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Design researchers have struggled to produce quantita-
tive predictions for exactly why and when diversity might
help or hinder design search efforts. This paper addresses
that problem by studying one ubiquitously used search strat-
egy—Bayesian Optimization (BO)—on a 2D test problem
with modifiable convexity and difficulty. Specifically, we test
how providing diverse versus non-diverse initial samples to
BO affects its performance during search and introduce a
fast ranked-DPP method for computing diverse sets, which
we need to detect sets of highly diverse or non-diverse initial
samples.

We initially found, to our surprise, that diversity did not
appear to affect BO, neither helping nor hurting the opti-
mizer’s convergence. However, follow-on experiments illu-
minated a key trade-off. Non-diverse initial samples has-
tened posterior convergence for the underlying model hyper-
parameters—a Model Building advantage. In contrast, di-
verse initial samples accelerated exploring the function it-
self—a Space Exploration advantage. Both advantages help
BO, but in different ways, and the initial sample diversity di-
rectly modulates how BO trades those advantages. Indeed,
we show that fixing the BO hyper-parameters removes the
Model Building advantage, causing diverse initial samples
to always outperform models trained with non-diverse sam-
ples. These findings shed light on why, at least for BO-type

*Address all correspondence to this author.

optimizers, the use of diversity has mixed effects and cautions
against the ubiquitous use of space-filling initializations in
BO. To the extent that humans use explore-exploit search
strategies similar to BO, our results provide a testable con-
Jecture for why and when diversity may affect human-subject
or design team experiments.

1 INTRODUCTION AND RELATED WORK

One open question within design research is when or
under what conditions providing diverse stimuli or starting
solutions to either humans or algorithms can improve their
designs’ final performance. Researchers have struggled to
produce quantitative predictions or explanations for exactly
why and when diversity might help or hinder design search
efforts. In studies of human designers or teams, there have
been numerous empirical results on the effect of diverse
stimuli or sets of stimuli on designers, typically referred to
under the topic of Design Fixation (for recent reviews, see
[1] and [2]). In general, available empirical results are mixed
and it is difficult to quantitatively predict, for a new problem
or person, whether or not diversity in problem stimuli will
or will not help. For instance, there are a number of empiri-
cal demonstrations of positive effects of example diversity on
novelty and diversity of ideas [3-5], but substantially more
mixed results on the effects of diversity on solution guality,
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with some observations of positive effects [6—8], some null
or contingent effects [4,9-14], and even some negative ef-
fects on solution quality [15, 16].

Likewise, in research focused purely on optimization,
common academic and industrial practice initializes search
algorithms with different strategies like Latin Hypercube
Sampling (LHS) [17] and others in an attempt to “fill” or
“cover” a space as uniformly as possible [18] or via quasi-
random methods [19-21]. Some methods build diversity-
encouraging loss functions directly into their core search al-
gorithms, such as in common meta-heuristic optimizers [22]
such as Particle Swarm Optimization (PSO), Simulated An-
nealing (SA), and Genetic Algorithms (GA), with one of
the most well-known diversity-inducing ones being NSGA-
IT [23]. For BO specifically, a common strategy is to build
diversity directly into the acquisition function used in sam-
pling new points from the Gaussian Process posterior [24].
As with human-subjects experiments, the precise effect of
diversity on optimization performance is often problem de-
pendent [22] and difficult to predict apriori. Nevertheless,
optimization practitioners take these steps to improve initial
sample diversity with the hope that the optimizer will con-
verge faster or find better global optima.

But is encouraging initial diversity in this way always
a good idea? If so, when and why is it good? Are there
any times or conditions when diversity might hurt rather than
help our search for good designs?

(Spoiler Alert: Yes, it can—see S4 for how and S6 for why.)

To address the above questions, this paper studies one
type of commonly used search strategy—Bayesian Opti-
mization (BO)—and how the diversity of its initialization
points affects its performance on a search task. We un-
cover a fascinating dance that occurs between two competing
advantages that initial samples endow upon BO—a Model
Building versus Space Exploration advantage that we de-
fine later—and how the initial samples’ diversity directs the
choreography. While the fundamental reason for this inter-
play will later appear straightforward (and perhaps even dis-
cernible through thought experiments rather than numerical
experiments), it nevertheless flies in the face of how most
practitioners initialize their BO routines or conduct Optimal
Experimental Design studies. It also posits a testable pre-
diction about how to induce greater effects of diversity on
novice human designers or the conditions under which there
may be mixed or even negative effects (see S6).

Before describing our particular experiment and results,
we will first review why BO is a meaningful and generaliz-
able class of search algorithm to use, as well as past work
that has tried to understand how diversity affects search pro-
cesses such as optimization.

Why model design search as Bayesian optimization?
While this paper addresses only BO, this is an important
algorithm in that it plays an out-sized role within the de-
sign research and optimization community. For example,
BO underlies a vast number of industrially-relevant gradient-
free surrogate modeling approaches implemented in major
design or analysis packages, where it is referred to under

a variety of names, including Kriging methods or meta-
modeling [25,26]. Its use in applications of computation-
ally expensive multidisciplinary optimization problems is,
while not unilateral [27], quite widespread. Likewise, re-
searchers studying human designers often use BO as a proxy
model [28] to understand human search, due to the interplay
between exploration and exploitation that lies at the heart of
most BO acquisition functions like Expected Improvement.
More generally, there is a robust history of fruitful research
in cognitive science modeling human cognition as Bayesian
processing [29], such as concept learning in cognitive de-
velopment [30], causal learning [31], and analogical reason-
ing [32].

While the bulk of BO-related papers focus on new al-
gorithms or acquisition functions, few papers focus on how
BO is initialized, preferring instead the general use of space-
filling initializations that have a long history in the field of
Optimal Experiment Design [27]. In contrast, this paper
shows that in certain situations that faith in space-filling de-
signs might be misplaced, particularly when the BO kernel
hyper-parameters are adjusted or fit during search.

What does it even mean for samples to be diverse? As
a practical matter, if we wish to study how diverse samples
impact BO, we face a subtle but surprisingly non-trivial prob-
lem: how exactly do you quantify whether one set of samples
is more or less diverse than another? This is a set-based (i.e.,
combinatorially large) problem with its own rich history too
large to cover extensively here, however our past work on
diversity measurement [33-35], computation [36], and op-
timization [37, 38] provides further pointers for interested
readers, and in particular the thesis of Ahmed provides a
good starting point for the broader literature and background
in this area [39].

For the purposes of understanding how this paper re-
lates to existing approaches, it suffices to know the follow-
ing regarding common approaches to quantifying diversity:
(1) most diversity measurement approaches focus on some
variant of a hyper-volume objective spanned by the set of se-
lected points; (2) since this measure depends on a set rather
than individual points, it becomes combinatorially expen-
sive, necessitating fast polynomial-time approximation, one
common tool for which is a Determinantal Point Process
(DPP) [40]; however, (3) while sampling the most diverse
set via DPPs is easy, sampling percentile sets from the DPP
distribution to get the top 5%, median, or lowest 5% of di-
verse sets becomes exceedingly slow for a large sample pool.

In contrast, for this paper, we created a faster DPP-type
sampling method to extract different percentiles of the dis-
tribution without actually needing to observe the entire DPP
distribution and whose sampling error we can bound using
concentration inequalities. Section 2 provides further mathe-
matical background, including information on DPP hyper-
parameters and how to select them intelligently, and the
Supplemental Material provides further algorithmic details.
With an understanding of diversity distribution measures in
hand, we can now address diversity’s specific effects on op-
timization more generally.
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How does diversity in initial inputs affect optimizers?
While there are a number of papers that propose either dif-
ferent initialization strategies or benchmarking of existing
strategies for optimization, there is limited prior work ad-
dressing the direct effect of initial sample diversity.

For general reviews and benchmarking on how to initial-
ize optimizers and the effects of different strategies, papers
such as [20, 22] compare initialization strategies for partic-
ular optimizers and quantify performance differences. An
overall observation across these contributions is the inabil-
ity of a single initialization method to improve performance
across functions of varying complexity. These studies also
do not directly measure or address the role of sample diver-
sity directly, only noting such behavior as it correlates indi-
rectly with the sampling strategy.

A second body of work tries to customize initializa-
tion strategies on a per-problem basis, often achieving faster
convergence on domain-specific problems [18, 19, 41-43].
While useful in their designed domain, these studies do not
directly address the role of diversity either. In contrast, this
paper addresses diversity directly using properties of BO that
are sufficiently general to apply across multiple domains and
applications.

Lastly, how to initialize optimizers has garnered new in-
terest from the machine learning community, for example in
the initial settings of weights and biases in a Neural Network
and the downstream effects on network performance [44,45].
There is also general interest in how to collect diverse sam-
ples during learning, either in an Active Learning [46] or Re-
inforcement Learning context [47,48]; however, those lines
of work address only diversity throughout data collection,
rather than the impact of initial samples considered in this

paper.

