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Design researchers have struggled to produce quantita-1

tive predictions for exactly why and when diversity might2

help or hinder design search efforts. This paper addresses3

that problem by studying one ubiquitously used search strat-4

egy—Bayesian Optimization (BO)—on a 2D test problem5

with modifiable convexity and difficulty. Specifically, we test6

how providing diverse versus non-diverse initial samples to7

BO affects its performance during search and introduce a8

fast ranked-DPP method for computing diverse sets, which9

we need to detect sets of highly diverse or non-diverse initial10

samples.11

We initially found, to our surprise, that diversity did not12

appear to affect BO, neither helping nor hurting the opti-13

mizer’s convergence. However, follow-on experiments illu-14

minated a key trade-off. Non-diverse initial samples has-15

tened posterior convergence for the underlying model hyper-16

parameters—a Model Building advantage. In contrast, di-17

verse initial samples accelerated exploring the function it-18

self—a Space Exploration advantage. Both advantages help19

BO, but in different ways, and the initial sample diversity di-20

rectly modulates how BO trades those advantages. Indeed,21

we show that fixing the BO hyper-parameters removes the22

Model Building advantage, causing diverse initial samples23

to always outperform models trained with non-diverse sam-24

ples. These findings shed light on why, at least for BO-type25

∗Address all correspondence to this author.

optimizers, the use of diversity has mixed effects and cautions 26

against the ubiquitous use of space-filling initializations in 27

BO. To the extent that humans use explore-exploit search 28

strategies similar to BO, our results provide a testable con- 29

jecture for why and when diversity may affect human-subject 30

or design team experiments. 31

1 INTRODUCTION AND RELATED WORK 32

One open question within design research is when or 33

under what conditions providing diverse stimuli or starting 34

solutions to either humans or algorithms can improve their 35

designs’ final performance. Researchers have struggled to 36

produce quantitative predictions or explanations for exactly 37

why and when diversity might help or hinder design search 38

efforts. In studies of human designers or teams, there have 39

been numerous empirical results on the effect of diverse 40

stimuli or sets of stimuli on designers, typically referred to 41

under the topic of Design Fixation (for recent reviews, see 42

[1] and [2]). In general, available empirical results are mixed 43

and it is difficult to quantitatively predict, for a new problem 44

or person, whether or not diversity in problem stimuli will 45

or will not help. For instance, there are a number of empiri- 46

cal demonstrations of positive effects of example diversity on 47

novelty and diversity of ideas [3–5], but substantially more 48

mixed results on the effects of diversity on solution quality, 49
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with some observations of positive effects [6–8], some null50

