IEEE SoutheastCon 2020

A Computer Vision Based Testbed for
77 GHz mmWave Radar Sensors

Onur Toker
Dept. of ECE
Florida Polytechnic University
Lakeland, FL 33805
otoker @floridapoly.edu

Abstract—In this paper, our main objective is to develop
a tool (testbed) that allows real-time testing and visualization
of mmWave radar algorithms using a high-level programming
language. This tool is capable of capturing data from the radar
module without any loss of packets and efficiently display results
as heatmap images of target distance and velocity. This new
testbed is especially tailored for hardware-in-the-loop (HIL) type
of experiments involved in Advanced Drivers Assistance Systems
(ADAS) and Autonomous Vehicles (AV) among others. To validate
the efficacy of the developed testbed, Texas Instruments (TT)
AWR1642 module was used. Results show that the test bed
described hereafter is successful and the proposed hardware
and software configuration will allow more advanced image
processing and computer vision techniques to be used for a
variety of applications. Several examples are shown with Python
being the main programming language for control and data
acquisition and openCV for visualization of radar images.

Index Terms—Automotive radars, Real-time testing and visu-
alization, Hardware in the loop.

I. INTRODUCTION

Because of the increasing demand for autonomous driving
and driver assistance features in consumer vehicles, research
on Advanced Drivers Assistance Systems (ADAS), and Au-
tonomous Vehicles (AV) are increasing at unprecedented rates.
There are several sensor technologies which are considered to
have key importance in ADAS and AV systems [1], namely:
Camera based sensors, lidars, and mmWave radars. Camera
based sensors are quite popular because of their lower cost
and the way they perceive the environment in a way similar
to human eyes. However, they are susceptible to different
weather and lighting conditions,and they do require more
processing power compared to other alternatives. On the other
hand, lidars are gaining popularity because of their advantages
in 3D mapping, but they do require relatively expensive
manufacturing steps.The third key technology is mmWave
radars [2], specifically those operating at the 77-81 GHz band.
Costs associated with this sensor technology are comparable to
camera based sensors, in addition to having various advantages
including ease of obstacle detection, target range and velocity
estimation, direction estimation, the ability to work under
day/night conditions, etc.

978-1-7281-6861-6/20/$31.00 ©2020 IEEE

Suleiman Alsweiss
Dept. of ECE
Florida Polytechnic University
Lakeland, FL 33805
salsweiss @floridapoly.edu

Muhammad Abid
Dept. of Comp. Sci.
Florida Polytechnic University
Lakeland, FL 33805
mabid @floridapoly.edu

The focus of this paper is mmWave radar based sensors.
In this work, we will be using Texas Instruments (TI) AWR
family of automotive radars [3], and FPGA based low voltage
differential signaling (LVDS) to Gigabit Ethernet companion
boards [4]. This work is a continuation of the authors’ earlier
research [5], [6]. As a related work, we would like to cite
[7]-[10] where a different 77 GHz radar setup is used.

A fundamental difficulty for research on applications of
mmWave radars in ADAS and AV systems is the lack of low-
cost real-time testbeds suitable for Hardware in the Loop (HIL)
experiments. TI’s radar development kits and the companion
FPGA boards are reasonably priced, all have multi-input multi-
output (MIMO) architecture, and comes with basic software
to record raw ADC data. However, like other manufacturers,
TI’s existing setup is not suitable for HIL experiments, and it
is only usable for offline analysis of the recorded data. This
makes the use of TI's C/C++ toolchain for rapid prototyping
of new ideas, and HIL tests on ADAS and AV systems is not
a practical approach.

Thus, the aim of this paper is to develop a real-time
mmWave radar testbed which is (1) suitable for HIL experi-
ments on ADAS and AV systems, (2) supports a high-level
programming language for rapid prototyping, (3) supports
for real-time visualization of radar images for faster and/or
more effective performance analysis, and finally (4) supports
commonly used computer vision and artificial intelligence Al
libraries.

