
and multiple techniques exist to mitigate this problem. In the
following simplified analysis, we will consider single transmit,
single receive antenna architecture, and linear VCO model, and
assume that one of the known non-linearity correction methods
are already implemented, see [9]-[11] and references therein
for details.

The transmitted signal St (%) can be mathematically repre-
sented as:

Sr(t) = A(t) cos (27r /0 ' fr(om(@))da + ot>

where 6; is a constant representing the original phase of
the transmitted signal, A(¢) is a low pass filtered signal
representing the VCO output amplitude, fr is the frequency

of the transmitted signal that is a function of the VCO control
input voltage v;,,. As stated earlier, we assume that one of
the known VCO non-linearity correction methods is already
implemented, and f7(vi,) = fo + B(Vin/Vmas ), Where fq is
the initial VCO frequency, v,,4, is the maximum control input
voltage which corresponds to the maximum VCO frequency
(fmaz), and B is the VCO bandwidth (f,42 — fo). For an
object at distance d from the radar, the signal round trip
time will be 7 = 2d/c, and the received signal will be
Sr(t) = Sr(t—7), where ¢ is the speed of light. After
the echo signal is received by the radar antenna, and passed
through the low noise amplifier (LNA), it is mixed (multiplied)
by the transmit signal and the result is low pass filtered. The
output of this low pass filter is called the beat signal, Sy(t),
and can be expressed as:

2d(t
Sp(t) = Ap(t) cos (27TfT(Um(t))c() + 9b> ,
where 0, is a constant, and A (t) is the beat signal amplitude.
If the VCO input is a positive saw-tooth like signal, v;,,(t) =
(t/ta)Vmaz, t € [0,t4), where t4 is the chirp duration, then
the frequency of the beat signal will be
2fOUT

for =——+ ;
tqc c

where d is the target distance, and v, is the target velocity. If
the VCO is driven by a triangular signal having both positive
and negative sweeps, spectral analysis of the beat signal for
positive and negative sweeps can be used to estimate the target
distance and velocity. If multiple repeated chirps are generated,
a 2D FFT based technique can be used to estimate both the
target range and velocity. For sensors with multiple antennas,
it is also possible to estimate the angular direction of the target.
See [1] for a summary of more advanced data processing
options.

In summary, FMCW radars estimate the target distance and
velocity using spectral techniques. To improve the accuracy,
multiple measurements and averaging techniques can be used
as well.

IIT. REVIEW OF THE 77GHzZ T1 AUTOMOTIVE RADAR

In this section, we review some of the basic configuration
parameters of the TI AWR1642 automotive radar (See Fig. 1).
AWR1642 is basically an FMCW radar operating at 77GHz
with a maximum bandwidth of 4GHz. When used with the
DCA1000 FPGA board, a single chirp will have t; = 160 us
duration, which is repeated N, = 128 times over a 1;, =
40 ms time frame. During a single chirp, data is acquired
only for 25.6 us at a rate of 10 MHz.

Although the target distance can be estimated using only
a single chirp, we process all of the NV, chirps together, and
define T,,, as the measurement duration. After N, chirps of
duration ¢4, there will be a blank period (guard band) of
a duration equals to T}, — N,t; where no chirp signal is
generated and no data is acquired. If there is no cyberattack,
all of this data can be used for distance estimation.
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Figure 1. 77GHz Texas Instruments AWR1642 automotive radar.

IV. MATHEMATICAL MODEL

In this section, we review our mathematical model. We have
an AV radar with Npx transmit antennas, and Nrx receive
antennas. Multiple transmit antennas can be useful for beam-
forming, but for mathematical modelling purposes, they can be
viewed as a single physical or virtual antenna with a specific
radiation pattern.

The AV radar outputs a new measurement result in every 7,
seconds, which is also called as the measurement cycle. Within
a single measurement cycle, we have N, nonoverlapping
chirp windows Iy, - - - , Iy, —1, each of which having length ¢,
seconds. In each measurement cycle, we randomly select half
of these intervals I, k =0,---, N, — 1, and the transmitters
are active only during these selected intervals (See Fig. 2).
But, the data acqusition is done during every chirp interval
I, and a total Ny samples are acquired from each receiver
during a single Ij.