What does this paper contribute beyond past work?
This paper’s specific contributions are:

1. To compute diversity: we describe a fast DPP-based di-
versity scoring method for selecting diverse initial ex-
amples with a fixed size k. Any set of size k with these
initial examples can be then used to approximate the per-
centile of diversity that the set belongs to. This method
requires selecting a hyper-parameter relating to the DPP
measure. We describe a principled method for select-
ing this parameter in Section 2.1, and provide numerical
evidence of the improved sampling performance in the
Supplemental Material. Compared to prior work, this
makes percentile sampling of DPP distributions compu-
tationally tractable.

2. To study effects on BO: we empirically evaluate how
diverse initial samples affect the convergence rate of
a Bayesian Optimizer. Section 4 finds that low diver-
sity samples provide a Model Building advantage to BO
while diverse samples provide a Space Exploration ad-
vantage that helps BO converge faster. Section 5 shows
that removing the model building advantage makes hav-
ing diverse initial samples uniformly better than non-

diverse samples.'

We will next describe our overall experimental approach
and common procedures used across all three of our main ex-
periments. We will introduce individual experiment-specific
methods only when relevant in each separate experiment sec-
tion.

2 OVERALL EXPERIMENTAL APPROACH

This section will first describe how we compute diverse
initial samples, including how we set a key hyper-parameter
that controls the DPP kernel needed to measure sample set
diversity. It then briefly describes the controllable 2D test
problem that we use in our experiments. It ends with a de-
scription of how we set up the BO search process and the
hyper-parameters that we study more deeply in each individ-
ual experiment.

Fig. 1: Correlation matrix showing the relative correlation between two
gammas by comparing the way our DPP approach ranks 10,000 sampled sets
of cardinality k=10. The gamma values in both axes here are logarathmic
values with base 10.

2.1 Measuring and Sampling from Diverse Sets using
Determinantal Point Processes

As mentioned above, we measure diversity of a set of

points using Determinantal Point Processes (DPP), which get

their name from the fact that they compute the Determinant

For grammatical simplicity and narrative flow, we will use the phrase
“non-diverse” throughout the paper to refer to cases where samples are
taken from the 5th percentile of diverse sets—these are technically “low-
diversity” rather than being absolutely “non-diverse” which would occur
when all points in the set are identical, but we trust that readers can keep
this minor semantic distinction in mind.
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of a matrix referred to as an L-ensemble (as seen in Eq. 1)
that correlates with the volume spanned by a collection or
set of samples (Y) taken from all possible sets (") given a
diversity/similarity (feature) metric.

P(LLy) < det(K(Ly) 1)
Here L is the ensemble defined by any positive semi-definite
matrix [40], and K is the kernel matrix. For sampling diverse
examples, this positive semi-definite matrix is typically cho-
sen as a kernel matrix (K) that defines the similarity measure
between pairs of data points. For this paper, we use a stan-
dard and commonly used similarity measure defined using
a Radial Basis Function (RBF) kernel matrix [49]. Specifi-
cally, each entry in Ly for two data points with index i and j
is:

[Lylij =exp (=v-|[xi —x/[*) 2
The hyper-parameter 7y in the DPP kernel can be set in the
interval (0,c0) and will turn out to be quite important in how
well we can measure diversity. The next section explores this
choice in more depth, but to provide some initial intuition:
set Y too high and any selection of points looks equally di-
verse compared to any other set, essentially destroying the
discriminative power of the DPP, while setting y too low
causes the determinant of L. to collapse to zero for any set
of cardinality greater than the feature-length of x.

With L in hand, we can now turn Eq. 1 into an equality
by using the fact that Yy - det(ILy) = det(IL.4-I), where I is
an identity matrix of the same shape as the ensemble matrix
L. Then, using Theorem 2.2 from [40], we can write the
P(Y € Y) as follows:

det (Ly)

PY) = det(L+1) )

This is the probability that a given set of points (Y) is
highly diverse compared to other possible sets (9")—that is,
the higher P(Y) the more diverse the set. The popularity of
DPP-type measures is due to their ability to efficiently sam-
ple diverse samples of fixed size k. Sampling a set of k sam-
ples from a DPP is done using a conditional DPP called k-
DPP [50]. k-DPP are able to compute marginal and condi-
tional probabilities with polynomial complexity, in turn al-
lowing sampling from the DPP in polynomial complexity.
k-DPPs are also well researched and there exists several dif-
ferent methods to speed up the sampling process using a
k-DPP [51,52]. Our approach allows sampling in constant
complexity however there is a trade-off in complexity in gen-
erating the DPP distribution. The complexity for generating
traditional DPP distributions is independent of ‘k’, while our
approach has linear dependence on ‘k’. Since, existing k-
DPP approaches lack the ability to efficiently sample from
different percentiles of diversity and thus make it computa-
tionally expensive to regenerate the distribution to alterna-
tively sample from different percentiles.

To tackle this problem, our approach is designed to sam-
ple efficiently from different percentiles of diversity. This is
made possible by creating an absolute diversity score. This
score is generated by taking a logdeterminant of the kernel
matrix defined over the set Y. Randomly sampling the k-
DPP space allows us to bound errors in generating this abso-
lute score through the use of concentration inequalities. The
details about how to sample from this distribution and calcu-
late the score are mentioned in the supplementary material,
so as not to disrupt the paper’s main narrative. Additionally,
the supplementary material provides empirical results to sup-
port our earlier claims regarding efficient sampling from our
approach vs the traditional k-DPP approach, as well as the
trade-off in complexity when generating the DPP distribu-
tion. Figure 2 shows example sets of five points and their
corresponding DPP score, where the diversity score is mono-
tonic and a positive score corresponds to a more diverse sub-
set.
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Fig. 2: Scatter plots showing randomly chosen sets with k=5 High Diver-
sity and Low Diversity samples with their diversity score on top of each of
the chosen set.

2.1.1 Selecting the hyper-parameter for the DPP kernel
As mentioned above, the choice of y impacts the accu-
racy of the DPP score, and when we initially fixed ¥ to ‘%‘,
where Y; is the set of data points over which the RBF kernel
is calculating the DPP score as suggested by [53], the DPP
seemed to be producing largely random scores. To select an
appropriate Y we designed a kernel-independent diagnostic
method for assessing the DPP kernel with four steps.

First, we randomly generate M samples of size k sets
(think of these as random k-sized samples from 9"). Sec-
ond, we compute their DPP scores for different possible y
values and then sort those M sets by that score. Third, we
compute the rank correlation among these sets for different
pairs of y—intuitively, if the rank correlation is high (toward
1) then either choice of ¥ would produce the same rank or-
ders of which points were considered diverse, meaning the
(relative) DPP scores are insensitive to y. In contrast, if the
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rank correlation is 0, then the two v values produce essen-
tially random orderings. This rank correlation between two
different 7y settings is the color/value shown in each cell of
the matrix in Fig. 1. Large ranges of y with high-rank cor-
relation mean that the rankings of DPP scores are stable or
robust to small perturbations in Y. Lastly, we use this “robust
Y’ region by choosing the largest range of 'y values that have
a relative correlation index of 0.95 or higher. We compute
the mean of this range and use that as our selected Y in our
later experiments. We should note that the functional range
of v is dependent on sample size (k), and so this “robust Y’
needs to be recomputed for different initialization sizes.

The detailed settings for the results as seen in Figure 1
are as follows: the M = 10000; k = 10; Y€ [e—7,e — 2]. The
correlation matrix shows a range of y with strongly correlat-
ing relative ordering of the test sets. All y within this range
provide a consistent ranking.

2.2 A Test Function with Tunable Complexity

A problem that is common across the study of initial-
ization methods is their inconsistency across problems of
varying difficulty, motivating the need to test BO’s search
behavior on a problem class with variable complexity. Syn-
thetic objective functions are often used to test the efficiency
of different optimizers and there are several libraries online
to choose these functions from [54], though these functions
are largely static, in the sense that there is only a single test
function definition. There has been research into develop-
ing objective function generators; for example, in [55], the
author uses a mixture of four features to generate synthetic
objective functions. These have been well categorized and
the relative performance of different optimizers documented
on each landscape. Similar to this, [56] looks at using a mix-
ture of different sinusoidal functions to create a noisy 1-D
function. Both the generators discussed are capable of gener-
ating complicated landscapes, but the complexity arises from
mixing different randomly generated sinusoids and thus are
unable to control or quantify a measure of complexity of the
generated landscapes.

To address this controllable complexity problem di-
rectly, we created a simple 2D test function generator with
tunable complexity parameters that allow us to instantiate
multiple random surfaces of similar optimization difficulty.
We modified this function from the one used in [57] where it
was referred to as “Wildcat Wells”, though the landscape is
functionally just a normal distribution with additive noise of
different frequency spectra. We used four factors to control
the synthetic objective functions: 1) the number of peaks,
2) noise amplitude, 3) smoothness, and 4) distance between
peaks and a seed. The number of peaks control the number
of layers of multivariate normal with single peaks. The noise
amplitude in the range of [0,1] controls the relative height of
the noise compared to the height of the peaks. Setting this to
1 would essentially make the noise in the function as tall as
the peaks and give the function infinite peaks. Smoothness
in the range of [0,1] controls the weighted contribution of the
smooth Gaussian function compared to the rugged noise to

the wildcat-wells landscape. Setting this to 1 would remove
the noise from the function because then the normal distri-
bution completely controls and dominates the function. The
last parameter, the distance between peaks, can be tuned in
the range of [0,1]. This parameter prevents overlap of peaks
when the function is generated with more than 1 peak.