The remainder of this paper is organized as follows. A
review of the basics of frequency modulated continuous wave
(FMCW) radar systems is presented in Section 2. In Section 3,
we present some background information on TI’s mmWave
radars, in Section 4, we discuss the design and implementation
of a high performance multi-threaded Ethernet capture and
parser subsystem, in Section 5, we explain the programming
model of the developed real-time testbed, in Section 6, we
present a sample openCV based design to process radar images
for real-time moving object tracking, and finally in Section 7,
we make some concluding remarks.

IT. BASICS OF FMCW RADAR PROCESSING

FMCW radars are considered the primary radar architec-
ture for ADAS and AV applications [11]. When equipped

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

with multiple transmitters and receivers, beam forming and
direction estimation are possible which makes FMCW radars
even more suitable for the problem at hand [12]. This section
will provide an overview on how FMCW radar chirp and beat
(intermediate frequency, IF) signals can be used for range and
velocity estimation of targets using the concepts of frames and
pulsed-Doppler signal processing.

Typically, an FMCW radar system has a voltage controlled
oscillator (VCO), for which the frequency of oscillation is
controlled by an external input voltage signal ¢(t) € [0, qaz]-
Without loss of generality, we will assume that qp; = 1 to
simplify the analysis. The VCO output frequency depends
on the input voltage in a nonlinear fashion. However, in
most designs, VCO is operated in the linear-like frequency-to-
voltage region to avoid applying any non-linearity corrections
[13]. Therefore, the VCO output frequency can be modeled
as:

f(t) = fo+ Bq(t)

where fj is the VCO output frequency at the minimum input
voltage , and B is the VCO bandwidth. In FMCW radar
systems, VCOs are usually driven by triangular or saw tooth
signal to create a linear chirp, and the period of the triangular
signal is called the chirp duration (7). It is possible to use
both positive and negative chirps to drive the VCO,

q+(t) =t/T., or q-(t)=(T. —t)/T.,

and regardless of the sign, the slope of the chirp signal (5)
can be calculated as: S = B/T.,.

In an FMCW radar system, the VCO output is amplified,
and fed to a transmitter antenna(s). The transmitted signal is
called the chirp signal (S7(t)), and can be expressed as:

Sr(t) = Ap(t) cos (27r /t f(r)dr + 9T>)

where Ar(t) is the amplitude of the VCO output signal, and
O is its phase. The received signal (echo) from a target at
distance d(t) will then be:

Sn(t) = An(t) cos <27r / T 9R)

where ¢, = 2d(t)/c is the round-trip time with ¢ being the
speed of light. Once an echo is received, the transmitted and
received signals are first multiplied in a mixer, then low pass
filtered (LPF), and the resulting signal is called the beat signal,
s(t), which can be expressed as:

s(t) = A(t) cos (2w f ()t + 0).
For a positive chirp, the beat signal frequency will be

QSdo 2f0v0

Jor = c c

where d and v are the target distance and velocity at ¢ =0
respectively. In principle, it is possible to use beat signals
resulting from a positive and negative chirp, and estimate both
target distance and velocity. However, for moving targets, there

is a more effective procedure using frames, which will be
discussed later in this section.

Typically, the beat signal is digitized after being LPF for
further processing. If a beat signal is sampled at frequency
fs, then its frequency can be estimated using the fast Fourier
transform (FFT) algorithm with accuracy fs/N where N =
fsT. and represents the number of the beat signal samples
obtained during the chirp duration. Therefore, the resolution
in target distance estimation (dd) can be estimated as:

PY P S
28 fT. 2B
which indicates that VCOs with higher bandwidth will have
better distance (range) resolution. Moreover, the maximum
range of the FMCW radar (d,;,q;) is limited by the sampling
frequency f, of the analog to digital converter (ADC) used to
digitize the beat signal, and can be expressed as:

Jac
257
meaning that sampling the beat signal with a higher sampling
frequency actually improves the maximum distance where a
target can be detected.

