
A Computer Vision Based Testbed for
77 GHz mmWave Radar Sensors

Onur Toker
Dept. of ECE

Florida Polytechnic University
Lakeland, FL 33805

otoker@floridapoly.edu

Suleiman Alsweiss
Dept. of ECE

Florida Polytechnic University
Lakeland, FL 33805

salsweiss@floridapoly.edu

Muhammad Abid
Dept. of Comp. Sci.

Florida Polytechnic University
Lakeland, FL 33805

mabid@floridapoly.edu

Abstract—In this paper, our main objective is to develop
a tool (testbed) that allows real-time testing and visualization
of mmWave radar algorithms using a high-level programming
language. This tool is capable of capturing data from the radar
module without any loss of packets and efficiently display results
as heatmap images of target distance and velocity. This new
testbed is especially tailored for hardware-in-the-loop (HIL) type
of experiments involved in Advanced Drivers Assistance Systems
(ADAS) and Autonomous Vehicles (AV) among others. To validate
the efficacy of the developed testbed, Texas Instruments (TI)
AWR1642 module was used. Results show that the test bed
described hereafter is successful and the proposed hardware
and software configuration will allow more advanced image
processing and computer vision techniques to be used for a
variety of applications. Several examples are shown with Python
being the main programming language for control and data
acquisition and openCV for visualization of radar images.

Index Terms—Automotive radars, Real-time testing and visu-
alization, Hardware in the loop.

I. INTRODUCTION

Because of the increasing demand for autonomous driving

and driver assistance features in consumer vehicles, research

on Advanced Drivers Assistance Systems (ADAS), and Au-

tonomous Vehicles (AV) are increasing at unprecedented rates.

There are several sensor technologies which are considered to

have key importance in ADAS and AV systems [1], namely:

Camera based sensors, lidars, and mmWave radars. Camera

based sensors are quite popular because of their lower cost

and the way they perceive the environment in a way similar

to human eyes. However, they are susceptible to different

weather and lighting conditions,and they do require more

processing power compared to other alternatives. On the other

hand, lidars are gaining popularity because of their advantages

in 3D mapping, but they do require relatively expensive

manufacturing steps.The third key technology is mmWave

radars [2], specifically those operating at the 77-81 GHz band.

Costs associated with this sensor technology are comparable to

camera based sensors, in addition to having various advantages

including ease of obstacle detection, target range and velocity

estimation, direction estimation, the ability to work under

day/night conditions, etc.

978-1-7281-6861-6/20/$31.00 ©2020 IEEE

The focus of this paper is mmWave radar based sensors.

In this work, we will be using Texas Instruments (TI) AWR

family of automotive radars [3], and FPGA based low voltage

differential signaling (LVDS) to Gigabit Ethernet companion

boards [4]. This work is a continuation of the authors’ earlier

research [5], [6]. As a related work, we would like to cite

[7]–[10] where a different 77 GHz radar setup is used.

A fundamental difficulty for research on applications of

mmWave radars in ADAS and AV systems is the lack of low-

cost real-time testbeds suitable for Hardware in the Loop (HIL)

experiments. TI’s radar development kits and the companion

FPGA boards are reasonably priced, all have multi-input multi-

output (MIMO) architecture, and comes with basic software

to record raw ADC data. However, like other manufacturers,

TI’s existing setup is not suitable for HIL experiments, and it

is only usable for offline analysis of the recorded data. This

makes the use of TI’s C/C++ toolchain for rapid prototyping

of new ideas, and HIL tests on ADAS and AV systems is not

a practical approach.

Thus, the aim of this paper is to develop a real-time

mmWave radar testbed which is (1) suitable for HIL experi-

ments on ADAS and AV systems, (2) supports a high-level

programming language for rapid prototyping, (3) supports

for real-time visualization of radar images for faster and/or

more effective performance analysis, and finally (4) supports

commonly used computer vision and artificial intelligence AI

libraries.