Some of these parameters overlap in their effects. For
example, N controls the number of peaks, and ruggedness
amplitude controls the height of the noise in the function,
so increasing the noise automatically increases the peaks in
the function thus we will only look at varying the rugged-
ness amplitude. Apart from this, ruggedness frequency (the
distance between peaks) plays the same role as smoothness
(radius of influence of each individual on its neighbor). Thus,
for the numerical experiments presented in Sections 3—5 only
the ruggedness amplitude and smoothness will be varied be-
tween [0.2,0.8] with increments of 0.2. To provide some vi-
sual examples of the effect of these parameters on the gener-
ated functions, Fig. 3 visualizes an example random surface
generated with different smoothness and ruggedness ampli-
tude parameters.

2.3 Bayesian optimization

Bayesian optimization (BO) has emerged as a popular
sample-efficient approach for optimization of these expen-
sive black-box (BB) functions. BO models the black-box
function using a surrogate model, typically a Gaussian pro-
cess (GP). The next design to evaluate is then selected ac-
cording to an acquisition function. The acquisition func-
tion uses the GP posterior and makes the next recommen-
dation for function evaluation by balancing between explo-
ration and exploitation. It allows exploration of regions with
high uncertainty in the objective function, and exploitation
of regions where the mean of the objective function is op-
timum. At each iteration, the GP gets updated according to
the selected sample, and this process continues iteratively ac-
cording to the available budget.

Each data point in the context of Bayesian optimization
is extremely expensive; thus, there is a need for selection of
an informative set of initial samples for the optimization pro-
cess. Toward this, this paper investigates the effect of level
of initial diverse coverage of the input space on convergence
of Bayesian optimization policies.

For the purpose of numerical experiments, the optimizer
used is from the BOTorch Library [58]. The optimizer uses
a Single Task GP Model with Expected Improvement; the
kernel used is a Matérn kernel.

A GP is specified by its mean and covariance functions,
as:

f(x) ~ GP (u(x),k(x, %)) , 4

where u(.) and k(.,.) are the mean function and a real-valued
kernel function encoding the prior belief on the correlation
among the samples in the design space. In Gaussian pro-
cess regression, the kernel function dictates the structure of
the surrogate model we can fit. An important kernel for
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Fig. 3: A Grid plot showing how the landscape of wildcat wells changes with smoothness and ruggedness amplitude.

Bayesian optimization is the Matérn kernel, which incorpo-
rates a smoothness parameter v to permit greater flexibility
in modeling functions:

kMatém (X1,X2) =

2!~V IIx1 — x|\ " |[x1 — x| ®)
— (m_e >Hv (m_e )

where I'(.) and Hy(.) are the Gamma function and the Bessel
function of order v, and 0 is the length-scale hyper-parameter
which denotes the correlation between the points within each
dimension and specifies the distance that the points in the de-
sign space influence one another. Here, we use a constant
mean for the mean function. The Model Building advan-
tage that we refer to in this paper corresponds to learning
these hyper-parameters. The hyper-parameters of the Gaus-
sian process, namely, the parameters of the kernel function
and the mean function are:

Lengthscale of the Matérn Kernel 1InEq. 5, where 0 is the
lengthscale parameter of the kernel. This parameter controls

the ruggedness expected by the Bayesian optimizer in the
black box function being studied.

The effects of the parameter are similar to v, but v is not
learned during the optimization process while lengthscale is.
So, v is not studied as a parameter that influences the mod-
eling behavior but rather studied as an additional parameter
for sensitivity.

Output scale of Scale Kernel Output scale is used to con-
trol how the Matérn kernel is scaled for each batch. Since
our Bayesian optimizer uses a single task GP, we do not use
batch optimization. Thus, this parameter is unique for us and
the way it’s implemented using BoTorch can be seen Equa-
tion 6.

Kcatea = 9scalel<orig (6)

Noise for likelihood calculations The noise parameter is
used to model measurement error or noise in the data. So,
as the Gaussian Process gets more data the noise term de-
creases. So, ideally, this term should converge to O when the
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Bayesian optimizer has found an optimal value since our test
functions did not have any added noise.

Constant for Mean Module This constant is used as the
mean for the Normal distribution that forms the prior of the
Gaussian Process as shown in Equation 4.

Further studies and results regarding the effects of the
hyper-parameters are available in the Supplemental Material.

We now describe the first experiment where we explore
the effects of diversity of initial samples on the convergence
of Bayesian Optimizers.

3 EXPERIMENT 1: DOES DIVERSITY AFFECT
OPTIMIZATION CONVERGENCE?
3.1 Methods

To test the effects of diversity of initial samples on opti-
mizer convergence, we first generated a set of initial training
samples of size (k) 10 either from low (5" percentile of di-
versity) or high diversity (95" percentile of diversity) using
our procedure in S2.1. Next, we created 100 different in-
stances of the wildcat wells function with different randomly
generated seeds for each cell in a 4x4 factor grid of 4 values
each of the smoothness and ruggedness amplitude parame-
ters of the wildcat wells function (ranging from 0.2 to 0.8, in
steps of 0.2). For simplicity here, we refer to these combina-
tions as families of the wildcat wells function. This resulted
in 1600 function instances.

Our experiment consisted of 200 runs of the Bayesian
Optimizer within each of the smoothness-ruggedness func-
tion families, where each run consisted of 100 iterations, and
half of the runs were initialized with a low-diversity training
sample, and half were initialized with a high-diversity train-
ing sample.

We then compared the cumulative optimality gap across
the iterations for the runs with low-diverse initializations
and high-diverse initalizations within each smoothness-
ruggedness combination family. We did this by comput-
ing bootstrapped mean and confidence intervals within each
low-diverse and high-diverse sets of runs within each family.
Given the full convergence data, we compute a Cumulative
Optimality Gap (COG) which is just the area under the Op-
timality Gap curve for both the 5 and 95" diversity curves.
Intuitively, a larger COG corresponds to a worse overall per-
formance by the optimizer. Using these COG values we can
numerically calculate the improvement of the optimizer in
the 95" percentile. The net improvement of COG value
while comparing the 5 and 95" percentile is also presented
as text in each subplot in Figure 4.

3.2 Results

As Figure 4 shows, the Cumulative Optimality Gap does
not seem to have a consistent effect across the grid. Diver-
sity produces a positive convergence effect for some cells,
but is negative in others. Moreover, there are wide empirical
confidence bounds on the mean effect overall, indicating that
should an effect exist at all, it likely does not have a large

effect size. Changing the function ruggedness or smooth-
ness did not significantly modulate the overall effect. As ex-
pected, given sufficient samples (far right on the x-axis) both
diverse and non-diverse initializations have the same opti-
mality gap, since at that point the initial samples have been
crowded out by the new samples gathered by BO during its
search.

3.3 Discussion

Overall, the results from Fig. 4 seem to indicate that di-
versity helps in some cases and hurts in others, and regard-
less has a limited impact one way or the other. This seems
counter to the widespread practice of diversely sampling the
initial input space using techniques like LHS. Figure 4 shows
that it has little effect.

Why would this be? Given decades of research into ini-
tialization schemes for BO and Optimal Experiment Design,
we expected diversity to have at least some (perhaps small
but at least consistent) positive effect on convergence rates,
and not the mixed bag that we see in Fig. 4. How were the
non-diverse samples gaining such an upper hand when the di-
verse samples had a head start on exploring the space—what
we call a Space Exploration advantage?

The next section details an experiment we conducted to
test a hypothesis regarding a potential implicit advantage that
non-diverse samples might endow to BO that would impact
the convergence of BO’s hyper-parameter posteriors. As we
will see next, this accelerated hyper-parameter posterior con-
vergence caused by non-diverse initialization is the Achilles’
heel of diversely initialized BO that allows the non-diverse
samples to keep pace and even exceed diverse BO.

4 EXPERIMENT 2: DO LOWER DIVERSITY SAM-
PLES IMPROVE HYPER-PARAMETER POSTE-
RIOR CONVERGENCE?

After reviewing the results from Fig. 4, we tried to deter-
mine why the Space Exploration advantage of diversity was
not helping BO as we thought it should. We considered as
a thought experiment the one instance where a poorly ini-
tialized BO model with the same acquisition function might
outperform another: if one model’s kernel hyper-parameter
settings were so grossly incorrect that the model would waste
many samples exploring areas that it did not need to if it had
the correct hyper-parameters.

Could this misstep be happening in the diversely sam-
pled BO but not in the non-diverse case? If so, this might
explain how non-diverse BO was able to keep pace: while
diverse samples might give BO a head start, it might be un-
intentionally blindfolding BO to the true function posteriors,
making it run ragged in proverbial directions that it need not.
If this hypothesis was true, then we would see this reflected
in the comparative accuracy of the kernel hyper-parameters
learned by the diverse versus non-diverse BO samples. This
experiment set out to test that hypothesis.