We define Z y, as the set {0, - -- , N,.—1}. The set of all such
functions, p : Zy, — {0, 1}, will be denoted by {0, 1}2~+. We
call such functions (or binary sequences) as radar activation
functions (or sequences). In our proposed design, the AV radar
is operated according to the following procedure:

1. In every measurement cycle, a radar activation sequence
p € {0,1}%~+ is generated randomly.

2. The generated radar activation sequence, p, must have
equal number of 0’s and 1’s.

3. Throughout the measurment cycle, the transmitter(s) will
be active only during intervals I;’s with p(k) = 1.

4. Throughout the measurment cycle, data acqusition will
be done during all [j, intervals.

In Fig. 2, a sample AV radar firing sequence is shown. There
are N,, = 10 chirp windows, and half of them, Iy, I2, I5, I5, I9,
are randomly selected for transmitter activation. A new random
selection is made for each measurement cycle. Data acquisition
is done during all of the chirp windows, Iy, - - - , Iy, regardless
of whether the transmitter is active or not.

We define “received data” as what is observed at the
output of ADC’s immediately after the low pass filters, i.e.
after the received waveform goes through all of the RF and

Figure 2. Measurement cycle of an AV radar for N,- = 10.

analog blocks. To illustrate the proposed approach in a simpler
notation, we assume that only the in-phase components are
digitized, and quadrature components do not exist. Further-
more, we also assume that there is only a single receive
antenna. Extensions for in-phase + quadrature component
based systems with multiple transmitter/receiver antennas is
similar, and will be discussed later.

Note that, the “received data”, i.e. the signal observed at the
input of ADC’s, is denoted by Ry[m], where k =0, , N, —
1 is the index of the interval I, and m = 0,--- , Ny — 1 is
the sample index. Therefore, our mathematical model is

Ri[m] = ng[m] + p(k)zr[m] + ax[m],

where ny is the noise term, zy is the term representing
reflections from objects, and a;, representing the attack signal.
We assume that ng[m]’s are all i.i.d. N(0,0,). The term xzy,
is either independent of k, or has weak dependence on k,
simply because t4 is too short for noticeable changes in the
environment. Basically, the AV radar system knows p, but does
not know ay[m]’s. We assume that the attacking agent has full
information about all of the details of the AV radar algorithm,
except for the randomly generated radar activation sequence.
Because of the rapid switching pattern of the AV radar, we
assume that the attacking agent cannot determine the value of
p(k) while we are in the interval Ij.

For any signal, s[m], defined for m = 0,--- | Ny — 1, we
define the root mean square (RMS) value as

where, ||-||2, is the Euclidean norm, also known as the 2-norm.

V. DESIGN OF DETECTORS AND THRESHOLD SELECTION

In this section, we first define detectors, and then present
simulation results. The motivation for our the detector design
is easy to explain:
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If there is no cyberattack, all received signals during which
the transmitter is not active, is expected to have small
RMS power. And all signals received when the transmitter
is active, is expected to have similar RMS power. Any
observation which is not consistent with these requirements
is classified as a cyberattack.

However, a careful analysis of all details is necessary to
demonstrate the effectiveness of the proposed method.

A. Detector Design

Consider a radar activation sequence p € Z"". All of the
detectors defined in this subsection depend on this activation
sequence, p, however to simplify the notation this dependence
is not shown explicitly. Ideally, an extra argument, or subscript
can be added to indicate this dependence on p.

We define the detector Dy as

Do(k): ||I%kHr7 k:O,

On

N, —1

)

which measures the RMS value of the received signal during
the chirp k relative to noise RMS level. We also define the
detector D; as

Rl — Ry |

Dl(k) (Ep + Un)

k=0, ,N,—1,

where R, is the average of RMS level of all R;’s when the
transmitter is active, i.e.