If the target is moving, beat signals corresponding to two
consecutive chirps will have a phase difference equal to

2uoT, B 4ol
c A7

where) is the wavelength of the radar signal at frequency fj.
For unambiguous velocity estimation, the absolute value of

the induced phase difference must be less than 7, therefore
the maximum possible velocity is limited by

A
AT,

dmaw -

(5(}5 = 27Tf0

Umax =

In FMCW radar systems, a frame is defined as M chirps
combined together, and the corresponding beat signal data is
organized as a complex matrix, F', with each row containing a
single beat signal corresponding to a single chirp. For moving
target detection, 2D FFT of the frame matrix, F', can be used.
If we have M chirp signals with time separation of 7, the
resolution in velocity will be

A

Sv = —"
YT oMT,

namely the velocity resolution will be proportional with the
number of chirps, M.

In summary, if we have a single beat signal, one-
dimensional (1D) FFT and the corresponding peaks can be
used for target detection. While if we have a frame, then two-
dimensional (2D) FFT of the corresponding matrix F' can be
used for range and velocity estimation, and can be presented
either as a gray scale image or it can be color coded for
better visualization. These color coded images are called radar
range-velocity heatmaps, or simply radar images, and are quite
effective for moving target detection.

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

III. TI mmWAVE RADARS

In this section, we will review the architecture of TI’s
AWR1642 FMCW radar. At the chip level, there is a single
VCO operating at 20 GHz followed by a 4x frequency
multiplier [14]. This chip can drive two transmit antennas with
separate power amplifiers and phase shifters. Furthermore,
this chip is designed to support four receive antennas each
having its own low noise amplifier, mixer, low pass filter, and
16 bits ADC. Each receive channel has its own 90° phase
shifters too, and both in-phase and quadrature components are
digitized. In other words, from a signal processing perspective,
we have a complex beat signal which is sampled at a very high
sampling rate. The AWR1642 module has an ARM Cortex-
R4F processor, which is called the master subsystem (MSS),
and a C674x DSP accelerator called the DSP subsystem
(DSS).

Fig. 1. 77GHz AWR1642 radar (red board) connected to a DCA1000 FPGA
board (green board) via an LVDS cable (blue flat cable).

In Fig. 1, our AWR1642 radar is shown connected to a
DCA1000 FPGA board over an LVDS cable. The raw ADC
data is sent to the FPGA board over the LVDS cable, and
then from the FPGA board to the host PC over a Gigabit
Ethernet cable for further processing. TI’s default setup is
designed to record this raw ADC data for offline processing.
While this was very helpful, it was not convenient, and the
authors developed an alternative testbed for processing the
data in real-time. The developed testbed supports real-time
visualization for better performance analysis, and hardware in
the loop experiments for testing high level algorithms on a
real radar sensor used in a real experiment.

The AWR1642 radar has various parameters which can
be configured using the mmWave Studio GUI, see Fig. 2.
AWR1642 radar’s maximum bandwidth is 4 GHz, each chirp
is generated in a 160 ps time window (default value), and the
ADC sampling frequency is 10 MHz. During each chirp, a
total of NV = 256 samples (default value) are acquired from
each receive channel. Chirps are repeated M = 128 times

O 3 8
1 Texas InsTRuMENTs

Bl e Clirmanetode 0200 bt St DitCatrens

Fig. 2. mmWave Studio configuration GUL

(default value) over a 40 ms time window, which is also called
the frame duration. A frame consists of multiple chirps (M
chirps) followed by a blank period at the end during which no
chirp signal is generated and no data is captured (See Fig. 3).

Fig. 3. An AWR1642 frame consists of M chirps.

IV. MULTI-THREADED ETHERNET CAPTURE AND PARSER
IMPLEMENTATION

In this section, the design and implementation of the devel-
oped multi-threaded Ethernet capture and parser program is
outlined. As mentioned in the previous section, the raw ADC
data captured by the AWR1642 is sent to the DCA1000 FPGA
board over an LVDS cable (See Fig. 1). The FPGA board gets
the raw ADC data and sends it to the host PC over a Gigabit
Ethernet connection as user datagram protocol (UDP) packets
using the format shown in Fig. 4. The TI documentation [4]
has detailed information about all possible formats that are
supported, but the testbed developed in this work is based on
the format given in Fig. 4.

In the developed Python code, UDP data is read as 1466
byte “chunk” using the recvfrom () method of the socket
class, which returns a bytes object for which the first 10
bytes are sequence number and byte count, and the rest are
actual raw ADC data. Sequence number starts from 1, and
byte count is the number of raw ADC data bytes sent before
this packet.

