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Abstract—In this paper, we introduce a novel automotive
radar sensor design resilient to cyberattacks. The proposed
design can be implemented at the firmware level of the system
which provides faster detection of cyberattacks without adding
hardware complexity or being computationally expensive. This
approach can be combined with any predictive filtering based
approach implemented at higher system layers to provide addi-
tional security. Frequency modulated continuous wave (FMCW)
radar is chosen to demonstrate the efficiency of the design in
preventing cyberattacks as will be demonstrated by simulation
results.

Index Terms—Automotive radar sensors, Cybersecurity, Phys-
ical Layer, Sensor Firmware.

I. INTRODUCTION

Over the last decade, the automotive industry has evolved

to include various levels of connectivity and autonomy in

vehicles. This fundamental transformation is supported by

multitude of advancements in electronic, communication, and

remote sensing technologies, to increase efficiency and im-

prove safety and reliability.

However, these advancements are usually accompanied by

new challenges to both researchers and the industry. One

challenge that has been front and center when talking about

connected and autonomous vehicles (CAV) is cybersecurity

[2]. It can come in the form of passive attacks attempting

to listen to the information received by the sensor, or active

attacks where unknown communication sources, in disguise,

try to spoof the sensor [2].

In this paper, we will specifically address the issue of

cyberattacks related to radar sensors utilized by CAVs for

object detection and ranging. Of special interest to the automo-

tive industry are the Frequency Modulated Continuous Wave

(FMCW) radar systems. Although there exist several radar

systems that can provide higher immunity to cyberattacks,

the relatively simple RF front-end, and low cost of FMCW

radar makes them ideal for the task at hand, and partially

justifies the research direction adopted in this paper. Thus, the

main question we are trying to answer here is how to improve

the resiliency of FMCW radars to cyberattacks, and hence

combine the best of two worlds, simplicity and resilience.
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Our approach to the solution is to study the cybersecurity

problem close to the physical layer where all signals are

analog, all measurements are noisy, and different energy levels

of signals can provide different information. This is quite

different compared to cyberattack detectors defined at higher

levels of the AV system. There are numerous papers using

model based prediction filters, including Kalman, and artificial

intelligence (AI) based estimation techniques. A common idea

in most of these papers is to “compare” the received sensor

data and a prediction filter output. Depending on how the com-

parison is done, and prediction filter is constructed, different

cyberattack detectors can be constructed. See [13] and the

references therein for Kalman filtering centered techniques.

The techniques used in this paper are similar to the main

ideas introduced in [3], [4]. In this paper, we will define a

series of detectors, and a single threshold value, η, to detect

cyberattacks. First, we will define the mathematical model

(attack model), and then use simulations to demonstrate the

effectiveness of the proposed method. In an ideal cyberattack

detector, we would like to have both the probability of false

alarm (PF ), and the probability of miss (PM ) equal to zero.

Our design objective will be choosing the threshold value, η,

according to the optimization problem,

min
η

max{PF (η), PM (η)}.

By using simulation results, we will experimentally compute

PF (η), and PM (η), for various cyberattack signal levels. It

will be demonstrated that, for “weak” cyberattacks, PF (η),
and PM (η), curves will have significant overlap. Here “weak”

cyberattack means, the root means square (RMS) value of

the cyberattack signal is small compared to the root mean

square value of the noise. In other words, the signal level is

interpreted as the RMS value, and being “weak” is interpreted

as being small compared to the noise in the RMS sense. For

stronger cyberattacks, we observe smaller overlap between

PF (η), and PM (η), and finally after some point, we observe

no overlap between PF (η), and PM (η). However, simulation

based computation/estimation of very small probabilities, e.g.

probabilities like 10−10, is not a simple task. Not observing

an overlap between PF (η), and PM (η) simply means the

following: Despite the large number of simulated attacks, there
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is a range of η values for which detectors neither triggered

a false cyberattack alarm, nor missed an actual cyberattack.

In summary, simulation results show that for η = 1.5, no

false alarm is observed, and all cyberattacks which have attack

signal level a couple of times (3-to-5 times) of the noise

level (or larger) are always detected. Again, this does not

mean PF = 0, and PM = 0, it only means we were unable

to generate even a single false alarm or miss despite the

large number of simulated cases. In summary, these results

do demonstrate the effectiveness of the proposed methods.