— 1
Ry = 7 (| Rl -
’ N-/2 p(kz)=1

We define the combo detector D(k) as

_ Do) if p(k) =0
Dik) = {Dm if p(k) =1
for Kk =0,---, N, — 1. Namely, we choose the detector D

when the transmitter is not active, and the detector D; when
the transmitter is active. We also define

= max
Q= _

_0,-~,Nr—1D(k)’

and finally, the cyberattack detector C'(n), as

C(n) = ! max

= D
7 k=0, ,N,—1 (k),

where 7 is a threshold, which will be later selected as n ~
1.5 to minimize max{Pr(n), Prr(n)}, i.e. maximum of false
alarm and miss rates. However, different design objectives can
be used as well. One very popular design objective is constant
false alarm rate (CFAR) design, where 7 is chosen to set the
false alarm rate to a fixed low value. Another very popular
design is to choose 7 to minimize the sum Pr(n) + Pas(n).
As long as the design objective is decided, and we are able
to generate Pr(n), Pps(n) curves, optimal threshold can be
selected, and false alarm and miss rates can be estimated.

In summary, our proposed cyberattack detection algorithm
is simply

‘ If C(n) > 1 then generate cyberattack alarm

where the recommended value for the threshold is  ~ 1.5.
Justification for this selection will be explained after the
simulation results.

The following is the algorithmic description of the proposed
cyberattack resilient AV radar algorithm.

Algorithm 1 CARAV_RADAR(7, N,., N;)

1: Generate a random sequence of length N, consisting
of equal number of 0’s and 1’s. This sequence will be
the radar activation sequence, p, and will be randomly
generated for each measurement cycle.

2: For the current measurement cycle, operate the transmitter
based on this randomly selected activation sequence p.
Namely, for the chirp interval [, the transmitter will be
active iff p(k) = 1. However, we collect Ny samples
during each chirp interval [, regardless of transmitter
activation status, and this will be our received signal, Ry.

3: Compute R, i.e. the average of all received signals when
the transmitter is active.

4: Compute Dy(k), D1(k)’s for k =0,--- , N, — 1, then the
combo detector D, and the cyberattack detector C'(n).

5. If C'(n) > 1, then generate cyberattack alarm, and go to
Step 1 to start the next measurement cycle.

6: Otherwise, process the received data for target detection
and range estimation. For example, one may use popular
spectral analysis algorithms (FFT peak location, MUSIC,
etc) to process the received data.

7: Go to Step 1 to start the next measurement cycle.

B. Phased array toolbox of MATLAB

To simulate an AV radar system together with the proposed
cyberattack detection algorithm, we used the phased array
toolbox of MATLAB. The authors do not claim that this is
the most accurate AV radar simulation platform, but it is one
of the well-known options. Our focus will be on cyberattack
detection, but not on how post processing is done.

We will first study the cyberattack detection using a par-
ticular propagation model, radiation pattern, vehicle radar
cross section, target distance/velocity, etc. We call all of these
parameters as physical parameters, i.e. everything except the
threshold 7, will be considered as physical parameters. We will
first simulate the AV radar system with these typical physical
parameters, generate curves for Pp(n), Py(n) for different
cyberattack signal levels, and discuss “optimal” threshold
selection for cyberattack resilience. Later, we will present
additional simulation results when these physical parameters
are modified. For all of the simulated cases, the threshold value
of n = 1.5 results very good cyberattack resilience.
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C. Typical physical parameters

Our first set of simulations are based on MATLAB’s phase
array toolbox example phased/FMCWExample (See Ta-
ble I).

Table 1
PHYSICAL PARAMETERS (MATLAB’S PHASE ARRAY TOOLBOX).

Parameter Value

Sweeps/Cycle, N, 64

Operating frequency 77 GHz

Sweep time 7.33 ps

Sweep bandwidth 150 MHz

Sample rate 150 MHz

Target distance 43 m

Target speed 96 km/h

Target radar cross section | 100 m?

