

How Diverse Initial Samples Help and Hurt Bayesian Optimizers

Eesh Kamra

Dept. of Mechanical Engineering
University of Maryland
College Park, Maryland 20742
Email: kamra@umd.edu

Seyede Fatemeh Ghoreishi

Dept. of Civil and Environmental Engineering
& Khoury College of Computer Sciences
Northeastern University
Boston, Massachusetts 02115
Email: f.ghoreishi@northeastern.edu

Zijian “Jason” Ding

College of Information Studies
University of Maryland
College Park, Maryland 20742
Email: ding@umd.edu

Joel Chan

College of Information Studies
University of Maryland
College Park, Maryland 20742
Email: joelchan@umd.edu

Mark Fuge*

Dept. of Mechanical Engineering
University of Maryland
College Park, Maryland 20742
Email: fuge@umd.edu

1 *Design researchers have struggled to produce quantitative predictions for exactly why and when diversity might help or hinder design search efforts. This paper addresses that problem by studying one ubiquitously used search strategy—Bayesian Optimization (BO)—on a 2D test problem with modifiable convexity and difficulty. Specifically, we test how providing diverse versus non-diverse initial samples to BO affects its performance during search and introduce a fast ranked-DPP method for computing diverse sets, which we need to detect sets of highly diverse or non-diverse initial samples.*

12 *We initially found, to our surprise, that diversity did not appear to affect BO, neither helping nor hurting the optimizer’s convergence. However, follow-on experiments illuminated a key trade-off. Non-diverse initial samples hastened posterior convergence for the underlying model hyper-parameters—a Model Building advantage. In contrast, diverse initial samples accelerated exploring the function itself—a Space Exploration advantage. Both advantages help BO, but in different ways, and the initial sample diversity directly modulates how BO trades those advantages. Indeed, we show that fixing the BO hyper-parameters removes the Model Building advantage, causing diverse initial samples to always outperform models trained with non-diverse samples. These findings shed light on why, at least for BO-type*

optimizers, the use of diversity has mixed effects and cautions against the ubiquitous use of space-filling initializations in BO. To the extent that humans use explore-exploit search strategies similar to BO, our results provide a testable conjecture for why and when diversity may affect human-subject or design team experiments.

1 INTRODUCTION AND RELATED WORK

One open question within design research is when or under what conditions providing diverse stimuli or starting solutions to either humans or algorithms can improve their designs’ final performance. Researchers have struggled to produce quantitative predictions or explanations for exactly why and when diversity might help or hinder design search efforts. In studies of human designers or teams, there have been numerous empirical results on the effect of diverse stimuli or sets of stimuli on designers, typically referred to under the topic of *Design Fixation* (for recent reviews, see [1] and [2]). In general, available empirical results are mixed and it is difficult to quantitatively predict, for a new problem or person, whether or not diversity in problem stimuli will or will not help. For instance, there are a number of empirical demonstrations of positive effects of example diversity on novelty and diversity of ideas [3–5], but substantially more mixed results on the effects of diversity on solution *quality*,

*Address all correspondence to this author.

50 with some observations of positive effects [6–8], some null
51 or contingent effects [4, 9–14], and even some negative ef-
52 fects on solution quality [15, 16].

53 Likewise, in research focused purely on optimization,
54 common academic and industrial practice initializes search
55 algorithms with different strategies like Latin Hypercube
56 Sampling (LHS) [17] and others in an attempt to “fill” or
57 “cover” a space as uniformly as possible [18] or via quasi-
58 random methods [19–21]. Some methods build diversity-
59 encouraging loss functions directly into their core search al-
60 gorithms, such as in common meta-heuristic optimizers [22]
61 such as Particle Swarm Optimization (PSO), Simulated An-
62 nealing (SA), and Genetic Algorithms (GA), with one of
63 the most well-known diversity-inducing ones being NSGA-
64 II [23]. For BO specifically, a common strategy is to build
65 diversity directly into the acquisition function used in sam-
66 pling new points from the Gaussian Process posterior [24].
67 As with human-subjects experiments, the precise effect of
68 diversity on optimization performance is often problem de-
69 pending [22] and difficult to predict apriori. Nevertheless,
70 optimization practitioners take these steps to improve initial
71 sample diversity with the hope that the optimizer will con-
72 verge faster or find better global optima.

73 But is encouraging initial diversity in this way always
74 a good idea? If so, when and why is it good? Are there
75 any times or conditions when diversity might hurt rather than
76 help our search for good designs?

77 (Spoiler Alert: Yes, it can—see S4 for how and S6 for why.)

78 To address the above questions, this paper studies one
79 type of commonly used search strategy—Bayesian Opti-
80 mization (BO)—and how the diversity of its initialization
81 points affects its performance on a search task. We un-
82 cover a fascinating dance that occurs between two competing
83 advantages that initial samples endow upon BO—a *Model*
84 *Building* versus *Space Exploration* advantage that we de-
85 fine later—and how the initial samples’ diversity directs the
86 choreography. While the fundamental reason for this inter-
87 play will later appear straightforward (and perhaps even dis-
88 cernible through thought experiments rather than numerical
89 experiments), it nevertheless flies in the face of how most
90 practitioners initialize their BO routines or conduct Optimal
91 Experimental Design studies. It also posits a testable pre-
92 diction about how to induce greater effects of diversity on
93 novice human designers or the conditions under which there
94 may be mixed or even negative effects (see S6).

95 Before describing our particular experiment and results,
96 we will first review why BO is a meaningful and generaliz-
97 able class of search algorithm to use, as well as past work
98 that has tried to understand how diversity affects search pro-
99 cesses such as optimization.

100 **Why model design search as Bayesian optimization?**

101 While this paper addresses only BO, this is an important
102 algorithm in that it plays an out-sized role within the de-
103 sign research and optimization community. For example,
104 BO underlies a vast number of industrially-relevant gradient-
105 free surrogate modeling approaches implemented in major
106 design or analysis packages, where it is referred to under

107 a variety of names, including Kriging methods or meta-
108 modeling [25, 26]. Its use in applications of computa-
109 tionally expensive multidisciplinary optimization problems is,
110 while not unilateral [27], quite widespread. Likewise, re-
111 searchers studying human designers often use BO as a proxy
112 model [28] to understand human search, due to the interplay
113 between exploration and exploitation that lies at the heart of
114 most BO acquisition functions like Expected Improvement.
115 More generally, there is a robust history of fruitful research
116 in cognitive science modeling human cognition as Bayesian
117 processing [29], such as concept learning in cognitive de-
118 velopment [30], causal learning [31], and analogical reasoning
119 [32].

120 While the bulk of BO-related papers focus on new al-
121 gorithms or acquisition functions, few papers focus on how
122 BO is initialized, preferring instead the general use of space-
123 filling initializations that have a long history in the field of
124 Optimal Experiment Design [27]. In contrast, this paper
125 shows that in certain situations that faith in space-filling de-
126 signs might be misplaced, particularly when the BO kernel
127 hyper-parameters are adjusted or fit during search.

128 **What does it even mean for samples to be diverse?** As
129 a practical matter, if we wish to study how diverse samples
130 impact BO, we face a subtle but surprisingly non-trivial prob-
131 lem: how exactly do you quantify whether one set of samples
132 is more or less diverse than another? This is a set-based (*i.e.*,
133 combinatorially large) problem with its own rich history too
134 large to cover extensively here, however our past work on
135 diversity measurement [33–35], computation [36], and opti-
136 mization [37, 38] provides further pointers for interested
137 readers, and in particular the thesis of Ahmed provides a
138 good starting point for the broader literature and background
139 in this area [39].

140 For the purposes of understanding how this paper re-
141 lates to existing approaches, it suffices to know the follow-
142 ing regarding common approaches to quantifying diversity:
143 (1) most diversity measurement approaches focus on some
144 variant of a hyper-volume objective spanned by the set of se-
145 lected points; (2) since this measure depends on *a set* rather
146 than individual points, it becomes combinatorially expen-
147 sive, necessitating fast polynomial-time approximation, one
148 common tool for which is a Determinantal Point Process
149 (DPP) [40]; however, (3) while sampling the most diverse
150 set via DPPs is easy, sampling percentile sets from the DPP
151 distribution to get the top 5%, median, or lowest 5% of di-
152 verse sets becomes exceedingly slow for a large sample pool.

153 In contrast, for this paper, we created a faster DPP-type
154 sampling method to extract different percentiles of the dis-
155 tribution without actually needing to observe the entire DPP
156 distribution and whose sampling error we can bound using
157 concentration inequalities. Section 2 provides further mathe-
158 matical background, including information on DPP hyper-
159 parameters and how to select them intelligently, and the
160 Supplemental Material provides further algorithmic details.
161 With an understanding of diversity distribution measures in
162 hand, we can now address diversity’s specific effects on op-
163 timization more generally.

164 **How does diversity in initial inputs affect optimizers?**
 165 While there are a number of papers that propose either dif-
 166 ferent initialization strategies or benchmarking of existing
 167 strategies for optimization, there is limited prior work ad-
 168 dressing the direct effect of initial sample diversity.

169 For general reviews and benchmarking on how to initial-
 170 ize optimizers and the effects of different strategies, papers
 171 such as [20, 22] compare initialization strategies for partic-
 172 ular optimizers and quantify performance differences. An
 173 overall observation across these contributions is the inabil-
 174 ity of a single initialization method to improve performance
 175 across functions of varying complexity. These studies also
 176 do not directly measure or address the role of sample diver-
 177 sity directly, only noting such behavior as it correlates indi-
 178 rectly with the sampling strategy.

179 A second body of work tries to customize initializa-
 180 tion strategies on a per-problem basis, often achieving faster
 181 convergence on domain-specific problems [18, 19, 41–43].
 182 While useful in their designed domain, these studies do not
 183 directly address the role of diversity either. In contrast, this
 184 paper addresses diversity directly using properties of BO that
 185 are sufficiently general to apply across multiple domains and
 186 applications.

187 Lastly, how to initialize optimizers has garnered new in-
 188 terest from the machine learning community, for example in
 189 the initial settings of weights and biases in a Neural Network
 190 and the downstream effects on network performance [44, 45].
 191 There is also general interest in how to collect diverse sam-
 192 ples during learning, either in an Active Learning [46] or Re-
 193inforcement Learning context [47, 48]; however, those lines
 194 of work address only diversity throughout data collection,
 195 rather than the impact of initial samples considered in this
 196 paper.

197 **What does this paper contribute beyond past work?** 198 This paper’s specific contributions are:

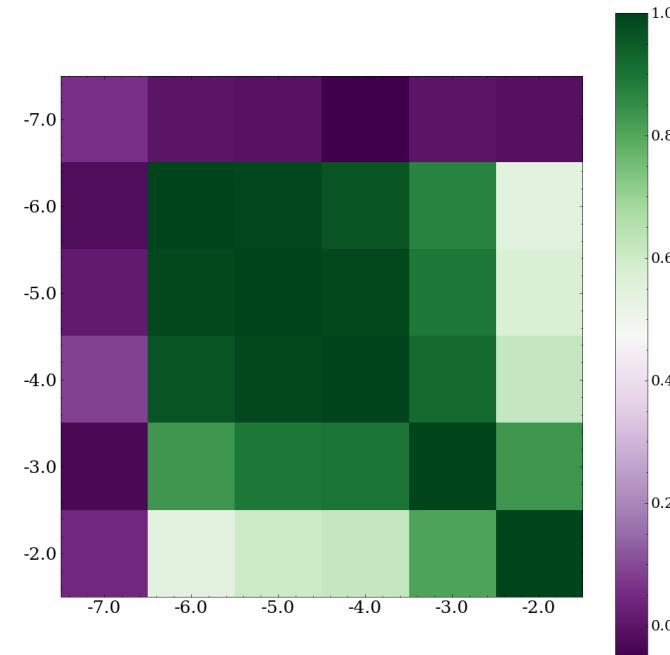
- 199 1. To compute diversity: we describe a fast DPP-based di-
 200 versity scoring method for selecting diverse initial ex-
 201 amples with a fixed size k . Any set of size k with these
 202 initial examples can be then used to approximate the per-
 203 centile of diversity that the set belongs to. This method
 204 requires selecting a hyper-parameter relating to the DPP
 205 measure. We describe a principled method for select-
 206 ing this parameter in Section 2.1, and provide numerical
 207 evidence of the improved sampling performance in the
 208 Supplemental Material. Compared to prior work, this
 209 makes percentile sampling of DPP distributions compu-
 210 tationally tractable.
- 211 2. To study effects on BO: we empirically evaluate how
 212 diverse initial samples affect the convergence rate of
 213 a Bayesian Optimizer. Section 4 finds that low diver-
 214 sity samples provide a *Model Building* advantage to BO
 215 while diverse samples provide a *Space Exploration* ad-
 216 vantage that helps BO converge faster. Section 5 shows
 217 that removing the model building advantage makes hav-
 218 ing diverse initial samples uniformly better than non-

219 diverse samples.¹

220 We will next describe our overall experimental approach
 221 and common procedures used across all three of our main ex-
 222 periments. We will introduce individual experiment-specific
 223 methods only when relevant in each separate experiment sec-
 224 tion.

225 **2 OVERALL EXPERIMENTAL APPROACH**

226 This section will first describe how we compute diverse
 227 initial samples, including how we set a key hyper-parameter
 228 that controls the DPP kernel needed to measure sample set
 229 diversity. It then briefly describes the controllable 2D test
 230 problem that we use in our experiments. It ends with a de-
 231 scription of how we set up the BO search process and the
 232 hyper-parameters that we study more deeply in each individ-
 233 ual experiment.



234 Fig. 1: Correlation matrix showing the relative correlation between two
 235 gammas by comparing the way our DPP approach ranks 10,000 sampled sets
 236 of cardinality $k=10$. The gamma values in both axes here are logarithmic
 237 values with base 10.

238 **2.1 Measuring and Sampling from Diverse Sets using 239 Determinantal Point Processes**

240 As mentioned above, we measure diversity of a set of
 241 points using Determinantal Point Processes (DPP), which get
 242 their name from the fact that they compute the Determinant

243 ¹For grammatical simplicity and narrative flow, we will use the phrase
 244 “non-diverse” throughout the paper to refer to cases where samples are
 245 taken from the 5th percentile of diverse sets—these are technically “low-
 246 diversity” rather than being absolutely “non-diverse” which would occur
 247 when all points in the set are identical, but we trust that readers can keep
 248 this minor semantic distinction in mind.

239 of a matrix referred to as an *L-ensemble* (as seen in Eq. 1)
 240 that correlates with the volume spanned by a collection or
 241 set of samples (Y) taken from all possible sets (\mathcal{Y}) given a
 242 diversity/similarity (feature) metric.

$$P(\mathbb{L}_Y) \propto \det(K(\mathbb{L}_Y)) \quad (1)$$

243 Here \mathbb{L} is the ensemble defined by any positive semi-definite
 244 matrix [40], and K is the kernel matrix. For sampling diverse
 245 examples, this positive semi-definite matrix is typically chosen
 246 as a kernel matrix (K) that defines the similarity measure
 247 between pairs of data points. For this paper, we use a standard
 248 and commonly used similarity measure defined using
 249 a Radial Basis Function (RBF) kernel matrix [49]. Specifically,
 250 each entry in \mathbb{L}_Y for two data points with index i and j is:
 251

$$[\mathbb{L}_Y]_{i,j} = \exp(-\gamma \cdot \|\mathbf{x}_i - \mathbf{x}_j\|^2) \quad (2)$$

252 The hyper-parameter γ in the DPP kernel can be set in the
 253 interval $(0, \infty)$ and will turn out to be quite important in how
 254 well we can measure diversity. The next section explores this
 255 choice in more depth, but to provide some initial intuition:
 256 set γ too high and any selection of points looks equally di-
 257 verse compared to any other set, essentially destroying the
 258 discriminative power of the DPP, while setting γ too low
 259 causes the determinant of \mathbb{L} to collapse to zero for any set
 260 of cardinality greater than the feature-length of \mathbf{x} .

261 With \mathbb{L} in hand, we can now turn Eq. 1 into an equality
 262 by using the fact that $\sum_{Y \subset \mathcal{Y}} \det(\mathbb{L}_Y) = \det(\mathbb{L} + I)$, where I is
 263 an identity matrix of the same shape as the ensemble matrix
 264 \mathbb{L} . Then, using Theorem 2.2 from [40], we can write the
 265 $P(Y \in \mathcal{Y})$ as follows:

$$P(Y) = \frac{\det(\mathbb{L}_Y)}{\det(\mathbb{L} + I)} \quad (3)$$

266 This is the probability that a given set of points (Y) is
 267 highly diverse compared to other possible sets (\mathcal{Y})—that is,
 268 the higher $P(Y)$ the more diverse the set. The popularity of
 269 DPP-type measures is due to their ability to efficiently sam-
 270 ple diverse samples of fixed size k . Sampling a set of k sam-
 271 ples from a DPP is done using a conditional DPP called
 272 k-DPP [50]. k-DPP are able to compute marginal and con-
 273 ditional probabilities with polynomial complexity, in turn al-
 274 lowing sampling from the DPP in polynomial complexity.
 275 k-DPPs are also well researched and there exists several dif-
 276 ferent methods to speed up the sampling process using a
 277 k-DPP [51, 52]. Our approach allows sampling in constant
 278 complexity however there is a trade-off in complexity in gen-
 279 erating the DPP distribution. The complexity for generating
 280 traditional DPP distributions is independent of ‘ k ’, while our
 281 approach has linear dependence on ‘ k ’. Since, existing k-
 282 DPP approaches lack the ability to efficiently sample from
 283 different percentiles of diversity and thus make it computa-
 284 tionally expensive to regenerate the distribution to alterna-
 285 tively sample from different percentiles.

286 To tackle this problem, our approach is designed to sam-
 287 ple efficiently from different percentiles of diversity. This is
 288 made possible by creating an absolute diversity score. This
 289 score is generated by taking a *logdeterminant* of the kernel
 290 matrix defined over the set Y . Randomly sampling the k-
 291 DPP space allows us to bound errors in generating this abso-
 292 lute score through the use of concentration inequalities. The
 293 details about how to sample from this distribution and calcu-
 294 late the score are mentioned in the supplementary material,
 295 so as not to disrupt the paper’s main narrative. Additionally,
 296 the supplementary material provides empirical results to sup-
 297 port our earlier claims regarding efficient sampling from our
 298 approach vs the traditional k-DPP approach, as well as the
 299 trade-off in complexity when generating the DPP distribu-
 300 tion. Figure 2 shows example sets of five points and their
 301 corresponding DPP score, where the diversity score is mono-
 302 tonic and a positive score corresponds to a more diverse sub-
 303 set.

