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Abstract

It is difficult to handle the extraordinary data volume generated in many fields with cur-
rent computational resources and techniques. This is very challenging when applying con-
ventional statistical methods to big data. A common approach is to partition full data into
smaller subdata for purposes such as training, testing, and validation. The primary purpose
of training data is to represent the full data. To achieve this goal, the selection of train-
ing subdata becomes pivotal in retaining essential characteristics of the full data. Recently,
several procedures have been proposed to select “optimal design points™ as training subdata
under pre-specified models, such as linear regression and logistic regression. However, these
subdata will not be “optimal” if the assumed model is not appropriate. Furthermore, such
subdata cannot be useful to build alternative models because it is not an appropriate repre-
sentative sample of the full data. In this paper, we propose a novel algorithm for better model
building and prediction via a process of selecting a “good” training sample. The proposed
subdata can retain most characteristics of the original big data. It is also more robust that one
can fit various response model and select the optimal model.

Keywords: dimension reduction, GAM, IBOSS, space-filling design.



1 Introduction

It is common to characterize big data with its 5V’s: (1) “volume" for huge quantity (large n) or
large number of variables (large p), (2) “variety" for various type, nature, and format of data, (3)
“velocity" for ultra-high speed of data generation or collection, (4) “veracity" for the trustworthi-
ness and quality of big data, and (5) “value" for its insights, usefulness and impact. Computational
resources and techniques today are not capable of keeping up with the extraordinary volume of
data being generated in many fields. Due to the overwhelming growth of data collection and big
datasets, it can be challenging to extract useful information from big data with current computa-
tional resources. Like most statistical procedures, it is common to choose subdata from the big
data for model estimation or inference/prediction for big data. Choosing a “good” subdata set as
the training sample to build some suitable models is a critical issue. There are two “goodness”
measures for the selected subdata: (a) ability to estimate the model parameters more precisely
under a prescribed model for the big data, and (b) ability to find a suitable model representing the
big data. To achieve (a), we should choose the subdata to maximize the “design/model efficiency”
under the prescribed model. To achieve (b), we should choose the subdata to be as “similar’ to the
whole big data as possible. These “goodness measures” will lead to different subdata selection
procedures which we will elaborate next.

The purpose of the first subdata selection procedure is the maximization of model efficiency
so that it could reduce the variation of the parameter estimates under a prescribed model for the
big data. A linear model is perhaps the most popular model in statistical and machine learning,
for its simple implementation and interpretation to study the relation among features of big data.
Because of a large number of input variables or usually a huge number of observations, the whole
data may be too big for computers with limited memory. Under the setting of linear regression for
big-data, Wang et al. (2019) proposed subdata selection methods based on D-optimality which is
called information-based optimal subdata selection (IBOSS). Recently, Wang et al. (2021) pro-
posed subdata selection methods based on A-optimality, which is called orthogonal subsampling
(OSS). As a result, IBOSS is likely to select “boundary points” (because it is only choosing ex-

treme points in each column) while OSS is likely to select “corner points”. Therefore, such a



subdata selection approach may not be feasible for fitting other more complicated models as the
response function.

There are different subdata selection techniques proposed under different candidate models,
e.g., quantile regression (Ai et al., 2021) and logistic regression (Cheng et al., 2020). As expected,
one optimal subdata for a given model is not expected to remain “optimal” under alternative
models. From the statistical/machine learning perspective, we would like the subdata selection
techniques to explore possible models which approximate the underlying relationship between the
predictors and the response variables. With many feasible candidate models to be explored, it is
unrealistic to pre-specify any fixed model in advance.

The purpose of the second subdata selection procedure is the ability of finding a suitable model
for the big data. To achieve this, we need to select subdata similar to the full data so that one can
build a suitable model for the big data. Mak and Joseph (2018) proposed a method that retains
the “similarity” of the subdata and the full data via some complicated measurement requiring
significant computational power. Later, Joseph and Mak (2021) proposed a more efficient method
to select the subdata filling the sample space via a k-mean cluster method.

In general, a “good” training sample should be representative of the original data, and we can
achieve this by choosing the design points that are evenly spaced over the whole design space.
See, for example, Fang et al. (2000). If the underlying simple (and unrealistic) linear model is
true, selecting uniformly designed subdata will not be as “efficient” when compared to subdata
selected by IBOSS/OSS which is likely to choose extreme/bounday points. Consequently, these
“training subdata” would not be similar to the original big data and they are unable to adequately
consider some more suitable and complicated models. In contrast, our proposed uniform design
approach has several advantages: (a) it can yield “training subdata” similar to the original big data,
(b) it can entertain various alternative models, and (c) according to our empirical evaluations to be
presented later, it only loses a little model-matrix efficiency even for the simple (and unrealistic)
linear model.

The most popular dimension reduction method is Principal Components Analysis (PCA),
which is used to choose a suitable dimension of features to explore the underlying structure (see

Abdi and Williams, 2010, for more detail). We propose to use PCA on the data to perform a



subsampling procedure on its first few, say k (<< p), principal components (PCs) instead of sub-
sampling over a large data dimension (p) space. For example, we consider a space-filling design
that seeks design points, as a training sample, that is uniformly scattered (evenly spaced) on the
PC space and/or on the whole design space. Such a training sample can be useful to entertain
some possible complex models on the relation between the response and the inputs.