The remainder of this paper is organized as follows. A

review of the basics of frequency modulated continuous wave

(FMCW) radar systems is presented in Section 2. In Section 3,

we present some background information on TI’s mmWave

radars, in Section 4, we discuss the design and implementation

of a high performance multi-threaded Ethernet capture and

parser subsystem, in Section 5, we explain the programming

model of the developed real-time testbed, in Section 6, we

present a sample openCV based design to process radar images

for real-time moving object tracking, and finally in Section 7,

we make some concluding remarks.

II. BASICS OF FMCW RADAR PROCESSING

FMCW radars are considered the primary radar architec-

ture for ADAS and AV applications [11]. When equipped

IEEE SoutheastCon 2020

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

with multiple transmitters and receivers, beam forming and

direction estimation are possible which makes FMCW radars

even more suitable for the problem at hand [12]. This section

will provide an overview on how FMCW radar chirp and beat

(intermediate frequency, IF) signals can be used for range and

velocity estimation of targets using the concepts of frames and

pulsed-Doppler signal processing.

Typically, an FMCW radar system has a voltage controlled

oscillator (VCO), for which the frequency of oscillation is

controlled by an external input voltage signal q(t) ∈ [0, qM].
Without loss of generality, we will assume that qM = 1 to

simplify the analysis. The VCO output frequency depends

on the input voltage in a nonlinear fashion. However, in

most designs, VCO is operated in the linear-like frequency-to-

voltage region to avoid applying any non-linearity corrections

[13]. Therefore, the VCO output frequency can be modeled

as:

f(t) = f0 +Bq(t)

where f0 is the VCO output frequency at the minimum input

voltage , and B is the VCO bandwidth. In FMCW radar

systems, VCOs are usually driven by triangular or saw tooth

signal to create a linear chirp, and the period of the triangular

signal is called the chirp duration (Tc). It is possible to use

both positive and negative chirps to drive the VCO,

q+(t) = t/Tc, or q−(t) = (Tc − t)/Tc,

and regardless of the sign, the slope of the chirp signal (S)

can be calculated as: S = B/Tc.

In an FMCW radar system, the VCO output is amplified,

and fed to a transmitter antenna(s). The transmitted signal is

called the chirp signal (ST (t)), and can be expressed as:

ST (t) = AT (t) cos

(
2π

∫ t

f(τ)dτ + θT

)
,

where AT (t) is the amplitude of the VCO output signal, and

θT is its phase. The received signal (echo) from a target at

distance d(t) will then be:

SR(t) = AR(t) cos

(
2π

∫ t−tr

f(τ)dτ + θR

)

where tr = 2d(t)/c is the round-trip time with c being the

speed of light. Once an echo is received, the transmitted and

received signals are first multiplied in a mixer, then low pass

filtered (LPF), and the resulting signal is called the beat signal,

s(t), which can be expressed as:

s(t) ≈ A(t) cos (2πf(t)tr + θ) .

For a positive chirp, the beat signal frequency will be

fb+ =
2Sd0
c

+
2f0v0
c

,

where d0 and v0 are the target distance and velocity at t = 0
respectively. In principle, it is possible to use beat signals

resulting from a positive and negative chirp, and estimate both

target distance and velocity. However, for moving targets, there

is a more effective procedure using frames, which will be

discussed later in this section.

Typically, the beat signal is digitized after being LPF for

further processing. If a beat signal is sampled at frequency

fs, then its frequency can be estimated using the fast Fourier

transform (FFT) algorithm with accuracy fs/N where N =
fsTc and represents the number of the beat signal samples

obtained during the chirp duration. Therefore, the resolution

in target distance estimation (δd) can be estimated as:

δd =
c

2S

fs
fsTc

=
c

2B
,

which indicates that VCOs with higher bandwidth will have

better distance (range) resolution. Moreover, the maximum

range of the FMCW radar (dmax) is limited by the sampling

frequency fs of the analog to digital converter (ADC) used to

digitize the beat signal, and can be expressed as:

dmax =
fsc

2S
,

meaning that sampling the beat signal with a higher sampling

frequency actually improves the maximum distance where a

target can be detected.

If the target is moving, beat signals corresponding to two

consecutive chirps will have a phase difference equal to

δφ = 2πf0
2v0Tc

c
=

4πv0Tc

λ
,

where λ is the wavelength of the radar signal at frequency f0.