or contingent effects [4, 9–14], and even some negative ef-51

fects on solution quality [15, 16].52

Likewise, in research focused purely on optimization,53

common academic and industrial practice initializes search54

algorithms with different strategies like Latin Hypercube55

Sampling (LHS) [17] and others in an attempt to “fill” or56

“cover” a space as uniformly as possible [18] or via quasi-57

random methods [19–21]. Some methods build diversity-58

encouraging loss functions directly into their core search al-59

gorithms, such as in common meta-heuristic optimizers [22]60

such as Particle Swarm Optimization (PSO), Simulated An-61

nealing (SA), and Genetic Algorithms (GA), with one of62

the most well-known diversity-inducing ones being NSGA-63

II [23]. For BO specifically, a common strategy is to build64

diversity directly into the acquisition function used in sam-65

pling new points from the Gaussian Process posterior [24].66

As with human-subjects experiments, the precise effect of67

diversity on optimization performance is often problem de-68

pendent [22] and difficult to predict apriori. Nevertheless,69

optimization practitioners take these steps to improve initial70

sample diversity with the hope that the optimizer will con-71

verge faster or find better global optima.72

But is encouraging initial diversity in this way always73

a good idea? If so, when and why is it good? Are there74

any times or conditions when diversity might hurt rather than75

help our search for good designs?76

(Spoiler Alert: Yes, it can—see S4 for how and S6 for why.)77

To address the above questions, this paper studies one78

type of commonly used search strategy—Bayesian Opti-79

mization (BO)—and how the diversity of its initialization80

points affects its performance on a search task. We un-81

cover a fascinating dance that occurs between two competing82

advantages that initial samples endow upon BO—a Model83

Building versus Space Exploration advantage that we de-84

fine later—and how the initial samples’ diversity directs the85

choreography. While the fundamental reason for this inter-86

play will later appear straightforward (and perhaps even dis-87

cernible through thought experiments rather than numerical88

experiments), it nevertheless flies in the face of how most89

practitioners initialize their BO routines or conduct Optimal90

Experimental Design studies. It also posits a testable pre-91

diction about how to induce greater effects of diversity on92

novice human designers or the conditions under which there93

may be mixed or even negative effects (see S6).94

Before describing our particular experiment and results,95

we will first review why BO is a meaningful and generaliz-96

able class of search algorithm to use, as well as past work97

that has tried to understand how diversity affects search pro-98

cesses such as optimization.99

Why model design search as Bayesian optimization?100

While this paper addresses only BO, this is an important101

algorithm in that it plays an out-sized role within the de-102

sign research and optimization community. For example,103

BO underlies a vast number of industrially-relevant gradient-104

free surrogate modeling approaches implemented in major105

design or analysis packages, where it is referred to under106

a variety of names, including Kriging methods or meta- 107

modeling [25, 26]. Its use in applications of computation- 108

ally expensive multidisciplinary optimization problems is, 109

while not unilateral [27], quite widespread. Likewise, re- 110

searchers studying human designers often use BO as a proxy 111

model [28] to understand human search, due to the interplay 112

between exploration and exploitation that lies at the heart of 113

most BO acquisition functions like Expected Improvement. 114

More generally, there is a robust history of fruitful research 115

in cognitive science modeling human cognition as Bayesian 116

processing [29], such as concept learning in cognitive de- 117

velopment [30], causal learning [31], and analogical reason- 118

ing [32]. 119

While the bulk of BO-related papers focus on new al- 120

gorithms or acquisition functions, few papers focus on how 121

BO is initialized, preferring instead the general use of space- 122

filling initializations that have a long history in the field of 123

Optimal Experiment Design [27]. In contrast, this paper 124

shows that in certain situations that faith in space-filling de- 125

signs might be misplaced, particularly when the BO kernel 126

hyper-parameters are adjusted or fit during search. 127

What does it even mean for samples to be diverse? As 128

a practical matter, if we wish to study how diverse samples 129

impact BO, we face a subtle but surprisingly non-trivial prob- 130

lem: how exactly do you quantify whether one set of samples 131

is more or less diverse than another? This is a set-based (i.e., 132

combinatorially large) problem with its own rich history too 133

large to cover extensively here, however our past work on 134

diversity measurement [33–35], computation [36], and op- 135

timization [37, 38] provides further pointers for interested 136

readers, and in particular the thesis of Ahmed provides a 137

good starting point for the broader literature and background 138

in this area [39]. 139

For the purposes of understanding how this paper re- 140

lates to existing approaches, it suffices to know the follow- 141

ing regarding common approaches to quantifying diversity: 142

(1) most diversity measurement approaches focus on some 143

variant of a hyper-volume objective spanned by the set of se- 144

lected points; (2) since this measure depends on a set rather 145

than individual points, it becomes combinatorially expen- 146

sive, necessitating fast polynomial-time approximation, one 147

common tool for which is a Determinantal Point Process 148

(DPP) [40]; however, (3) while sampling the most diverse 149

set via DPPs is easy, sampling percentile sets from the DPP 150

distribution to get the top 5%, median, or lowest 5% of di- 151

verse sets becomes exceedingly slow for a large sample pool. 152

In contrast, for this paper, we created a faster DPP-type 153

sampling method to extract different percentiles of the dis- 154

tribution without actually needing to observe the entire DPP 155

distribution and whose sampling error we can bound using 156

concentration inequalities. Section 2 provides further mathe- 157

matical background, including information on DPP hyper- 158

parameters and how to select them intelligently, and the 159

Supplemental Material provides further algorithmic details. 160

With an understanding of diversity distribution measures in 161

hand, we can now address diversity’s specific effects on op- 162

timization more generally. 163
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How does diversity in initial inputs affect optimizers?164