If the cyberattack signal level is less than 3-to-5 times

the noise level, then the probability of miss could be higher.

However, these lower signal level (weaker) attacks will have

only limited effect on the AV radar system, and can safely

be ignored for most cases. An important conclusion from this

simulation based analysis is the following: An AV radar system

with lower noise level is more effective in detecting even

weaker cyberattacks. Normally, even if there is no cyberattack

possibility, a poorly designed higher noise level AV radars will

have poor target detection, and range estimation performance,

and hence should be avoided in AVs. On the other hand, given

a low noise AV radar system, the proposed method will result

an AV radar system with high cyberattack resilience and good

detection/ranging performance.

The remainder of this paper is organized as follows: In

Section 2, we review basic FMCW radar equations, and in

Section 3, Texas Instruments’ (TI) 77 GHz automotive radar

system is introduced. In Section 4, core ideas of this paper

are presented together with our mathematical model, and in

Section 5, detector design and simulation results presented.

Finally, in Section 6, we make some concluding remarks and

summarize possible future research directions.

II. REVIEW OF FMCW RADAR EQUATIONS

Compared to pulsed radars, FMCW radars can be built with

simpler and lower cost components. In a FMCW radar system,

there can be one or multiple transmit and receive antennas.

This multi-input/multi-output (MIMO) architecture can be

used for beam forming and direction finding. Regardless of

the number of antennas, FMCW radar system has a voltage

controlled oscillator (VCO) with output frequency depending

on the input voltage. Normally this relationship is nonlinear,

and multiple techniques exist to mitigate this problem. In the

following simplified analysis, we will consider single transmit,

single receive antenna architecture, and linear VCO model, and

assume that one of the known non-linearity correction methods

are already implemented, see [9]–[11] and references therein

for details.

The transmitted signal ST (t) can be mathematically repre-

sented as:

ST (t) = A(t) cos

(
2π

∫ t

0

fT (vin(q))dq + θt

)

where θt is a constant representing the original phase of

the transmitted signal, A(t) is a low pass filtered signal

representing the VCO output amplitude, fT is the frequency

of the transmitted signal that is a function of the VCO control

input voltage vin. As stated earlier, we assume that one of

the known VCO non-linearity correction methods is already

implemented, and fT (vin) = f0 +B(vin/vmax), where f0 is

the initial VCO frequency, vmax is the maximum control input

voltage which corresponds to the maximum VCO frequency

(fmax), and B is the VCO bandwidth (fmax − f0). For an

object at distance d from the radar, the signal round trip

time will be τ = 2d/c, and the received signal will be

SR(t) = ST (t− τ), where c is the speed of light. After

the echo signal is received by the radar antenna, and passed

through the low noise amplifier (LNA), it is mixed (multiplied)

by the transmit signal and the result is low pass filtered. The

output of this low pass filter is called the beat signal, Sb(t),
and can be expressed as:

Sb(t) = Ab(t) cos

(
2πfT (vin(t))

2d(t)

c
+ θb

)
,

where θb is a constant, and Ab(t) is the beat signal amplitude.

If the VCO input is a positive saw-tooth like signal, vin(t) =
(t/td)vmax, t ∈ [0, td], where td is the chirp duration, then

the frequency of the beat signal will be

fb+ =
2Bd

tdc
+

2f0vr
c

,

where d is the target distance, and vr is the target velocity. If

the VCO is driven by a triangular signal having both positive

and negative sweeps, spectral analysis of the beat signal for

positive and negative sweeps can be used to estimate the target

distance and velocity. If multiple repeated chirps are generated,

a 2D FFT based technique can be used to estimate both the

target range and velocity. For sensors with multiple antennas,

it is also possible to estimate the angular direction of the target.

See [1] for a summary of more advanced data processing

options.

In summary, FMCW radars estimate the target distance and

velocity using spectral techniques. To improve the accuracy,

multiple measurements and averaging techniques can be used

as well.

III. REVIEW OF THE 77GHZ TI AUTOMOTIVE RADAR

In this section, we review some of the basic configuration

parameters of the TI AWR1642 automotive radar (See Fig. 1).

AWR1642 is basically an FMCW radar operating at 77GHz

with a maximum bandwidth of 4GHz. When used with the

DCA1000 FPGA board, a single chirp will have td = 160 μs

duration, which is repeated Nr = 128 times over a Tm =
40 ms time frame. During a single chirp, data is acquired

only for 25.6 μs at a rate of 10 MHz.