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566



567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

Difference in optimality gap when optimizer is fitting hyperparameters at each iteration

10

0.96

16.59 \ 59.57

MW\\N&

. 26.6 « 21.57
wﬁ \N
N

o
, |

—_

~

©

Smoothness
|
5

7.25
\\w§

-0.41

/////%

-10

10

(€]

1
—
o
(o)
=

6

L \\\\\\\\22.

0.62

Effect of diversity on performance of optimizer

©
o
N
A\
~10p 20 40 0 20 40 0 20 40 0 20 10
0.2 0.4 0.6 0.8
Ruggedness Amplitude

Fig. 4: Experiment 1: Optimality gap grid plot showing the difference in current Optimality Gap between optimizers initialized with Sth vs 95th
percentile diverse sample (y-axis) as a function of optimization iteration (x-axis). The different factors in the factor grid plot the effects of diversity as the
noise amplitude and smoothness are varied in the range [0.2,0.8]. Each plot also has text indicating the Net Cumulative Optimality Gap (NCOG), a positive
value corresponds to a better performance by high diversity samples compared to the low diversity samples. The plot shows that BO benefits from diversity
in some cases but not others. There is no obvious trends in how the NCOG values change in the grid. The results are further discussed in S3

4.1 Methods

The key difference from Experiment 1 is that, rather
than comparing the overall optimization convergence, we in-
stead focus on how the initial samples’ diversity affects BO’s
hyper-parameter posterior convergence, and compare how
far each is from the “ground truth” optimal hyperparameters.

As with Experiment 1, we used the same smoothness
and ruggedness amplitude families of the wildcat wells func-
tion. To then generate the data for each instance in one of
these families, we sampled 20 sets of initial samples. Half
of the sampled 20 sets were low (5" percentile of diversity)
and the other half from high diversity (95" percentile of di-
versity) percentiles.

For each initial sample, we then maximized the GP’s
kernel Marginal Log Likelihood (via BOTorch’s GP fit
method). We then recorded the hyper-parameters obtained
for all 20 initial samples. The mean of the 10 samples from
low diversity was then used as one point in the box plot’s
low diversity distribution as seen in Fig. 5. We then repeated
this process for the high diversity initial samples. Each point

in the box plot can be then understood as the mean hyper-
parameter learned by BOTorch given just the initial sample
of size (k) 10 points. To get the full box plot distribution for
each family the above process is repeated over 100 seeds and
Fig. 5 provides the resulting box plot for both diverse and
non-diverse initial samples for all the 16 families of wildcat
wells function as described in Experiment 1.

To provide a ground truth for the true hyper-parameter
settings, we ran a Binary search to find the size of the sample
(koptimar) Tor which BO’s kernel hyper-parameters converged
for all families. The hyper-parameter found by providing
koptimai @amount of points for each instance in the family was
then plotted as a horizontal line in each box plot. An interest-
ing observation is that some families have non-overlapping
horizontal lines. This is because for some families there are
more than one modes of ‘optimal hyper-parameters’. The
mode chosen as the ‘optimal hyper-parameter’ is the more
observed mode. The process for finding the ‘optimal hyper-
parameter’ and which mode is chosen as the optimal hyper-
parameter has been described in the Supplemental Material.
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Fig. 5: Experiment 2: Box plot showing distribution of ‘Lengthscale’ hyper-parameter learned by BO when initiated with diverse (orange) and non-
diverse samples (blue) for 16 different families of wildcat wells functions of the same parameters but 100 different seeds. The optimal hyper-parameter
for each of the 100 wildcat wells instances from each family is also plotted as horizontal (blue) lines—in many but not all cases these overlap. Each cell
in the plot also has the 95" percentile confidence bound on Mean Absolute Error (MAE) for both diverse and non-diverse samples. The results show that
MAE confidence bounds for non-diverse samples are smaller compared to diverse samples for all the families of wildcat wells function. Thus, indicating a
presence of Model Building advantage for non-diverse initial samples. The results of this figure are further discussed in S4

If an initial sample provides a good initial estimate of the
kernel hyper-parameter posterior, then the box plot should
align well or close to the horizontal lines of the true pos-
terior. Figure 5 only shows the results for the Matérn Ker-
nel’s Lengthscale parameter, given its out-sized importance
in controlling the GP function posteriors compared to the
other hyper-parameters (e.g., output scale, noise, efc.), which
we do not plot here for space reasons. We provide further de-
tails and plots for all hyper-parameters in the Supplementary
Material for interested readers.

To quantify the average distance between the learned
and true hyper-parameters, we also plot on Fig. 5 the Mean
Absolute Error (MAE) for both highly diverse (95") and less
diverse (5") points. The MAE is the sum of the absolute
distance of each predicted hyper-parameter from the optimal
hyper-parameter for the particular surface of each wildcat
wells function. The range as seen in each cell in Figure 5 cor-
responds to a 95 percentile confidence bound on the Mean

absolute error across all the 100 runs.

4.2 Results and Discussion

The results in Figure 5 show that the MAE values for
low diversity samples are always lower compared to the
MAE for high diversity samples. This general behavior is
also qualitatively visible in the box plot. This means that
after only the initial samples, the non-diverse samples pro-
vided much more accurate estimates of the kernel hyper-
parameters compared to diverse samples. Moreover, BO sys-
tematically underestimates the correct lengthscale with di-
verse samples—this corresponds to the diverse BO modeling
function posteriors that have higher frequency components
than the true function actually does (as shown via the peda-
gogical examples in the Supplemental Material).

This provides evidence for the Model Building advan-
tage of non-diverse samples that we defined in Sec. 2.3. It
also confirms our previous conjecture from the thought ex-

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641



642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

Difference in optimality gap when hyperparameters are fixed for the optimizer

10 :
5 52.01 32.39
('\]. 0 QQ\E& >\\§\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ x\\\\\\\\\\\\\\\\\\&&&\\\
o
-5
-10 \ 8
N
10 k=
5k 37.87 \ 69.86 g 93.88 A 100.63 2
<+ b . \m&i&\s@\ N P é
w © 2
(%) -5 [
¢ :
E -10 £
- 5]
@) 10 2
g 5 39.64 82.87 - 87.47 \ 125.19 4
N N
N o §\\\\QQ\\\\\\\\\\\\\\\\\\\ Mm - N = @
s ° g
5 <
o
-10 3]
(&
10 | R ‘ -
5 0l1.7 71.29 \ 59.6 \ 79.75
© M&\&m\\» \\\\\QM\\\\\\ S Ny
o
-5
—105 20 40 0 20 40 0 20 40 0 20 40
0.2 0.4 0.6 0.8
Ruggedness Amplitude

Fig. 6: Experiment 3: Optimality gap plot showing effects of diversity when the optimizer is not allowed to fit the hyper-parameters for the Gaussian
Process and the hyper-parameters are instead fixed to the values found in Experiment 2. The results from this plot show positive NCOG values for all
families of wildcat wells function, showing that once the Model Building advantage’ is taken away the diverse samples outperform non-diverse samples.

Further discussion on this plot can be read in S5

periment that diverse samples might be impacting BO by
causing slower or less accurate convergence to the right BO
hyper-parameters. The Space Exploration advantage of the
diverse samples helps it compensate somewhat for its poor
hyper-parameters, but BO trained with non-diverse samples
can leverage the better hyper-parameters to make more judi-
cious choices about what points to select next.

We did not see major differences in the other three ker-
nel hyper-parameters such as Output Scale, Noise, or the
Mean Function (see Supplemental Material); however, this
is not surprising, since BO is not highly sensitive to any of
these parameters and the lengthscale parameter dominates
large changes in BO behavior.

Comparing the different smoothness and ruggedness
settings, when the function is more complex (the top right
of the grid at low smoothness and high ruggedness ampli-
tude values) the function’s lengthscale is lower and closer to
the value learned by the diverse samples. Looking at the low
diversity MAE values (‘MAE 5°), we can see they are much
closer to those of the high diversity samples (‘MAE 95°), in
contrast to when the function is less complex (bottom left
side of the grid). Under such conditions, low diversity sam-

10

ples lose some of the relative Model Building advantage they
have over high diversity samples. This conjecture aligns with
Experiment 1 (Fig 4) where the COG values on the top right
part are positive while those on the bottom left are negative.

Figure 5 demonstrated our hypothesized Model Build-
ing advantage that non-diverse initial samples confer to BO.
But how do we know that this is the actual causal factor
that accelerates BO convergence, and not just correlated with
some other effect? If correct, our conjecture posits a nat-
ural testable hypothesis: if we fix the values of the hyper-
parameter posteriors to identical values between the non-
diverse and diverse samples and do not allow the BO to
update or optimize them, then this should effectively elim-
inate the Model Building advantage, and diverse samples
should always outperform non-diverse samples. Metaphor-
ically, if we were to take away the arrow that Paris used
against Achilles, would the Battle of Troy have ended dif-
ferently? Our next experiment finds this out.
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5 EXPERIMENT 3: DOES DIVERSITY AFFECT
OPTIMIZATION CONVERGENCE IF HYPER-
PARAMETERS ARE FIXED TO OPTIMAL VAL-
UES?