For unambiguous velocity estimation, the absolute value of

the induced phase difference must be less than π, therefore

the maximum possible velocity is limited by

vmax =
λ

4Tc
.

In FMCW radar systems, a frame is defined as M chirps

combined together, and the corresponding beat signal data is

organized as a complex matrix, F , with each row containing a

single beat signal corresponding to a single chirp. For moving

target detection, 2D FFT of the frame matrix, F , can be used.

If we have M chirp signals with time separation of Tc, the

resolution in velocity will be

δv =
λ

2MTc
,

namely the velocity resolution will be proportional with the

number of chirps, M .

In summary, if we have a single beat signal, one-

dimensional (1D) FFT and the corresponding peaks can be

used for target detection. While if we have a frame, then two-

dimensional (2D) FFT of the corresponding matrix F can be

used for range and velocity estimation, and can be presented

either as a gray scale image or it can be color coded for

better visualization. These color coded images are called radar

range-velocity heatmaps, or simply radar images, and are quite

effective for moving target detection.

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

III. TI mmWAVE RADARS

In this section, we will review the architecture of TI’s

AWR1642 FMCW radar. At the chip level, there is a single

VCO operating at 20 GHz followed by a 4x frequency

multiplier [14]. This chip can drive two transmit antennas with

separate power amplifiers and phase shifters. Furthermore,

this chip is designed to support four receive antennas each

having its own low noise amplifier, mixer, low pass filter, and

16 bits ADC. Each receive channel has its own 90o phase

shifters too, and both in-phase and quadrature components are

digitized. In other words, from a signal processing perspective,

we have a complex beat signal which is sampled at a very high

sampling rate. The AWR1642 module has an ARM Cortex-

R4F processor, which is called the master subsystem (MSS),

and a C674x DSP accelerator called the DSP subsystem

(DSS).

Fig. 1. 77GHz AWR1642 radar (red board) connected to a DCA1000 FPGA
board (green board) via an LVDS cable (blue flat cable).

In Fig. 1, our AWR1642 radar is shown connected to a

DCA1000 FPGA board over an LVDS cable. The raw ADC

data is sent to the FPGA board over the LVDS cable, and

then from the FPGA board to the host PC over a Gigabit

Ethernet cable for further processing. TI’s default setup is

designed to record this raw ADC data for offline processing.

While this was very helpful, it was not convenient, and the

authors developed an alternative testbed for processing the

data in real-time. The developed testbed supports real-time

visualization for better performance analysis, and hardware in

the loop experiments for testing high level algorithms on a

real radar sensor used in a real experiment.

The AWR1642 radar has various parameters which can

be configured using the mmWave Studio GUI, see Fig. 2.

AWR1642 radar’s maximum bandwidth is 4 GHz, each chirp

is generated in a 160 μs time window (default value), and the

ADC sampling frequency is 10 MHz. During each chirp, a

total of N = 256 samples (default value) are acquired from

each receive channel. Chirps are repeated M = 128 times

Fig. 2. mmWave Studio configuration GUI.

(default value) over a 40 ms time window, which is also called

the frame duration. A frame consists of multiple chirps (M
chirps) followed by a blank period at the end during which no

chirp signal is generated and no data is captured (See Fig. 3).

C0

Tc

C
�

Tc Tf - M�T�c

Fig. 3. An AWR1642 frame consists of M chirps.

IV. MULTI-THREADED ETHERNET CAPTURE AND PARSER

IMPLEMENTATION

In this section, the design and implementation of the devel-

oped multi-threaded Ethernet capture and parser program is

outlined. As mentioned in the previous section, the raw ADC

data captured by the AWR1642 is sent to the DCA1000 FPGA

board over an LVDS cable (See Fig. 1). The FPGA board gets

the raw ADC data and sends it to the host PC over a Gigabit

Ethernet connection as user datagram protocol (UDP) packets

using the format shown in Fig. 4. The TI documentation [4]

has detailed information about all possible formats that are

supported, but the testbed developed in this work is based on

the format given in Fig. 4.