Although the target distance can be estimated using only

a single chirp, we process all of the Nr chirps together, and

define Tm as the measurement duration. After Nr chirps of

duration td, there will be a blank period (guard band) of

a duration equals to Tm − Nrtd where no chirp signal is

generated and no data is acquired. If there is no cyberattack,

all of this data can be used for distance estimation.
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Figure 1. 77GHz Texas Instruments AWR1642 automotive radar.

IV. MATHEMATICAL MODEL

In this section, we review our mathematical model. We have

an AV radar with NTX transmit antennas, and NRX receive

antennas. Multiple transmit antennas can be useful for beam-

forming, but for mathematical modelling purposes, they can be

viewed as a single physical or virtual antenna with a specific

radiation pattern.

The AV radar outputs a new measurement result in every Tm

seconds, which is also called as the measurement cycle. Within

a single measurement cycle, we have Nr nonoverlapping

chirp windows I0, · · · , INr−1, each of which having length td
seconds. In each measurement cycle, we randomly select half

of these intervals Ik, k = 0, · · · , Nr − 1, and the transmitters

are active only during these selected intervals (See Fig. 2).

But, the data acqusition is done during every chirp interval

Ik, and a total Ns samples are acquired from each receiver

during a single Ik.

We define ZNr
as the set {0, · · · , Nr−1}. The set of all such

functions, ρ : ZNr
→ {0, 1}, will be denoted by {0, 1}ZNr . We

call such functions (or binary sequences) as radar activation

functions (or sequences). In our proposed design, the AV radar

is operated according to the following procedure:

1. In every measurement cycle, a radar activation sequence

ρ ∈ {0, 1}ZNr is generated randomly.

2. The generated radar activation sequence, ρ, must have

equal number of 0’s and 1’s.

3. Throughout the measurment cycle, the transmitter(s) will

be active only during intervals Ik’s with ρ(k) = 1.

4. Throughout the measurment cycle, data acqusition will

be done during all Ik intervals.

In Fig. 2, a sample AV radar firing sequence is shown. There

are Nr = 10 chirp windows, and half of them, I0, I2, I5, I8, I9,

are randomly selected for transmitter activation. A new random

selection is made for each measurement cycle. Data acquisition

is done during all of the chirp windows, I0, · · · , I9, regardless

of whether the transmitter is active or not.

We define ”received data” as what is observed at the

output of ADC’s immediately after the low pass filters, i.e.

after the received waveform goes through all of the RF and
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Figure 2. Measurement cycle of an AV radar for Nr = 10.

analog blocks. To illustrate the proposed approach in a simpler

notation, we assume that only the in-phase components are

digitized, and quadrature components do not exist. Further-

more, we also assume that there is only a single receive

antenna. Extensions for in-phase + quadrature component

based systems with multiple transmitter/receiver antennas is

similar, and will be discussed later.

Note that, the ”received data”, i.e. the signal observed at the

input of ADC’s, is denoted by Rk[m], where k = 0, · · · , Nr−
1 is the index of the interval Ik, and m = 0, · · · , Ns − 1 is

the sample index. Therefore, our mathematical model is

Rk[m] = nk[m] + ρ(k)xk[m] + ak[m],

where nk is the noise term, xk is the term representing

reflections from objects, and ak representing the attack signal.

We assume that nk[m]’s are all i.i.d. N(0, σn). The term xk

is either independent of k, or has weak dependence on k,

simply because td is too short for noticeable changes in the

environment. Basically, the AV radar system knows ρ, but does

not know ak[m]’s. We assume that the attacking agent has full

information about all of the details of the AV radar algorithm,

except for the randomly generated radar activation sequence.

Because of the rapid switching pattern of the AV radar, we

assume that the attacking agent cannot determine the value of

ρ(k) while we are in the interval Ik.

For any signal, s[m], defined for m = 0, · · · , Ns − 1, we

define the root mean square (RMS) value as

‖s‖r :=

√√√√ 1

Ns

Ns−1∑
m=0

s2[m] =
‖s‖2√
Ns

,

where, ‖·‖2, is the Euclidean norm, also known as the 2-norm.