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

Raw ADC CRC
checksum
4 bytes

MAC UDP
header header
14 bytes 8 bytes

Raw ADC
seq no
4 bytes

Raw ADC
bytecount data
6 bytes 1456 bytes

A
Y

UDP data

Fig. 4. AWRI1642 Ethernet packet format.

The first feasibility tests completed by authors was to test
whether this raw UDP data can be streamed to a numpy array
without any parsing or post-processing. The following Python
code was used and no dropped packets were observed.
frm = np.empty ((250,360,1466),

for fc in range(250):
seqno = None

dtype=np.uint8)

for i in range(360):
packet, _ = sock.recvfrom(1466)
pno = int.from bytes (packet[:4], byteorder=’1little’)
frm[fc,i,:] = np.frombuffer (packet, dtype=np.uint8)
if (segno == None):
segno = pno
else:

if (pno > seqgqno + 1):
print ("IOError")
segqno = pno
The raw ADC data streamed from the FPGA board to the

host computer has a specific structure as explained in [4], and
presented in Fig. 5. Each of these boxes in Fig. 5 represents a
16-bits ADC value, the first index is the antenna number from
0 to 3, the second index is either I or @, i.e. real or imaginary
part, and the third index is the sample number.

v / v { v i/ v
R(0,1,0) : R(1.1,0) : R(2.10) : R(3.1.0)
R(0,1,1) R(1,1,1) R(2,11) R(3,1.1)
R(0.Q.0) R(1,Q,0) R(2,Q,0) R(3,Q.0)

2| R0.Q1) = | R(1Q.1) R(2,Q.1) R(3.Q.1)
Ew E_ v R P v
© | R(0.IN-2) O | R(1,IN-2) © | R(2I,N-2) S R(3,IN-2)
R(0,I,N-2) R(2,I,N-2) R(3,I,N-2)
R(0,Q,N-1) R(1,Q,N-2) R(2,Q.N-2) R(3,Q,N-2)
R(0,Q.N-1) R(1,Q,N-2) R(2,Q.N-2) R(3,Q,N-2)
v

Fig. 5. DCA1000 stream format.

For a single chirp, the total data size can be calculated as:
chirp data size =4 x 256 x 2 x 2 = 4096 bytes

representing data from a total of 4 antennas, 256 sam-
ples/chirp, 2 bytes/sample, and x2 to account for the complex
data type (i.e. real and imaginary parts). A single chirp data
will be split over 4096,/1456 = 2.8 Ethernet frames (or UDP
packets), which necessitates parsing and data re-organization.

In a single frame of duration 40 ms, a total of 128 chirps are
generated for each antenna. Therefore,

frame data size = 128 x 4096 = 512 KB

and this will be split over ~ 360 Ethernet frames (or UDP
packets). Thus, the overall raw data rate will be 100 Mbps
(excluding all overhead data), or more than 130 Mbps includ-
ing all header info. This level of data rate is not possible by
using a 100 Mbps Ethernet connection, hence Gigabit Ethernet
is required. Furthermore, the average number of Ethernet
frames (UDP packets) sent per second is ~ 9002, so for real-
time performance, a carefully designed parsing and data re-
organization implementation is necessary.

In an earlier version of this work [6], the design was capable
of capturing, parsing, and processing approximately 10 chirps
per second. Basically, chirp data and/or 1D FFT results were
captured at a rate of 10 updates per second as shown in
see Fig. 6, and was possible to display live target distance
as a sliding graph window as demonstrated in the YouTube
video [15]. However, this design was single threaded, had
nested loops, and the code organization was very similar to
the MATLAB parser presented in [4].

raw ADC output
raw ADC output

o 50 100 150 200 250 o 50 100 150 200 250
sample index sample index

RX2 RX3

raw ADC output
raw ADC output

sample index

sample index

Fig. 6. Previous design presented in [6]. Raw ADC data from all receive an-
tennas with real and imaginary parts can be displayed with &~ 10 updates/sec.