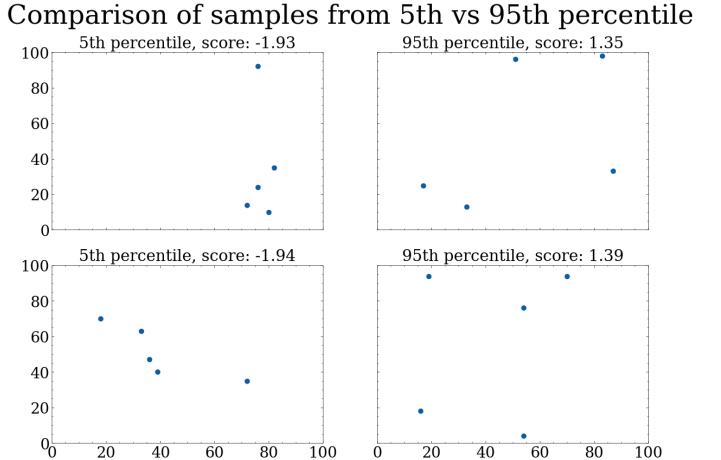


Fig. 2: Scatter plots showing randomly chosen sets with $k=5$ High Diversity and Low Diversity samples with their diversity score on top of each of the chosen set.

2.1.1 Selecting the hyper-parameter for the DPP kernel

304 As mentioned above, the choice of γ impacts the accu-
 305 racy of the DPP score, and when we initially fixed γ to $\frac{|Y_i|}{10}$,
 306 where Y_i is the set of data points over which the RBF kernel
 307 is calculating the DPP score as suggested by [53], the DPP
 308 seemed to be producing largely random scores. To select an
 309 appropriate γ we designed a kernel-independent diagnostic
 310 method for assessing the DPP kernel with four steps.
 311

312 First, we randomly generate M samples of size k sets
 313 (think of these as random k -sized samples from \mathcal{Y}). Sec-
 314 ond, we compute their DPP scores for different possible γ
 315 values and then sort those M sets by that score. Third, we
 316 compute the rank correlation among these sets for different
 317 pairs of γ —intuitively, if the rank correlation is high (toward
 318 1) then either choice of γ would produce the same rank or-
 319 ders of which points were considered diverse, meaning the
 320 (relative) DPP scores are insensitive to γ . In contrast, if the

rank correlation is 0, then the two γ values produce essentially random orderings. This rank correlation between two different γ settings is the color/value shown in each cell of the matrix in Fig. 1. Large ranges of γ with high-rank correlation mean that the rankings of DPP scores are stable or robust to small perturbations in γ . Lastly, we use this “robust γ ” region by choosing the largest range of γ values that have a relative correlation index of 0.95 or higher. We compute the mean of this range and use that as our selected γ in our later experiments. We should note that the functional range of γ is dependent on sample size (k), and so this “robust γ ” needs to be recomputed for different initialization sizes.

The detailed settings for the results as seen in Figure 1 are as follows: the $M = 10000$; $k = 10$; $\gamma \in [e - 7, e - 2]$. The correlation matrix shows a range of γ with strongly correlating relative ordering of the test sets. All γ within this range provide a consistent ranking.

2.2 A Test Function with Tunable Complexity

A problem that is common across the study of initialization methods is their inconsistency across problems of varying difficulty, motivating the need to test BO’s search behavior on a problem class with variable complexity. Synthetic objective functions are often used to test the efficiency of different optimizers and there are several libraries online to choose these functions from [54], though these functions are largely static, in the sense that there is only a single test function definition. There has been research into developing objective function *generators*; for example, in [55], the author uses a mixture of four features to generate synthetic objective functions. These have been well categorized and the relative performance of different optimizers documented on each landscape. Similar to this, [56] looks at using a mixture of different sinusoidal functions to create a noisy 1-D function. Both the generators discussed are capable of generating complicated landscapes, but the complexity arises from mixing different randomly generated sinusoids and thus are unable to control or quantify a measure of complexity of the generated landscapes.

To address this controllable complexity problem directly, we created a simple 2D test function generator with tunable complexity parameters that allow us to instantiate multiple random surfaces of similar optimization difficulty. We modified this function from the one used in [57] where it was referred to as “Wildcat Wells”, though the landscape is functionally just a normal distribution with additive noise of different frequency spectra. We used four factors to control the synthetic objective functions: 1) the number of peaks, 2) noise amplitude, 3) smoothness, and 4) distance between peaks and a seed. The number of peaks control the number of layers of multivariate normal with single peaks. The noise amplitude in the range of $[0,1]$ controls the relative height of the noise compared to the height of the peaks. Setting this to 1 would essentially make the noise in the function as tall as the peaks and give the function infinite peaks. Smoothness in the range of $[0,1]$ controls the weighted contribution of the smooth Gaussian function compared to the rugged noise to

the wildcat-wells landscape. Setting this to 1 would remove the noise from the function because then the normal distribution completely controls and dominates the function. The last parameter, the distance between peaks, can be tuned in the range of $[0,1]$. This parameter prevents overlap of peaks when the function is generated with more than 1 peak.

Some of these parameters overlap in their effects. For example, N controls the number of peaks, and ruggedness amplitude controls the height of the noise in the function, so increasing the noise automatically increases the peaks in the function thus we will only look at varying the ruggedness amplitude. Apart from this, ruggedness frequency (the distance between peaks) plays the same role as smoothness (radius of influence of each individual on its neighbor). Thus, for the numerical experiments presented in Sections 3–5 only the ruggedness amplitude and smoothness will be varied between $[0.2, 0.8]$ with increments of 0.2. To provide some visual examples of the effect of these parameters on the generated functions, Fig. 3 visualizes an example random surface generated with different smoothness and ruggedness amplitude parameters.

2.3 Bayesian optimization

Bayesian optimization (BO) has emerged as a popular sample-efficient approach for optimization of these expensive black-box (BB) functions. BO models the black-box function using a surrogate model, typically a Gaussian process (GP). The next design to evaluate is then selected according to an acquisition function. The acquisition function uses the GP posterior and makes the next recommendation for function evaluation by balancing between exploration and exploitation. It allows exploration of regions with high uncertainty in the objective function, and exploitation of regions where the mean of the objective function is optimum. At each iteration, the GP gets updated according to the selected sample, and this process continues iteratively according to the available budget.

Each data point in the context of Bayesian optimization is extremely expensive; thus, there is a need for selection of an informative set of initial samples for the optimization process. Toward this, this paper investigates the effect of level of initial diverse coverage of the input space on convergence of Bayesian optimization policies.

For the purpose of numerical experiments, the optimizer used is from the BOTorch Library [58]. The optimizer uses a Single Task GP Model with Expected Improvement; the kernel used is a Matérn kernel.

A GP is specified by its mean and covariance functions, as:

$$f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x})), \quad (4)$$

where $\mu(\cdot)$ and $k(\cdot, \cdot)$ are the mean function and a real-valued kernel function encoding the prior belief on the correlation among the samples in the design space. In Gaussian process regression, the kernel function dictates the structure of the surrogate model we can fit. An important kernel for

Wildcatwells grid

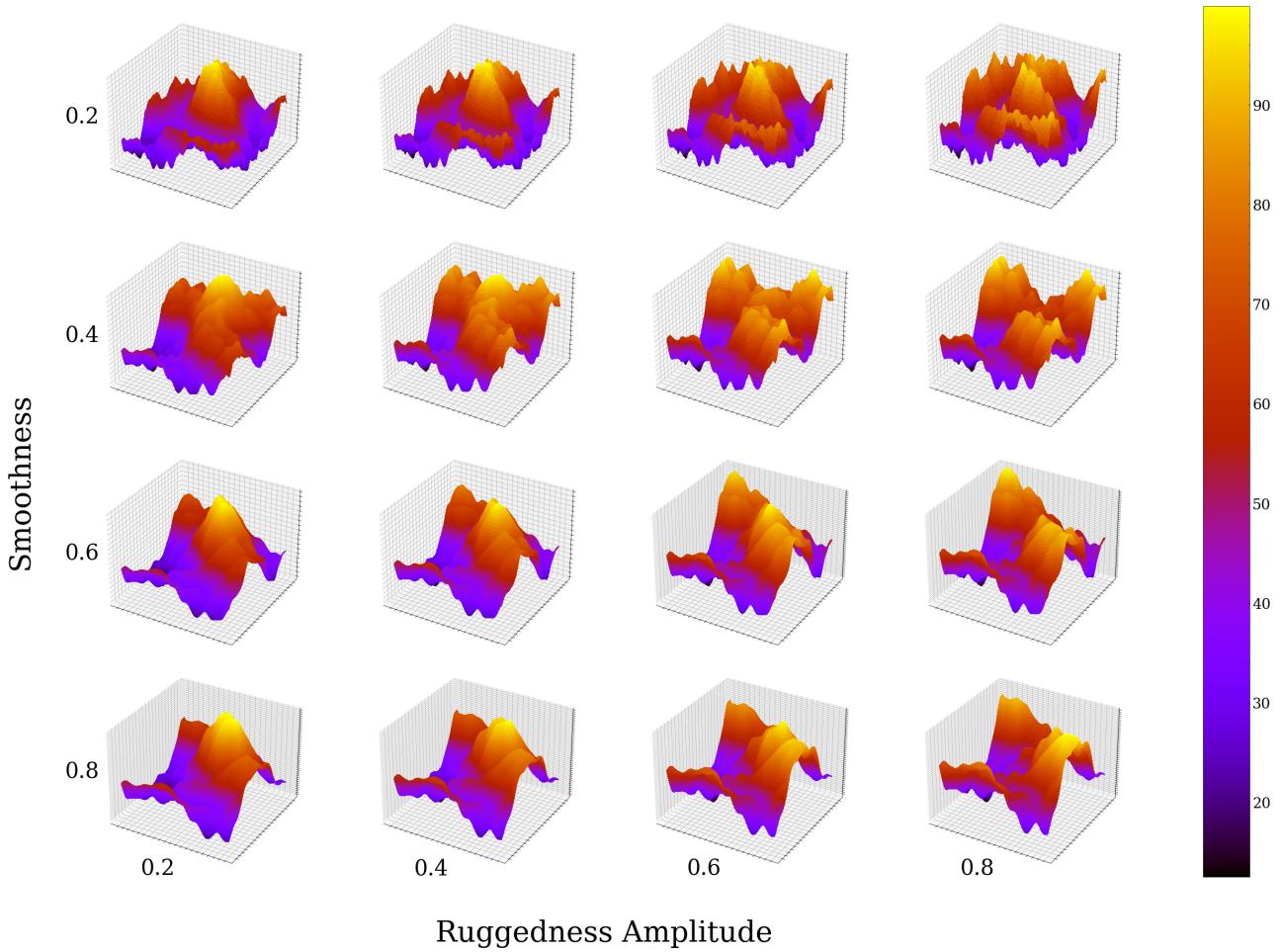


Fig. 3: A Grid plot showing how the landscape of wildcat wells changes with smoothness and ruggedness amplitude.

430 Bayesian optimization is the Matérn kernel, which incor-
 431 porates a smoothness parameter ν to permit greater flexibility
 432 in modeling functions:

$$k_{\text{Matérn}}(\mathbf{x}_1, \mathbf{x}_2) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{\|\mathbf{x}_1 - \mathbf{x}_2\|}{\theta} \right)^\nu H_\nu \left(\sqrt{2\nu} \frac{\|\mathbf{x}_1 - \mathbf{x}_2\|}{\theta} \right), \quad (5)$$

433 where $\Gamma(\cdot)$ and $H_\nu(\cdot)$ are the Gamma function and the Bessel
 434 function of order ν , and θ is the length-scale hyper-parameter
 435 which denotes the correlation between the points within each
 436 dimension and specifies the distance that the points in the de-
 437 sign space influence one another. Here, we use a constant
 438 mean for the mean function. The *Model Building* advan-
 439 tage that we refer to in this paper corresponds to learning
 440 these hyper-parameters. The hyper-parameters of the Gaus-
 441 sian process, namely, the parameters of the kernel function
 442 and the mean function are:

443 **Lengthscale of the Matérn Kernel** In Eq. 5, where θ is the
 444 lengthscale parameter of the kernel. This parameter controls

445 the ruggedness expected by the Bayesian optimizer in the
 446 black box function being studied.

447 The effects of the parameter are similar to ν , but ν is not
 448 learned during the optimization process while lengthscale is.
 449 So, ν is not studied as a parameter that influences the mod-
 450 eling behavior but rather studied as an additional parameter
 451 for sensitivity.

452 **Output scale of Scale Kernel** Output scale is used to con-
 453 trol how the Matérn kernel is scaled for each batch. Since
 454 our Bayesian optimizer uses a single task GP, we do not use
 455 batch optimization. Thus, this parameter is unique for us and
 456 the way it's implemented using BoTorch can be seen Equa-
 457 tion 6.

$$K_{\text{scaled}} = \theta_{\text{scale}} K_{\text{orig}} \quad (6)$$

458 **Noise for likelihood calculations** The noise parameter is
 459 used to model measurement error or noise in the data. So,
 460 as the Gaussian Process gets more data the noise term de-
 461 creases. So, ideally, this term should converge to 0 when the

462 Bayesian optimizer has found an optimal value since our test
463 functions did not have any added noise.

464 **Constant for Mean Module** This constant is used as the
465 mean for the Normal distribution that forms the prior of the
466 Gaussian Process as shown in Equation 4.

467 Further studies and results regarding the effects of the
468 hyper-parameters are available in the Supplemental Material.

469 We now describe the first experiment where we explore
470 the effects of diversity of initial samples on the convergence
471 of Bayesian Optimizers.

472 3 EXPERIMENT 1: DOES DIVERSITY AFFECT 473 OPTIMIZATION CONVERGENCE?

474 3.1 Methods

475 To test the effects of diversity of initial samples on optimizer
476 convergence, we first generated a set of initial training
477 samples of size (k) 10 either from low (5^{th} percentile of diversity)
478 or high diversity (95^{th} percentile of diversity) using
479 our procedure in S2.1. Next, we created 100 different
480 instances of the wildcat wells function with different randomly
481 generated seeds for each cell in a 4×4 factor grid of 4 values
482 each of the smoothness and ruggedness amplitude parameters
483 of the wildcat wells function (ranging from 0.2 to 0.8, in
484 steps of 0.2). For simplicity here, we refer to these combinations
485 as families of the wildcat wells function. This resulted
486 in 1600 function instances.

487 Our experiment consisted of 200 runs of the Bayesian
488 Optimizer within each of the smoothness-ruggedness function
489 families, where each run consisted of 100 iterations, and
490 half of the runs were initialized with a low-diversity training
491 sample, and half were initialized with a high-diversity training
492 sample.

493 We then compared the cumulative optimality gap across
494 the iterations for the runs with low-diverse initializations
495 and high-diverse initializations within each smoothness-
496 ruggedness combination family. We did this by computing
497 bootstrapped mean and confidence intervals within each
498 low-diverse and high-diverse sets of runs within each family.
499 Given the full convergence data, we compute a Cumulative
500 Optimality Gap (COG) which is just the area under the Opti-
501 mality Gap curve for both the 5^{th} and 95^{th} diversity curves.
502 Intuitively, a larger COG corresponds to a worse overall per-
503 formance by the optimizer. Using these COG values we can
504 numerically calculate the improvement of the optimizer in
505 the 95^{th} percentile. The net improvement of COG value
506 while comparing the 5^{th} and 95^{th} percentile is also presented
507 as text in each subplot in Figure 4.

508 3.2 Results

509 As Figure 4 shows, the Cumulative Optimality Gap does
510 not seem to have a consistent effect across the grid. Diver-
511 sity produces a positive convergence effect for some cells,
512 but is negative in others. Moreover, there are wide empirical
513 confidence bounds on the mean effect overall, indicating that
514 should an effect exist at all, it likely does not have a large

515 effect size. Changing the function ruggedness or smooth-
516 ness did not significantly modulate the overall effect. As ex-
517 pected, given sufficient samples (far right on the x-axis) both
518 diverse and non-diverse initializations have the same opti-
519 mality gap, since at that point the initial samples have been
520 crowded out by the new samples gathered by BO during its
521 search.

522 3.3 Discussion

523 Overall, the results from Fig. 4 seem to indicate that di-
524 versity helps in some cases and hurts in others, and regard-
525 less has a limited impact one way or the other. This seems
526 counter to the widespread practice of diversely sampling the
527 initial input space using techniques like LHS. Figure 4 shows
528 that it has little effect.

529 Why would this be? Given decades of research into ini-
530 tialization schemes for BO and Optimal Experiment Design,
531 we expected diversity to have at least some (perhaps small
532 but at least consistent) positive effect on convergence rates,
533 and not the mixed bag that we see in Fig. 4. How were the
534 non-diverse samples gaining such an upper hand when the di-
535 verse samples had a head start on exploring the space—what
536 we call a *Space Exploration* advantage?

537 The next section details an experiment we conducted to
538 test a hypothesis regarding a potential implicit advantage that
539 non-diverse samples might endow to BO that would impact
540 the convergence of BO’s hyper-parameter posteriors. As we
541 will see next, this accelerated hyper-parameter posterior con-
542 vergence caused by non-diverse initialization is the Achilles’
543 heel of diversely initialized BO that allows the non-diverse
544 samples to keep pace and even exceed diverse BO.

545 4 EXPERIMENT 2: DO LOWER DIVERSITY SAM- 546 PLES IMPROVE HYPER-PARAMETER POSTE- 547 RIOR CONVERGENCE?

548 After reviewing the results from Fig. 4, we tried to deter-
549 mine why the Space Exploration advantage of diversity was
550 not helping BO as we thought it should. We considered as
551 a thought experiment the one instance where a poorly ini-
552 tialized BO model with the same acquisition function might
553 outperform another: if one model’s kernel hyper-parameter
554 settings were so grossly incorrect that the model would waste
555 many samples exploring areas that it did not need to if it had
556 the correct hyper-parameters.

557 Could this misstep be happening in the diversely sam-
558 pled BO but not in the non-diverse case? If so, this might
559 explain how non-diverse BO was able to keep pace: while
560 diverse samples might give BO a head start, it might be un-
561 intentionally blindfolding BO to the true function posteriors,
562 making it run ragged in proverbial directions that it need not.
563 If this hypothesis was true, then we would see this reflected
564 in the comparative accuracy of the kernel hyper-parameters
565 learned by the diverse versus non-diverse BO samples. This
566 experiment set out to test that hypothesis.