V. DESIGN OF DETECTORS AND THRESHOLD SELECTION

In this section, we first define detectors, and then present

simulation results. The motivation for our the detector design

is easy to explain:
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If there is no cyberattack, all received signals during which

the transmitter is not active, is expected to have small

RMS power. And all signals received when the transmitter

is active, is expected to have similar RMS power. Any

observation which is not consistent with these requirements

is classified as a cyberattack.

However, a careful analysis of all details is necessary to

demonstrate the effectiveness of the proposed method.

A. Detector Design

Consider a radar activation sequence ρ ∈ Z
Nr . All of the

detectors defined in this subsection depend on this activation

sequence, ρ, however to simplify the notation this dependence

is not shown explicitly. Ideally, an extra argument, or subscript

can be added to indicate this dependence on ρ.

We define the detector D0 as

D0(k) =
‖Rk‖r
σn

, k = 0, · · · , Nr − 1,

which measures the RMS value of the received signal during

the chirp k relative to noise RMS level. We also define the

detector D1 as

D1(k) =
| ‖Rk‖r −Rρ |

(Rρ + σn)
, k = 0, · · · , Nr − 1,

where Rρ is the average of RMS level of all Rk’s when the

transmitter is active, i.e.

Rρ =
1

Nr/2

∑
ρ(k)=1

‖Rk‖r.

We define the combo detector D(k) as

D(k) =

{
D0(k) if ρ(k) = 0
D1(k) if ρ(k) = 1

,

for k = 0, · · · , Nr − 1. Namely, we choose the detector D0

when the transmitter is not active, and the detector D1 when

the transmitter is active. We also define

Q = max
k=0,··· ,Nr−1

D(k),

and finally, the cyberattack detector C(η), as

C(η) =
1

η
max

k=0,··· ,Nr−1
D(k),

where η is a threshold, which will be later selected as η ≈
1.5 to minimize max{PF (η), PM (η)}, i.e. maximum of false

alarm and miss rates. However, different design objectives can

be used as well. One very popular design objective is constant

false alarm rate (CFAR) design, where η is chosen to set the

false alarm rate to a fixed low value. Another very popular

design is to choose η to minimize the sum PF (η) + PM (η).
As long as the design objective is decided, and we are able

to generate PF (η), PM (η) curves, optimal threshold can be

selected, and false alarm and miss rates can be estimated.

In summary, our proposed cyberattack detection algorithm

is simply

If C(η) ≥ 1 then generate cyberattack alarm

where the recommended value for the threshold is η ≈ 1.5.

Justification for this selection will be explained after the

simulation results.

The following is the algorithmic description of the proposed

cyberattack resilient AV radar algorithm.

Algorithm 1 CARAV RADAR(η,Nr, Ns)

1: Generate a random sequence of length Nr consisting

of equal number of 0’s and 1’s. This sequence will be

the radar activation sequence, ρ, and will be randomly

generated for each measurement cycle.

2: For the current measurement cycle, operate the transmitter

based on this randomly selected activation sequence ρ.

Namely, for the chirp interval Ik, the transmitter will be

active iff ρ(k) = 1. However, we collect Ns samples

during each chirp interval Ik, regardless of transmitter

activation status, and this will be our received signal, Rk.

3: Compute Rρ, i.e. the average of all received signals when

the transmitter is active.

4: Compute D0(k), D1(k)’s for k = 0, · · · , Nr −1, then the

combo detector D, and the cyberattack detector C(η).
5: If C(η) ≥ 1, then generate cyberattack alarm, and go to

Step 1 to start the next measurement cycle.

6: Otherwise, process the received data for target detection

and range estimation. For example, one may use popular

spectral analysis algorithms (FFT peak location, MUSIC,

etc) to process the received data.

7: Go to Step 1 to start the next measurement cycle.

B. Phased array toolbox of MATLAB

To simulate an AV radar system together with the proposed

cyberattack detection algorithm, we used the phased array

toolbox of MATLAB. The authors do not claim that this is

the most accurate AV radar simulation platform, but it is one

of the well-known options. Our focus will be on cyberattack

detection, but not on how post processing is done.