The choice of a possible model to relate the response variable with the variables from the
original data or with “features” obtained from the given dimension reduction procedure is an
issue. A linear model is clearly the most popular because of its simplicity and because it is easy
to interpret and implement. However, the assumed linear model is rarely appropriate or correctly
specified especially when the number of input dimensions is huge.

For big data, it is impractical and unnecessary to use the whole data set to build/estimate the
models under consideration. Besides, the model might not be as simple as linear regression (see
e.g., Furrer et al. 2006; Gramacy and Apley 2015). For example, fitting GAM can be infeasible
or computationally inefficient if the number of input variables is large. Conventional methods of
variable selection to choose a smaller number of “important variables” for GAM are also compu-
tationally inefficient. In this case, we can consider PCA to reduce the number of PC dimensions
as input “features” for GAM. In this paper, we propose to use a powerful GAM procedure to es-
timate the actual response model. Finally, we provide an extensive empirical study on the same
data used by Wang et al. (2019) for comparisons of various sampling plans. Additionally, we then
keep the input variables and change only the response variable using a complex and popular re-
sponse function. We evaluate and compare the performance of the GAM procedure under various
sampling plans.

The rest of the paper is organized as follows. Section 2 reviews all existing approaches for
selecting subdata. Then, the new methodology is proposed. Section 3 evaluates the performance
of the proposed methods through simulated studies and real-world data. In Section 4, we summa-
rize the key steps to construct an effective model for prediction: (1) carefully select the training
sample, (2) apply dimension reduction techniques (e.g. PCA) to reduce the number of features
and avoid over-fitting, and (3) build up a powerful GAM with the help of dimension reduction

and a good sampling scheme to select a training sample.



2 Training Sample Selection procedures

2.1 Data and dimension reduction model

Consider n data observations (X, y;), ..., (X,, y,) where X; = (x;, ..., x;,) is a covariate vector
for the ith observation and y, is the response variable. It is common to represent the dataset in a

matrix form :

Xy e Xy, N

Xpp e Xy, V)
X = =[X1’X2"”’Xp]7 Y= (1)

Xpp  ooe Xy Y,
where the covariate matrix can be viewed as n row vectors of dimension p (X;,X,,...,X,) Or p
column vectors of dimension n (X, X,, ==+, X p) and Y is the response column vector of dimension

n’ (yls YQ’ e 5yn),'

Let X be a n X p matrix with each row as (row) sample average of X = 1'X/n, where 1 =

(1,1,---,1) is a n-dimensional column vector of 1. The sample variance-covariance matrix is

1

S = L(X -XYX-X), X=-1X (2)
n—1 n

We assume the response vector Y can be approximated by a function of p covariates in X,
where p is too large to efficiently build a good approximation function. Typically, X may have a
high correlation among some of the columns or some columns may have a non-linear relationship.
Therefore, one can first use a dimension reduction method to reduce the data dimension to k << p
dimensions,

5(X) = X" = [XF, X5, -, X!, 3)

and it can build the connection between Y and X* as
Y=/X")+e, “4)

where € is a random error term and f(-) is the response function.



It is straightforward to use divide-and-conquer to (randomly) partition the big data into several
blocks of subsets of the data (Li et al., 2013). Let X; be the i subset having n, data points
in p-dimensional space, i = 1,2,3,---. For each block, X, perform the following subsampling
procedure (to be described in detail later). For the remainder of this paper, we will drop the block

index i and treat the partition as the “whole” data and denoted as X and Y.

2.2 General models for response variable

The following model relating Y and X:

Y = f(6(X)) + e, o)

where € is a random error term and f(-) is the response function.
Both the dimension reduction function 6(-) and the response function f(-) need to be appro-
priately chosen. To further simplify the discussion, we consider a special form of 6(X) = XC and

f () is a first order linear function. When C = I, we have (with X, = 1),

p
Y=Y BX +e. (6)
i=0

For a general C of dimension p X k, usually the “loading matrix” corresponding to the PCA

dimensions, we have
k
Y=)BX +e (7)
i=0
In general we can consider generalized additive model (GAM), proposed by Hastie and Tib-
shirani (1986) and Hastie and Tibshirani (1990), which replaces X; in (6) by g;(X,), and X in
(7) by g;(X), where gi(j is a smooth function to be estimated. Specifically, we consider a simple

form of GAM as extensions of (6) using the original data dimensions (X;) and (7) using the PCA

dimensions (X}') as

P
Y = 2 g(X) +e. @)
i=0
and
k
Y =) g(X)+e. 9)
i=0
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Next, we consider various subdata procedures and then propose a general subsampling proce-

dure.

2.3 1IBOSS subdata

Under the assumed model of (6), Wang et al. (2019) proposed a partition-based selection algo-
rithm (Martinez, 2004) motivated by the upper bound of the information matrix of the linear
regression estimator.

IBOSS Algorithm: Let s be the total sample size needed. For r = s/(2p) perform the fol-

lowing steps:

1. For x;;,1 <i < n, include r data points with the r smallest x;; values and r data points with

the r largest x;, values.

2. For j = 2,... p, excluding data points previously selected, choose r data points with the

smallest x,; and r data points with the largest x;; values.

Potential weaknesses of IBOSS subdata procedure
There are concerns when using the algorithm proposed by Wang et al. (2019):

1. To implement IBOSS procedure, we may need to sort/find extreme points separately for all
p dimensions of size n. It is well-known that the most efficient sorting algorithm of size n
has the computing complexity of O(nlog(n)), and the computing complexity of O(n) is to
sample extreme points of size n. See, for example, Hoare (1961). To sample points over
p-dimensional space of size n each, the total complexity would be (approximately) of the
order O(np). For large dimension p or a large number of observations n, the process of
IBOSS becomes time-consuming. The IBOSS algorithm selects points from each covariate
sequentially excluding data points previously selected. When the dimension p is large, there
will be a large amount of data points excluded, especially when most of the columns are

(usually) highly correlated.