To process 25 frames per second, with each frame having
128 chirps per second, the authors implemented a multi-
threaded design shown in Fig.7.

There are a total of four threads, three of which are doing
parsing and data reorganization, and the last one is the final
consumer thread doing openCV based number crunching.
Threads are separated by thread-safe first-in first-out (FIFO)
buffers FX0, FX1, and FX2. The first thread simply reads
the received UDP packets, checks sequence numbers for

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

Simple UDP reader Frae sliter Fraue parser
Thread) X Threadl Il Thread)

UDP packets over
Gigabit ethemet

DCAL000 consuuer

apenCV thread

FPGA

Fig. 7. Multi-threaded design for real-time performance. FX0, FX1, and FX2
are FIFO buffers.

continuity, and writes the received packets to the FIFO buffer
FXO0 without further processing. The second thread serves as a
frame splitter where the beginning and the end of each frame
data are found and passed to the frame parser thread. Finally,
the frame parser thread takes care of the data reorganization
and generates the final numpy arrays of dimensions 4 x M x N
for each received data frame (recall that there are 4 receive
antennas, M chirps in a frame, and N samples in a chirp).
Each generated numpy array for the received frame data is
written to the final FIFO buffer, FX2. Each thread code is
highly optimized for real-time performance, but in the event
of a packet loss, they are designed to skip the data for the
current frame, and continue with the next frame. Therefore,
even if a small portion of a frame data is lost because of
a dropped UDP packet, the whole radar frame is discarded.
This design choice was made simply to optimize for real-
time performance. Multiple experiments were conducted and
almost no packet loss was detected. However, having multiple
applications running on the host computer can increase the
likelihood of packet loss.

Finally, depending on the nature of the application, the
consumer thread will get the parsed frame data as a numpy
matrix ready to be used in openCV and/or other tools. The
consumer thread will be similar to a typical openCV loop,
but it will start with fifo2.get () to get the radar frame
data from the FIFO buffer FX2. Typically, in an openCV loop,
cap.read () reads the image from a video capture device
as a numpy array, whereas here we have fifo2.get () to
get the frame data from the FIFO buffer. This will allow users
to take advantage of all available openCV functions as if they
are developing a real-time openCV application using a video
capture device.

Fig.8 depicts an unprocessed radar image in a live openCV
window. This is basically the 2D FFT of the frame data after
FFT shifting and absolute value operations. Although the orig-
inal image is in gray scale, it is shown in PARULA colormap
for better visualization (warmer colors indicate stronger echo).
The bright regions correspond to reflections from different
targets, in particular bright regions along the center horizontal
region correspond to reflections from stationary objects. Bright
regions above the center horizontal region correspond to

objects approaching the radar.

=7 mmWave Radar —] =<

Fig. 8. Unprocessed radar image in a live openCV window (Horizontal axis
is distance, and vertical axis is velocity).

V. PROGRAMMING MODEL COMPARISON

In the previous version of this testbed [6], the Python library
matplotlib was used for visualization of 1D data. The
programming model introduced in [6] was based on using an
“animate” function which is called iteratively about 10 times
per second. At the beginning of the “animate” function, chirp
data is loaded as a 1D numpy vector, then all DSP operations
are done using numpy and scipy methods on this numpy array
before saving results to a matplotlib.pyplot.figure
object. The following code fragment show the programming
model used in [6]

def animate (i) :

try:
.clear_buffer ()
tir.capture_frame ()
np.matmul (np.ones ((1,tir.rx)), f)
s.reshape ((-1,))
fft(s, M)
np.abs (S[:kmax])
S/ M

0w n n H
e
[T T | I

S
except:

S = np.zeros (kmax)
line.set_ydata(S)
return [line]

anim = FuncAnimation(fig, animate, init_func=init,
interval=100, blit=True)
plt.show ()

In this earlier design, although the name of the method
is capture_frame (), it was only able to capture up
to 8 consecutive chirps with approximately 10 updates per
second. In other words, a more appropriate name would
be capture_chirp (). However, using the multi-threaded
optimized design described in the previous section, it is now
possible to capture all 25 frames per second, with each frame
consisting of 128 chirps, each chirp 256 complex samples per
antenna, and display openCV processed 2D FFT images in
real-time with no dropped data. A typical openCV thread is
shown below.