Methods

This experiment is identical to Experiment 1, with two
key differences: (1) we now fix the kernel hyper-parameters
to the ‘optimal hyper-parameter’ values we found in Exper-
iment 2 for all the instances in each family of the wildcat
wells function, (2) and we do not allow either BO model to
further optimize the kernel hyper-parameters. This should
remove the hypothesized Model Building advantage of non-
diverse samples without altering any other aspects of Exper-
iment 1 and the results in Fig. 4.

51

5.2 Results and Discussion

Figure 6 shows that once the kernel hyper-parameters
are fixed—removing the Model Building advantage of non-
diverse samples—diverse samples consistently and robustly
outperform non-diverse initial samples. This holds for both
the initial Optimality Gap at the beginning of the search as
well as the Cumulative Optimality Gap and is not qualita-
tively affected by the function smoothness or roughness am-
plitude. Unlike in Experiment 1 where diversity could either
help or hurt the optimizer, once we remove the Model Build-
ing advantage, diversity only helps.

6 GENERAL DISCUSSION AND CONCLUSIONS
6.1 Summary and Interpretation of Findings

This paper’s original goal was to investigate how and
when diverse initial samples help or hurt Bayesian Op-
timizers. Overall, we found that the initial diversity
of the provided samples created two competing effects.
First, Experiment 2 showed that non-diverse samples im-
proved BO’s abilities to quickly converge to optimal hyper-
parameters—we called this a Model Building advantage.
Second, Experiment 3 showed that conditioned on the same
fixed hyper-parameters diverse samples improved BO’s con-
vergence to the optima through faster exploration of the
space—we called this a Space Exploration advantage. In Ex-
periment 1, diversity had mixed-to-negligible effects since
both of these advantages were in play and competed with
one another. This interaction provides insight for academic
or industrial BO users since common practice recommends
initializing BO with space-filling samples (to take advantage
of the Space Exploration advantage), and ignores the Model
Building advantage of non-diverse samples.

Beyond our main empirical result, our improvements to
existing diverse sampling approaches (Sec. 2.1) provide new
methods for studying how different percentile diversity sets
affect phenomena. Researchers may find this contribution of
separate technical and scientific interest for related studies
that investigate the impact of diversity.

11

6.2 Implications and Future Work

Beyond the individual results we observed and summa-
rized in each experiment, there are some overall implications
and limitations that may guide future work or interpretation
of our results more broadly, which we address below.

Where does this Model Building advantage induced by
non-diverse samples come from? As we conjectured in
Experiment 2 (S4), and confirmed in Experiment 3 (S5),
the key advantage of using non-diverse initial samples lies
in their ability to induce faster and more accurate poste-
rior convergence when inferring the optimal kernel hyper-
parameters, such as length scale and others. This allowed
the BO to make more judicious and aggressive choices about
what points to sample next, so while the diversely initial-
ized models might get a head start on exploring the space,
non-diversely initialized models needed to explore less of the
space overall, owing to tighter posteriors of possible func-
tions under the Gaussian Process.

While we do not have space to include it in the main pa-
per, the supplemental material document’s section 5 shows
how this model building advantage occurs as we provide BO
with a greater number of initial samples. Briefly, there are
three “regimes”: (1) sample-deficient, where there are too
few samples to induce a modeling advantage regardless of
how diversely we sample the initial points; (2) the “modeling
advantage” region, where low-diversity samples induce bet-
ter hyperparameter convergence than high-diversity samples;
and (3) sample-saturated, where there are enough initial sam-
ples to induce accurate hyper-parameter posteriors regardless
of how diversely we sample initial points. We direct inter-
ested readers to Section 5 of the supplemental material for a
deeper discussion on this.

What this behavior implies more broadly is that non-
diverse samples, whether given to an algorithm or a per-
son, have a unique and perhaps underrated value in cases
where we have high entropy priors over the Gaussian Pro-
cess hyper-parameters or kernel. In such cases, sacrificing a
few initial non-diverse points to better infer key length scales
in the GP model may well be a worthwhile trade.

We also saw that in cases where the BO hyper-
parameters were not further optimized (as in Experiment 3
where hyper-parameters were fixed to optimal values), using
diverse points only helped BO. Researchers or practitioners
using BO would benefit from carefully reviewing what ker-
nel optimization strategy their library or implementation of
choice actually does since that will affect whether or not the
Model Building advantage of non-diverse samples is actually
in play.

What if Hyper-parameters are fixed to non-optimal val-
ues? We showed in Experiment 3 that fixing BO hyper-
parameters to their optimal values ahead of time using an
oracle allowed diverse initial samples to unilaterally outper-
form non-diverse samples. An interesting avenue of future
work that we did not explore here for scope reasons would
be to see if this holds when hyper-parameters are fixed to
non-optimal values. In practical problems, we will not often
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know the optimal hyper-parameters ahead of time as we did
in Experiment 3 which caused diversity’s unilateral advan-
tage, so we do not have evidence to generalize beyond this.
However, our explanation of the Model Building advantage
would predict that, so long as the hyper-parameters remain
fixed (to any value), BO would not have a practical mecha-
nism to benefit much from non-diverse samples, on average.

What are the implications for how we currently initialize
BO? One of our result’s most striking implications is how
it might influence BO initialization procedures that are of-
ten considered standard practice. For example, it is common
to initialize a BO procedure with a small number of initial
space-filling designs, using techniques like Latin Hypercube
Sampling (LHS) before allowing BO to optimize its acqui-
sition function for future samples. In cases where the BO
hyper-parameters will remain fixed, Experiment 3 implies
that this standard practice is excellent advice and far better
than non-diverse samples. However, in cases where you plan
to optimize the BO kernel during search, using something
like LHS becomes more suspect.

In principle, from Experiment 1 we see that diverse sam-
ples may help or hurt BO, depending on how much leverage
the Model Building advantage of the non-diverse samples
can provide. For example, in the upper right of Fig. 4 the
function is effectively random noise, and so there is not a
strong Model Building advantage to be gained. In contrast,
in the lower left, the smooth and well-behaved functions al-
lowed non-diverse initialization to gain an upper hand.

Our results propose a perhaps now obvious initialization
strategy: if you plan on optimizing the BO hyper-parameters,
use some non-diverse samples to strategically provide an
early Model Building advantage, while leveraging the rest
of the samples to diversely cover the space.

How might other acquisition functions modulate diver-
sity’s effect? While we have been referring to BO as
though it is a single method throughout this paper, individual
BO implementations can vary, both in terms of their kernel
structure and their choice of acquisition function—or how
BO uses information about the underlying fitted Gaussian
Process to select subsequent points. In this paper’s experi-
ments, we used Expected Improvement (EI) since it is one of
the most widespread choices, and behaves qualitatively like
other common improvement-based measures like Probabil-
ity of Improvement, Posterior Mean, and Upper Confidence
Bound functions. Indeed, we hypothesize that part of the
reason non-diverse initial samples are able to gain a Model
Building advantage over diverse samples is due to a faster
collapse in the posterior distribution of possible GP functions
which serves as strong input to EI methods and related vari-
ants.

Yet EI and its cousins are only one class of acquisi-
tion function; would our results hold if we were to pick an
acquisition function that directly attacked the GP’s poste-
rior variance? For example, either Entropy-based or Active
Learning based acquisition functions? This paper did not
test this and it would be a logical and valuable future study.
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Our experimental results and proposed explanation would
predict the following: the Model Building advantage seen
by non-diverse samples should reduce or disappear in cases
where the acquisition function explicitly samples new points
to minimize the posterior over GP function classes since in
such cases BO itself would try to select samples that reduced
overall GP variance, reducing its dependence on what the
initial samples provide.

To what extent should we expect these results to gen-
eralize to other types of problems? We selected a sim-
ple 2D function with controllable complexity in this paper
to aid in experimental simplicity, speed, replicability, and
ease of visualization; however, this does raise the ques-
tion of whether or not these results would truly transfer to
more complex problems of engineering interest. While fu-
ture work would have to address more complex problems,
we performed two additional experiments studying how the
above phenonmena change as we (1) increased the wildcat
wells function from two to three dimensions, and (2) how this
behavior changes for other types of common optimization
test functions—specifically, we chose the N-Dimensional
Sphere, Rastrigin, and Rosenbrock functions from two to five
dimensions. While the existing paper length limits did not al-
low us to include all of these additional results in the paper’s
main body, we direct interested readers to Sections 6 and 7
of the supplemental material document. Briefly, our results
align overall with what we described above for the 2D wild-
cat wells function, and we do not believe that the phenomena
we observed are restricted to only our chosen test function
or dimension, although clearly future research would need to
conduct further tests on other problems to say this with any
certainty. Beyond these supplemental results, we can also
look at a few critical problem-specific factors and ask what
our proposed explanatory model would predict.

For higher dimensional problems, standard GP kernel
choices like RBF or Matérn begin to face exponential cost
increases due to how hyper-volumes expand. In such cases,
having strong constraints (via hyper-parameter priors or pos-
teriors) over possible GP functions becomes increasingly im-
portant for fast BO convergence. Our results would posit that
any Model Building advantages from non-diverse sampling
would become increasingly important or impactful in cases
where it helped BO rapidly collapse the hyper-parameter
posteriors.