We will first study the cyberattack detection using a par-

ticular propagation model, radiation pattern, vehicle radar

cross section, target distance/velocity, etc. We call all of these

parameters as physical parameters, i.e. everything except the

threshold η, will be considered as physical parameters. We will

first simulate the AV radar system with these typical physical

parameters, generate curves for PF (η), PM (η) for different

cyberattack signal levels, and discuss “optimal” threshold

selection for cyberattack resilience. Later, we will present

additional simulation results when these physical parameters

are modified. For all of the simulated cases, the threshold value

of η = 1.5 results very good cyberattack resilience.
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C. Typical physical parameters

Our first set of simulations are based on MATLAB’s phase

array toolbox example phased/FMCWExample (See Ta-

ble I).

Table I
PHYSICAL PARAMETERS (MATLAB’S PHASE ARRAY TOOLBOX).

Parameter Value
Sweeps/Cycle, Nr 64
Operating frequency 77 GHz
Sweep time 7.33 μs
Sweep bandwidth 150 MHz
Sample rate 150 MHz
Target distance 43 m
Target speed 96 km/h

Target radar cross section 100 m2

Radar speed 100 km/h
Antenna, propogation See the phased/FMCWExample
and other RF parameters example of MATLAB

In our simulations, we selected the noise level, σn, for signal

to noise ratio (SNR) to be equal to 0 dB. However, what effects

the simulation results and false alarm/miss probabilities is the

ratio of attack signal RMS, σa, to the noise RMS, σn. This

ratio, σa/σn, is called the relative attack RMS (RARMS), and

all results are reported using this ratio.

D. Analysis of random attacks

In this subsection, we simulate cyberattacks by using

presudo-random number generators. In the next subsection,

we will simulate “smarter” attacks to fool the detectors.

Basically, in this section ak[m]’s are simulated as i.i.d.

N(0, σa). Simulation results are shown in Fig. 3. We see that,

for RARMS ≥ 3, there is no detected overlap between PF and

PM curves, and η = 1.5 separates these two with a “good”

margin. Again, we cannot claim that our simulation results

based on 1000 random cases estimate these probabilities with

100% accuracy. However, no matter how many times we tried

to do the same simulation experiment, we have observed the

same clear separation around the η = 1.5 line.

The proposed method works quite well for RARMS ≥ 3
(See Fig. 3). However for RARMS < 3, the probabil-

ity of miss can be quite high for the C(2) detector. The

proposed method ignores such less harmful attacks, because

their negative effects will be comparable to the effects of

noise. Basically, we can conclude that, all harmful attacks are

detected by the C(2) detector.

E. Analysis of “smart” attacks

In this subsection, we simulate another attack method. A

smarter attack strategy to fool all of these detectors could

be repeating the same attack sequence over all chirps. This

may at least fool all D1(k) detectors. However, simulation

results presented in Fig. 4 show that, for RARMS ≥ 3,

PF (η) and PM (η) curves are still separated by the η = 1.5
line. In other words, all harmful attacks are still detected

by the C(1.5) detector. This type of attacks are smarter

because miss rates are higher compared to previous case.
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Figure 3. PF (η) and PM (η) curves for various RARMS values. For each
curve, 1000 cases are simulated. For RARMS ≥ 3, we see no overlap between
PF and PM curves.
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Figure 4. PF (η) and PM (η) curves for “smart” attacks.

Normally, we cannot claim that our simulation results based on

1000 random cases estimate probabilities with 100% accuracy.

However, no matter how many times we tried to do the

same simulation experiment, we have observed the same clear

separation around the η = 1.5 line. Basically, we can conclude

that, all harmful attacks are detected by the C(1.5) detector.

F. Simulations with the Texas Instruments AWR1642 Radar

In this subsection, we present simulation results based on a

different set of physical parameters given in Table II. There are

two main differences: (1) We use Texas Instruments AWR1642

radar parameters, and (2) We have very high relative ve-

locity. The probability curves given in Fig 5 show that, for

RARMS ≥ 3, the η = 1.5 line separates PF (η) and PM (η)
curves with a good margin. Basically, we again conclude that,

all harmful attacks are detected by the C(1.5) detector.
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Table II
PHYSICAL PARAMETERS (TEXAS INSTRUMENTS AWR1642 RADAR).

Parameter Value
Sweeps/Cycle, Nr 128
Operating frequency 77 GHz
Sweep time 25.6 μs
Sweep bandwidth 2000 MHz
Sample rate 10 MHz
Target distance 20 m
Target speed -120 km/h

Target radar cross section 100 m2

Radar speed 180 km/h
Antenna, propogation See the phased/FMCWExample
and other RF parameters example of MATLAB
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Figure 5. PF (η) and PM (η) curves for “smart” attacks. Alternative physical
parameters given in Table II are used for simulations.