def openCV_thread() :
[some initialization]
while True:
_, r_data = fifo2.get ()

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

im # use the 1lst antenna
im
fm
fm

r_datal0,:,:]
window_matrix = im
np.fft.fftshift (np.fft.££ft2 (im,
np.abs (fm)

(2« M, N)))

[openCV operations on gray scale image fm]
[normalize and optional resize in openCV]

im_gray = np.array(fm x 255, dtype=np.uint8)
im_color = cv2.applyColorMap (im_gray,
cv2.COLORMAP_PARULA)

cv2.imshow (' mmWave Radar’, im_color)

if cv2.waitKey (10)
break

& OxFF == ord(’'q’):

cv2.destroyAllWindows ()

A. Background subtraction
In Fig. 9, a processed radar image is shown in a live openCV

window. Compared to the image shown in Fig. 8, an adaptive
background subtraction algorithm is applied.

B mmWave Radar —] =

Fig. 9. Radar image after background subtraction shown in a live openCV
window (Horizontal axis is distance, and vertical axis is velocity).

Basically, after 2D FFT of the frame data is obtained, the
background for the k*" image is estimated as:

where ¢, j are row and column indices, fj is the original gray
scale radar image, and by, is the estimated background. What
is displayed in Fig. 9 is g5 which is defined as

gk[laj] = maX(fk[ivj] - OgObk[Z7j]7 0)7
followed by some constant gain compensation.

B. Demo videos

To test the efficacy of the new testbed, it was used in
three different experiments summarized in Figs. 10-12 with
YouTube links shown in the figures captions. In Fig. 10, a
different adaptive background subtraction and adaptive nor-
malization is used, and in Fig. 11, both 2D FFT of the frame
data, and 1D FFT of the chirp data are shown. In Fig. 12,
background is not subtracted but gamma correction is applied
to emphasize lower brightness pixels. All of these are real-
time experiments without using any recorded data, and they

clearly demonstrate the effectiveness of the developed system
for real-time processing and visualization.

P M o oco3/0a2

mmWave demo1

moving object detection with background subtraction

(live demo)

Fig. 10. https://www.youtube.com/watch?v=2kEgh4AuMGo

| |

< 0117012

mmWave demo2

2D FFT of frame and 1D FFT of chirp data (live demo)

Fig. 11. https://www.youtube.com/watch?v=MD1A2KCt7BA

VI. MOVING OBJECT TRACKING

In this section, we use the developed testbed to test a specific
object tracking algorithm in real-time. Object tracking in the
radar image corresponds to tracking the velocity and the range
of the object in a real test environment. That’s why object
tracking in radar images is of extreme importance, especially
in ADAS and AV applications.

First, the image background was estimated as described
in the previous section, and 90% of it was subtracted from
the actual gray scale image, which is the 2D FFT of the
frame data after applying FFT shift and taking the absolute
value. afterwards, the mean and the variance of the background
subtracted image were computed using the openCV method
cv2.moments (),

~ Yzglz,y)

My = <+

. = 229902, Y]
Soglzyl” Y

> glz,y]

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

mmWwave demo3

Walking pedestrian (live demo)

Fig. 12. https://www.youtube.com/watch?v=jNuBgl6KMCs

and
2 _ Zy2g[w,y] 2

2
52— 2=rglryl o _

T Xl y] T gy Y
where all pixels of the background subtracted image g were
included in the summations. The center of the bounding box
is (mg, my) and the corners are (m, £ 0,/2,m, £ 0,/2). A
sample frame is shown in Fig. 13 with the computed bounding
box shown in yellow. The center red line is the zero velocity
line.

The m, and m, values can be used to estimate target
distance, and target velocity by using simple proportionality
relations. The spread in the radar image, which can be mea-
sured by (o4, 0y), is related to several factors, including, but
not limited to, the number of samples in a chirp (256 samples),
number of chirps in a frame (128), windowing function used
(Hanning window), openCV resizing operations, and target’s
motion during a single frame duration of 25 ms.