For discontinuous functions (or GP kernels that assumed
as much), the Model Building advantage of non-diverse sam-
ples would decrease since large sudden jumps in the GP pos-
terior mean and variance would make it harder for BO to
exploit a Model Building advantage. However, in discontin-
uous cases where there were still common global smoothness
parameters that governed the continuous portions the Model
Building advantage would still accelerate advantages for BO
convergence.

How might the results guide human subject experiments
or understanding of human designers? One possible im-
plication of our results for human designers is that the ef-
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fects of example diversity on design outcomes may vary as
a function of designer’s prior knowledge of the design prob-
lem. More specifically, the Model Building advantage ob-
served in Experiment 2 (and subsequent removal in Experi-
ment 3) suggests that when designers have prior knowledge
of how quickly the function changes in a local area of the
design space, they can more reliably benefit from the Space
Exploration advantage of diverse examples. This leads to a
potentially counter-intuitive prediction that domain experts
may benefit more from diverse examples compared to do-
main novices since domain experts would tend to have prior
knowledge of the nature of the design problem (a Model
Building advantage). Additionally, perhaps under conditions
of uncertainty about the nature of the design problem, it
would be useful to combine the strengths of diverse and non-
diverse examples; this could be accomplished with a cluster-
sampling approach, where we sample diverse points of the
design space, but include local non-diverse clusters of exam-
ples that are nearby, to facilitate learning of the shape of the
design function.

While these implications might be counter-intuitive in
that common guidance suggests that the most informative
method is to only diversely sample initial points, the crux of
our paper’s argument is that non-diverse points can, surpris-
ingly, be informative to Bayesian Optimization due to their
ability to quickly concentrate the posterior distribution of the
kernel hyper-parameters, and thus accelerate later optimiza-
tion. Given this tension, a natural question is “how many
non-diverse samples do I really need to take advantage of
the modeling advantage without giving up the space explo-
ration advantage?” If I have, say, a budget of ten experi-
ments, should I spend only one low-diversity sample? Or do
I need two? Half of my budget? We did not explore these
practical questions in this work, due to space constraints, but
we think this would be an excellent avenue for continued
study.
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1 Fast sampling DPP Method

Our idea seeks to reduce the complexity of the sampling method and the construction time for DPP as well as investigate
a Diverse sampling method that can generate both low-diversity and high-diversity samples. To do this we build on the work
from [1] to rank and compare the diversity of the two sets. To define our diversity measure, let’s assume X C R?, where
| F| is the number of features of X. Then we can define a set as S C X of size k. This means Sgil_ € R? x R, then using a

similarity measure (RBF kernel) W on this set, we can define the DPP score for a set S’{,i as follows:

log(det (K(Wy)) — (£ tog(der (K (W)

/2 Gogtae e wy ) — (21 tog(der (o 5 ) 2

dim(X)
dim(F;
,where S1‘|=(<I;I mt )>)
k

fWy,) =

ey

As we can see in Eq. 1, the number of sets or cardinality of the distribution |S*| needed to be sampled grows combina-
torially with the changes in the size of the sample space for Xs, and the size of the set k. For example for a X € Z? where

each feature Z; € [0,100]. Then, the number of possible sets of size k is given by (100: 100), thus normalizing the distribution

* Address all correspondence to this author.
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using a mean and standard distribution is an expensive task. We can re-write Eq. 1 in words as follows:

DPPScore(K (Wy,) — mean score
DPP Score(S¥ ) = '
core( Yi ) s.d. of DPP scores for the k-HDPP

25— vanilla k-dpp

—— our approach

2.0

vanilla k-dpp
| —— our approach with parallel computing
our approach without parallel computing

Time taken to generate a distribution of training size x

Time taken to sample from the generated distribution

1.0
0.5
/‘“ — —
0.0 T
0 20 40 60 a0

N N training size

@
training size

100

(a) Compares the construction time for regular k-DPP distribution with different (b) Compares the sampling time time for regular k-DPP vs our approach as the

size of samples size of k is increased from 5 to 100.

Fig. 1: Compares the relative performance/speed-up of our method over the traditional k-dpp methods. The figure contains
two plots showing the tradeoff between the two methods. In the traditional method constructing the DPP distribution is
costly but generating a distribution is only dependent on the number of points in X, and independent of training size (k).
While, sampling from a k-DPP has a polynomial complexity on the training size (k), while both these facts are inverted for
our approach.

1.1 Sampling method

The sampling method for our DPP approach is straightforward. Based on the constructed DPP, our approach samples
randomly from either above a certain percentile or below a certain percentile. As shown in Fig. 1(b), our approach’s sampling
time is faster than that of a regular k-DPP, where the cost of sampling increases as a function of training size (k). Conversely,
generating the distribution for our approach is dependent on ‘k’, while the same distribution can be used for different k(s)
with a traditional k-DPP approach. Our approach’s biggest benefit is the ability to draw samples of different diversity. Using
our approach this is as simple as sampling from different percentiles of the distribution.

Algorithm 1 Constructing the DPP sub distribution

1: for i € range(M) do

2. Sample S§, ~ TID(S*)

3: Calculate g(S’f,[, ) = gy, and append this to Scoresg
4: end for

5: Return DPP Score=

Score g, —mean(Score )

s.d.(score g )




The uniqueness of our approach lies in an easy trick to upper bound the error on the generated DPP scores, and thus our
approach can provide certain guarantees on whether the sampled S’{, is in fact from the percentile that the method claims it is
from.

1.2 Upper bound on errors
The guarantee is based on method’s independence of choosing the S¥ from a combinatorially large set. For IID sampling
each set, SKi , needs to be sampled independent of the other and the sampling should be done with replacement. But since the

distribution of S* needs to mirror that of a k-DPP, all the sets in the space are sampled over X without replacement and are
unordered because DPP scores for two S* with the same points (Y) will always correspond to the same score. Thus, sampling
IID on S means identically sampling unordered sets of X without replacement.

If we sample the sets S’;j such that they are Independent Identical Distributed (I.I.D.) sets, then we can upper bound the
Expected Value of population mean through the use of Hoeffding’s inequality: Eq. 2 as discussed in [2]. The inequality states
that if a distribution is sampled using i.i.d random variables, we can then put a bound on the Error for estimating Expected
Values of the population mean (|M, = 1 Y*[M;]|), where M,, is the mean of the sample of size .

—2-n2%e?
P{lMHE<S">|§e}»212'exp{?:1(,,,._al.)z} @

Using Eq. 2 we can guarantee the probability of this error to be some 1 — 8, where the & term is given by the exponential.
This allows us to limit the cardinality of the |S¥| to M given we choose an €. Based on this guarantee a schematic explanation
for the construction of our sub-distribution using the approach detailed till now is then documented well in Algorithm 1.
This approach is extensively discussed and proved in an upcoming paper.

A clear shortcoming of this approach is the need to generate the distribution whenever the k is changed. But, because of
the faster construction speed for our approach, this cost outweighs using a k-DPP. Another, shortcoming our approach faces
is the limited number of samples that can be drawn from the distribution, which requires us to construct a new distribution if
more than M samples need to be drawn.

Effect of nu on Matern Kernel Effect of lengthscale on Matern Kernel
3 Samples from prior distribution of nu =0.5 3 Samples from prior distribution of lengthscale =1
2 2 o
1 . p A 1 -
0 ik O
-1 -1
-2 -2
- 0 1 2 3 4 5 -3 0 1 2 3 4 5
3 Samples from prior distribution of nu =2.5 3 Samples from prior distribution of lengthscale =0.25
2 B 2
1 : 1
0 > - 0 St
-1 -1
-2 -2
) 1 2 3 3 s 2% 1 2 3 4 5

(a) Effect of changing the v hyper-parameter on the Gaussian Process. (b) Effect of changing the lengthscale hyper-parameter of the Matern
Kernel. The figure has 2 similar GPs with shorter (bottom) and longer
(top) lengthscales.

Fig. 2: Effect of v and lengthscale on Gaussian Process.
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Fig. 3: Grid plot showing how changing v affects the relative performance of diverse and non-diverse initialization on
Bayesian optimizers. To understand the plot better quantitatively, each subplot also has the Net Cumulative Optimality Gap
(NCOQG) for each value of v. No trends are seen when relative performance of the diverse and non-diverse samples.

2 Effects of additional hyper-parameters on performance of the optimizer

As described in the Methods section in the main paper Bayesian Optimizer that uses a Matern kernel has several hyper-
parameters. This section will serve to further explore the effects that each parameter has on the Gaussian Process (GP). The
main paper provides a brief introduction to each hyper-parameter apart from v. So, let’s begin this section with a brief look
into the hyper-parameter v.

v of the Matérn Kernel The kernel used with the Gaussian Process is the Matern kernel which essentially is a scaled RBF
kernel controlled by the parameter v [3] as shown in Eq. 3.

kMatér (X1,X2) =

(\/EHXl—XzI)VH <ml|X1—X2I|> (€)
0 v 0 ’

v

2!~
I(v)

The hyper-parameter (v) dictates how smooth or differentiable the function is. Changes in this parameter then influence
the expectation of the Gaussian Process in terms of its acquisition function. A more differentiable function or a higher v
means that the acquisition function samples assuming a smoother Gaussian Process function. It can be seen in Fig. 2(a) how
changes in v changes the prior of the GP.