Difference in optimality gap when optimizer is fitting hyperparameters at each iteration

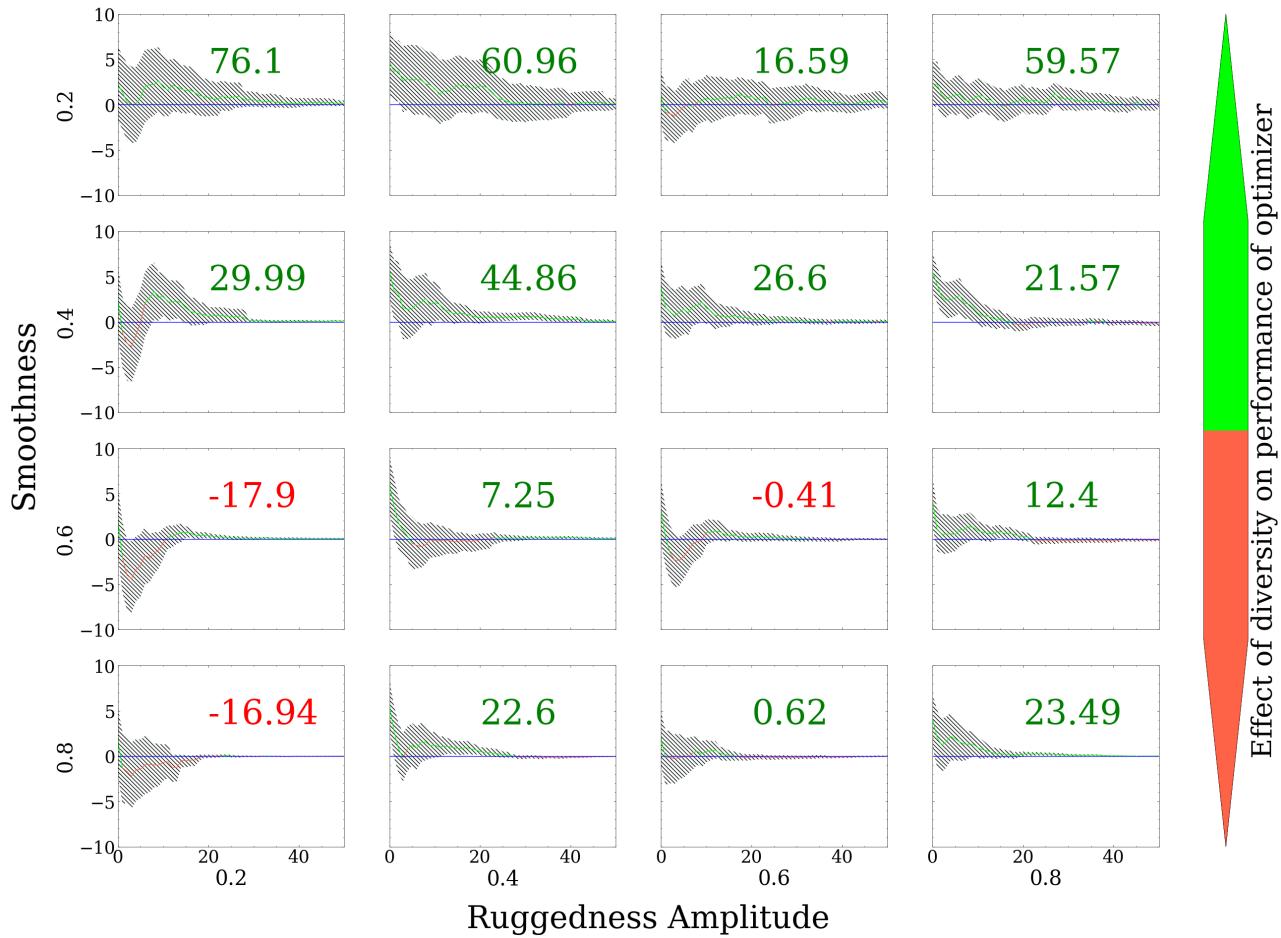


Fig. 4: Experiment 1: Optimality gap grid plot showing the difference in current Optimality Gap between optimizers initialized with 5th vs 95th percentile diverse sample (y-axis) as a function of optimization iteration (x-axis). The different factors in the factor grid plot the effects of diversity as the noise amplitude and smoothness are varied in the range [0.2,0.8]. Each plot also has text indicating the Net Cumulative Optimality Gap (NCOG), a positive value corresponds to a better performance by high diversity samples compared to the low diversity samples. The plot shows that BO benefits from diversity in some cases but not others. There is no obvious trends in how the NCOG values change in the grid. The results are further discussed in S3

4.1 Methods

The key difference from Experiment 1 is that, rather than comparing the overall optimization convergence, we instead focus on how the initial samples’ diversity affects BO’s hyper-parameter posterior convergence, and compare how far each is from the “ground truth” optimal hyperparameters.

As with Experiment 1, we used the same smoothness and ruggedness amplitude families of the wildcat wells function. To then generate the data for each instance in one of these families, we sampled 20 sets of initial samples. Half of the sampled 20 sets were low (5^{th} percentile of diversity) and the other half from high diversity (95^{th} percentile of diversity) percentiles.

For each initial sample, we then maximized the GP’s kernel Marginal Log Likelihood (via BOTorch’s GP fit method). We then recorded the hyper-parameters obtained for all 20 initial samples. The mean of the 10 samples from low diversity was then used as one point in the box plot’s low diversity distribution as seen in Fig. 5. We then repeated this process for the high diversity initial samples. Each point

in the box plot can be then understood as the mean hyper-parameter learned by BOTorch given just the initial sample of size (k) 10 points. To get the full box plot distribution for each family the above process is repeated over 100 seeds and Fig. 5 provides the resulting box plot for both diverse and non-diverse initial samples for all the 16 families of wildcat wells function as described in Experiment 1.

To provide a ground truth for the true hyper-parameter settings, we ran a Binary search to find the size of the sample (k_{optimal}) for which BO’s kernel hyper-parameters converged for all families. The hyper-parameter found by providing k_{optimal} amount of points for each instance in the family was then plotted as a horizontal line in each box plot. An interesting observation is that some families have non-overlapping horizontal lines. This is because for some families there are more than one modes of ‘optimal hyper-parameters’. The mode chosen as the ‘optimal hyper-parameter’ is the more observed mode. The process for finding the ‘optimal hyper-parameter’ and which mode is chosen as the optimal hyper-parameter has been described in the Supplemental Material.

Distribution of lengthscale learned by BO on initial samples

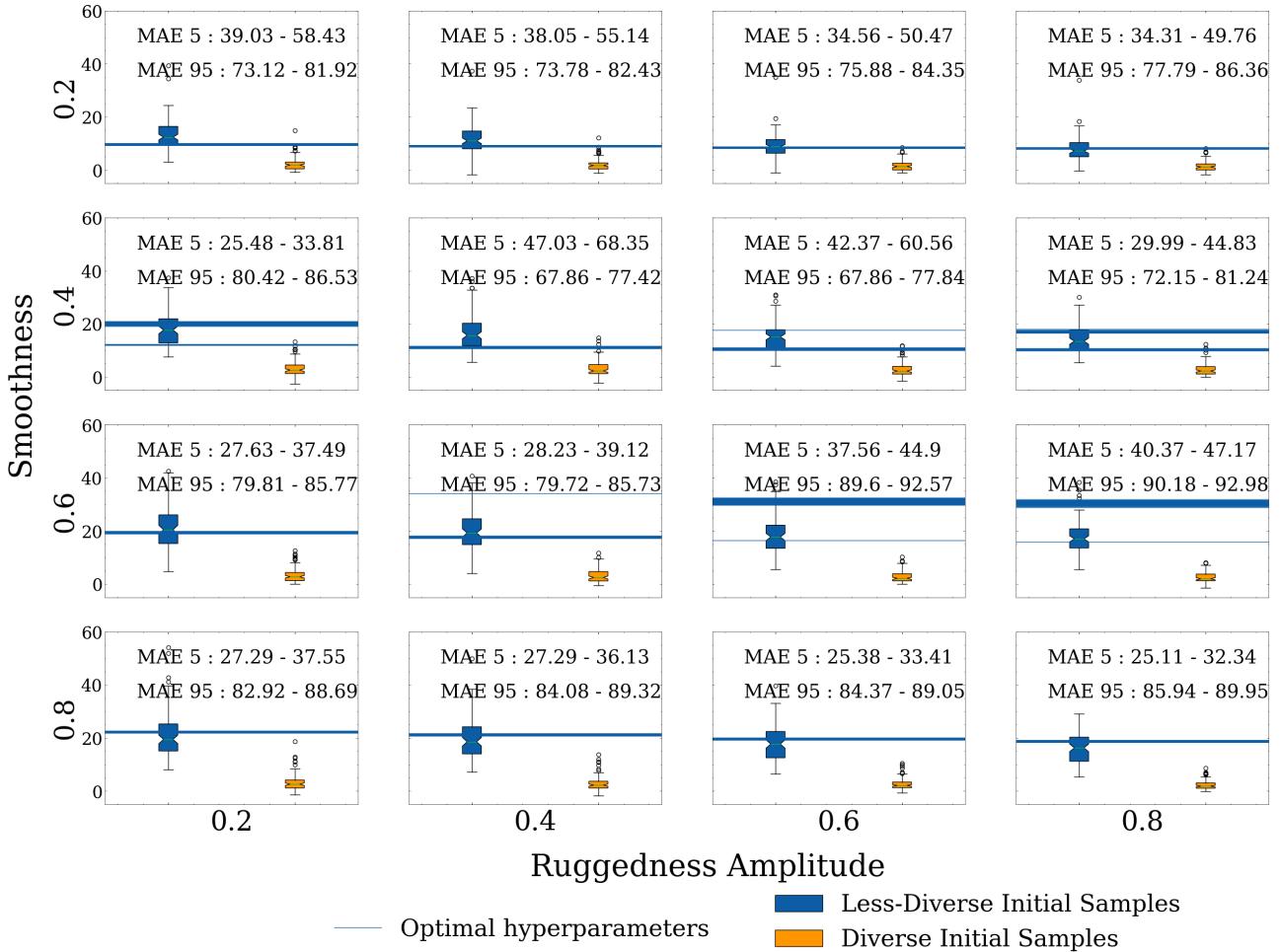


Fig. 5: Experiment 2: Box plot showing distribution of ‘Lengthscale’ hyper-parameter learned by BO when initiated with diverse (orange) and non-diverse samples (blue) for 16 different families of wildcat wells functions of the same parameters but 100 different seeds. The optimal hyper-parameter for each of the 100 wildcat wells instances from each family is also plotted as horizontal (blue) lines—in many but not all cases these overlap. Each cell in the plot also has the 95th percentile confidence bound on Mean Absolute Error (MAE) for both diverse and non-diverse samples. The results show that MAE confidence bounds for non-diverse samples are smaller compared to diverse samples for all the families of wildcat wells function. Thus, indicating a presence of Model Building advantage for non-diverse initial samples. The results of this figure are further discussed in S4

If an initial sample provides a good initial estimate of the kernel hyper-parameter posterior, then the box plot should align well or close to the horizontal lines of the true posterior. Figure 5 only shows the results for the Matérn Kernel’s Lengthscale parameter, given its out-sized importance in controlling the GP function posteriors compared to the other hyper-parameters (e.g., output scale, noise, etc.), which we do not plot here for space reasons. We provide further details and plots for all hyper-parameters in the Supplementary Material for interested readers.

To quantify the average distance between the learned and true hyper-parameters, we also plot on Fig. 5 the Mean Absolute Error (MAE) for both highly diverse (95th) and less diverse (5th) points. The MAE is the sum of the absolute distance of each predicted hyper-parameter from the optimal hyper-parameter for the particular surface of each wildcat wells function. The range as seen in each cell in Figure 5 corresponds to a 95th percentile confidence bound on the Mean

absolute error across all the 100 runs.

4.2 Results and Discussion

The results in Figure 5 show that the MAE values for low diversity samples are always lower compared to the MAE for high diversity samples. This general behavior is also qualitatively visible in the box plot. This means that after only the initial samples, the non-diverse samples provided much more accurate estimates of the kernel hyper-parameters compared to diverse samples. Moreover, BO systematically *underestimates* the correct lengthscales with diverse samples—this corresponds to the diverse BO modeling function posteriors that have higher frequency components than the true function actually does (as shown via the pedagogical examples in the Supplementary Material).

This provides evidence for the *Model Building* advantage of non-diverse samples that we defined in Sec. 2.3. It also confirms our previous conjecture from the thought ex-

Difference in optimality gap when hyperparameters are fixed for the optimizer

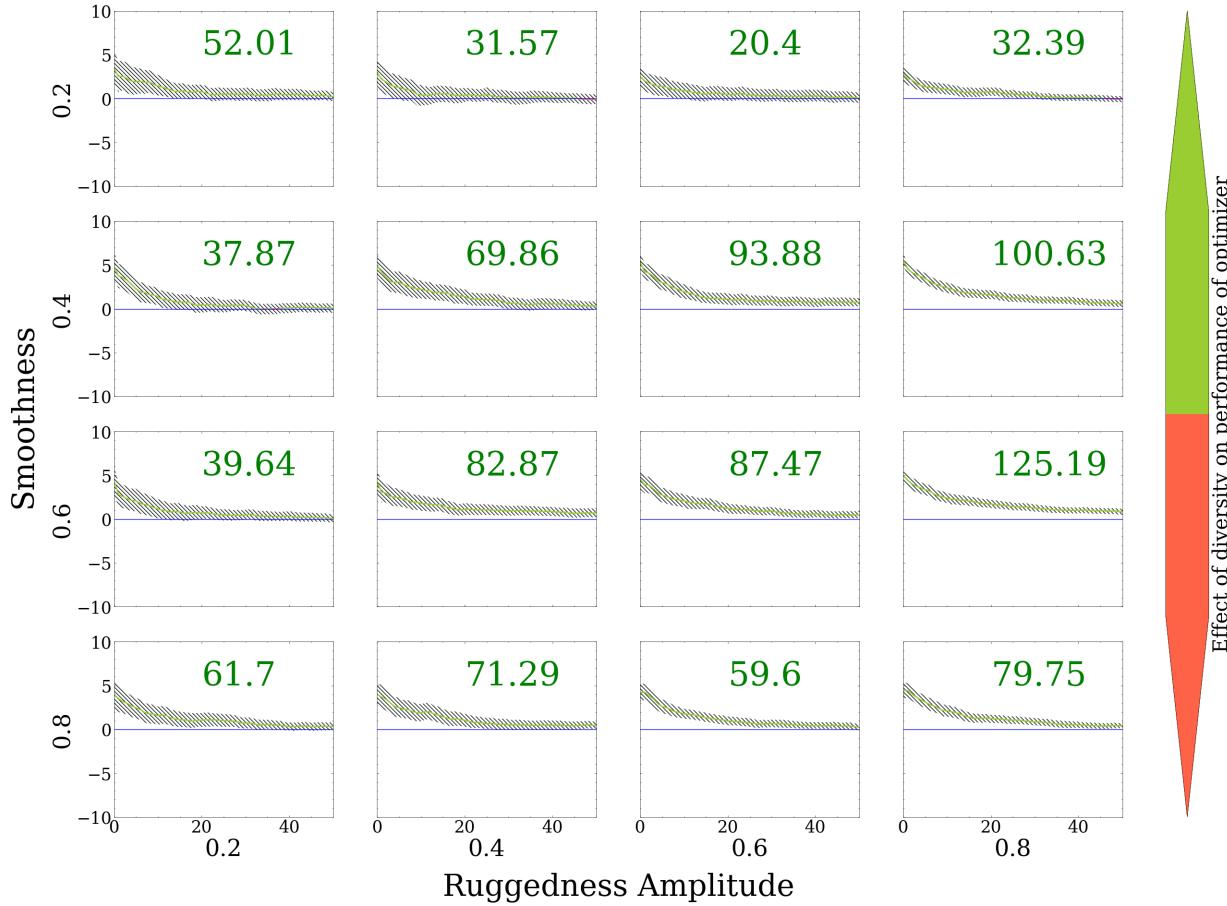


Fig. 6: Experiment 3: Optimality gap plot showing effects of diversity when the optimizer is not allowed to fit the hyper-parameters for the Gaussian Process and the hyper-parameters are instead fixed to the values found in Experiment 2. The results from this plot show positive NCOG values for all families of wildcat wells function, showing that once the Model Building advantage’ is taken away the diverse samples outperform non-diverse samples. Further discussion on this plot can be read in S5

periment that diverse samples might be impacting BO by causing slower or less accurate convergence to the right BO hyper-parameters. The Space Exploration advantage of the diverse samples helps it compensate somewhat for its poor hyper-parameters, but BO trained with non-diverse samples can leverage the better hyper-parameters to make more judicious choices about what points to select next.

We did not see major differences in the other three kernel hyper-parameters such as Output Scale, Noise, or the Mean Function (see Supplemental Material); however, this is not surprising, since BO is not highly sensitive to any of these parameters and the lengthscale parameter dominates large changes in BO behavior.

Comparing the different smoothness and ruggedness settings, when the function is more complex (the top right of the grid at low smoothness and high ruggedness amplitude values) the function’s lengthscale is lower and closer to the value learned by the diverse samples. Looking at the low diversity MAE values (‘MAE 5’), we can see they are much closer to those of the high diversity samples (‘MAE 95’), in contrast to when the function is less complex (bottom left side of the grid). Under such conditions, low diversity sam-

ples lose some of the relative Model Building advantage they have over high diversity samples. This conjecture aligns with Experiment 1 (Fig 4) where the COG values on the top right part are positive while those on the bottom left are negative.

Figure 5 demonstrated our hypothesized Model Building advantage that non-diverse initial samples confer to BO. But how do we know that this is the actual causal factor that accelerates BO convergence, and not just correlated with some other effect? If correct, our conjecture posits a natural testable hypothesis: if we fix the values of the hyper-parameter posteriors to identical values between the non-diverse and diverse samples and do not allow the BO to update or optimize them, then this should effectively eliminate the Model Building advantage, and diverse samples should always outperform non-diverse samples. Metaphorically, if we were to take away the arrow that Paris used against Achilles, would the Battle of Troy have ended differently? Our next experiment finds this out.

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

682 **5 EXPERIMENT 3: DOES DIVERSITY AFFECT
683 OPTIMIZATION CONVERGENCE IF HYPER-
684 PARAMETERS ARE FIXED TO OPTIMAL VAL-
685 UES?**

686 **5.1 Methods**

687 This experiment is identical to Experiment 1, with two
688 key differences: (1) we now fix the kernel hyper-parameters
689 to the ‘optimal hyper-parameter’ values we found in Ex-
690 periment 2 for all the instances in each family of the wildcat
691 wells function, (2) and we do not allow either BO model to
692 further optimize the kernel hyper-parameters. This should
693 remove the hypothesized Model Building advantage of non-
694 diverse samples without altering any other aspects of Ex-
695 periment 1 and the results in Fig. 4.

696 **5.2 Results and Discussion**

697 Figure 6 shows that once the kernel hyper-parameters
698 are fixed—removing the Model Building advantage of non-
699 diverse samples—diverse samples consistently and robustly
700 outperform non-diverse initial samples. This holds for both
701 the initial Optimality Gap at the beginning of the search as
702 well as the Cumulative Optimality Gap and is not qualita-
703 tively affected by the function smoothness or roughness am-
704 plitude. Unlike in Experiment 1 where diversity could either
705 help or hurt the optimizer, once we remove the Model Build-
706 ing advantage, diversity only helps.