In the developed Python code, UDP data is read as 1466
byte “chunk” using the recvfrom() method of the socket
class, which returns a bytes object for which the first 10

bytes are sequence number and byte count, and the rest are

actual raw ADC data. Sequence number starts from 1, and

byte count is the number of raw ADC data bytes sent before

this packet.

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

MAC
header

14 bytes

UDP
header
8 bytes

Raw ADC
seq no
4 bytes

Raw ADC
bytecount
6 bytes

CRC
checksum
4 bytes

Raw ADC
data

1456 bytes

UDP data

Fig. 4. AWR1642 Ethernet packet format.

The first feasibility tests completed by authors was to test

whether this raw UDP data can be streamed to a numpy array

without any parsing or post-processing. The following Python

code was used and no dropped packets were observed.

frm = np.empty((250,360,1466), dtype=np.uint8)
for fc in range(250):

seqno = None
for i in range(360):

packet, _ = sock.recvfrom(1466)
pno = int.from_bytes(packet[:4], byteorder=’little’)
frm[fc,i,:] = np.frombuffer(packet, dtype=np.uint8)
if (seqno == None):

seqno = pno
else:

if (pno > seqno + 1):
print("IOError")

seqno = pno

The raw ADC data streamed from the FPGA board to the

host computer has a specific structure as explained in [4], and

presented in Fig. 5. Each of these boxes in Fig. 5 represents a

16-bits ADC value, the first index is the antenna number from

0 to 3, the second index is either I or Q, i.e. real or imaginary

part, and the third index is the sample number.

R(0,I,0)

R(0,I,1)

R(0,Q,0)

R(0,Q,1)

R(0,I,N-2)

R(0,I,N-2)

R(0,Q,N-1)

R(0,Q,N-1)

R(1,I,0)

R(1,I,1)

R(1,Q,0)

R(1,Q,1)

R(1,I,N-2)

R(1,I,N-2)

R(1,Q,N-2)

R(1,Q,N-2)

R(2,I,0)

R(2,I,1)

R(2,Q,0)

R(2,Q,1)

R(2,I,N-2)

R(2,I,N-2)

R(2,Q,N-2)

R(2,Q,N-2)

R(3,I,0)

R(3,I,1)

R(3,Q,0)

R(3,Q,1)

R(3,I,N-2)

R(3,I,N-2)

R(3,Q,N-2)

R(3,Q,N-2)

C
hi

rp
/A

nt
en

na
0

C
hi

rp
/A

nt
en

na
1

C
hi

rp
/A

nt
en

na
2

C
hi

rp
/A

nt
en

na
3

Fig. 5. DCA1000 stream format.

For a single chirp, the total data size can be calculated as:

chirp data size = 4× 256× 2× 2 = 4096 bytes

representing data from a total of 4 antennas, 256 sam-

ples/chirp, 2 bytes/sample, and ×2 to account for the complex

data type (i.e. real and imaginary parts). A single chirp data

will be split over 4096/1456 ≈ 2.8 Ethernet frames (or UDP

packets), which necessitates parsing and data re-organization.

In a single frame of duration 40 ms, a total of 128 chirps are

generated for each antenna. Therefore,

frame data size = 128× 4096 = 512 KB

and this will be split over ≈ 360 Ethernet frames (or UDP

packets). Thus, the overall raw data rate will be 100 Mbps

(excluding all overhead data), or more than 130 Mbps includ-

ing all header info. This level of data rate is not possible by

using a 100 Mbps Ethernet connection, hence Gigabit Ethernet

is required. Furthermore, the average number of Ethernet

frames (UDP packets) sent per second is ≈ 9002, so for real-

time performance, a carefully designed parsing and data re-

organization implementation is necessary.

In an earlier version of this work [6], the design was capable

of capturing, parsing, and processing approximately 10 chirps

per second. Basically, chirp data and/or 1D FFT results were

captured at a rate of 10 updates per second as shown in

see Fig. 6, and was possible to display live target distance

as a sliding graph window as demonstrated in the YouTube

video [15]. However, this design was single threaded, had

nested loops, and the code organization was very similar to

the MATLAB parser presented in [4].