2. The IBOSS sampling procedure is highly sensitive to possible outliers, especially for the

situation of big data. Extreme points may not automatically be indications of outliers unless
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they greatly deviate from the rest of the data. The justification behind IBOSS procedure is to
choose the design points to maximize the model-matrix efficiency. However, our empirical
results (shown later) indicate that there is a very little gain over other sampling designs. For
example, it would not lose much model-matrix efficiency (and is more robust) to trim a few
extreme points in each and every dimension before the implementation of IBOSS sampling

procedure.

. Another problem for IBOSS sampling is when some of the variables are ordinal categorical
variables of more than 2 levels. In this case, IBOSS sample would leave out all data points
with middle-level values. This is clearly unacceptable. There are several sampling schemes
that can easily avoid this problem. For example, we can apply uniform systematic sampling

on each of the p dimensions. We will discuss in detail this type of uniform sampling later.

. Since IBOSS would choose extreme points in each of the p-dimensions, it can create a
large gap among the selected points. Consequently, these sample points can only entertain
a simple linear model between the response variable Y and the input variables X. In theory,
the IBOSS-selected design points can be optimal, if one can assume (unrealistically) that
the “best” statistical linear model is known. In practice, the actual form of the response
function, Y = f(X), is rarely known and the popular linear model can often be inappropriate
especially when pis very large. The large gap in the IBOSS sample would make it infeasible
to explore other possible and more complex models with non-smooth response functions
having many local maxima/minima. As to be demonstrated later, any model estimation with

such an IBOSS sample would fail to capture the actual shape of such a response function.

. Model-matrix efficiency should not be a major concern for exploring big data. While the
IBOSS sample is optimal if the assumed linear model in (6) is true, its actual percentage
gain over other sampling methods can be very small. Because of the size of the big data,
one can always choose more points to increase the model-matrix efficiency. Of course, it is
common to compare the model-matrix efficiency with the same number of data points. The
main purpose of choosing sample points, called the training sample is to fit the model, its

parameters, and then make good predictions on other new (unused) data, called the test sam-



ple. It is difficult to find an appropriate model which is both useful, simple to estimate, and
interpretable. Even if such a model can be found, a good model estimator/predictor would
rely heavily on the characteristics of the training sample. Specifically, we need to choose
the training sample which is similar to the test sample and the whole big data. Clearly, the

IBOSS subdata is in no way similar to the whole big data.

In summary, it is essential that the subsample (training sample) is chosen to be representative
of the full data set so that additional model analysis can be considered. Next, we discuss a very

general sampling procedure that should be able to choose a “better” training sample.

2.4 TSF-u(PCA): Trimmed Space-filling sampling on PCA
24.1 Trimmed-Space-Filling (TSF) design/sampling

A space-filling (SF) design seeks design points that are uniformly scattered (evenly spaced) on
the domain. Such a design can be useful to detect possible model assumption violations on the
assumed relationship between the response and the inputs. For example, suppose one assumes
that the relationship between the response and a single input is essentially linear when, in fact, it
is highly nonlinear. To detect such model violations, one may need to choose design points evenly
over the whole design space. See, for example, Fang et al. (2000).

Let D, = {zl, Zy, ve ,zn} be the set of »n units and we would like to choose a sample of size
s which are evenly distributed over the set D,. For the i'" data point, let r; be its rank (according
to the increasing value of z;) and d; be some distance measure (e.g. Euclidean distance) to its
central location (e.g. mean or median). For IBOSS scheme on the specified column in the whole
data matrix, it would choose extreme data points, equally on both ends, with r;, < s/2 or r;, >
n — s/2. A slight variation of IBOSS scheme is to choose data points that are far apart from its
center with large values of d,. Clearly, for symmetric data (on the z; values) both schemes would
yield similar data points. For heavily skewed distribution, the difference could be substantial. As
previously discussed, such data points may be “optimal” under a certain restricted linear model on
the response variable and input variables. On the other hand, it is more likely to contain outliers

and it is less likely to build various alternative models.
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To avoid the possible problems as discussed above, we propose to trim the data set by removing
some small (user-controlled) number of extreme data from the original whole data and then apply
some space-filling scheme to choose data points uniformly/evenly spaced/distributed over the

remaining trimmed data set. There are several space-filling schemes that can be considered.

1. The simplest and most efficient method is using simple random sampling. While its sam-
pling points are randomly distributed over the whole data set, it may not guarantee they are
evenly spaced (especially when the sample size s is small) over the high-dimensional data

space.

2. Another approach is using systematic sampling (see, e.g., Cochran 1977) where the set is
divided evenly into s subsets of size t = n/s in the increasing order of r,. Choose a random
starting entry, say, uniform random number w from Unif (1,2, ---,t). Choose the s points
with indices, w + (j — 1)t, for j = 1,2, ---, s from s subsets. The advantage of this scheme
is that sample units are indeed equally spaced (of length ¢) in the values of i rank, r,.

However, it has a limited number of possible samples that can be chosen.