G. Cyberattack from a moving secondary antenna

In this subsection, instead of simulating ak[m]’s as pseudo-

random numbers, we consider a secondary antenna acting as

an adversarial agent. Physical paramaters will be as in Table I,

target distance will be 43 m, but we will add a secondary

antenna moving at 50 km/h. Then, we will simulate three

different cases, where the antenna transmit power is low,

medium, and high. More precisely, simulate three cases where

PF (η) and PM (η) curves overlap, very close but separate,

and completely disjoint. For each case, we will plot range

estimation error and Q values. Range estimation is done by

using the MUSIC algorithm as in the MATLAB phased array

toolbox example. In figures 6-8, on the left we have PF (η)
and PM (η) curves, and on the right we have various simulated

attacks with their Q and range estimation errors. All points

below the Q = 1.5 line correspond to missed cyberattacks, and

all points above this line correspond to detected cyberattacks.

• In Fig. 6, we have low transmit power cyberattacks.

PF (η) and PM (η) curves overlap, and C(1.5) detector

will have very high miss rate. But all missed attacks are

“harmless”, i.e. result in small estimation error.
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Figure 6. Low transmit power cyberattacks.
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Figure 7. Medium transmit power cyberattacks.

• In Fig. 7, we have medium transmit power cyberattacks.

PF (η) and PM (η) curves are separate but close. The

C(1.5) detector miss rate is around 40%. On the right,

all points below the Q = 1.5 line correspond to missed

cyberattacks, and all points above this line correspond

to detected cyberattacks. We again see that all missed

attacks are “harmless”, i.e. result in small estimation

error.

• In Fig. 8, we have high transmit power cyberattacks.

PF (η) and PM (η) curves are completely disjoint. Most

attacks are “harmful”, i.e. result in large estimation error.

But all cyberattacks are detected by the C(1.5) detector.

H. Summary

These results show that, cyberattacks with relatively low

signal strength will be difficult to detect, as they will look

similar to measurement noise. However, harmful effects of

such smaller cyberattacks will be comparable to the effects

of noise itself. The authors have simulated various cases, and

observed that

All harmful cyberattacks are detected by C(1.5)

In the cybersecurity literature, it is known that gradually

increasing attacks are difficult to detect because they fool the
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Figure 8. High transmit power cyberattacks.
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detectors by keeping their rate of change small, indeed small

enough so that none of the detectors trigger an alarm [12].

However, such systems are inherently unstable and accumula-

tion of small errors cause gradual but sustained divergence to

a dangerous portion of the state space. For AV radar systems,

each measurement cycle is independently processed, and at

the sensor level measurement errors do not accumulate.

The random sequence used in the proposed algorithm should

be “truly” random. One may consider a linear feedback

shift register (LFSR) based pseudo random binary sequences

(PRBS) for simplicity, however there are reported techniques

for predicting LFSR generated sequences [5]. Authors suggest

a PUF based ”true” random number generator as described in

[6], [7].

VI. CONCLUSION

In this paper we presented a new firmware design for

automotive radar systems that can increase resiliency against

cyberattacks. The fact that this algorithm is mostly imple-

mented near the physical layer provides agility and robustness

which makes it suitable for the problem at hand. In addition,

the main aspect of the proposed algorithm is that it makes use

of the cyberattack signal RMS value as one of the parameters

to be considered in the detection process. Depending on the

operating frequency, bandwidth, chirp duration, ADC sam-

pling frequency, and the inherent measurement noise of the RF

subsystem, several of parameters have critical importance for

the overall system performance. The authors used a simulation

based analysis for estimation of false cyberattack alarm, and

missed cyberattack probabilities. Using these simulation re-

sults an optimal threshold is selected. Basically, attack signals

with weaker RMS values are harder to detect, but they also

have smaller impact for post processing, target detection and

estimation. As the cyberattack signal RMS value is increased,

errors will get larger, but attack detection will also improve.

After a certain level, simulations results show all attacks being

detected. Basically, our design goal is to limit worst case

effects of missed cyberattacks. A future version of this paper

will have more in depth performance analysis of the algorithm

including different cyberattack models, and characterization of

sensor measurements errors during missed cyberattacks.
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