707 **6 GENERAL DISCUSSION AND CONCLUSIONS**

708 **6.1 Summary and Interpretation of Findings**

709 This paper’s original goal was to investigate how and
710 when diverse initial samples help or hurt Bayesian Opti-
711 mizers. Overall, we found that the initial diversity
712 of the provided samples created two competing effects.
713 First, Experiment 2 showed that non-diverse samples im-
714 proved BO’s abilities to quickly converge to optimal hyper-
715 parameters—we called this a *Model Building* advantage.
716 Second, Experiment 3 showed that conditioned on the same
717 fixed hyper-parameters diverse samples improved BO’s con-
718 vergence to the optima through faster exploration of the
719 space—we called this a *Space Exploration* advantage. In Ex-
720 periment 1, diversity had mixed-to-negligible effects since
721 both of these advantages were in play and competed with
722 one another. This interaction provides insight for academic
723 or industrial BO users since common practice recommends
724 initializing BO with space-filling samples (to take advantage
725 of the Space Exploration advantage), and ignores the Model
726 Building advantage of non-diverse samples.

727 Beyond our main empirical result, our improvements to
728 existing diverse sampling approaches (Sec. 2.1) provide new
729 methods for studying how different percentile diversity sets
730 affect phenomena. Researchers may find this contribution of
731 separate technical and scientific interest for related studies
732 that investigate the impact of diversity.

733 **6.2 Implications and Future Work**

734 Beyond the individual results we observed and summa-
735 rized in each experiment, there are some overall implications
736 and limitations that may guide future work or interpretation
737 of our results more broadly, which we address below.

738 **Where does this Model Building advantage induced by
739 non-diverse samples come from?** As we conjectured in
740 Experiment 2 (S4), and confirmed in Experiment 3 (S5),
741 the key advantage of using non-diverse initial samples lies
742 in their ability to induce faster and more accurate poste-
743 rior convergence when inferring the optimal kernel hyper-
744 parameters, such as length scale and others. This allowed
745 the BO to make more judicious and aggressive choices about
746 what points to sample next, so while the diversely initial-
747 ized models might get a head start on exploring the space,
748 non-diversely initialized models needed to explore less of the
749 space overall, owing to tighter posteriors of possible func-
750 tions under the Gaussian Process.

751 While we do not have space to include it in the main pa-
752 per, the supplemental material document’s section 5 shows
753 how this model building advantage occurs as we provide BO
754 with a greater number of initial samples. Briefly, there are
755 three “regimes”: (1) sample-deficient, where there are too
756 few samples to induce a modeling advantage regardless of
757 how diversely we sample the initial points; (2) the “modeling
758 advantage” region, where low-diversity samples induce bet-
759 ter hyperparameter convergence than high-diversity samples;
760 and (3) sample-saturated, where there are enough initial sam-
761 ples to induce accurate hyper-parameter posteriors regardless
762 of how diversely we sample initial points. We direct inter-
763 ested readers to Section 5 of the supplemental material for a
764 deeper discussion on this.

765 What this behavior implies more broadly is that non-
766 diverse samples, whether given to an algorithm or a per-
767 son, have a unique and perhaps underrated value in cases
768 where we have high entropy priors over the Gaussian Pro-
769 cess hyper-parameters or kernel. In such cases, sacrificing a
770 few initial non-diverse points to better infer key length scales
771 in the GP model may well be a worthwhile trade.

772 We also saw that in cases where the BO hyper-
773 parameters were not further optimized (as in Experiment 3
774 where hyper-parameters were fixed to optimal values), using
775 diverse points only helped BO. Researchers or practitioners
776 using BO would benefit from carefully reviewing what ker-
777 nel optimization strategy their library or implementation of
778 choice actually does since that will affect whether or not the
779 Model Building advantage of non-diverse samples is actually
780 in play.

781 **What if Hyper-parameters are fixed to non-optimal val-
782 ues?** We showed in Experiment 3 that fixing BO hyper-
783 parameters to their optimal values ahead of time using an
784 oracle allowed diverse initial samples to unilaterally outper-
785 form non-diverse samples. An interesting avenue of future
786 work that we did not explore here for scope reasons would
787 be to see if this holds when hyper-parameters are fixed to
788 non-optimal values. In practical problems, we will not often

789 know the optimal hyper-parameters ahead of time as we did
790 in Experiment 3 which caused diversity’s unilateral advan-
791 tage, so we do not have evidence to generalize beyond this.
792 However, our explanation of the Model Building advantage
793 would predict that, so long as the hyper-parameters remain
794 fixed (to any value), BO would not have a practical mecha-
795 nism to benefit much from non-diverse samples, on average.

796 **What are the implications for how we currently initialize**
797 **BO?** One of our result’s most striking implications is how
798 it might influence BO initialization procedures that are of-
799 ten considered standard practice. For example, it is common
800 to initialize a BO procedure with a small number of initial
801 space-filling designs, using techniques like Latin Hypercube
802 Sampling (LHS) before allowing BO to optimize its acqui-
803 sition function for future samples. In cases where the BO
804 hyper-parameters will remain fixed, Experiment 3 implies
805 that this standard practice is excellent advice and far better
806 than non-diverse samples. However, in cases where you plan
807 to optimize the BO kernel during search, using something
808 like LHS becomes more suspect.

809 In principle, from Experiment 1 we see that diverse sam-
810 ples may help or hurt BO, depending on how much leverage
811 the Model Building advantage of the non-diverse samples
812 can provide. For example, in the upper right of Fig. 4 the
813 function is effectively random noise, and so there is not a
814 strong Model Building advantage to be gained. In contrast,
815 in the lower left, the smooth and well-behaved functions al-
816 lowed non-diverse initialization to gain an upper hand.

817 Our results propose a perhaps now obvious initialization
818 strategy: if you plan on optimizing the BO hyper-parameters,
819 use some non-diverse samples to strategically provide an
820 early Model Building advantage, while leveraging the rest
821 of the samples to diversely cover the space.

822 **How might other acquisition functions modulate diver-
823 sity’s effect?** While we have been referring to BO as
824 though it is a single method throughout this paper, individual
825 BO implementations can vary, both in terms of their kernel
826 structure and their choice of acquisition function—or how
827 BO uses information about the underlying fitted Gaussian
828 Process to select subsequent points. In this paper’s experi-
829 ments, we used Expected Improvement (EI) since it is one of
830 the most widespread choices, and behaves qualitatively like
831 other common improvement-based measures like Probabil-
832 ity of Improvement, Posterior Mean, and Upper Confidence
833 Bound functions. Indeed, we hypothesize that part of the
834 reason non-diverse initial samples are able to gain a Model
835 Building advantage over diverse samples is due to a faster
836 collapse in the posterior distribution of possible GP functions
837 which serves as strong input to EI methods and related vari-
838 ants.

839 Yet EI and its cousins are only one class of acquisi-
840 tion function; would our results hold if we were to pick an
841 acquisition function that directly attacked the GP’s poste-
842 rior variance? For example, either Entropy-based or Active
843 Learning based acquisition functions? This paper did not
844 test this and it would be a logical and valuable future study.

845 Our experimental results and proposed explanation would
846 predict the following: the Model Building advantage seen
847 by non-diverse samples should reduce or disappear in cases
848 where the acquisition function explicitly samples new points
849 to minimize the posterior over GP function classes since in
850 such cases BO itself would try to select samples that reduced
851 overall GP variance, reducing its dependence on what the
852 initial samples provide.

853 **To what extent should we expect these results to gen-
854 eralize to other types of problems?** We selected a sim-
855 ple 2D function with controllable complexity in this paper
856 to aid in experimental simplicity, speed, replicability, and
857 ease of visualization; however, this does raise the ques-
858 tion of whether or not these results would truly transfer to
859 more complex problems of engineering interest. While fu-
860 ture work would have to address more complex problems,
861 we performed two additional experiments studying how the
862 above phenomena change as we (1) increased the wildcat
863 wells function from two to three dimensions, and (2) how this
864 behavior changes for other types of common optimization
865 test functions—specifically, we chose the N-Dimensional
866 Sphere, Rastrigin, and Rosenbrock functions from two to five
867 dimensions. While the existing paper length limits did not al-
868 low us to include all of these additional results in the paper’s
869 main body, we direct interested readers to Sections 6 and 7
870 of the supplemental material document. Briefly, our results
871 align overall with what we described above for the 2D wild-
872 cat wells function, and we do not believe that the phenomena
873 we observed are restricted to only our chosen test function
874 or dimension, although clearly future research would need to
875 conduct further tests on other problems to say this with any
876 certainty. Beyond these supplemental results, we can also
877 look at a few critical problem-specific factors and ask what
878 our proposed explanatory model would predict.

879 For higher dimensional problems, standard GP kernel
880 choices like RBF or Matérn begin to face exponential cost
881 increases due to how hyper-volumes expand. In such cases,
882 having strong constraints (via hyper-parameter priors or pos-
883 teriors) over possible GP functions becomes increasingly im-
884 portant for fast BO convergence. Our results would posit that
885 any Model Building advantages from non-diverse sampling
886 would become increasingly important or impactful in cases
887 where it helped BO rapidly collapse the hyper-parameter
888 posteriors.

889 For discontinuous functions (or GP kernels that assumed
890 as much), the Model Building advantage of non-diverse sam-
891 ples would decrease since large sudden jumps in the GP pos-
892 terior mean and variance would make it harder for BO to
893 exploit a Model Building advantage. However, in discontin-
894 uous cases where there were still common global smoothness
895 parameters that governed the continuous portions the Model
896 Building advantage would still accelerate advantages for BO
897 convergence.

898 **How might the results guide human subject experiments
899 or understanding of human designers?** One possible im-
900 plication of our results for human designers is that the ef-

fects of example diversity on design outcomes may vary as a function of designer's prior knowledge of the design problem. More specifically, the Model Building advantage observed in Experiment 2 (and subsequent removal in Experiment 3) suggests that when designers have prior knowledge of how quickly the function changes in a local area of the design space, they can more reliably benefit from the Space Exploration advantage of diverse examples. This leads to a potentially counter-intuitive prediction that domain experts may benefit more from diverse examples compared to domain novices since domain experts would tend to have prior knowledge of the nature of the design problem (a Model Building advantage). Additionally, perhaps under conditions of uncertainty about the nature of the design problem, it would be useful to combine the strengths of diverse and non-diverse examples; this could be accomplished with a cluster-sampling approach, where we sample diverse points of the design space, but include local non-diverse clusters of examples that are nearby, to facilitate learning of the shape of the design function.

While these implications might be counter-intuitive in that common guidance suggests that the most informative method is to only diversely sample initial points, the crux of our paper's argument is that non-diverse points *can*, surprisingly, be informative to Bayesian Optimization due to their ability to quickly concentrate the posterior distribution of the kernel hyper-parameters, and thus accelerate later optimization. Given this tension, a natural question is "how many non-diverse samples do I really need to take advantage of the modeling advantage without giving up the space exploration advantage?" If I have, say, a budget of ten experiments, should I spend only one low-diversity sample? Or do I need two? Half of my budget? We did not explore these practical questions in this work, due to space constraints, but we think this would be an excellent avenue for continued study.

937 Acknowledgements

938 This research was supported in part by funding from the
 939 National Science Foundation through award #1826083.

940 References

- 941 [1] Sio, U. N., Kotovsky, K., and Cagan, J., 2015. "Fixation or inspiration? A meta-analytic review of the role
 942 of examples on design processes". *Design Studies*, **39**,
 943 July, pp. 70–99. 00174.
- 944 [2] Crilly, N., and Cardoso, C., 2017. "Where next for
 945 research on fixation, inspiration and creativity in de-
 946 sign?". *Design Studies*, **50**, May, pp. 1–38.
- 947 [3] Baruah, J., and Paulus, P. B., 2011. "Category as-
 948 signment and relatedness in the group ideation pro-
 949 cess". *Journal of Experimental Social Psychology*,
 950 **47**(6), pp. 1070–1077. 00000.
- 951 [4] Siangliulue, P., Arnold, K. C., Gajos, K. Z., and Dow,
 952 S. P., 2015. "Toward Collaborative Ideation at Scale:
 953 Leveraging Ideas from Others to Generate More Cre-
 954 ative and Diverse Ideas". In Proceedings of the 18th
 955 ACM Conference on Computer Supported Cooperative
 956 Work & Social Computing, CSCW '15, ACM, pp. 937–
 957 945.
- 958 [5] Nijstad, B. A., Stroebe, W., and Lodewijkx, H. F. M.,
 959 2002. "Cognitive stimulation and interference in
 960 groups: Exposure effects in an idea generation task".
 961 *Journal of Experimental Social Psychology*, **38**(6),
 962 pp. 535–544.
- 963 [6] Taylor, A., and Greve, H. R., 2006. "Superman or the
 964 Fantastic Four? Knowledge Combination and Experi-
 965 ence in Innovative Teams.". *Academy of Management
 966 Journal*, **49**(4), pp. 723–740. 00000.
- 967 [7] Zeng, L., Proctor, R. W., and Salvendy, G., 2011. "Fos-
 968 tering creativity in product and service development:
 969 validation in the domain of information technology".
 970 *Hum Factors*, **53**(3), pp. 245–70.
- 971 [8] Howard-Jones, P. A., Blakemore, S.-J. . J., Samuel,
 972 E. A., Summers, I. R., and Claxton, G., 2005. "Se-
 973 mantic divergence and creative story generation: An
 974 fMRI investigation". *Cognitive Brain Research*, **25**(1),
 975 pp. 240–250.
- 976 [9] Chan, J., and Schunn, C. D., 2015. "The importance of
 977 iteration in creative conceptual combination". *Cogni-
 978 tion*, **145**, Dec., pp. 104–115.
- 979 [10] Gielnik, M. M., Frese, M., Graf, J. M., and Kamp-
 980 schulte, A., 2011. "Creativity in the opportunity iden-
 981 tification process and the moderating effect of diversity
 982 of information". *Journal of Business Venturing*, **27**(5),
 983 pp. 559–576. 00000.
- 984 [11] Althuizen, N., and Wierenga, B., 2014. "Supporting
 985 Creative Problem Solving with a Case-Based Reason-
 986 ing System". *Journal of Management Information Sys-
 987 tems*, **31**(1), pp. 309–340.
- 988 [12] Yuan, H., Lu, K., Jing, M., Yang, C., and Hao, N.,
 989 2022. "Examples in creative exhaustion: The role of
 990 example features and individual differences in creativ-
 991 ity". *Personality and Individual Differences*, **189**, Apr.,
 992 p. 111473. 00000.
- 993 [13] Doboli, A., Umbarkar, A., Subramanian, V., and
 994 Doboli, S., 2014. "Two experimental studies on cre-
 995 ative concept combinations in modular design of elec-
 996 tronic embedded systems". *Design Studies*, **35**(1),
 997 pp. 80–109.
- 998 [14] Jang, S., 2014. "The Effect of Image Stimulus on
 999 Conceptual Combination in the Design Idea Generation
 1000 Process". *Archives of Design Research*, **112**(4), p. 59.
- 1001 [15] Mobley, M. I., Doares, L. M., and Mumford, M. D.,
 1002 1992. "Process analytic models of creative capacities:
 1003 Evidence for the combination and reorganization pro-
 1004 cess". *Creativity Research Journal*, **5**(2), pp. 125–155.
- 1005 [16] Baughman, W. A., and Mumford, M. D., 1995.
 1006 "Process-analytic models of creative capacities: Oper-
 1007 ations influencing the combination-and-reorganization
 1008 process.". *Creativity Research Journal*, **8**(1), pp. 37–
 1009 62.
- 1010 [17] Kamath, C., 2021. Intelligent sampling for surrogate
 1011 modeling, hyperparameter optimization, and data anal-
 1012

ysis, Dec.

[18] Yang, X.-S., 2014. “Swarm intelligence based algorithms: a critical analysis”. *Evol. Intel.*, **7**(1), Apr., pp. 17–28.

[19] Ma, Z., and Vandebosch, G. A. E., 2012. “Impact of Random Number Generators on the performance of particle swarm optimization in antenna design”. In 2012 6th European Conference on Antennas and Propagation (EUCAP), pp. 925–929. ISSN: 2164-3342.

[20] Kazimipour, B., Li, X., and Qin, K., 2014. “Effects of Population Initialization on Differential Evolution for Large Scale Optimization”.

[21] Maaranen, H., Miettinen, K., and Mäkelä, M. M., 2004. “Quasi-random initial population for genetic algorithms”. *Computers & Mathematics with Applications*, **47**(12), June, pp. 1885–1895.

[22] Li, Q., Liu, S.-Y., and Yang, X.-S., 2020. “Influence of Initialization on the Performance of Metaheuristic Optimizers”. *Applied Soft Computing*, **91**, June, p. 106193. arXiv:2003.03789 [cs, math].

[23] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., 2002. “A fast and elitist multiobjective genetic algorithm: Nsga-ii”. *IEEE transactions on evolutionary computation*, **6**(2), pp. 182–197.

[24] Shu, L., Jiang, P., Shao, X., and Wang, Y., 2020. “A New Multi-Objective Bayesian Optimization Formulation With the Acquisition Function for Convergence and Diversity”. *Journal of Mechanical Design*, **142**(9), Mar.

[25] Simpson, T. W., Poplinski, J., Koch, P. N., and Allen, J. K., 2001. “Metamodels for computer-based engineering design: survey and recommendations”. *Engineering with computers*, **17**(2), pp. 129–150.

[26] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., and Tucker, P. K., 2005. “Surrogate-based analysis and optimization”. *Progress in aerospace sciences*, **41**(1), pp. 1–28.

[27] Jin, R., Chen, W., and Simpson, T. W., 2001. “Comparative studies of metamodeling techniques under multiple modelling criteria”. *Structural and multidisciplinary optimization*, **23**(1), pp. 1–13.

[28] Sexton, T., and Ren, M. Y., 2017. “Learning an optimization algorithm through human design iterations”. *Journal of Mechanical Design*, **139**(10).

[29] Tauber, S., Navarro, D. J., Perfors, A., and Steyvers, M., 2017. “Bayesian models of cognition revisited: Setting optimality aside and letting data drive psychological theory”. *Psychological Review*, **124**(4), July, pp. 410–441.

[30] Kemp, C., and Tenenbaum, J. B., 2008. “The discovery of structural form”. *Proceedings of the National Academy of Sciences*, **105**(31), pp. 10687–10692.

[31] Lu, H., Yuille, A. L., Liljeholm, M., Cheng, P. W., and Holyoak, K. J., 2008. “Bayesian generic priors for causal learning”. *Psychological Review*, **115**(4), pp. 955–984. Place: US Publisher: American Psychological Association.

[32] Lu, H., Chen, D., and Holyoak, K. J., 2012. “Bayesian analogy with relational transformations.”. *Psychological Review*, **119**(3), p. 617.

[33] Fuge, M., Stroud, J., and Agogino, A., 2013. “Automatically inferring metrics for design creativity”. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 55928, American Society of Mechanical Engineers, p. V005T06A010.

[34] Ahmed, F., Ramachandran, S. K., Fuge, M., Hunter, S., and Miller, S., 2021. “Design variety measurement using sharma–mittal entropy”. *Journal of Mechanical Design*, **143**(6).

[35] Miller, S. R., Hunter, S. T., Starkey, E., Ramachandran, S., Ahmed, F., and Fuge, M., 2021. “How should we measure creativity in engineering design? a comparison between social science and engineering approaches”. *Journal of Mechanical Design*, **143**(3).