3. Finally, we can modify the above systematic sampling scheme with more flexibility to
choose the random sample. The main idea is to use random index (w; fromUni f (1,2, --- , 1))
to choose independently in each of the s subsets. Specifically, we choose the s points with
indices, w; + (j— i, for j = 1,2,---,s from s subsets. While sample units may not be
equally spaced in the values of the i rank, r;, the maximum space is at most 27 and exactly
one unit is chosen within each of the s subsets. This sampling scheme is like a well-known
stratified random sampling scheme by dividing the data population into s strata, each of size
t, according to the values of r,. Choose one unit each from the s subsets. Compared with
simple random sampling, the current method should yield a more evenly spaced sample in
the values of the i rank, r;. Hence, we will refer to this scheme as the space-filling (SF)

scheme in this paper.
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2.4.2 TSF-u(PCA) sampling procedure

Our proposed method, TSF-u(PCA), is to apply the proposed space-filling scheme on the principal
components to select the sub-sample as briefly described next.

Let D be the set of indices left for a possible future selection and .S be the set of points being
selected. Initially, D is the set of indices corresponding to whole data, and S is an empty set.
Both D and S will be continuously updated during the data selection process.

Let s, denote the sample size for the i PC and it is reasonable to choose s,, to be decreasing to
account because of the decreasing variation in the i™ PC. However, it is simpler to set the sample
size for each PC the same, s; = s/k, where s is the total sample needed and  is the effective PCA
dimensions. For most cases, k can be expected to be much smaller than p. In fact, for the purpose
of efficient subdata selection, it is unnecessary to choose a very large k simply to account for a
very high percentage of “total variation” of the data matrix. In practice, we recommend k < 10

for the subdata selection as described below.

1. Repeat this process from i = 1 to i = k, that is, the first k principal components with the

set .S representing the final data that is selected.

2. Find the principal component (PC,) of X which is a linear combination of the p columns in

X with the largest variation.

3. To avoid possible outliers, we update D and exclude the data points corresponding to a few

extreme values of PC,.

4. Perform a uniform design/space-filling procedure to select s, data points based on the values
of PC, from the possible data set indexed by .S. Update the set .S and D with those data

selected.

It is interesting to note that the above TSF-u(PCA) can be easily extended to TSF-u(6(X)),
where 6(X) in (3) is any general dimension reduction procedure including even its original data

with 6(X) = X.
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2.4.3 Comparing IBOSS and TSF-u(PCA) sampling scheme

The proposed TSF-u(PCA) sampling scheme can resolve some of the problems discussed earlier

for IBOSS subdata procedure:

1. TSF-u(PCA) is more robust than IBOSS (and simple random sampling), because it is trim-
ming possible outliers with extreme values excluded in each of the kK PC dimensions. The

amount of “trimming” is user-controlled.

2. TSF-u(PCA) sampling scheme is based on k PCA-dimensions with many possible sample
selections of the data points. IBOSS subdata is based on p dimensions of the original dataset
X. In addition to the fact that k << p, IBOSS is less efficient because it is likely to remove
lots of the sampled points for correlated data. Unless we change the selection order of the

data columns, IBOSS sample is deterministic with fixed data and s (sample size).

3. Like the simple random sampling scheme, the TSF-u(PCA) sample scheme is expected to
choose data points that are evenly distributed in both the space of the original data dimen-
sion and the PCA dimension. In contrast, IBOSS will choose extreme points and it will
create “huge holes” among the selected data. The IBOSS subdata is highly “dis-similar”
to the original whole population and it is unlikely to be a good representative sample when

considering other complicated models.

2.44 TSF-v(PCA): improved vector version of TSF-u(PCA)

The key characteristic of TSF-u(PCA) sampling procedure is the use of a Trimmed Space Filling
procedure (TSF) on the matrix of size n X k corresponding to its effective k PCA dimensions.
While IBOSS needed p iterations, TSF-u(PCA) needs k(< p) iterations. Like the IBOSS scheme,
TSF-u(PCA) sampling scheme is choosing a data point based on the values of its specific dimen-
sion individually, not jointly. Next, we discuss an improvement on the TSF-u(PCA) sampling
scheme which requires only one iteration by considering the data vector jointly.

For simplicity, we discuss first the improved procedure using the original data matrix X as
in (1), denoted as TSF-v(X). The same process can also be applied for PCA dimension which

is denoted as TSF-v(PCA). For the i" data point, X;, in the data matrix X, we define the popular
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distance measure between X; and its mean vector, X, as
2 _ Q-1 S
Dy = (x;, - X)'S™ (x;, — X), (10)

where S is the variance-covariance matrix defined in (2). D,.2 is the Mahalanobis distance in the
area of multivariate analysis as proposed in Mahalanobis (1936). See, for example, Anderson
(2003).

For big data with a large number of dimensions (p), it is time-consuming to compute S™' and
we recommend replacing S with its diagonal matrix D = Diag(S), which makes it much easier to

compute its inverse as
D} =(x,—X)D'(x, - X), D = Diag(S) (11)
Finally, we propose the following new scheme, called TSF-v(X):

1. Compute and sort (i, Dl.z), i=1,2,-,nin increasing order of Dl.z.
2. Trim fixed (user-controlled) number/percentage of pairs, (i, Diz), with large value Dl.z.