While, v controls the prior 1 and ‘lengthscale’ control how the data is scaled and thus indirectly control the expectations
of the GP. The effects of lengthscale on GP can be seen in Fig. 2(c). The effects are similar to that of the parameter v. Thus,
we can conclude that ‘lengthscale’ can be used to control the expectations of the GP. Since, v is not a parameter that is
learned during the optimization process it does not have significant effect on “Model Building advantage”. This can be seen
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in Fig. 3, even as v is changed there is no significant change in the performance of the optimizer, and thus we can conclude
that v is an insignificant factor in studying “Model Building advantage’.

To provide some empirical evidence to the importance of ‘lengthscale’ as a hyper-parameter. Let us look at results from
additional plots that were generated while working on experiment 2.

Hyperparameter distributuion for smoothness-0.6-ruggedness_amplitude-0.4
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Fig. 4: Box plots showing the distribution of different hyper-parameters of the Gaussian Process as learned by Bayesian
optimizer when fitted with just the initial examples as training data. The shown hyper-parameters are specific to Wildcatwells
configuration with smoothness = 0.2 and ruggedness amplitude =0.2. The data is collected over 100 seeds. The horizontal
lines across the boxplot indicate the optimal hyper-parameters learned over 100 different seeds.

3 Further plots for Experiment 2

While studying “Model Building advantage” for Gaussian Processes, we looked at not only at ‘lengthscale’ but all
hyper-parameters as it can be seen in Fig. 4. The box-plot for each hyper-parameter is constructed in the same way as the
steps detailed in Methods section of Experiment 2 in the main paper. To the right of each box-plot in Fig. 4 is also 100
kernel density functions that have been used to estimate the ‘optimal hyper-parameter’ for a particular instance of that family
(smoothness =0.6, ruggedness amplitude =0.4) of wildcat wells function.

Now, as it can be seen in Fig. 4 the optimal noise hyper-parameter is close to O for all the instances in the family.
While, the one’s estimated using a sample size (k) of 10, in the box-plot, are not. The performance for both diverse and
non-diverse is relatively similar for this hyperparameter. This can be seen as the case for both the ‘Mean function’ (1) and
the ‘Outputscale’ as well. While, ‘lengthscale’ is the only hyper-parameter that has varying performance across diverse and
non-diverse samples.

An important factor while quantifying the “Model Building advantage” is learning the ‘optimal hyper-parameter’ for an
instance of wildcat wells function, which is described in the next section.

4 Finding optimal hyper-parameters for a given objective function

To compute the ‘optimal hyper-parameter’ we first use a Binary search method to discern a robust range (of 200 points)
over which all families of wildcat wells functions has a noise parameter value of < 107, This essentially means that
Bayesian optimizer has found an optimal set of hyper-parameters for the Gaussian Process that accurately imitates the given
black-box function.

This robust range for all the families of wildcat wells function used in the experiment was determined as 1000-1200
points.
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Finding optimal hyperparameters for smoothness =0.6,
and ruggedness amplitude = 0.4
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Fig. 5: Figure depicting the first step in determining optimal hyperparameters for wildcat wells function with smoothness
0.6 and ruggedness amplitude 0.4 and seed 88. Each hyperparameter in the grid plot has subsequent two adjacent plots. The
observed hyperparameter values over when BOTorch is used to maximize the Marginal Log Likelihood given 1000 to 1200
random points (left), the kernel density function derived from this data (right).

Finding optimal hyperparameters for smoothness =0.6,
and ruggedness amplitude = 0.4
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Fig. 6: Figure depicting the second step in determining optimal hyperparameters. Figure shows the peaks evaluated as
potential optimal hyperparameter, and the shaded points that are used to calculate the area under the corresponding peak.

Once, this range is determined the data is collected over the 200 points by maximizing the Marginal Log Likelihood for
the a Single Task GP model using BOTorch’s ‘fit-gpytorch-model’ [4] method. The resulting data is the hyperparameters that
BoTorch learns using the given data points. This data is then used to build a kernel density function as indicated by the red
line-plot (right side of every subplot) next to the data observed over the 200 points in Fig. 5. Then using ‘scipy.signal.find-
peaks’ [5], peaks are found in the density function labeled by red dots in Fig. 6. Sometimes more than one peak is observed
this is because there are multiple modes of hyperparameters that provide a stable solution for the problem. For the purpose
of this paper we only focus on extracting the most observed mode as our optimal hyperparameter.
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To find the most observed mode, we use the width of the peaks in the kernel density function. The width of the peak is
estimated by calculating a numerical gradient on the density function as seen in Fig. 6. The width of the whole peak can be
seen highlighted/labeled in each subplot for each peak using a different color. The peak with the largest area is selected as
the optimal hyper-parameter for the particular instance of wildcat wells function.

Lengthscale learned by BoTorch as number of
intial samples are increased.
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Fig. 7: Box plot showing the lengthscale parameter as learned by wildcatwells with ‘high’ level of ruggedness in 2D and 3D
as the training samples are increased. The plot also confirms the existence of a “modeling advantage” for training samples
of a particular size. The results are further discussed in S5

5 Effect of increasing training size on hyperparameter learning

While trying to replicate the results for the 3D case we observed that the ‘modeling advantage’ we observed for less
diverse examples was also influenced by the number of examples in the initial set. This was because if we initialized the 3D
case with the same number of initial samples as the 2D case, the optimizer in the 3D case would not be able to accurately
estimate the appropriate hyperparameters regardless of the sampling method and would just set the hyperparameters to zero.
This is perhaps obvious if we think about how space coverage degrades for a fixed number of samples as we increase the
dimensionality of a design space. What we observed, and show below in Fig. 7, is that there are essentially three “initial
sample size regimes” that determine whether or not non-diverse sampling can use its ‘modeling advantage’, although this
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advantage exists in both the 2D and 3D case:

1. Sample-deficient: This is when we provide each optimizer with too few initial examples, such that irrespective of that
set’s diversity the BO will not be able to meaningfully learn hyperparameters and will instead set them to zero. For
example, in Fig. 7 bottom, with fewer than 26 initial samples, both the Sth and 95th percentile samples cannot provide
good estimates of the kernel hyper-parameters

2. The ‘modeling advantage’ region: With this number of samples, the 5th percentile is able to reasonably estimate the
hyperparameter values but the 95th struggles to do so. For example, in Fig. 7 top (2D), we can observe this at 10
samples, which, by coincidence, was the original setting for our 2D example in our initial manuscript. We see that in
Fig. 7 bottom (3D) this transitions somewhere between 35 to 75 initial samples. In this region, Sth percentile sampling
can exercise its modeling advantage while the 95th percentile still does not have enough initial samples to consistently
and accurately estimate the kernel hyper-parameters.

3. Sample-saturated: In this region, the shear number of initial points we provide BO is sufficiently high such that it can
estimate the kernel hyper-parameters well, regardless of whether the initial points are diverse or not. For example, in
Fig. 7 top, this occurs after around 40 initial samples. In Fig. 7 bottom this occurs after around 100 initial samples.
In this ‘sample-saturated’ case, the modeling advantage of non-diverse sampling disappears, often because this is a
sufficient number of points that the optima become easy to find at that point (see Fig. 8 where the BO often converges
at those same number of samples).

Difference in optimality gap when optimizer is fitting hyperparameters at each iteration
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Fig. 8: Optimality gap grid plot showing the difference in current Optimality Gap between optimizers initialized with 5"
vs 95" percentile diverse sample (y-axis) as a function of optimization iteration (x-axis). The different factors in the factor
grid plot are the dimensions across the rows and the ruggedness level across the columns. Each plot also has text indicating
the Net Cumulative Optimality Gap (NCOG), a positive value corresponds to a better performance by high diversity samples
compared to the low diversity samples. The plot shows that BO benefits from diversity in some cases but not others. There
is no obvious trends in how the NCOG values change in the grid. The results are further discussed in S6



Distribution of lengthscale learned by BO on initial samples
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Fig. 9: Box plot showing distribution of ‘Lengthscale’ hyper-parameter learned by BO when initiated with diverse (orange)
and less-diverse samples (blue) for 3 different families of wildcat wells functions of the same parameters but 100 different
seeds in each dimension. The optimal hyper-parameter for each of the 100 wildcat wells instances from each family is also
plotted as horizontal (blue) lines—in many but not all cases these overlap. Each cell in the plot also has the 95" percentile
confidence bound on Mean Absolute Error (MAE) for both diverse and non-diverse samples. The results show that MAE
confidence bounds for non-diverse samples are smaller compared to diverse samples for all the families of wildcat wells
function. Thus, indicating a presence of Model Building advantage for non-diverse initial samples. The results of this figure
are further discussed in S6

6 Effect of increasing problem dimensions on the results

To confirm what we observed was not limited to 2 dimensions we decided to run Experiment 1, 2, and 3 with wildcatwells
in 3 dimensions. To make the results comparable in a single figure for both 2D and 3D case it was necessary to limit the
variability of ruggedness from a 4x4 grid to 3 levels of ‘ruggedness’. These ‘levels of ruggedness’ are ‘low’, ‘medium’ and
‘high’, which correspond to (smoothness : 0.8, ruggedness amplitude : 0.2), (smoothness : 0.4, ruggedness amplitude : 0.4)
and (smoothness : 0.2, ruggedness amplitude : 0.8) respectively.