B mmWave Radar —] pd

Fig. 13. Moving object tracking after background subtraction. Computed
bounding box shown in a live openCV window.

VII. CONCLUSION

In this work, we presented the design and implementation
of a real-time mmWave radar testbed with real-time openCV

processing and visualization. The robustness of the developed
testbed makes it suitable for hardware in the loop (HIL)
configuration of ADAS and AV research. Using the developed
testbed, TI radar echo signals can be dealt with as a
camera with 128 x 256 resolution and 25 fps. This simplified
programming model is one of the main contributions of this
work. Real-time openCV based processing of this resolution
and frame rate in a Python environment is not computationally
extensive, and looks quite promising for future experimental
research. Other future research directions may include more
complex image and video processing, and the use of multiple
views/directions by using complex weighted sums of frame
data from multiple antennas.

ACKNOWLEDGMENT

This work is supported Florida Polytechnic University,
Advanced Mobility Institute (AMI), and National Science
Foundation under Grant No. CNS-1919855. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] R. Kala, On-Road Intelligent Vehicles. Butterworth-Heinemann, 2016.

[2] K. Ramasubramanian, K. Ramaiah, and A. Aginskiy, “Moving from
legacy 24 GHz to state-of-the-art 77 GHz radar,” White Paper, Texas
Instruments, Oct. 2017.

[3] “AWR1642 evaluation module (AWR1642BOOST) single-chip mmwave
sensing solution,” User Guide, Texas Instruments, Apr. 2018.

[4] “DCA1000EVM data capture card,” User Guide, Texas Instruments,
May 2019.

[5] M. Brinkmann, O. Toker, and S. Alsweiss, “Design of an FPGA/SoC
hardware accelerator for MIT coffee can radar systems,” in [EEE
SouthEastCon 2019, Huntsville, AL, Apr. 2019.

[6] O. Toker and B. Kuhn, “A python based testbed for real-time testing
and visualization using TI’s 77 GHz automotive radars,” in 2019 IEEE
Vehicular Networking Conference (VNC), Los Angeles, CA, Dec. 2019.

[7] C. D. Ozkaptan, E. Ekici, and O. Altintas, “A software-defined OFDM
radar for joint automotive radar and communication systems,” in 2019
IEEE Vehicular Networking Conference (VNC), Los Angeles, CA, Dec.
2019.

[8] M. Ash, M. Ritchie, and K. Chetty, “On the application of digital moving
target indication techniques to short-range FMCW radar data,” /EEE
Sensors Journal, vol. 18, no. 10, pp. 41674175, 2018.

[9] J. Park, Y. Hong, H. Lee, C. Jang, G. Yun, H. Lee, and J. Yook,
“Noncontact RF vital sign sensor for continuous monitoring of driver
status,” IEEE Trans. on Boimedical Circuits and Systems, vol. 13, no. 3,
pp. 493-502, 2019.

[10] M. Aalizadeh, G. Shaker, J. C. M. Almeida, P. P. Morita, and S. Safavi-
Naeini, “Remote monitoring of human vital signs using mm-wave
FMCW radar,” IEEE Access, vol. 7, pp. 54 958-54 968, 2019.

[11] S. M. Patole, M. Torlak, D. Wang, and M. Ali, “Automotive radars:
A review of signal processing techniques,” IEEE Signal Proc. Mag.,
vol. 34, pp. 22-35, 2017.

[12] C. Iovescu and S. Rao, “The fundamentals of millimeter wave sensors,”
Texas Instruments, 2017.

[13] O. Toker and M. Brinkmann, “A novel nonlinearity correction algorithm
for FMCW radar systems for optimal range accuracy and improved
multitarget detection capability,” MDPI Electronics, vol. 8(11), no. 1290,
pp. 1-13, 2019.

[14] “AWRI1642 single-chip 77- and 79-GHz FMCW radar sensor,” Data
Sheet, Texas Instruments, Apr. 2018.

[15] “Live distance measurement demo using TI’s
and the ti77radar ~ python library,” YouTube
https://youtu.be/TO0YE5dZw1BY, 2019.

AWR1642
video,

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