3. Using Dl.z, apply the uniform-space filling on the remaining dataset to find s data points.

When the proposed scheme is applied to the case with X being the PCA columns, called TSF-
v(PCA). In this case, the PCA columns are orthogonal and its variance-covariance matrix S would
be a diagonal matrix D in Equation (10) and (11). Clearly, TSF-v(PCA) is an improvement over
TSF-u(PCA) where k iterations are required and it needs to deal with the steps of removing sample
duplications. Additionally, TSF-v(PCA) has more intuitive appeal because a k-dimension vector
of all kK PCA components is used jointly in the sampling scheme. It would be interesting to study
any additional advantages, in theory, and/or in practice. Both TSF-u(PCA) and TSF-v(PCA) share
the same characteristics that both will remove some possible outliers and both will choose the data
points evenly over the space in the PCA dimensions or the original data dimensions.

While the Mahalanobis distance was used for the purpose of subsampling, it is just one of the
distance measures that can be used. For example, Liu et al. (1999) discussed some measures of

“data-depth”, including Mahalanobis distance, for the multivariate data. Clearly, we can consider
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a similar sub-sampling procedure based on those data-depth measures on both the original data
space or PCA space.
To simplify the comparison with IBOSS scheme, we use the initially proposed scheme, TSF-

u(PCA), for the remaining of this paper.

3 Empirical Evaluation and Simulation

In this section, we first perform an extensive simulation to evaluate the computing efficiency be-
tween the proposed method and IBOSS with various combinations of n, p, k to select subdata of
size s. Next, we evaluate and compare the statistical properties of choosing a training sample
via IBOSS and the proposed method on a real data set discussed in Wang et al. (2019). We also
demonstrate the importance of selecting a good training sample on the model-building perfor-
mances in the original data set as well as a simulated response variable replacing the original

response variable.

3.1 Performance and computational time comparison

To assess the computational efficiency of obtaining subdata using IBOSS and TSF-u(PCA), we
perform a large-scale simulation study with combinations of key factors that affect the computa-
tional time of IBOSS and TSF-u(PCA): (i) the data size » and (ii) the number of input variables
p. The simulations were conducted using the High-Performance Computing facility at the Uni-
versity of Memphis with PowerEdge C6420 Compute Nodes, featuring Intel Skylake Gold 6148
Processors, 192 GB DDR4 RAM, and EDR Infiniband. Specifically, we consider combinations
of n=10°,n = 10°% n = 107 and p = 125, p = 250, p = 500. A data frame of size n X p will be
generated from the uniform distribution U (0, 1) independently. Another key factor is the effective
PC dimensions k. As explained previously, there is no need to set a large k simply to account for
a high percentage of “total variation” of the data matrix. In this study, we choose k = 2, k = 4,
and k = 6. For the subdata size s, it is set as 1000, to satisfy IBOSS’ requirement that the subdata
size must be at least twice the number of input variables (i.e., 2p). To account for the potential

variability, we repeat each simulation 100 times and calculate the average computational time.
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Finally, we adopt the implementation of IBOSS using the R package developed by the original
authors, which is available at https://github.com/Ossifragus/IB0SS.git.

Under various combinations as described, the average computational time is shown in Fig-
ure 1. A few conclusions can be made: (1) when the sample n is not very large (e.g. n = 10° or
n = 10%), there is little or no difference in computing time for two methods under various choices
of p and k, and (2) when the sample # is large (e.g. n = 107), the IBOSS subdata selection is less
efficient especially when p is also large. This is expected because IBOSS procedure needs to sort
p columns of length n.

Next, we compare the design efficiency of the selected subdata between IBOSS and TSF-
u(PCA) across various scenarios. IBOSS is optimal under the assumption, although unrealistic,
that all p input variables are active in the first-order linear model. However, practical situations
often involve inactive input variables and/or require more suitable complex models beyond the
first-order model. In such scenarios, IBOSS might not exhibit a substantial performance advan-
tage over our proposed method, as illustrated in the upcoming simulation study. In particular,
we choose population size n = 10°, p = 500, the subdata size s = 1000, and only ¢ = 3 are
important variables. We repeat the process 100 times and compute the design efficiency mea-
sures, | X’ X |, under reduced model of + = 3 active variables with both (i) the first-order linear
model and (ii) second-order polynomial model. The results are shown in Figure 2. As shown
in Figure 2(a), under (i), differences in design efficiency measure between the IBOSS subdata
and the TSF-u(PCA) subdata are not significant. Specifically, the BOSS subdata under (i) out-
performed the TSF-u(PCA) subdata in only 56 instances out of the 100 repetitions. Moreover,
under (ii), the difference is insignificant, as shown in Figure 2(b). In summary, TSF-u(PCA)
demonstrates greater computational efficiency compared to IBOSS, while maintaining a design

efficiency equivalent to that of IBOSS.
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Figure 2: Boxplot of the logarithm of the esign efficiency obtained from 100 subdata sets using

IBOSS and TSF-u(PCA).

Next, we consider other more important criteria (e.g. design efficiency or model building
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ability from subdata selected) with some real data.

3.2 EDA on Chemical Sensors Data

For the comparison, we use the same example considered in Wang et al. (2019) where chemical
sensors data were collected to develop and test strategies to solve a wide variety of tasks. This is
in favor of their setup. Specifically, Fonollosa et al. (2015) discussed using the data to develop
algorithms for continuously monitoring or improving the response time of sensory systems. The
data were collected at the ChemoSignals Laboratory in the BioCircuits Institute, University of
California San Diego. It contains the readings of 16 chemical sensors exposed to the mixture
of Ethylene and CO at varying concentrations in air. Each measurement was constructed by the
continuous acquisition of the sixteen-sensor array signals for a duration of about 12 hours without
interruption.