Further, to see the ‘model building’ advantage for the 3D case we changed the experiment set-up slightly by initializing
all the plots generated in 3D with 40 examples instead of the 10 used to initialize BO in 2D. The intuition behind this is
further explained in S5. Figure 8 shows the results of Experiment Al, which is a modification of Experiment 1 from the
main paper, where we compare 2D and 3D behavior. The results in 3D mirror our observations in 2D.

As with Experiment 2 in the main paper, Fig. 9 shows Experiment A2 that compares with a third dimension. Here,
we can see that much like in 2 dimensions, in 3 dimensions the 5 percentile performs better than 95 in estimating the
lengthscale, hence confirming the ‘modeling advantage’.

Lastly, we can use Fig. 10 to see that when the modeling advantage is taken away the 95 percentile performs better
compared to the 5 percentile. These results mirror our original results in 2D.

7 Do these results hold on alternative test functions?

A natural question is whether our results are limited to just our choice of the wildcat-wells class of function generators,
or do they transfer across different functions? To test this, we repeated the experiments described in S6 for three different
but commonly used N-Dimensional optimization test functions: the Sphere, Rosenbrock and Rastrigin functions as seeen in
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Difference in optimality gap when hyperparameters are fixed for the optimizer
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Fig. 10: Optimality gap plot showing effects of diversity when the optimizer is not allowed to fit the hyper-parameters for
the Gaussian Process and the hyper-parameters are instead fixed to the values found in Experiment A2. The results from this
plot show positive NCOG values for all families of wildcat wells function even as dimensions increase, showing that once
the ‘Model Building advantage’ is taken away the diverse samples outperform non-diverse samples. Further discussion on
this plot can be read in S6

Eq. 4. The only major difference with the previous experiments is that instead of plotting the optimality gap directly, we
instead plot the Percentage difference in the optimality gap in Fig. 13. This was done to bring the plot to a comparable scale
since the absolute difference in raw optimality gap can be, at certain points, on the order of millions, and at some points less
than 1.

dims

Sphere(X) = ) x?
i=1

dims
Rastrigin(X) = 10 x dims+ ) [x] — 10cos(2mx;)] )
i=1
dims-1
Rosenbrock(X) = ) [100(xi11 —x7)?+(1-x)?]
i=1

As seen in Fig. 11, when the hyperparameters are allowed to be optimized, in general low-diversity samples led to faster
convergence than high-diversity initial samples. This is not always that case, as the 4D and 5D Rastrigin functions cases
shows—in such cases non-diverse samples have comparatively marginal improvement in the longer term. For reference, this
plot is designed to be a replication of Experiment 1 in the main paper, but just for different test functions.

Fig. 12 shows that 5""-percentile diversity (low diversity) initial samples learns the kernel hyperparameter more accu-
rately using fewer samples compared to 95-percentile diversity initial samples in two dimensions and that this holds true
irrespective of the choice of test function. However, as the function dimension increases this effect diminishes since the num-
ber of initial samples needed to activate this “modeling advantage” regime increases (See earlier Fig. 7). With this additional
set of data, samples from from the 95" -percentile of diversity learn the hyperparameters as well as 5-percentile samples.
For reference, like with Fig. 9 above, this plot was designed to be a replication of Experiment 2 in the main paper, but just
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Absolute difference in optimality gap (y-axis) vs iterations (x-axis)
when hyperparameters are fit at each iteration.
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Fig. 11: Optimality gap grid plot showing the absolute difference in current Optimality Gap between optimizers initialized
with 5% vs 95" percentile diverse sample (y-axis) as a function of optimization iteration (x-axis). The different factors in
the factor grid plot are the dimensions across the rows and the different test functions across the columns. Each plot also has
text indicating the Percentage Cumulative Optimality Gap (PCOG), a positive value corresponds to a better performance by
high diversity samples compared to the low diversity samples. The plot shows that BO benefits from diversity in some cases
but not others. There are no obvious trends in how the PCOG values change in the grid. The results are further discussed in
S7

for different test functions and across increased dimensions. Unlike in Fig. 9 here we see that our proposed causal expla-
nation for the “modeling advantage” is less clear since for certain functions the high-diversity samples have better posterior
convergence than the 5”-percentile samples, and vice versa depending on the specific function and dimension.

In Fig. 13 where the kernel hyper-parameters are fixed to what should be optimal values, (compared to Fig. 11 where
the kernel hyper-parameters are learned) we can see several effects. First, we see that the low diversity initial samples had,
on average, better initial starting points on these test functions as seen by the PCOG values on the x-axis at “0”. This
could largely be luck or a peculiarity with the three test functions, since common optimization test functions often have
their optimal points toward the center of the domain, which non-diverse starting points are likely to sample with higher
frequency compared to diverse starting points. (Note in our wildcat wells function this was not the case and the optimal point
was likely to occur at any point in the domain depending on the seed of the random function generator.) Second, we see
compared to Fig. 11 that high diversity initial samples appear to be able to benefit from the ‘Space Exploration’ advantage
we hypothesized in the main paper and do catch-up almost instantaneously compared to the lower-diversity samples. For
reference, this plot is designed to be a replication of Experiment 3 in the main paper, but just for different test functions.
We still see a similar effect, in the sense that fixing the BO hyper-parameters aids the diverse initial sample condition, on
average, which mirrors qualitatively the phenomenon we observed on the wildcat wells function (compare this supplemental
material document’s Fig. 11 with Fig. 13).

In Figs. 14, 15, and 16 we can see how increasing the number of initial training samples induces convergence on the
learned kernel hyper-parameters for the Rastrigin, Rosenbrock, and Sphere functions, respectively. We used these plots to
choose the number of training samples to be used in Figs. 11, 12, and 13 by selecting the number of samples within the
“model building advantage” regime (as opposed to the sample deficient or sample saturated regime). The specific number
of training samples used for each function at each dimension can be seen in Table 1. We can see that the performance of
high diversity samples is significantly better when compared to the performance in Fig. 11. The high diversity samples still
struggle to improve performance for ‘Rosenbrock’ function, our hypothesis is that because the number of samples needed to
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173 learn the hyperparameters is exceedingly large for the Rosenbrock function (see Fig. 15) our proposed “modeling-advantage”
172 is not that helpful to the optimizer, since it has already found a reasonable optimum by the time it has collected sufficient
175 samples to converge to reasonable kernel estimates.

Dimension || Sphere Rosenbrock Rastrigin
2 8 4 5
3 12 5 7
4 38 8 30
5 75 20 60

Table 1: Table showing the different training size/number of examples used to initialize BO for different test functions in
Figs. 11,12,13.
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Distribution of lengthscale learned by BO on initial samples
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Fig. 12: Box plot showing distribution of ‘Lengthscale’ hyper-parameter learned by BO when initiated with diverse (orange)
and less-diverse samples (blue) for Sphere, Rosenbrock and Rastrigin test functions over 200 different seeds in each dimen-
sion. For refernce to how many training samples were used pleae check Table. 1. The optimal hyper-parameter for each test
function over 10 different runs is also plotted as horizontal (blue) lines—in many but not all cases these overlap. Each cell
in the plot also has the 95" percentile confidence bound on Mean Absolute Error (MAE) for both diverse and non-diverse
samples. The results show that MAE confidence bounds for non-diverse samples are smaller compared to diverse samples
for most test functions but at least does as well as the 95" Thus, indicating a presence of Model Building advantage for
non-diverse initial samples. The results of this figure are further discussed in S7
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Fig. 13: Optimality gap plot showing effects of diversity when the optimizer is not allowed to fit the hyper-parameters for
the Gaussian Process and the hyper-parameters are instead fixed to the values found in Experiment A2. The results from
this plot show signficantly improved PCOG values compared to Fig. 11. ‘Rosenbrock’ is the only test function that does not
benefit from the diverse samples, its performance remains the same as it was when hyperparameters were optimized, Further
discussion on this plot can be read in S7
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Lengthscale learned for Rastrigin by BoTorch as number of
intial samples are increased.
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Fig. 14: Box plot showing the lengthscale parameter as learned by Rastrigin test function in 2D and 3D as the training
samples are increased. The plot also confirms the existence of a ‘modeling advantage’ for training samples of a particular
size. The results are further discussed in S7
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Lengthscale learned for Rosenbrock by BoTorch as number of
intial samples are increased.
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Fig. 15: Box plot showing the lengthscale parameter as learned by Rosenbrock test function in 2D and 3D as the training
samples are increased. The plot also confirms the existence of a ‘modeling advantage’ for training samples of a particular
size. The results are further discussed in S7
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Number of dimensions

Fig. 16: Box plot showing the lengthscale parameter as learned by Sphere test function in 2D and 3D as the training samples
are increased. The plot also confirms the existence of a ‘modeling advantage’ for training samples of a particular size. The
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