Fig. 6. Previous design presented in [6]. Raw ADC data from all receive an-
tennas with real and imaginary parts can be displayed with ≈ 10 updates/sec.

To process 25 frames per second, with each frame having

128 chirps per second, the authors implemented a multi-

threaded design shown in Fig.7.

There are a total of four threads, three of which are doing

parsing and data reorganization, and the last one is the final

consumer thread doing openCV based number crunching.

Threads are separated by thread-safe first-in first-out (FIFO)

buffers FX0, FX1, and FX2. The first thread simply reads

the received UDP packets, checks sequence numbers for

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

Simple UDP reader
Thread0

DCA1000
FPGA

UDP packets over
Gigabit ethernet

Frame splitter
Thread1

Frame parser
Thread2

HostPC
display

consumer
openCV thread

FX0 FX1

FX2

Fig. 7. Multi-threaded design for real-time performance. FX0, FX1, and FX2
are FIFO buffers.

continuity, and writes the received packets to the FIFO buffer

FX0 without further processing. The second thread serves as a

frame splitter where the beginning and the end of each frame

data are found and passed to the frame parser thread. Finally,

the frame parser thread takes care of the data reorganization

and generates the final numpy arrays of dimensions 4×M×N
for each received data frame (recall that there are 4 receive

antennas, M chirps in a frame, and N samples in a chirp).

Each generated numpy array for the received frame data is

written to the final FIFO buffer, FX2. Each thread code is

highly optimized for real-time performance, but in the event

of a packet loss, they are designed to skip the data for the

current frame, and continue with the next frame. Therefore,

even if a small portion of a frame data is lost because of

a dropped UDP packet, the whole radar frame is discarded.

This design choice was made simply to optimize for real-

time performance. Multiple experiments were conducted and

almost no packet loss was detected. However, having multiple

applications running on the host computer can increase the

likelihood of packet loss.

Finally, depending on the nature of the application, the

consumer thread will get the parsed frame data as a numpy

matrix ready to be used in openCV and/or other tools. The

consumer thread will be similar to a typical openCV loop,

but it will start with fifo2.get() to get the radar frame

data from the FIFO buffer FX2. Typically, in an openCV loop,

cap.read() reads the image from a video capture device

as a numpy array, whereas here we have fifo2.get() to

get the frame data from the FIFO buffer. This will allow users

to take advantage of all available openCV functions as if they

are developing a real-time openCV application using a video

capture device.

Fig.8 depicts an unprocessed radar image in a live openCV

window. This is basically the 2D FFT of the frame data after

FFT shifting and absolute value operations. Although the orig-

inal image is in gray scale, it is shown in PARULA colormap

for better visualization (warmer colors indicate stronger echo).

The bright regions correspond to reflections from different

targets, in particular bright regions along the center horizontal

region correspond to reflections from stationary objects. Bright

regions above the center horizontal region correspond to

objects approaching the radar.

Fig. 8. Unprocessed radar image in a live openCV window (Horizontal axis
is distance, and vertical axis is velocity).

V. PROGRAMMING MODEL COMPARISON

In the previous version of this testbed [6], the Python library

matplotlib was used for visualization of 1D data. The

programming model introduced in [6] was based on using an

“animate” function which is called iteratively about 10 times

per second. At the beginning of the “animate” function, chirp

data is loaded as a 1D numpy vector, then all DSP operations

are done using numpy and scipy methods on this numpy array

before saving results to a matplotlib.pyplot.figure
object. The following code fragment show the programming

model used in [6]

def animate(i):
try:

tir.clear_buffer()
f = tir.capture_frame()
s = np.matmul(np.ones((1,tir.rx)), f)
s = s.reshape((-1,))
S = fft(s, M)
S = np.abs(S[:kmax])
S = S / M

except:
S = np.zeros(kmax)

line.set_ydata(S)
return [line]

anim = FuncAnimation(fig, animate, init_func=init,
interval=100, blit=True)

plt.show()