[36] Ahmed, F., Ramachandran, S. K., Fuge, M., Hunter, S., and Miller, S., 2019. “Interpreting idea maps: Pairwise comparisons reveal what makes ideas novel”. *Journal of Mechanical Design*, **141**(2), p. 021102.

[37] Ahmed, F., and Fuge, M., 2018. “Ranking ideas for diversity and quality”. *Journal of Mechanical Design*, **140**(1), p. 011101.

[38] Ahmed, F., and Fuge, M., 2017. “Ranking ideas for diversity and quality”. arXiv:1709.02063 [cs], Sept. arXiv: 1709.02063.

[39] Ahmed, F., 2019. “Diversity and novelty: Measurement, learning and optimization”. PhD thesis.

[40] Kulesza, A., and Taskar, B., 2012. “Determinantal point processes for machine learning”. *Foundations and Trends® in Machine Learning*, **5**(2-3), pp. 123–286. arXiv: 1207.6083.

[41] Li, C., Chu, X., Chen, Y., and Xing, L., 2015. “A knowledge-based initialization technique of genetic algorithm for the travelling salesman problem”. In 2015 11th International Conference on Natural Computation (ICNC), pp. 188–193. ISSN: 2157-9563.

[42] Dong, N., Wu, C.-H., Ip, W.-H., Chen, Z.-Q., Chan, C.-Y., and Yung, K.-L., 2012. “An opposition-based chaotic GA/PSO hybrid algorithm and its application in circle detection”. *Computers & Mathematics with Applications*, **64**(6), Sept., pp. 1886–1902.

[43] Eskandar, H., Sadollah, A., Bahreininejad, A., and Hamdi, M., 2012. “Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems”. *Computers & Structures*, **110-111**, Nov., pp. 151–166.

[44] Mishkin, D., and Matas, J., 2016. All you need is a good init, Feb. arXiv:1511.06422 [cs].

[45] Yuan, W., Han, Y., Guan, D., and Lee, S., 2011. “Initial training data selection for active learning”. p. 5.

[46] Settles, B., 2012. “Active learning”. *Synthesis lectures on artificial intelligence and machine learning*, **6**(1), pp. 1–114.

[47] Yoon, J., Arik, S., and Pfister, T., 2020. “Data Valuation using Reinforcement Learning”. In Proceedings of the 37th International Conference on Machine Learn-

1129 ing, PMLR, pp. 10842–10851. ISSN: 2640-3498.
1130 [48] Eysenbach, B., Gupta, A., Ibarz, J., and Levine,
1131 S., 2018. “Diversity is all you need: Learning
1132 skills without a reward function”. *arXiv preprint*
1133 *arXiv:1802.06070*.
1134 [49] Schölkopf, B., and Smola, A. J., 2018. *Learning*
1135 *with Kernels: Support Vector Machines, Regulariza-*
1136 *tion, Optimization, and Beyond*. June.
1137 [50] Kulesza, A., and Taskar, B. “k-DPPs: Fixed-Size De-
1138 terminantal Point Processes”. p. 8.
1139 [51] Calandriello, D., Dereziński, M., and Valko, M., 2020.
1140 “Sampling from a $k\$$ -DPP without looking at all
1141 items”.
1142 [52] Li, C., Jegelka, S., and Sra, S., 2016. “Effi-
1143 cient Sampling for k-Determinantal Point Processes”.
1144 *arXiv:1509.01618 [cs]*, May. arXiv: 1509.01618.
1145 [53] Mariet, Z. E., 2016. “Learning and enforcing diver-
1146 sity with Determinantal Point Processes”. Master’s the-
1147 sis, MASSACHUSETTS INSTITUTE OF TECHNOL-
1148 OGY.
1149 [54] Hansen, N., Finck, S., Ros, R., and Auger, A.
1150 “Real-Parameter Black-Box Optimization Benchmark-
1151 ing 2010: Noisy Functions Definitions”. p. 12.
1152 [55] Rönkkönen, J., Li, X., Kyrki, V., and Lampinen, J.,
1153 2011. “A framework for generating tunable test func-
1154 tions for multimodal optimization”. *Soft Comput.*, **15**,
1155 Sept., pp. 1689–1706.
1156 [56] Mo, H., Li, Z., and Zhu, C., 2017. “Epistasis-tunable
1157 test functions with known maximum constructed with
1158 sinusoidal bases”. In 2017 12th International Confer-
1159 ence on Intelligent Systems and Knowledge Engineer-
1160 ing (ISKE), pp. 1–6.
1161 [57] Mason, W., and Watts, D. J., 2012. “Collaborative
1162 learning in networks”. *Proceedings of the National*
1163 *Academy of Sciences*, **109**(3), Jan., pp. 764–769.
1164 [58] Balandat, M., Karrer, B., Jiang, D., Daulton, S.,
1165 Letham, B., Wilson, A. G., and Bakshy, E., 2020.
1166 “BoTorch: A Framework for Efficient Monte-Carlo
1167 Bayesian Optimization”. In *Advances in Neural In-*
1168 *formation Processing Systems*, Vol. 33, Curran Asso-
1169 ciates, Inc., pp. 21524–21538.

Supplemental Material for How Diverse Initial Samples Help and Hurt Bayesian Optimizers

Eesh Kamrah
 Dept. of Mechanical Engineering
 University of Maryland
 College Park, Maryland 20742
 Email: kamrah@umd.edu

Seyede Fatemeh Ghoreishi
 Dept. of Civil and Environmental Engineering
 & Khoury College of Computer Sciences
 Northeastern University
 Boston, Massachusetts 02115
 Email: f.ghoreishi@northeastern.edu

Zijian “Jason” Ding
 College of Information Studies
 University of Maryland
 College Park, Maryland 20742
 Email: ding@umd.edu

Joel Chan
 College of Information Studies
 University of Maryland
 College Park, Maryland 20742
 Email: joelchan@umd.edu

Mark Fuge*
 Dept. of Mechanical Engineering
 University of Maryland
 College Park, Maryland 20742
 Email: fuge@umd.edu

1 Fast sampling DPP Method

Our idea seeks to reduce the complexity of the sampling method and the construction time for DPP as well as investigate a Diverse sampling method that can generate both low-diversity and high-diversity samples. To do this we build on the work from [1] to rank and compare the diversity of the two sets. To define our diversity measure, let's assume $X \subset \mathbb{R}^{\mathcal{F}}$, where $|\mathcal{F}|$ is the number of features of X . Then we can define a set as $S_Y^k \subset X$ of size k . This means $S_Y^k \in \mathbb{R}^{\mathcal{F}} \times \mathbb{R}^k$, then using a similarity measure (RBF kernel) W on this set, we can define the DPP score for a set S_Y^k as follows:

$$f(W_{Y_i}) = \frac{\log(\det(K(W_{Y_i}))) - \left(\sum_i^{|S^k|} \log(\det(K(W_{Y_i})))\right)}{\sqrt{\sum_i^{|S^k|} (\log(\det(K(W_{Y_i}))) - \left(\sum_i^{|S^k|} \log(\det(K(W_{Y_i})))\right))^2}}, \quad (1)$$

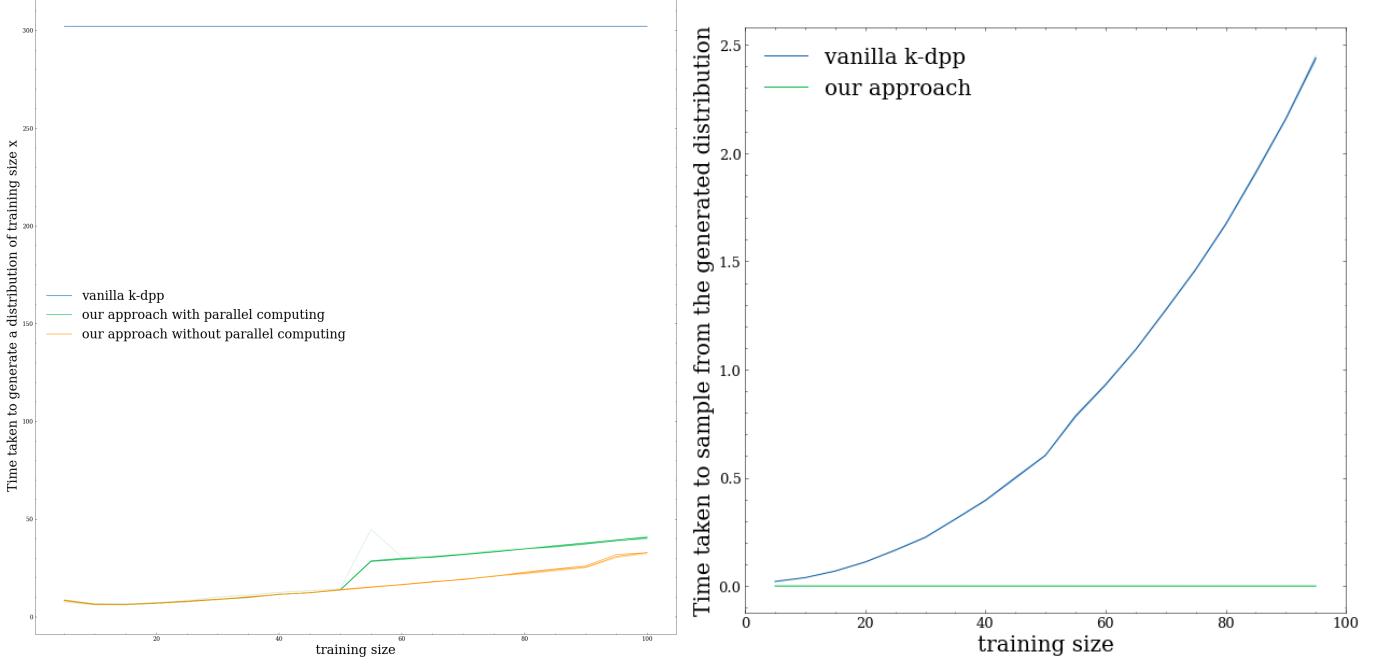
, where $|S^k| = \left(\prod_k^{\dim(X)} \dim(\mathcal{F}_i)\right)$

As we can see in Eq. 1, the number of sets or cardinality of the distribution $|S^k|$ needed to be sampled grows combinatorially with the changes in the size of the sample space for X s, and the size of the set k . For example for a $X \in \mathbb{Z}^2$ where each feature $\mathbb{Z}_i \in [0, 100]$. Then, the number of possible sets of size k is given by $\binom{100 \times 100}{k}$, thus normalizing the distribution

*Address all correspondence to this author.

using a mean and standard distribution is an expensive task. We can re-write Eq. 1 in words as follows:

$$\text{DPP Score}(S_{Y_i}^k) = \frac{\text{DPPScore}(K(W_{Y_i}) - \text{mean score})}{\text{s.d. of DPP scores for the k-HDPP}}$$



(a) Compares the construction time for regular k-DPP distribution with different size of samples (b) Compares the sampling time time for regular k-DPP vs our approach as the size of k is increased from 5 to 100.

Fig. 1: Compares the relative performance/speed-up of our method over the traditional k-dpp methods. The figure contains two plots showing the tradeoff between the two methods. In the traditional method constructing the DPP distribution is costly but generating a distribution is only dependent on the number of points in X , and independent of training size (k). While, sampling from a k-DPP has a polynomial complexity on the training size (k), while both these facts are inverted for our approach.

1.1 Sampling method

The sampling method for our DPP approach is straightforward. Based on the constructed DPP, our approach samples randomly from either above a certain percentile or below a certain percentile. As shown in Fig. 1(b), our approach's sampling time is faster than that of a regular k-DPP, where the cost of sampling increases as a function of training size (k). Conversely, generating the distribution for our approach is dependent on ' k ', while the same distribution can be used for different $k(s)$ with a traditional k-DPP approach. Our approach's biggest benefit is the ability to draw samples of different diversity. Using our approach this is as simple as sampling from different percentiles of the distribution.

Algorithm 1 Constructing the DPP sub distribution

```

1: for  $i \in \text{range}(M)$  do
2:   Sample  $S_{Y_i}^k \sim \text{IID}(S^k)$ 
3:   Calculate  $g(S_{Y_i}^k) = g_{y_i}$  and append this to  $\text{Scores}_{S^k}$ 
4: end for
5: Return DPP Score=  $\frac{\text{Score}_{S^k} - \text{mean}(\text{Score}_{S^k})}{\text{s.d.}(\text{score}_{S^k})}$ .
```

The uniqueness of our approach lies in an easy trick to upper bound the error on the generated DPP scores, and thus our approach can provide certain guarantees on whether the sampled S_Y^k is in fact from the percentile that the method claims it is from.

21
22
23

1.2 Upper bound on errors

24
25
26
27
28
29
30
31
32
33

The guarantee is based on method's independence of choosing the S_Y^k from a combinatorially large set. For IID sampling each set, $S_{Y_i}^k$, needs to be sampled independent of the other and the sampling should be done with replacement. But since the distribution of S^k needs to mirror that of a k-DPP, all the sets in the space are sampled over X without replacement and are unordered because DPP scores for two S^k with the same points (Y) will always correspond to the same score. Thus, sampling IID on S^k means identically sampling unordered sets of X without replacement.

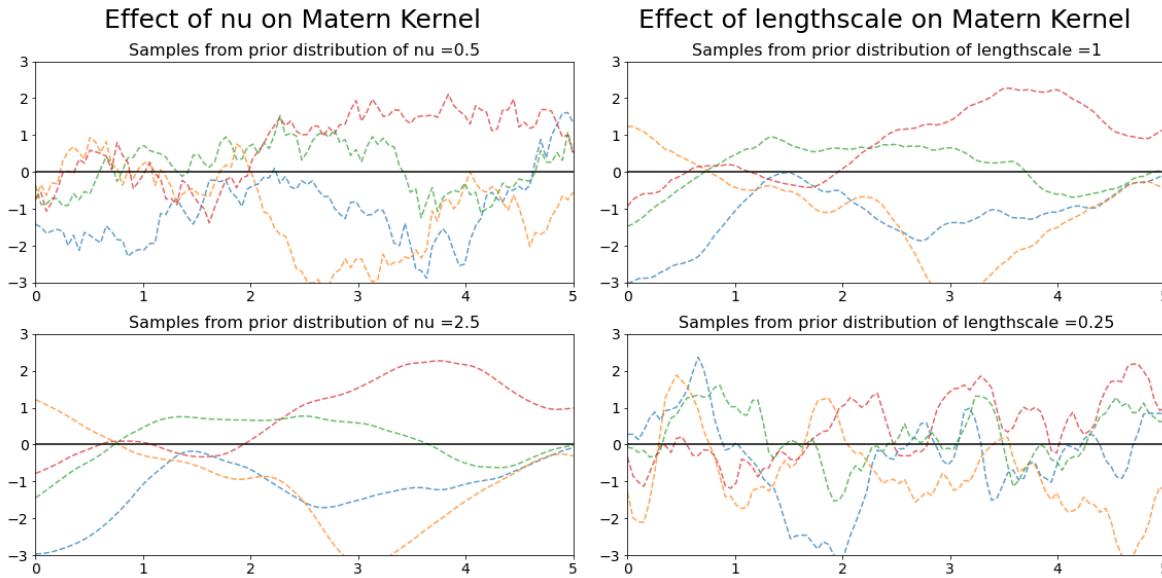
If we sample the sets $S_{Y_i}^k$ such that they are Independent Identical Distributed (I.I.D.) sets, then we can upper bound the Expected Value of population mean through the use of Hoeffding's inequality: Eq. 2 as discussed in [2]. The inequality states that if a distribution is sampled using i.i.d random variables, we can then put a bound on the Error for estimating Expected Values of the population mean ($|\mathbb{M}_n = \frac{1}{n} \sum_i^n [M_i]|$), where \mathbb{M}_n is the mean of the sample of size n .

$$\mathbb{P}\{|\mathbb{M}_n - \mathbb{E}(S^k)| \leq \epsilon\} \geq 1 - 2 \cdot \exp\left\{\frac{-2 \cdot n^2 \epsilon^2}{\sum_{i=1}^n (b_i - a_i)^2}\right\} \quad (2)$$

Using Eq. 2 we can guarantee the probability of this error to be some $1 - \delta$, where the δ term is given by the exponential. This allows us to limit the cardinality of the $|S^k|$ to M given we choose an ϵ . Based on this guarantee a schematic explanation for the construction of our sub-distribution using the approach detailed till now is then documented well in Algorithm 1. This approach is extensively discussed and proved in an upcoming paper.

34
35
36
37
38
39
40
41

A clear shortcoming of this approach is the need to generate the distribution whenever the k is changed. But, because of the faster construction speed for our approach, this cost outweighs using a k-DPP. Another, shortcoming our approach faces is the limited number of samples that can be drawn from the distribution, which requires us to construct a new distribution if more than M samples need to be drawn.



(a) Effect of changing the v hyper-parameter on the Gaussian Process. (b) Effect of changing the lengthscale hyper-parameter of the Matern Kernel. The figure has 2 similar GPs with shorter (bottom) and longer (top) lengthscales.

Fig. 2: Effect of v and lengthscale on Gaussian Process.

Optimality gap comparing performance less diverse and highly diverse examples with different nu

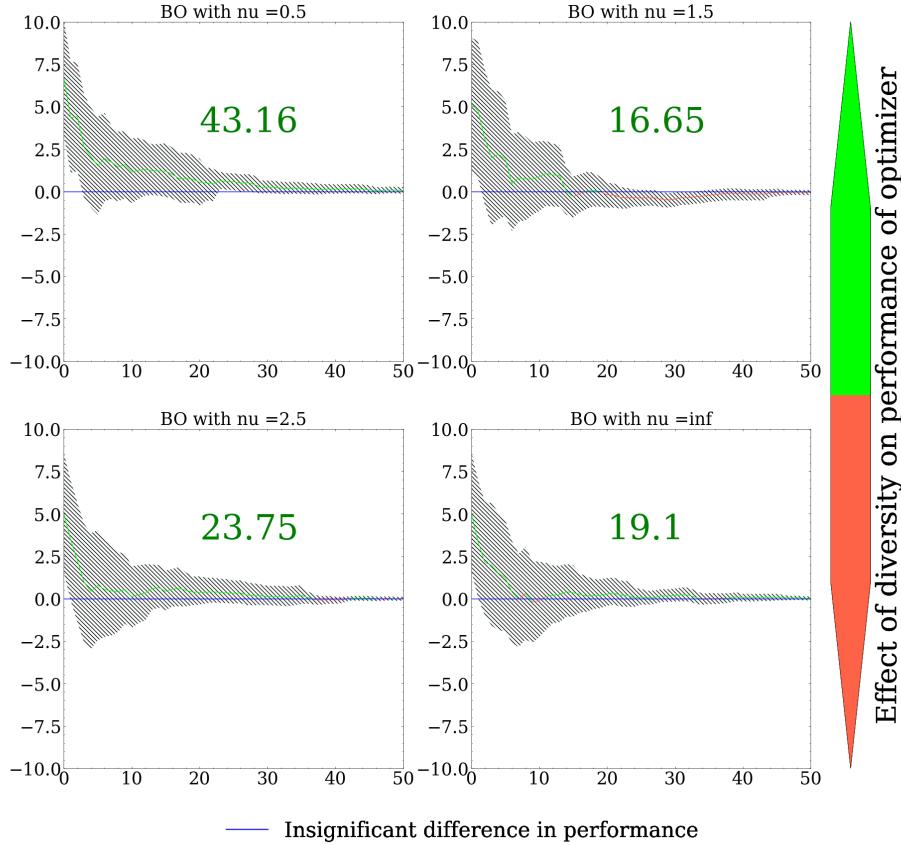


Fig. 3: Grid plot showing how changing ν affects the relative performance of diverse and non-diverse initialization on Bayesian optimizers. To understand the plot better quantitatively, each subplot also has the Net Cumulative Optimality Gap (NCOG) for each value of ν . No trends are seen when relative performance of the diverse and non-diverse samples.