To make a direct comparison with Wang et al. (2019), we followed their data processing
steps without additional citations/explanations. They used the reading from the last sensor as
the response (Y') and readings from other sensors as covariates. Since trace concentrations often
have a log-normal distribution, a log-transformation of the sensors readings is used. Readings
from the second sensor are not used in the analysis because about 20% of the values are negative
for some reasons unknown. In total, there are p = 14 covariates, denoted as Z,, Z,, ---, Z,, and
they excluded the first 20, 000 data points corresponding to less than 4 min of system run-in time

from the full data used containing n = 4, 188,261 data points.

3.2.1 Preliminary data analysis

Due to the problem of over-plotting, the full big-data population of size respectively 4, 188,261
data points is too large for meaningful data exploration, method comparison, and data visual-
ization. In practice, it is unnecessary to use the original whole big-data set and we can obtain
a reasonable smaller size “sub-population” to represent the whole data. Following Wang et al.
(2019), we create the “sub-population” consist of the response variable (Y') and 14 covariates
(Z,,i=1,2,--,14) from a simple random sample of size n = 10, 000 from the population of size

4,188,261 data points. This is consistent with the common practice for handling big-data where
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we can apply the divide-and-conquer method to partition the original big-data into several blocks
of manageable size n.
As a simple exploration, we divide the 14 predictors into two groups according to their corre-

lation coefficients. The first group of covariates of high correlation (> 0.98) is
Gy =12y, 25. 242, 2,0, 2,1, Zas (12)

where any columns in G, are highly correlated with Y, and any two of the columns in G, are also

highly linearly correlated. The remaining columns form the second group of covariates as
Gy ={Z,.(Z4, Z5, Z,5. Z3).(Z5. Z,) } , (13)

where any two of the columns in G, are less linearly correlated except those grouped as (Z,, Zs,
Z,,, Z5), (Zg, Zy). The scatter plots between Z variable in first group G,, G, with Y are given
in Figure 3 and 4, and the linear pattern between variables can be shown within the groups.
Wang et al. (2019) claimed that a linear model seems appropriate for the log-transformed
readings between the response (Y) and covariates Z;, (i = 1,2, -+, 14). It should be noted that
from the plot between Y and Z’s in group G, it is reasonable to consider a much simple linear
model between Y with just one of the Z, in G,. Later, we will re-evaluate the whole procedure
by simulating a new Y with a complicated response function from some subset of the Z; and no

linear models would be suitable.

3.2.2 Empirical comparison between IBOSS and TSF-u(PCA) method

Following Wang et al. (2019), we choose a training sample using the IBOSS scheme of size
s = 20X p = 280. To implement the sampling scheme, TSF-u(PCA), we perform PCA on the data
and we find that its effective dimension is 4, a significant reduction from its original dimension of
14. The scatter plots of the selected data points projected on selected pairs of Z; dimensions are
shown in Figures 5 and 6. In particular, we use the following color/symbol schemes for different

data points:
1. light gray color for the original data points,
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Figure 3: Pairwise plots of Y and Z’s in group G, with strong linear correlation
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2. red color circle for the subdata points from IBOSS,
3. blue color triangle for the sampled points from TSF-u(PCA).

As expected, unlike the sampled points from TSF-u(PCA), the subdata points from IBOSS failed

to cover the original data space.
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Figure 5: Scatter plot of Z, vs Z,, Zs, Z,, Z,,, original data (light gray), subdata selected by
IBOSS (marked as []) and sample by TSF-u(PCA) (marked as +).

We then implement our sampling scheme, TSF-u(PCA) (uniform sampling based on 4 PCA
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columns), we choose 280 (random) points from the same population. We evaluate the perfor-
mance of the D-OPT IBOSS subdata, denoted as X, and sampled by TSF-u(PCA) with the same
number of points, denoted as X,. As noted previously, IBOSS subdata will yield a fixed subdata
X, and we can compute its D-efficiency deff, = log det (X;X »)- On the other hand, there are many
ways to choose subsample X, and compute the corresponding deff, = log det(X;Xu). For a fair
comparison, we select 500 random sample X, and find the “distribution” of deff,. For IBOSS sub-
data, deff, = —6.767 which is smaller than the sample average of 500 values of deff, = —6.519.
According to our simulation evaluation, the percentage of deff, > deff, is 0.726. If we choose
another measure on the corresponding variance-covariance matrix in (2), deff, = log det(S,) and
deff, = logdet(S,). Among the 500 iterations, we find 0.996 cases that deff, > deff, = =97.71
with the average of 500 values of deff, is —96.43. It is interesting to note that D-OPT IBOSS sub-
data yielding the subdata X, does not unnecessarily outperform over samples by TSF-u(PCA).

Next, we compare the variance-covariance matrices, in (2), by subdate by IBOSS, subsample
from TSF-u(PCA) and the original data X for variables in G, and G, in (12) and (13). The
variance-covariance matrix of IBOSS subdata S, original data S, TSF-u(PCA) subsample S, are
shown in Table 1.

In table 1, IBOSS subdata clearly has a different structure in terms of the corresponding
variance-covariance matrices. Compared with the IBOSS subdata, TSF-u(PCA) subsample clearly
has a similar structure with that of the original data in terms of the corresponding variance-

covariance matrices.