In this earlier design, although the name of the method

is capture_frame(), it was only able to capture up

to 8 consecutive chirps with approximately 10 updates per

second. In other words, a more appropriate name would

be capture_chirp(). However, using the multi-threaded

optimized design described in the previous section, it is now

possible to capture all 25 frames per second, with each frame

consisting of 128 chirps, each chirp 256 complex samples per

antenna, and display openCV processed 2D FFT images in

real-time with no dropped data. A typical openCV thread is

shown below.

def openCV_thread():
[some initialization]
while True:

_, r_data = fifo2.get()

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

im = r_data[0,:,:] # use the 1st antenna
im = window_matrix * im
fm = np.fft.fftshift(np.fft.fft2(im, (2 * M, N)))
fm = np.abs(fm)

[openCV operations on gray scale image fm]
[normalize and optional resize in openCV]

im_gray = np.array(fm * 255, dtype=np.uint8)
im_color = cv2.applyColorMap(im_gray,

cv2.COLORMAP_PARULA)

cv2.imshow(’mmWave Radar’, im_color)

if cv2.waitKey(10) & 0xFF == ord(’q’):
break

cv2.destroyAllWindows()

A. Background subtraction

In Fig. 9, a processed radar image is shown in a live openCV

window. Compared to the image shown in Fig. 8, an adaptive

background subtraction algorithm is applied.

Fig. 9. Radar image after background subtraction shown in a live openCV
window (Horizontal axis is distance, and vertical axis is velocity).

Basically, after 2D FFT of the frame data is obtained, the

background for the kth image is estimated as:

bk[i, j] = 0.95bk−1[i, j] + 0.05fk[i, j]

where i, j are row and column indices, fk is the original gray

scale radar image, and bk is the estimated background. What

is displayed in Fig. 9 is gk which is defined as

gk[i, j] = max(fk[i, j]− 0.90bk[i, j], 0),

followed by some constant gain compensation.

B. Demo videos

To test the efficacy of the new testbed, it was used in

three different experiments summarized in Figs. 10-12 with

YouTube links shown in the figures captions. In Fig. 10, a

different adaptive background subtraction and adaptive nor-

malization is used, and in Fig. 11, both 2D FFT of the frame

data, and 1D FFT of the chirp data are shown. In Fig. 12,

background is not subtracted but gamma correction is applied

to emphasize lower brightness pixels. All of these are real-

time experiments without using any recorded data, and they

clearly demonstrate the effectiveness of the developed system

for real-time processing and visualization.

Fig. 10. https://www.youtube.com/watch?v=2kEqh4AuMGo

Fig. 11. https://www.youtube.com/watch?v=MDlA2KCt7BA

VI. MOVING OBJECT TRACKING

In this section, we use the developed testbed to test a specific

object tracking algorithm in real-time. Object tracking in the

radar image corresponds to tracking the velocity and the range

of the object in a real test environment. That’s why object

tracking in radar images is of extreme importance, especially

in ADAS and AV applications.

First, the image background was estimated as described

in the previous section, and 90% of it was subtracted from

the actual gray scale image, which is the 2D FFT of the

frame data after applying FFT shift and taking the absolute

value. afterwards, the mean and the variance of the background

subtracted image were computed using the openCV method

cv2.moments(),

mx =

∑
xg[x, y]∑
g[x, y]

, my =

∑
yg[x, y]∑
g[x, y]

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. https://www.youtube.com/watch?v=jNuBgl6KMCs

and

σ2
x =

∑
x2g[x, y]∑
g[x, y]

−m2
x, σ2

y =

∑
y2g[x, y]∑
g[x, y]

−m2
y

where all pixels of the background subtracted image g were

included in the summations. The center of the bounding box

is (mx,my) and the corners are (mx ± σx/2,my ± σy/2). A

sample frame is shown in Fig. 13 with the computed bounding

box shown in yellow. The center red line is the zero velocity

line.

The mx and my values can be used to estimate target

distance, and target velocity by using simple proportionality

relations. The spread in the radar image, which can be mea-

sured by (σx, σy), is related to several factors, including, but

not limited to, the number of samples in a chirp (256 samples),

number of chirps in a frame (128), windowing function used

(Hanning window), openCV resizing operations, and target’s

motion during a single frame duration of 25 ms.

Fig. 13. Moving object tracking after background subtraction. Computed
bounding box shown in a live openCV window.