42 2 Effects of additional hyper-parameters on performance of the optimizer

43 As described in the Methods section in the main paper Bayesian Optimizer that uses a Matern kernel has several hyper-
44 parameters. This section will serve to further explore the effects that each parameter has on the Gaussian Process (GP). The
45 main paper provides a brief introduction to each hyper-parameter apart from ν . So, let's begin this section with a brief look
46 into the hyper-parameter ν .

47 **v of the Matérn Kernel** The kernel used with the Gaussian Process is the Matérn kernel which essentially is a scaled RBF
48 kernel controlled by the parameter ν [3] as shown in Eq. 3.

$$k_{\text{Matérn}}(\mathbf{x}_1, \mathbf{x}_2) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{\|\mathbf{x}_1 - \mathbf{x}_2\|}{\theta} \right)^\nu H_\nu \left(\sqrt{2\nu} \frac{\|\mathbf{x}_1 - \mathbf{x}_2\|}{\theta} \right), \quad (3)$$

49 The hyper-parameter (ν) dictates how smooth or differentiable the function is. Changes in this parameter then influence
50 the expectation of the Gaussian Process in terms of its acquisition function. A more differentiable function or a higher ν
51 means that the acquisition function samples assuming a smoother Gaussian Process function. It can be seen in Fig. 2(a) how
52 changes in ν changes the prior of the GP.

53 While, ν controls the prior μ and ‘lengthscale’ control how the data is scaled and thus indirectly control the expectations
54 of the GP. The effects of lengthscale on GP can be seen in Fig. 2(c). The effects are similar to that of the parameter ν . Thus,
55 we can conclude that ‘lengthscale’ can be used to control the expectations of the GP. Since, ν is not a parameter that is
56 learned during the optimization process it does not have significant effect on “*Model Building advantage*”. This can be seen

in Fig. 3, even as v is changed there is no significant change in the performance of the optimizer, and thus we can conclude that v is an insignificant factor in studying “*Model Building advantage*”.

To provide some empirical evidence to the importance of ‘lengthscale’ as a hyper-parameter. Let us look at results from additional plots that were generated while working on experiment 2.

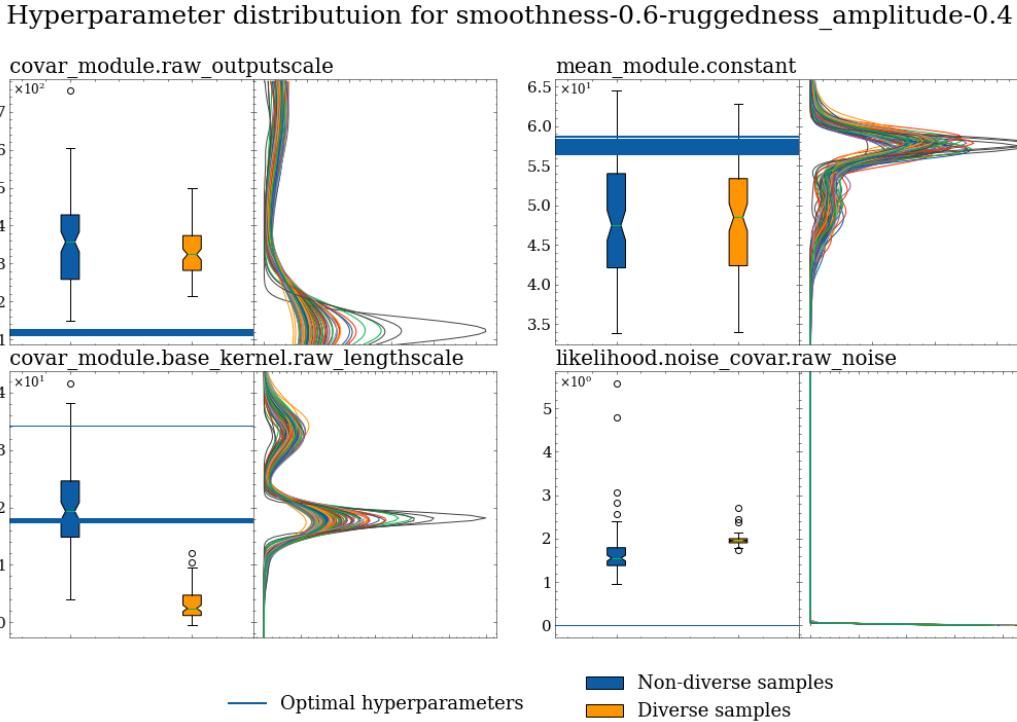


Fig. 4: Box plots showing the distribution of different hyper-parameters of the Gaussian Process as learned by Bayesian optimizer when fitted with just the initial examples as training data. The shown hyper-parameters are specific to Wildcatwells configuration with smoothness = 0.2 and ruggedness amplitude = 0.2. The data is collected over 100 seeds. The horizontal lines across the boxplot indicate the optimal hyper-parameters learned over 100 different seeds.

3 Further plots for Experiment 2

While studying “*Model Building advantage*” for Gaussian Processes, we looked at not only at ‘lengthscale’ but all hyper-parameters as it can be seen in Fig. 4. The box-plot for each hyper-parameter is constructed in the same way as the steps detailed in Methods section of Experiment 2 in the main paper. To the right of each box-plot in Fig. 4 is also 100 kernel density functions that have been used to estimate the ‘optimal hyper-parameter’ for a particular instance of that family (smoothness = 0.6, ruggedness amplitude = 0.4) of wildcat wells function.

Now, as it can be seen in Fig. 4 the optimal noise hyper-parameter is close to 0 for all the instances in the family. While, the one’s estimated using a sample size (k) of 10, in the box-plot, are not. The performance for both diverse and non-diverse is relatively similar for this hyperparameter. This can be seen as the case for both the ‘Mean function’ (μ) and the ‘Outputscale’ as well. While, ‘lengthscale’ is the only hyper-parameter that has varying performance across diverse and non-diverse samples.

An important factor while quantifying the “*Model Building advantage*” is learning the ‘optimal hyper-parameter’ for an instance of wildcat wells function, which is described in the next section.

4 Finding optimal hyper-parameters for a given objective function

To compute the ‘optimal hyper-parameter’ we first use a Binary search method to discern a robust range (of 200 points) over which all families of wildcat wells functions has a noise parameter value of $< 10^{-5}$. This essentially means that Bayesian optimizer has found an optimal set of hyper-parameters for the Gaussian Process that accurately imitates the given black-box function.

This robust range for all the families of wildcat wells function used in the experiment was determined as 1000-1200 points.

Finding optimal hyperparameters for smoothness =0.6,
and ruggedness amplitude = 0.4

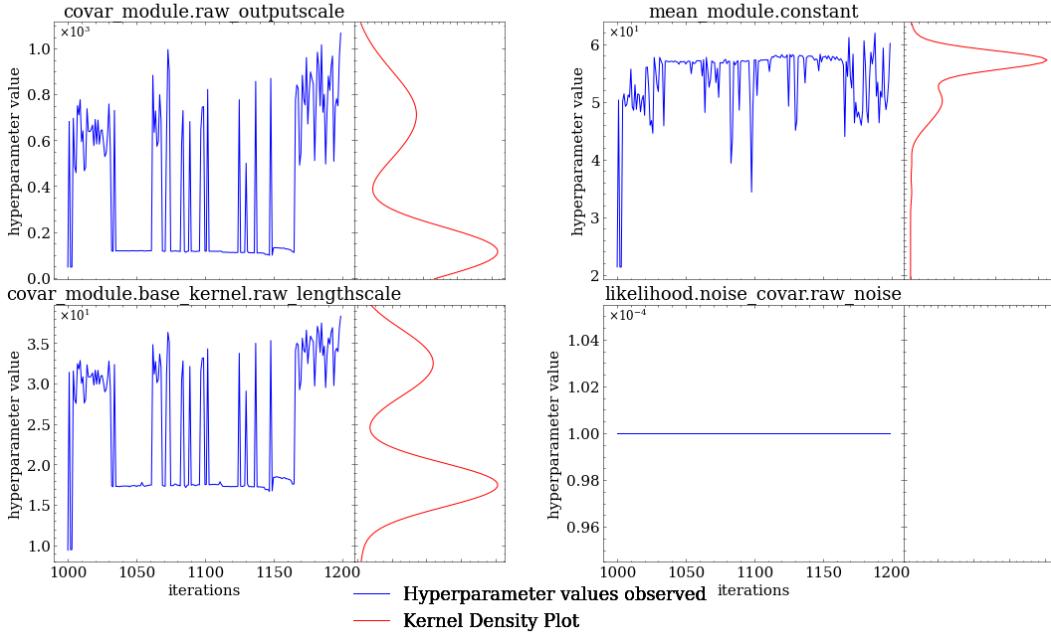


Fig. 5: Figure depicting the first step in determining optimal hyperparameters for wildcat wells function with smoothness 0.6 and ruggedness amplitude 0.4 and seed 88. Each hyperparameter in the grid plot has subsequent two adjacent plots. The observed hyperparameter values over when BOTorch is used to maximize the Marginal Log Likelihood given 1000 to 1200 random points (left), the kernel density function derived from this data (right).

Finding optimal hyperparameters for smoothness =0.6,
and ruggedness amplitude = 0.4

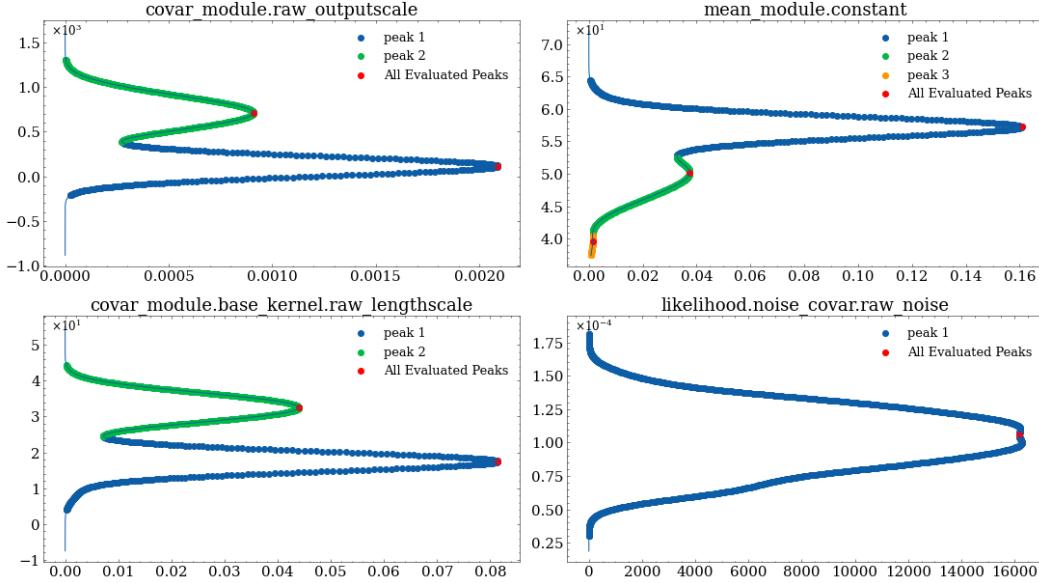


Fig. 6: Figure depicting the second step in determining optimal hyperparameters. Figure shows the peaks evaluated as potential optimal hyperparameter, and the shaded points that are used to calculate the area under the corresponding peak.

Once, this range is determined the data is collected over the 200 points by maximizing the Marginal Log Likelihood for the a Single Task GP model using BOTorch's '*fit-gpytorch-model*' [4] method. The resulting data is the hyperparameters that BoTorch learns using the given data points. This data is then used to build a kernel density function as indicated by the red line-plot (right side of every subplot) next to the data observed over the 200 points in Fig. 5. Then using '*scipy.signal.find-peaks*' [5], peaks are found in the density function labeled by red dots in Fig. 6. Sometimes more than one peak is observed this is because there are multiple modes of hyperparameters that provide a stable solution for the problem. For the purpose of this paper we only focus on extracting the most observed mode as our optimal hyperparameter.

To find the most observed mode, we use the width of the peaks in the kernel density function. The width of the peak is estimated by calculating a numerical gradient on the density function as seen in Fig. 6. The width of the whole peak can be seen highlighted/labeled in each subplot for each peak using a different color. The peak with the largest area is selected as the optimal hyper-parameter for the particular instance of wildcat wells function.

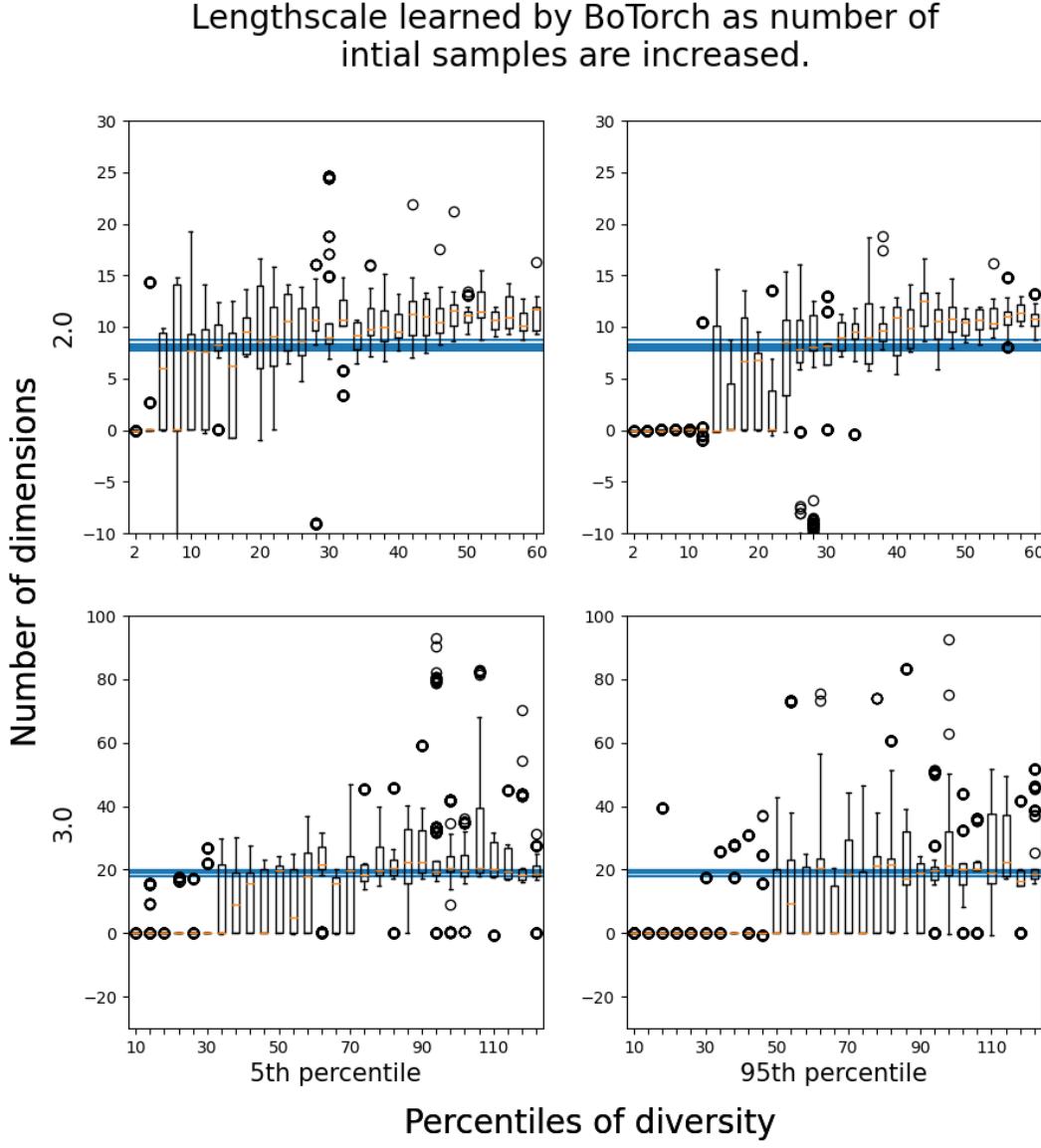


Fig. 7: Box plot showing the lengthscale parameter as learned by wildcatwells with ‘high’ level of ruggedness in 2D and 3D as the training samples are increased. The plot also confirms the existence of a “modeling advantage” for training samples of a particular size. The results are further discussed in S5

5 Effect of increasing training size on hyperparameter learning

While trying to replicate the results for the 3D case we observed that the ‘modeling advantage’ we observed for less diverse examples was also influenced by the number of examples in the initial set. This was because if we initialized the 3D case with the same number of initial samples as the 2D case, the optimizer in the 3D case would not be able to accurately estimate the appropriate hyperparameters regardless of the sampling method and would just set the hyperparameters to zero. This is perhaps obvious if we think about how space coverage degrades for a fixed number of samples as we increase the dimensionality of a design space. What we observed, and show below in Fig. 7, is that there are essentially three “initial sample size regimes” that determine whether or not non-diverse sampling can use its ‘modeling advantage’, although this

100 advantage exists in both the 2D and 3D case:

101 1. Sample-deficient: This is when we provide each optimizer with too few initial examples, such that irrespective of that
 102 set's diversity the BO will not be able to meaningfully learn hyperparameters and will instead set them to zero. For
 103 example, in Fig. 7 bottom, with fewer than 26 initial samples, both the 5th and 95th percentile samples cannot provide
 104 good estimates of the kernel hyper-parameters

105 2. The ‘modeling advantage’ region: With this number of samples, the 5th percentile is able to reasonably estimate the
 106 hyperparameter values but the 95th struggles to do so. For example, in Fig. 7 top (2D), we can observe this at 10
 107 samples, which, by coincidence, was the original setting for our 2D example in our initial manuscript. We see that in
 108 Fig. 7 bottom (3D) this transitions somewhere between 35 to 75 initial samples. In this region, 5th percentile sampling
 109 can exercise its modeling advantage while the 95th percentile still does not have enough initial samples to consistently
 110 and accurately estimate the kernel hyper-parameters.