3.3 Simulated response of Chemical Sensors Data

In the previous example, the reading from the last sensor was chosen as the response (Y) and
readings from other sensors as covariates. Consequently, Y is highly correlated with several input
variables and its model/analysis can be too simplistic. It would be interesting to simulate a new
response variable, Y, while keeping the original input variables. Therefore, the PCA dimensions,

its TSF-u(PCA) sampling procedure as well as the IBOSS subdata are unchanged.
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IBOSS subdata, Group G,

IBOSS subdata, Group G,

X

Z2 73 Z6 Z7 7210 Z11

714

X

Z1 74 75

Z8 79

212 713

Z2

0.62 0.61 0.63 0.62 0.57 0.57

0.58

Z1

0.184 0.147 0.118

0.057 0.088

0.097 0.099

73

0.61 0.60 0.62 0.61 0.56 0.56

0.57

74

0.147 0.162 0.123

0.048 0.075

0.096 0.103

76

0.63 0.62 0.64 0.63 0.58 0.58

0.59

75

0.118 0.123 0.096

0.023 0.047

0.077 0.080

77

0.62 0.61 0.63 0.63 0.57 0.57

0.58

78

0.057 0.048 0.023

0.371 0.314

-0.009 0.017

Z10

0.57 0.56 0.58 0.57 0.53 0.53

0.54

79

0.088 0.075 0.047

0.314 0.277

0.016 0.038

Z11

0.57 0.56 0.58 0.57 0.53 0.53

0.54

712

0.097 0.096 0.077

-0.009 0.016

0.064 0.064

Z14

0.58 0.57 0.59 0.58 0.54 0.54

0.55

713

0.099 0.103 0.080

0.017 0.038

0.064 0.067

original data, Group G,

original data, Group G,

X

22 73 Z6 Z7 7210 Z11

714

Z1 74 75

Z8 79

212 713

Z2

0.18 0.18 0.19 0.19 0.17 0.17

0.17

Z1

0.152 0.073 0.064

0.087 0.093

0.049 0.049

73

0.18 0.17 0.19 0.19 0.16 0.17

0.17

74

0.073 0.062 0.050

0.035 0.040

0.038 0.040

76

0.19 0.19 0.20 0.20 0.18 0.18

0.19

75

0.064 0.050 0.042

0.025 0.030

0.032 0.033

77

0.19 0.19 0.20 0.20 0.17 0.18

0.18

Z8

0.087 0.035 0.025

0.219 0.189

0.006 0.018

7210

0.17 0.16 0.18 0.17 0.16 0.16

0.16

79

0.093 0.040 0.030

0.189 0.168

0.013 0.022

Z11

0.17 0.17 0.18 0.18 0.16 0.16

0.17

712

0.049 0.038 0.032

0.006 0.013

0.027 0.026

714

0.17 0.17 0.19 0.18 0.16 0.17

0.18

Z13

0.049 0.040 0.033

0.018 0.022

0.026 0.026

TSF-u(PCA) subsample, Group G,

TSF-u(PCA) subsample, Group G,

X Z2 Z3 Z6 Z7 Z10 Z11 Z14

X

Z1 74 75

Z8 79

212 713

Z2

0.20 0.19 0.21 0.21 0.18 0.19

0.19

Z1

0.152 0.075 0.066

0.081 0.087

0.051 0.051

Z3

0.19 0.19 0.21 0.20 0.18 0.18

0.19

74

0.075 0.066 0.053

0.036 0.041

0.040 0.042

76

0.21 0.21 0.22 0.22 0.19 0.20

0.20

75

0.066 0.053 0.043

0.026 0.031

0.033 0.034

77

0.21 0.20 0.22 0.22 0.19 0.19

0.20

78

0.081 0.036 0.026

0.198 0.170

0.007 0.018

Z10

0.18 0.18 0.19 0.19 0.17 0.17

0.18

79

0.087 0.041 0.031

0.170 0.150

0.014 0.023

Z11

0.19 0.18 0.20 0.19 0.17 0.18

0.18

712

0.051 0.040 0.033

0.007 0.014

0.028 0.027

714

0.19 0.19 0.20 0.20 0.18 0.18

0.19

Z13

0.051 0.042 0.034

0.018 0.023

0.027 0.028

Table 1: Variance-covariance matrix, (2), of G,

data and TSF-u(PCA) subsample
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3.3.1 Griewangk’s function for response variable

To generate a new response y = f(x) = f(x,, x,, -+, x,;), we modified the Griewangk’s function
which has many widespread local minima regularly distributed. For this and many other test
functions, see http://www.sfu.ca/ “ssurjano/. As the input variables’ range in the original
function was assumed to be within (-600, 600), which is not consistent with the range of Chemical

Sensors Data, we had to make a slight generalization, resulting in

d d
(x; —a;)? C;X;
f(X)=Z—’ d +o-><||cos(—’ ’>+e (14)
b = Vi

i=1 I 1 1

with possible parameters that can be selected. The original function is a special case with a; = 0,
b, =4000,c; = 1foralli =1,2,---,d, 0 = 1 and e = 0. For our simulation, we choose d = 4

dimensions for input variables (to be selected) from Z, withi =1,2,---,d,
1. (a,,a,, -, a,) should be near the minimal point, and we choose a; = 3, all i.
2. (b, b,, -+, b,), controls the scale of d-input variables, we choose b, = 4000, all i.
3. (¢;, ¢y, -, ¢,) controls the “degree of fluctuation” of the cosine function, ¢; = 5 for all i.
4. o controls the relative weight of the product term to the function f(x) and ¢ = 30.

5. eis a constant. Clearly, if we choose e = o, then it will make f(x) > O.