Radar speed 100 km/h

Antenna, propogation See the phased/FMCWExample
and other RF parameters example of MATLAB

In our simulations, we selected the noise level, o,,, for signal
to noise ratio (SNR) to be equal to 0 dB. However, what effects
the simulation results and false alarm/miss probabilities is the
ratio of attack signal RMS, o,, to the noise RMS, o,,. This
ratio, o, /oy, is called the relative attack RMS (RARMS), and
all results are reported using this ratio.

D. Analysis of random attacks

In this subsection, we simulate cyberattacks by using
presudo-random number generators. In the next subsection,
we will simulate “smarter” attacks to fool the detectors.

Basically, in this section ag[m]’s are simulated as i.i.d.
N(0, 0,). Simulation results are shown in Fig. 3. We see that,
for RARMS > 3, there is no detected overlap between Pr and
Py curves, and n = 1.5 separates these two with a “good”
margin. Again, we cannot claim that our simulation results
based on 1000 random cases estimate these probabilities with
100% accuracy. However, no matter how many times we tried
to do the same simulation experiment, we have observed the
same clear separation around the = 1.5 line.

The proposed method works quite well for RARMS > 3
(See Fig. 3). However for RARMS < 3, the probabil-
ity of miss can be quite high for the C(2) detector. The
proposed method ignores such less harmful attacks, because
their negative effects will be comparable to the effects of
noise. Basically, we can conclude that, all harmful attacks are
detected by the C'(2) detector.

E. Analysis of “smart” attacks

In this subsection, we simulate another attack method. A
smarter attack strategy to fool all of these detectors could
be repeating the same attack sequence over all chirps. This
may at least fool all D;(k) detectors. However, simulation
results presented in Fig. 4 show that, for RARMS > 3,
Pr(n) and Py(n) curves are still separated by the n = 1.5
line. In other words, all harmful attacks are still detected
by the C(1.5) detector. This type of attacks are smarter
because miss rates are higher compared to previous case.

PF and PM versus 7
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Figure 3. Pg(n) and Pys(n) curves for various RARMS values. For each
curve, 1000 cases are simulated. For RARMS > 3, we see no overlap between
Pr and P,; curves.
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Figure 4. Pp(n) and Pps(n) curves for “smart” attacks.

Normally, we cannot claim that our simulation results based on
1000 random cases estimate probabilities with 100% accuracy.
However, no matter how many times we tried to do the
same simulation experiment, we have observed the same clear
separation around the 1 = 1.5 line. Basically, we can conclude
that, all harmful attacks are detected by the C'(1.5) detector.

F. Simulations with the Texas Instruments AWRI1642 Radar

In this subsection, we present simulation results based on a
different set of physical parameters given in Table II. There are
two main differences: (1) We use Texas Instruments AWR 1642
radar parameters, and (2) We have very high relative ve-
locity. The probability curves given in Fig 5 show that, for
RARMS > 3, the n = 1.5 line separates Pr(n) and Py (n)
curves with a good margin. Basically, we again conclude that,
all harmful attacks are detected by the C(1.5) detector.
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PHYSICAL PARAMETERS (TEXAS INSTRUMENTS AWR 1642 RADAR).

Table 11

Parameter Value

Sweeps/Cycle, N 128

Operating frequency 77 GHz

Sweep time 25.6 ps

Sweep bandwidth 2000 MHz

Sample rate 10 MHz

Target distance 20 m

Target speed -120 km/h

Target radar cross section | 100 m?

Radar speed 180 km/h

Antenna, propogation See the phased/FMCWExample
and other RF parameters example of MATLAB

PF and PM versus 7
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Figure 5. Pp(n) and Pys(n) curves for “smart™ attacks. Alternative physical
parameters given in Table II are used for simulations.