111 3. Sample-saturated: In this region, the sheer number of initial points we provide BO is sufficiently high such that it can
 112 estimate the kernel hyper-parameters well, regardless of whether the initial points are diverse or not. For example, in
 113 Fig. 7 top, this occurs after around 40 initial samples. In Fig. 7 bottom this occurs after around 100 initial samples.
 114 In this ‘sample-saturated’ case, the modeling advantage of non-diverse sampling disappears, often because this is a
 115 sufficient number of points that the optima become easy to find at that point (see Fig. 8 where the BO often converges
 116 at those same number of samples).

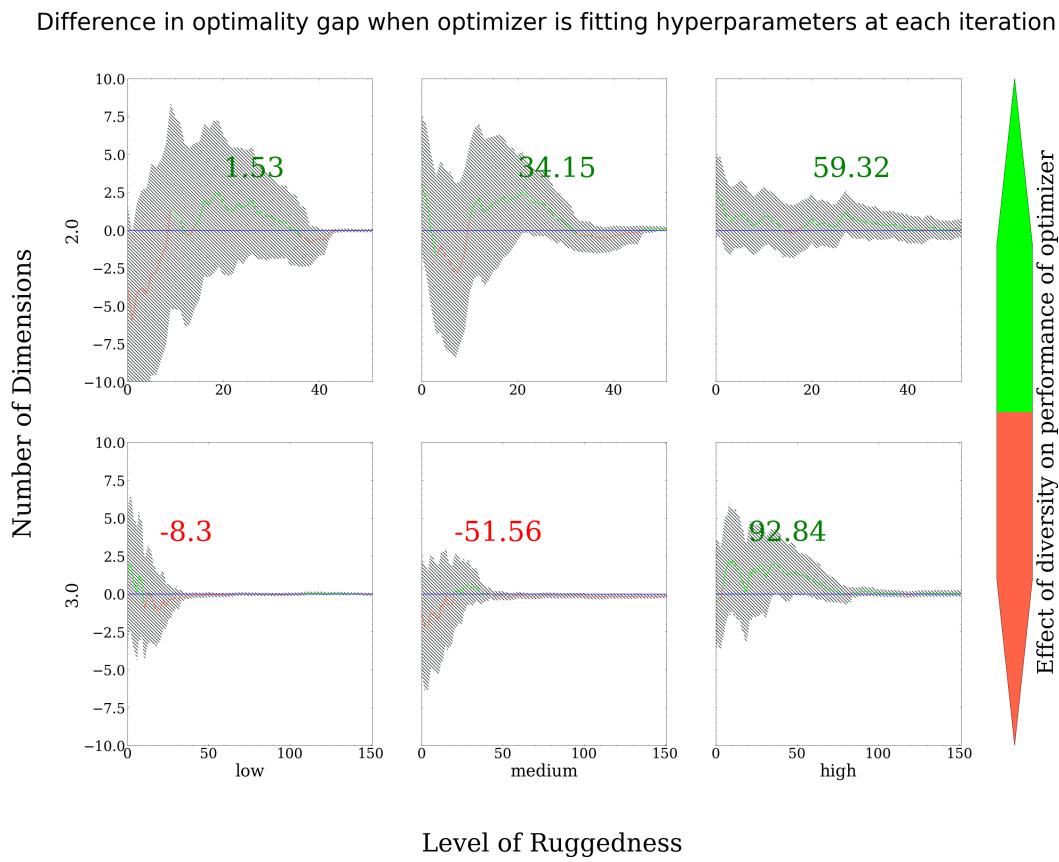


Fig. 8: Optimality gap grid plot showing the difference in current Optimality Gap between optimizers initialized with 5th vs 95th percentile diverse sample (y-axis) as a function of optimization iteration (x-axis). The different factors in the factor grid plot are the dimensions across the rows and the ruggedness level across the columns. Each plot also has text indicating the Net Cumulative Optimality Gap (NCOG), a positive value corresponds to a better performance by high diversity samples compared to the low diversity samples. The plot shows that BO benefits from diversity in some cases but not others. There is no obvious trends in how the NCOG values change in the grid. The results are further discussed in S6

Distribution of lengthscale learned by BO on initial samples

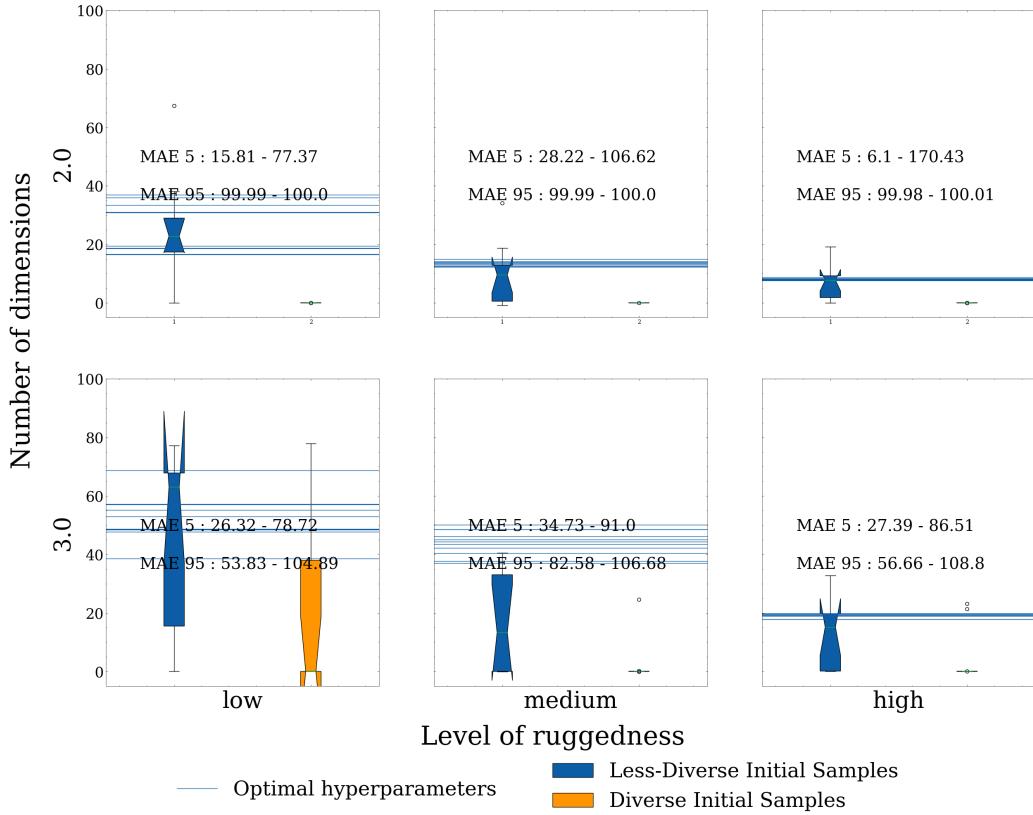


Fig. 9: Box plot showing distribution of ‘Lengthscale’ hyper-parameter learned by BO when initiated with diverse (orange) and less-diverse samples (blue) for 3 different families of wildcat wells functions of the same parameters but 100 different seeds in each dimension. The optimal hyper-parameter for each of the 100 wildcat wells instances from each family is also plotted as horizontal (blue) lines—in many but not all cases these overlap. Each cell in the plot also has the 95th percentile confidence bound on Mean Absolute Error (MAE) for both diverse and non-diverse samples. The results show that MAE confidence bounds for non-diverse samples are smaller compared to diverse samples for all the families of wildcat wells function. Thus, indicating a presence of Model Building advantage for non-diverse initial samples. The results of this figure are further discussed in S6

6 Effect of increasing problem dimensions on the results

To confirm what we observed was not limited to 2 dimensions we decided to run Experiment 1, 2, and 3 with wildcatwells in 3 dimensions. To make the results comparable in a single figure for both 2D and 3D case it was necessary to limit the variability of ruggedness from a 4x4 grid to 3 levels of ‘ruggedness’. These ‘levels of ruggedness’ are ‘low’, ‘medium’ and ‘high’, which correspond to (smoothness : 0.8, ruggedness amplitude : 0.2), (smoothness : 0.4, ruggedness amplitude : 0.4) and (smoothness : 0.2, ruggedness amplitude : 0.8) respectively.

Further, to see the ‘model building’ advantage for the 3D case we changed the experiment set-up slightly by initializing all the plots generated in 3D with 40 examples instead of the 10 used to initialize BO in 2D. The intuition behind this is further explained in S5. Figure 8 shows the results of Experiment A1, which is a modification of Experiment 1 from the main paper, where we compare 2D and 3D behavior. The results in 3D mirror our observations in 2D.

As with Experiment 2 in the main paper, Fig. 9 shows Experiment A2 that compares with a third dimension. Here, we can see that much like in 2 dimensions, in 3 dimensions the 5th percentile performs better than 95th in estimating the lengthscales, hence confirming the ‘modeling advantage’.

Lastly, we can use Fig. 10 to see that when the modeling advantage is taken away the 95th percentile performs better compared to the 5th percentile. These results mirror our original results in 2D.

7 Do these results hold on alternative test functions?

A natural question is whether our results are limited to just our choice of the wildcat-wells class of function generators, or do they transfer across different functions? To test this, we repeated the experiments described in S6 for three different but commonly used N-Dimensional optimization test functions: the Sphere, Rosenbrock and Rastrigin functions as seen in

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

Difference in optimality gap when hyperparameters are fixed for the optimizer

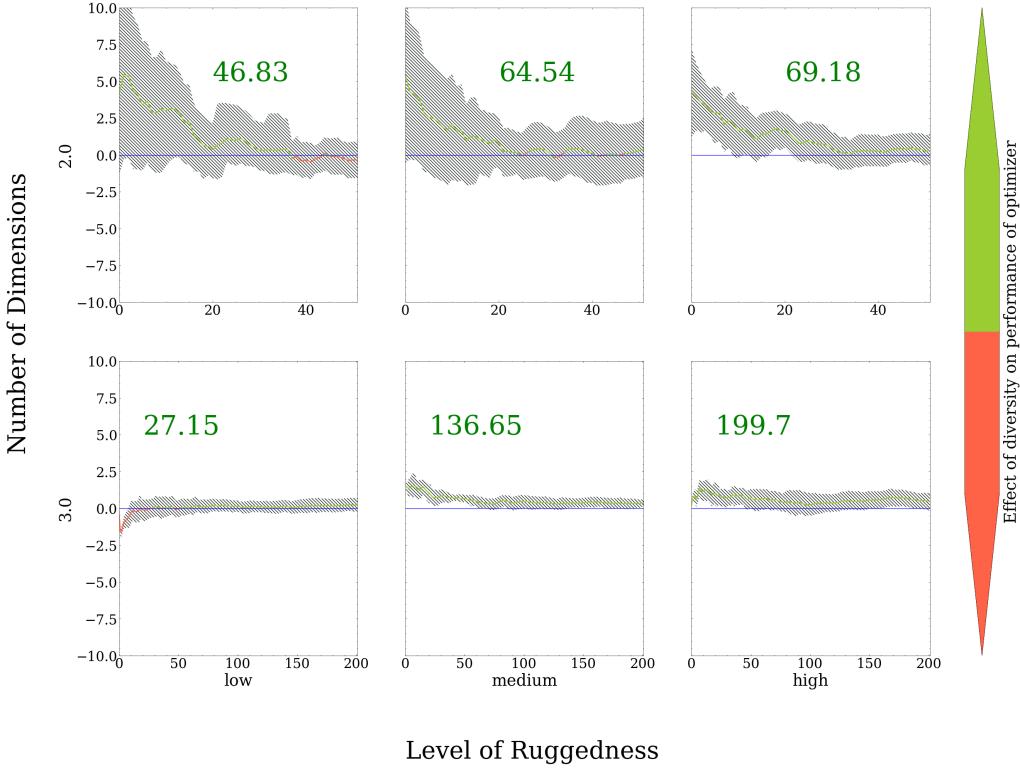


Fig. 10: Optimality gap plot showing effects of diversity when the optimizer is not allowed to fit the hyper-parameters for the Gaussian Process and the hyper-parameters are instead fixed to the values found in Experiment A2. The results from this plot show positive NCOG values for all families of wildcat wells function even as dimensions increase, showing that once the ‘Model Building advantage’ is taken away the diverse samples outperform non-diverse samples. Further discussion on this plot can be read in S6

136 Eq. 4. The only major difference with the previous experiments is that instead of plotting the optimality gap directly, we
 137 instead plot the Percentage difference in the optimality gap in Fig. 13. This was done to bring the plot to a comparable scale
 138 since the absolute difference in raw optimality gap can be, at certain points, on the order of millions, and at some points less
 139 than 1.

$$\begin{aligned}
 \text{Sphere}(X) &= \sum_{i=1}^{\text{dims}} x_i^2 \\
 \text{Rastrigin}(X) &= 10 \times \text{dims} + \sum_{i=1}^{\text{dims}} [x_i^2 - 10 \cos(2\pi x_i)] \\
 \text{Rosenbrock}(X) &= \sum_{i=1}^{\text{dims}-1} [100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2]
 \end{aligned} \tag{4}$$

140 As seen in Fig. 11, when the hyperparameters are allowed to be optimized, in general low-diversity samples led to faster
 141 convergence than high-diversity initial samples. This is not always the case, as the 4D and 5D Rastrigin functions cases
 142 shows—in such cases non-diverse samples have comparatively marginal improvement in the longer term. For reference, this
 143 plot is designed to be a replication of Experiment 1 in the main paper, but just for different test functions.

144 Fig. 12 shows that 5th-percentile diversity (low diversity) initial samples learn the kernel hyperparameter more accu-
 145 rately using fewer samples compared to 95th-percentile diversity initial samples in two dimensions and that this holds true
 146 irrespective of the choice of test function. However, as the function dimension increases this effect diminishes since the num-
 147 ber of initial samples needed to activate this “modeling advantage” regime increases (See earlier Fig. 7). With this additional
 148 set of data, samples from the 95th-percentile of diversity learn the hyperparameters as well as 5th-percentile samples.
 149 For reference, like with Fig. 9 above, this plot was designed to be a replication of Experiment 2 in the main paper, but just

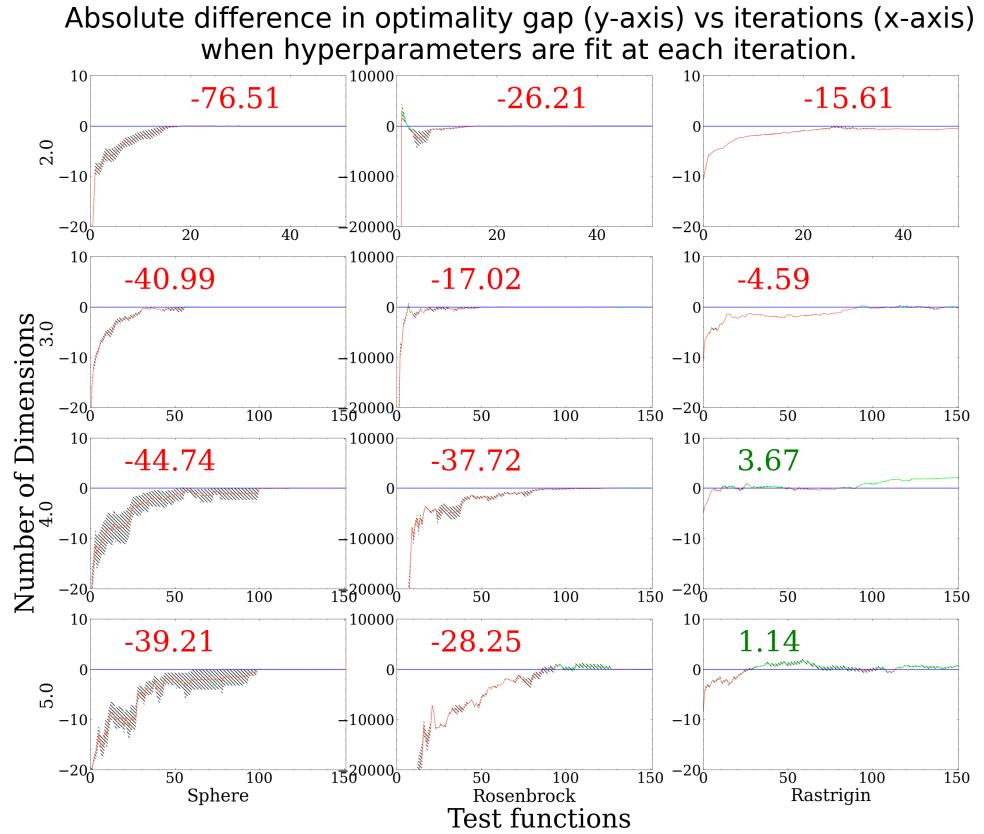


Fig. 11: Optimality gap grid plot showing the absolute difference in current Optimality Gap between optimizers initialized with 5th vs 95th percentile diverse sample (y-axis) as a function of optimization iteration (x-axis). The different factors in the factor grid plot are the dimensions across the rows and the different test functions across the columns. Each plot also has text indicating the Percentage Cumulative Optimality Gap (PCOG), a positive value corresponds to a better performance by high diversity samples compared to the low diversity samples. The plot shows that BO benefits from diversity in some cases but not others. There are no obvious trends in how the PCOG values change in the grid. The results are further discussed in S7

for different test functions and across increased dimensions. Unlike in Fig. 9 here we see that our proposed causal explanation for the “modeling advantage” is less clear since for certain functions the high-diversity samples have better posterior convergence than the 5th-percentile samples, and vice versa depending on the specific function and dimension.

In Fig. 13 where the kernel hyper-parameters are fixed to what should be optimal values, (compared to Fig. 11 where the kernel hyper-parameters are learned) we can see several effects. First, we see that the low diversity initial samples had, on average, better initial starting points on these test functions as seen by the PCOG values on the x-axis at “0”. This could largely be luck or a peculiarity with the three test functions, since common optimization test functions often have their optimal points toward the center of the domain, which non-diverse starting points are likely to sample with higher frequency compared to diverse starting points. (Note in our wildcat wells function this was not the case and the optimal point was likely to occur at any point in the domain depending on the seed of the random function generator.) Second, we see compared to Fig. 11 that high diversity initial samples appear to be able to benefit from the ‘Space Exploration’ advantage we hypothesized in the main paper and do catch-up almost instantaneously compared to the lower-diversity samples. For reference, this plot is designed to be a replication of Experiment 3 in the main paper, but just for different test functions. We still see a similar effect, in the sense that fixing the BO hyper-parameters aids the diverse initial sample condition, on average, which mirrors qualitatively the phenomenon we observed on the wildcat wells function (compare this supplemental material document’s Fig. 11 with Fig. 13).