3.3.2 Inputs for Griewangk’s function and covariates for GAM

Since the effective PCA dimension is 4 for the original data, we use d = 4 input variables selected
from Z,, Z,, ---, Z,, to simulate the Griewangk’s function in (14) and choose ‘a set of covariates
(say, also 4 variables) to be used for building GAM based on the training sample (IBOSS or TSF-
u(PCA)). We evaluate and compare two possible set selections chosen from two groups as in (3),
with high pairwise correlation and (4) with low pairwise correlation . Specifically, we choose

four inputs variables from two groups

B ={Z,,Z,,Z4,Z,,} (15)
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and

B, = {26’27’2109 Zn} (16)

to train and build the GAM with both training samples. To simulate the response using Griewangk’s

function, we choose two input variables from each of the two groups not selected as covariates
B;={27,,2,,Z, Zy} . (17)

Intuitively, one would expect to build a better GAM with covariates with no apparent linear rela-
tionship like covariates in B,. We choose covariates from B having no duplications with both
B, and B, to produce Griewangk’s function to minimize the possible confounding effect of using

the same variable for response and covariates.

3.4 Empirical evaluation on simulated Chemical Sensors Data

With the simulated response for the Chemical Sensors Simulated Data, we evaluate the perfor-
mance of building two GAMs based on two different training samples from IBOSS subdata and
our proposed sampling method. Their empirical results comparing the two predicted responses
(IBOSS vs. TSF-u(PCA)) on two samples (training samples vs. test samples) with two differ-
ent GAM covariates are shown in Figures 7 and 8. To separate various data points, we use the

following gray-scale schemes:
1. light gray for the original simulated data points,
2. dark gray for the training data of 280 points and test data of 10,000 points,
3. black for the predictions on the training and the test data points,

4. “[O0” for the predicted values based on GAM using IBOSS subdata, and “+” for the predicted
values based on GAM using TSF-u(PCA).

Since it is infeasible to plot high-dimensional data, we project the response Y and its predicted
response Y onits input variables Z,,i = 1,2, ---, 14. To reduce the number of plots, we choose
only projectionon Z,, Z,, Z,, Zs.

There are two main objectives in this empirical study:
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1. We demonstrate the importance of choosing a good training sample (via the proposed
method) for the purpose of the model building via GAM. As expected, building GAM with
IBOSS subdata performed poorly, especially in the test sample. In contrast, our proposed
method can yield a training sample that will be evenly spaced out over the data dimension
space and have a similar distribution as that of a (randomly selected) test sample. Therefore,
building a GAM with such a training sample would have similar accuracy as the training

data.

2. We evaluate the effect of choosing covariates for the GAM. We show that GAM is quite
“robust” in the sense that it does not require the same variables used in the response function.
Based on the empirical study, we find that it would be better to choose covariates that are

not highly correlated.

Listed below are some key findings from the plots:

1. As expected, the subdata from IBOSS procedure failed to cover evenly over the data space
and it is unsuitable as the training sample for a complicated response function. The plots
of the IBOSS procedure show GAM can fit well for the training data reasonably well but it
failed on randomly selected test samples. In contrast, our proposed method, TSF-u(PCA),
will choose more uniformly spaced points over the data space of X dimensions or its PCA
dimensions (of much reduced dimensions). Consequently, the training sample based on
the proposed sampling method would be more likely to capture the actual shape of the

complicated response function.

2. Choosing covariates for building GAM is also important. It appears that choosing “more
correlated” variables (e.g. Z,, Z,, Zg, Z,,) as covariates for GAM is slightly better then
choosing “more uncorrelated” variables (e.g. Z¢, Z,, Z,,, Z,,) as covariates for GAM. It is
interesting to investigate further. Our empirical study indicates that GAM is fairly “robust”
in terms of the possible choices of covariates. This is important because we do not need to

choose the “correct” covariates to build GAM, as long as we have a “good” training sample.
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4 Summary and concluding remarks

To effectively analyze big datasets, it is important to take certain steps to create a useful model for
forecasting. It is ideal (1) to select the training subdata carefully so that it well represents the full
data; (2) to apply appropriate dimension reduction (e.g., PCA) to reduce the number of possible
features to a manageable size; (3) to avoid the potential issue of over-fitting with a huge number of
input variables; and (4) to build a useful modeling procedure with the help of dimension reduction
and a good sampling scheme to select a training subdata.

Specifically, IBOSS makes a not-so-realistic assumption that the linear model is the appropri-
ate model, and the subdata selected through IBOSS is inappropriate for fitting more complicated
models (e.g., GAM). On the contrary, the proposed method TSF-u(PCA) is able to select a good
training sample, which is the key to building a good prediction model that would perform well in
both the training sample and the test sample.

Itis shown that TSF-u(PCA) preserves key characteristics of the full data, such as the variance-
covariance matrix and space-filling properties. Furthermore, TSF-u(PCA) is more computation-
ally efficient than IBOSS, while the design efficiency of TSF-u(PCA) is comparable to that of
IBOSS. Most importantly, the models based on TSF-u(PCA) can maintain consistent and high
prediction accuracy on both training and test data. Given the space limitation, we have a lim-
ited comparison of the performance of the proposed method, outside of timing, via simulation.
Further extensive evaluations and more comprehensive comparisons between IBOSS and TSF-

u(PCA) can be studied as well.

5 Supplementary Materials

R Markdown for Empirical Evaluation and Simulation: The R markdown “Eva_Sim.Rmd”
contains R codes to perform the empirical evaluations and simulations in Section 3. The

file also contains codes to load the datasets used as examples in the article.
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