G. Cyberattack from a moving secondary antenna

In this subsection, instead of simulating a[m]’s as pseudo-
random numbers, we consider a secondary antenna acting as
an adversarial agent. Physical paramaters will be as in Table I,
target distance will be 43 m, but we will add a secondary
antenna moving at 50 km/h. Then, we will simulate three
different cases, where the antenna transmit power is low,
medium, and high. More precisely, simulate three cases where
Pr(n) and Pps(n) curves overlap, very close but separate,
and completely disjoint. For each case, we will plot range
estimation error and @) values. Range estimation is done by
using the MUSIC algorithm as in the MATLAB phased array
toolbox example. In figures 6-8, on the left we have Pr(n)
and Py (n) curves, and on the right we have various simulated
attacks with their () and range estimation errors. All points
below the () = 1.5 line correspond to missed cyberattacks, and
all points above this line correspond to detected cyberattacks.

o In Fig. 6, we have low transmit power cyberattacks.
Pr(n) and Py(n) curves overlap, and C(1.5) detector
will have very high miss rate. But all missed attacks are
“harmless”, i.e. result in small estimation error.

P, and P, versus 1

16
0 001 002 003 004 005 006 007 008 009 04
range estimation error (m)

02
113 114 115 116 17 108 119 12 121 122 123
Threshold (1)

Figure 6. Low transmit power cyberattacks.

Py and P, versus 7
10° 155

Probabilty

1

02
11115 12 125 13 135 14 145 15 155 0 05 2 25
0]

Threshold range estimation error (m)

Figure 7. Medium transmit power cyberattacks.

o In Fig. 7, we have medium transmit power cyberattacks.
Pr(n) and Pp(n) curves are separate but close. The
C(1.5) detector miss rate is around 40%. On the right,
all points below the Q = 1.5 line correspond to missed
cyberattacks, and all points above this line correspond
to detected cyberattacks. We again see that all missed
attacks are ‘“harmless”, i.e. result in small estimation
error.

o In Fig. 8, we have high transmit power cyberattacks.
Pr(n) and Pys(n) curves are completely disjoint. Most
attacks are “harmful”, i.e. result in large estimation error.
But all cyberattacks are detected by the C'(1.5) detector.

H. Summary

These results show that, cyberattacks with relatively low
signal strength will be difficult to detect, as they will look
similar to measurement noise. However, harmful effects of
such smaller cyberattacks will be comparable to the effects
of noise itself. The authors have simulated various cases, and
observed that

All harmful cyberattacks are detected by C'(1.5)

In the cybersecurity literature, it is known that gradually
increasing attacks are difficult to detect because they fool the

10

Probability

Figure 8. High transmit power cyberattacks.
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detectors by keeping their rate of change small, indeed small
enough so that none of the detectors trigger an alarm [12].
However, such systems are inherently unstable and accumula-
tion of small errors cause gradual but sustained divergence to
a dangerous portion of the state space. For AV radar systems,
each measurement cycle is independently processed, and at
the sensor level measurement errors do not accumulate.

The random sequence used in the proposed algorithm should
be “truly” random. One may consider a linear feedback
shift register (LFSR) based pseudo random binary sequences
(PRBS) for simplicity, however there are reported techniques
for predicting LFSR generated sequences [5]. Authors suggest
a PUF based true” random number generator as described in

(6], [7].

VI. CONCLUSION

In this paper we presented a new firmware design for
automotive radar systems that can increase resiliency against
cyberattacks. The fact that this algorithm is mostly imple-
mented near the physical layer provides agility and robustness
which makes it suitable for the problem at hand. In addition,
the main aspect of the proposed algorithm is that it makes use
of the cyberattack signal RMS value as one of the parameters
to be considered in the detection process. Depending on the
operating frequency, bandwidth, chirp duration, ADC sam-
pling frequency, and the inherent measurement noise of the RF
subsystem, several of parameters have critical importance for
the overall system performance. The authors used a simulation
based analysis for estimation of false cyberattack alarm, and
missed cyberattack probabilities. Using these simulation re-
sults an optimal threshold is selected. Basically, attack signals
with weaker RMS values are harder to detect, but they also
have smaller impact for post processing, target detection and
estimation. As the cyberattack signal RMS value is increased,
errors will get larger, but attack detection will also improve.
After a certain level, simulations results show all attacks being
detected. Basically, our design goal is to limit worst case
effects of missed cyberattacks. A future version of this paper
will have more in depth performance analysis of the algorithm
including different cyberattack models, and characterization of
sensor measurements errors during missed cyberattacks.
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