VII. CONCLUSION

In this work, we presented the design and implementation

of a real-time mmWave radar testbed with real-time openCV

processing and visualization. The robustness of the developed

testbed makes it suitable for hardware in the loop (HIL)

configuration of ADAS and AV research. Using the developed
testbed, TI radar echo signals can be dealt with as a
camera with 128×256 resolution and 25 fps. This simplified
programming model is one of the main contributions of this
work. Real-time openCV based processing of this resolution

and frame rate in a Python environment is not computationally

extensive, and looks quite promising for future experimental

research. Other future research directions may include more

complex image and video processing, and the use of multiple

views/directions by using complex weighted sums of frame

data from multiple antennas.

ACKNOWLEDGMENT

This work is supported Florida Polytechnic University,

Advanced Mobility Institute (AMI), and National Science

Foundation under Grant No. CNS-1919855. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

REFERENCES

[1] R. Kala, On-Road Intelligent Vehicles. Butterworth-Heinemann, 2016.
[2] K. Ramasubramanian, K. Ramaiah, and A. Aginskiy, “Moving from

legacy 24 GHz to state-of-the-art 77 GHz radar,” White Paper, Texas
Instruments, Oct. 2017.

[3] “AWR1642 evaluation module (AWR1642BOOST) single-chip mmwave
sensing solution,” User Guide, Texas Instruments, Apr. 2018.

[4] “DCA1000EVM data capture card,” User Guide, Texas Instruments,
May 2019.

[5] M. Brinkmann, O. Toker, and S. Alsweiss, “Design of an FPGA/SoC
hardware accelerator for MIT coffee can radar systems,” in IEEE
SouthEastCon 2019, Huntsville, AL, Apr. 2019.

[6] O. Toker and B. Kuhn, “A python based testbed for real-time testing
and visualization using TI’s 77 GHz automotive radars,” in 2019 IEEE
Vehicular Networking Conference (VNC), Los Angeles, CA, Dec. 2019.

[7] C. D. Ozkaptan, E. Ekici, and O. Altintas, “A software-defined OFDM
radar for joint automotive radar and communication systems,” in 2019
IEEE Vehicular Networking Conference (VNC), Los Angeles, CA, Dec.
2019.

[8] M. Ash, M. Ritchie, and K. Chetty, “On the application of digital moving
target indication techniques to short-range FMCW radar data,” IEEE
Sensors Journal, vol. 18, no. 10, pp. 4167–4175, 2018.

[9] J. Park, Y. Hong, H. Lee, C. Jang, G. Yun, H. Lee, and J. Yook,
“Noncontact RF vital sign sensor for continuous monitoring of driver
status,” IEEE Trans. on Boimedical Circuits and Systems, vol. 13, no. 3,
pp. 493–502, 2019.

[10] M. Aalizadeh, G. Shaker, J. C. M. Almeida, P. P. Morita, and S. Safavi-
Naeini, “Remote monitoring of human vital signs using mm-wave
FMCW radar,” IEEE Access, vol. 7, pp. 54 958–54 968, 2019.

[11] S. M. Patole, M. Torlak, D. Wang, and M. Ali, “Automotive radars:
A review of signal processing techniques,” IEEE Signal Proc. Mag.,
vol. 34, pp. 22–35, 2017.

[12] C. Iovescu and S. Rao, “The fundamentals of millimeter wave sensors,”
Texas Instruments, 2017.

[13] O. Toker and M. Brinkmann, “A novel nonlinearity correction algorithm
for FMCW radar systems for optimal range accuracy and improved
multitarget detection capability,” MDPI Electronics, vol. 8(11), no. 1290,
pp. 1–13, 2019.

[14] “AWR1642 single-chip 77- and 79-GHz FMCW radar sensor,” Data
Sheet, Texas Instruments, Apr. 2018.

[15] “Live distance measurement demo using TI’s AWR1642
and the ti77radar python library,” YouTube video,
https://youtu.be/T0YE5dZwlBY, 2019.

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on December 22,2023 at 15:58:38 UTC from IEEE Xplore. Restrictions apply.