In Figs. 14, 15, and 16 we can see how increasing the number of initial training samples induces convergence on the learned kernel hyper-parameters for the Rastrigin, Rosenbrock, and Sphere functions, respectively. We used these plots to choose the number of training samples to be used in Figs. 11, 12, and 13 by selecting the number of samples within the “model building advantage” regime (as opposed to the sample deficient or sample saturated regime). The specific number of training samples used for each function at each dimension can be seen in Table 1. We can see that the performance of high diversity samples is significantly better when compared to the performance in Fig. 11. The high diversity samples still struggle to improve performance for ‘Rosenbrock’ function, our hypothesis is that because the number of samples needed to

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

173 learn the hyperparameters is exceedingly large for the Rosenbrock function (see Fig. 15) our proposed “modeling-advantage”
174 is not that helpful to the optimizer, since it has already found a reasonable optimum by the time it has collected sufficient
175 samples to converge to reasonable kernel estimates.

Dimension	Sphere	Rosenbrock	Rastrigin
2	8	4	5
3	12	5	7
4	38	8	30
5	75	20	60

Table 1: Table showing the different training size/number of examples used to initialize BO for different test functions in Figs. 11,12,13.

Distribution of lengthscale learned by BO on initial samples

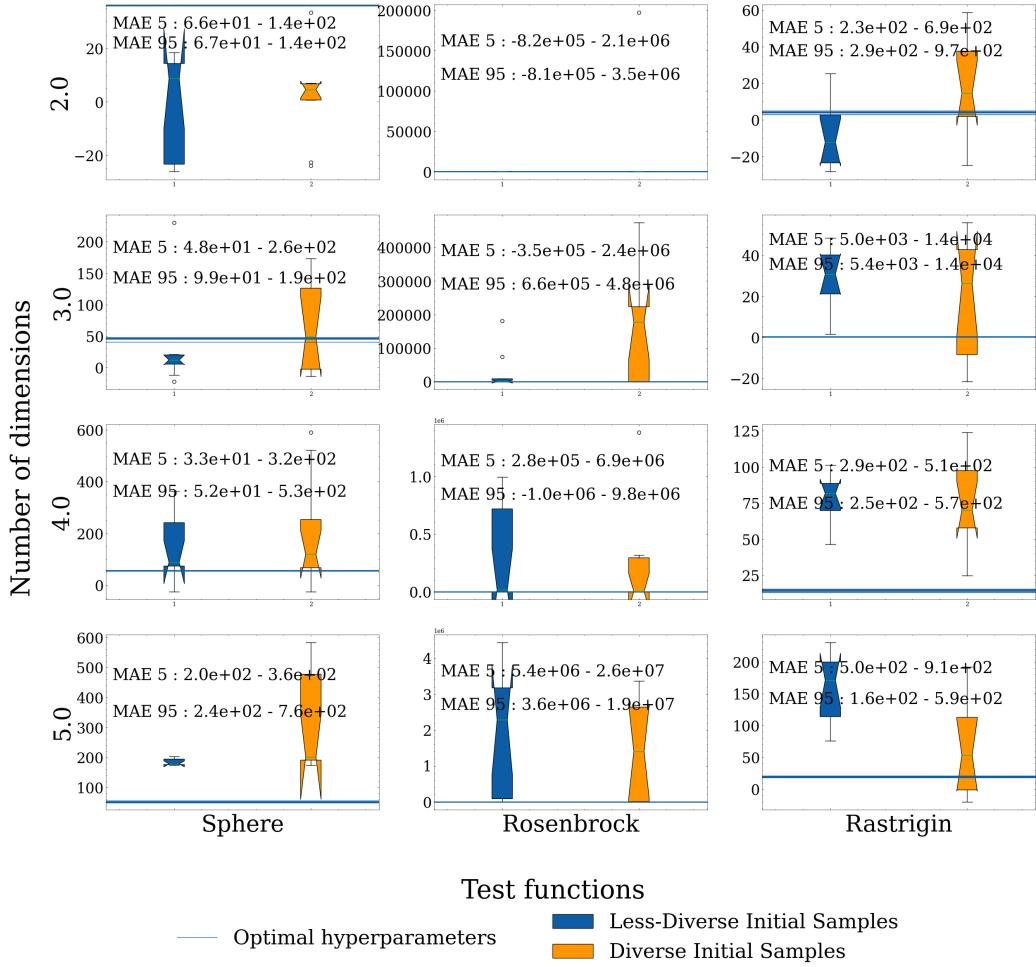


Fig. 12: Box plot showing distribution of ‘Lengthscale’ hyper-parameter learned by BO when initiated with diverse (orange) and less-diverse samples (blue) for Sphere, Rosenbrock and Rastrigin test functions over 200 different seeds in each dimension. For reference to how many training samples were used please check Table 1. The optimal hyper-parameter for each test function over 10 different runs is also plotted as horizontal (blue) lines—in many but not all cases these overlap. Each cell in the plot also has the 95th percentile confidence bound on Mean Absolute Error (MAE) for both diverse and non-diverse samples. The results show that MAE confidence bounds for non-diverse samples are smaller compared to diverse samples for most test functions but at least does as well as the 95th. Thus, indicating a presence of Model Building advantage for non-diverse initial samples. The results of this figure are further discussed in S7

References

[1] Ahmed, F., and Fuge, M., 2017. “Ranking ideas for diversity and quality”. *arXiv:1709.02063 [cs]*, Sept. arXiv: 1709.02063. 176
 177
 178

[2] Serfling, R. J., 1974. “Probability Inequalities for the Sum in Sampling without Replacement”. *The Annals of Statistics*, 2(1), Jan., pp. 39–48. Publisher: Institute of Mathematical Statistics. 179
 180

[3] Garnett, R. Bayesian Optimization Book. 181

[4] Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B., Wilson, A. G., and Bakshy, E., 2020. “BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization”. In Advances in Neural Information Processing Systems, Vol. 33, Curran Associates, Inc., pp. 21524–21538. 182
 183
 184

[5] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, , Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors, Vijaykumar, A., Bardelli, A. P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D. A., Hagen, D. R., Pasechnik, 185
 186
 187
 188
 189
 190

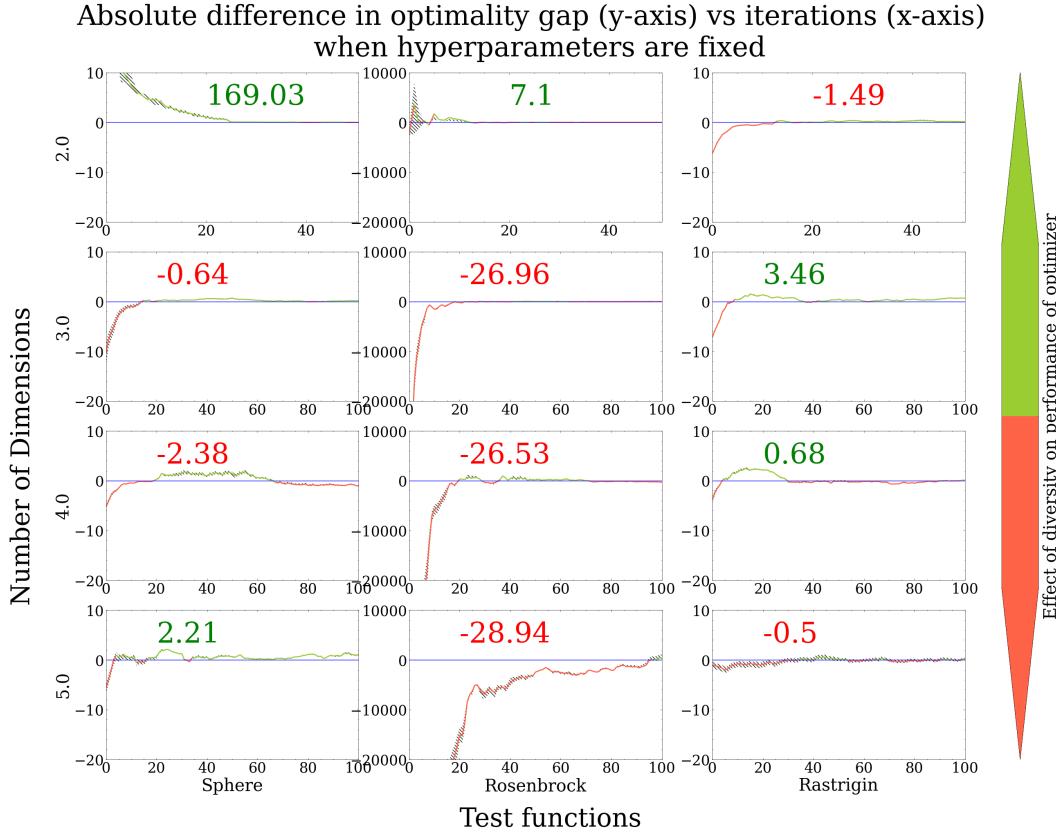


Fig. 13: Optimality gap plot showing effects of diversity when the optimizer is not allowed to fit the hyper-parameters for the Gaussian Process and the hyper-parameters are instead fixed to the values found in Experiment A2. The results from this plot show significantly improved PCOG values compared to Fig. 11. ‘Rosenbrock’ is the only test function that does not benefit from the diverse samples, its performance remains the same as it was when hyperparameters were optimized, Further discussion on this plot can be read in S7

191 D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold, G.-L., Allen,
 192 G. E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber, J. T., Slavić, J., Nothman, J., Buchner, J.,
 193 Kulick, J., Schönberger, J. L., de Miranda Cardoso, J. V., Reimer, J., Harrington, J., Rodríguez, J. L. C., Nunez-Iglesias,
 194 J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N. J.,
 195 Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer, R., Lewis, S., Tygier,
 196 S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones,
 197 T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y. O., and Vázquez-Baeza, Y., 2020. “SciPy
 198 1.0: fundamental algorithms for scientific computing in Python”. *Nature Methods*, **17**(3), Mar., pp. 261–272.

Lengthscale learned for Rastrigin by BoTorch as number of initial samples are increased.

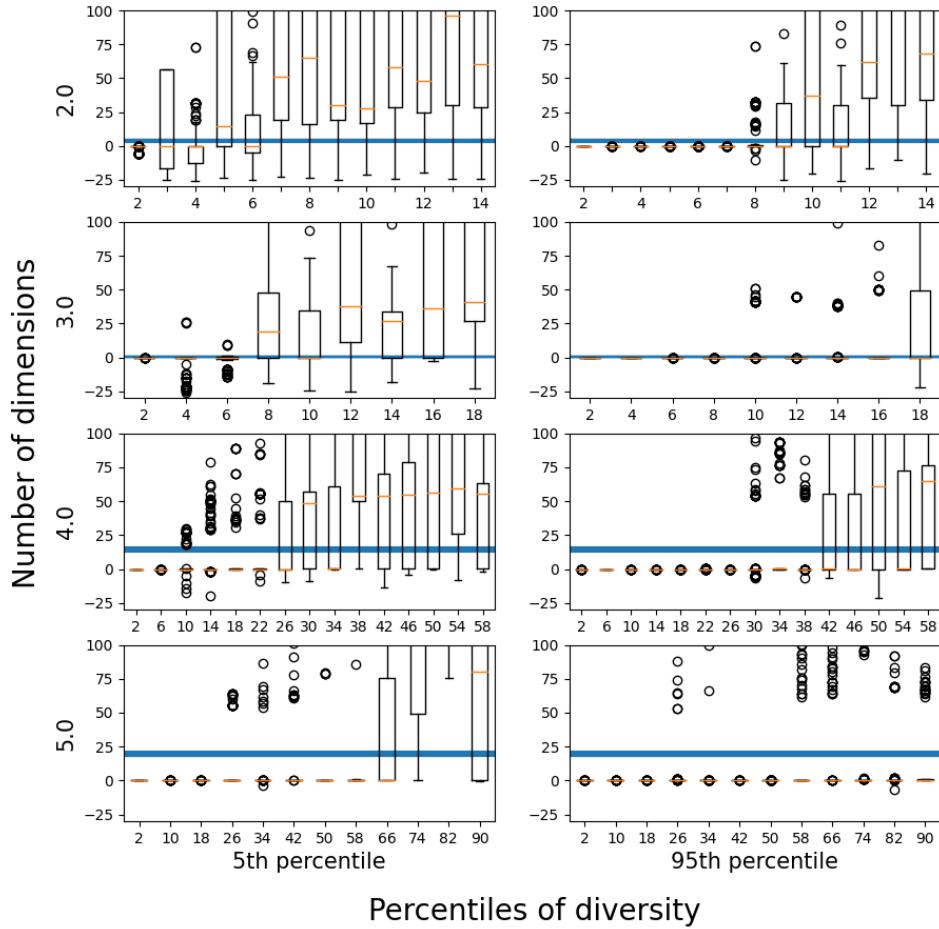


Fig. 14: Box plot showing the lengthscale parameter as learned by Rastrigin test function in 2D and 3D as the training samples are increased. The plot also confirms the existence of a ‘modeling advantage’ for training samples of a particular size. The results are further discussed in S7

Lengthscale learned for Rosenbrock by BoTorch as number of initial samples are increased.

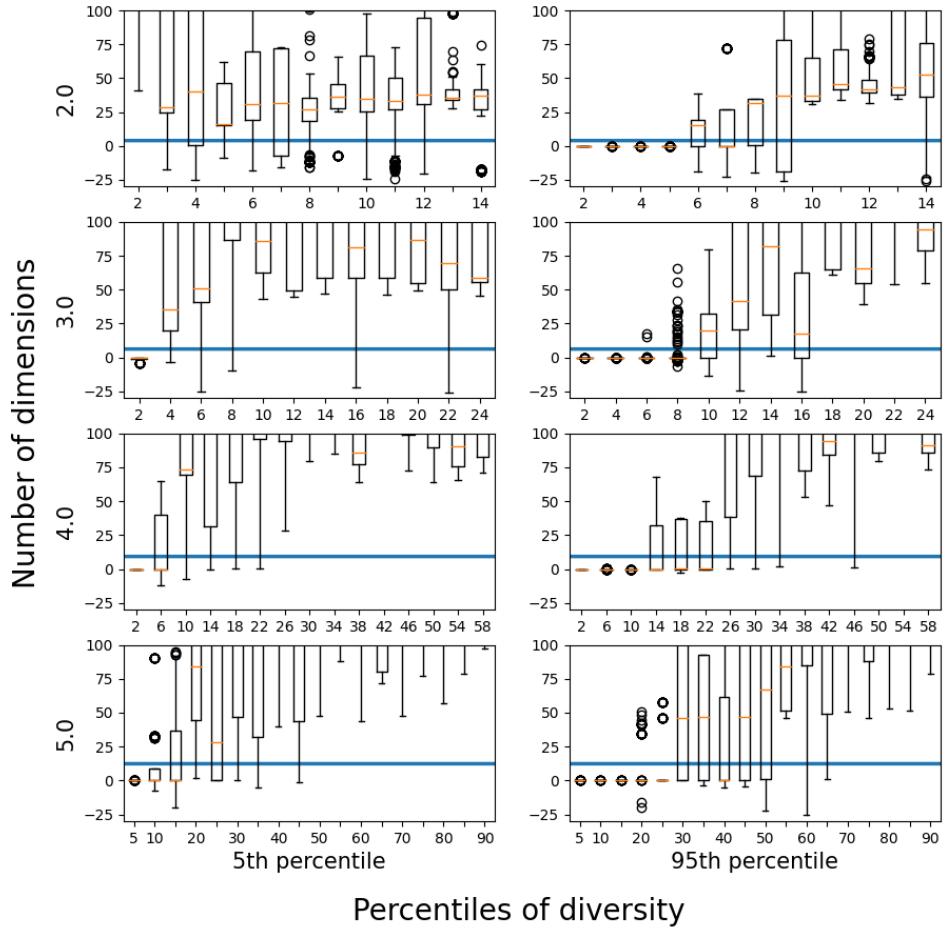


Fig. 15: Box plot showing the lengthscale parameter as learned by Rosenbrock test function in 2D and 3D as the training samples are increased. The plot also confirms the existence of a ‘modeling advantage’ for training samples of a particular size. The results are further discussed in S7

Lengthscale learned for Sphere by BoTorch as number of initial samples are increased.

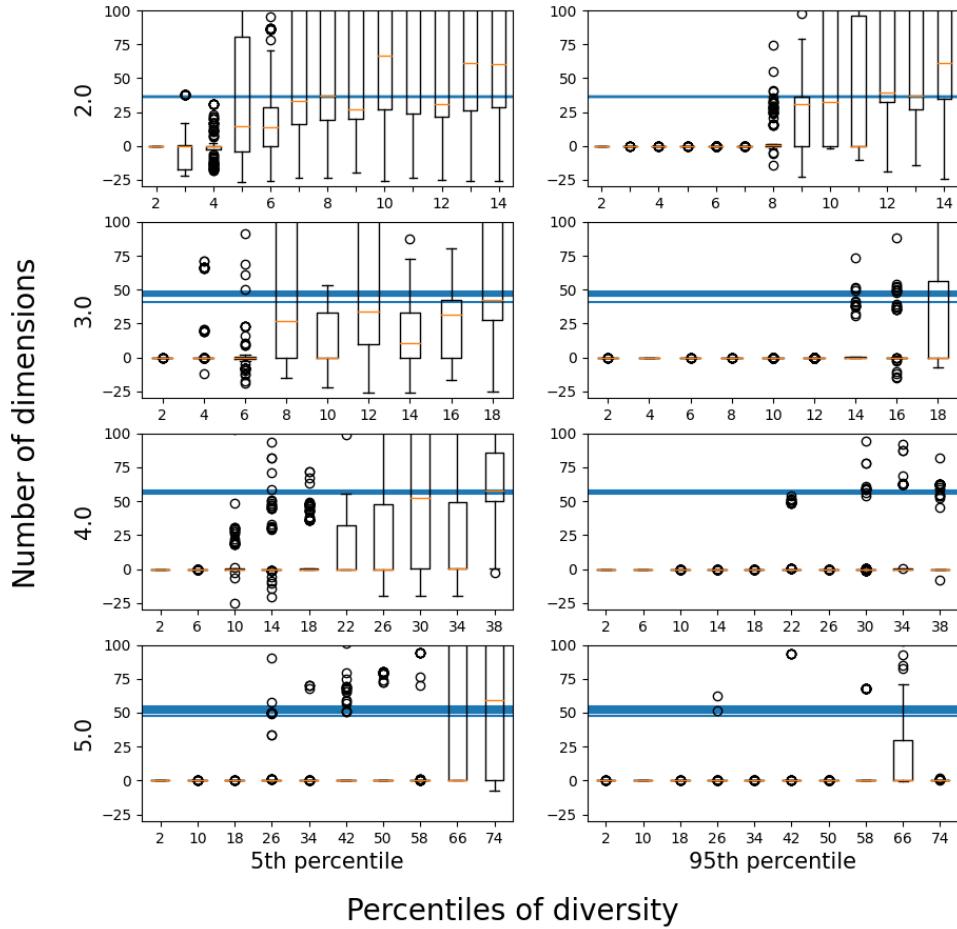


Fig. 16: Box plot showing the lengthscale parameter as learned by Sphere test function in 2D and 3D as the training samples are increased. The plot also confirms the existence of a ‘modeling advantage’ for training samples of a particular size. The results are further discussed in S7