While there are a number of papers that propose either dif-165

ferent initialization strategies or benchmarking of existing166

strategies for optimization, there is limited prior work ad-167

dressing the direct effect of initial sample diversity.168

For general reviews and benchmarking on how to initial-169

ize optimizers and the effects of different strategies, papers170

such as [20, 22] compare initialization strategies for partic-171

ular optimizers and quantify performance differences. An172

overall observation across these contributions is the inabil-173

ity of a single initialization method to improve performance174

across functions of varying complexity. These studies also175

do not directly measure or address the role of sample diver-176

sity directly, only noting such behavior as it correlates indi-177

rectly with the sampling strategy.178

A second body of work tries to customize initializa-179

tion strategies on a per-problem basis, often achieving faster180

convergence on domain-specific problems [18, 19, 41–43].181

While useful in their designed domain, these studies do not182

directly address the role of diversity either. In contrast, this183

paper addresses diversity directly using properties of BO that184

are sufficiently general to apply across multiple domains and185

applications.186

Lastly, how to initialize optimizers has garnered new in-187

terest from the machine learning community, for example in188

the initial settings of weights and biases in a Neural Network189

and the downstream effects on network performance [44,45].190

There is also general interest in how to collect diverse sam-191

ples during learning, either in an Active Learning [46] or Re-192

inforcement Learning context [47, 48]; however, those lines193

of work address only diversity throughout data collection,194

rather than the impact of initial samples considered in this195

paper.196

What does this paper contribute beyond past work?197

This paper’s specific contributions are:198

1. To compute diversity: we describe a fast DPP-based di-199

versity scoring method for selecting diverse initial ex-200

amples with a fixed size k. Any set of size k with these201

initial examples can be then used to approximate the per-202

centile of diversity that the set belongs to. This method203

requires selecting a hyper-parameter relating to the DPP204

measure. We describe a principled method for select-205

ing this parameter in Section 2.1, and provide numerical206

evidence of the improved sampling performance in the207

Supplemental Material. Compared to prior work, this208

makes percentile sampling of DPP distributions compu-209

tationally tractable.210

2. To study effects on BO: we empirically evaluate how211

diverse initial samples affect the convergence rate of212

a Bayesian Optimizer. Section 4 finds that low diver-213

sity samples provide a Model Building advantage to BO214

while diverse samples provide a Space Exploration ad-215

vantage that helps BO converge faster. Section 5 shows216

that removing the model building advantage makes hav-217

ing diverse initial samples uniformly better than non-218

diverse samples.1 219

We will next describe our overall experimental approach 220

and common procedures used across all three of our main ex- 221

periments. We will introduce individual experiment-specific 222

methods only when relevant in each separate experiment sec- 223

tion. 224

2 OVERALL EXPERIMENTAL APPROACH 225

This section will first describe how we compute diverse 226

initial samples, including how we set a key hyper-parameter 227

that controls the DPP kernel needed to measure sample set 228

diversity. It then briefly describes the controllable 2D test 229

problem that we use in our experiments. It ends with a de- 230

scription of how we set up the BO search process and the 231

hyper-parameters that we study more deeply in each individ- 232

ual experiment. 233

Fig. 1: Correlation matrix showing the relative correlation between two
gammas by comparing the way our DPP approach ranks 10,000 sampled sets
of cardinality k=10. The gamma values in both axes here are logarathmic
values with base 10.

2.1 Measuring and Sampling from Diverse Sets using 234

Determinantal Point Processes 235

As mentioned above, we measure diversity of a set of 236

points using Determinantal Point Processes (DPP), which get 237

their name from the fact that they compute the Determinant 238

1For grammatical simplicity and narrative flow, we will use the phrase
“non-diverse” throughout the paper to refer to cases where samples are
taken from the 5th percentile of diverse sets—these are technically “low-
diversity” rather than being absolutely “non-diverse” which would occur
when all points in the set are identical, but we trust that readers can keep
this minor semantic distinction in mind.
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of a matrix referred to as an L-ensemble (as seen in Eq. 1)239

that correlates with the volume spanned by a collection or240

set of samples (Y ) taken from all possible sets (Y ) given a241

diversity/similarity (feature) metric.242

P(LY ) ∝ det(K(LY ) (1)

Here L is the ensemble defined by any positive semi-definite243

matrix [40], and K is the kernel matrix. For sampling diverse244

examples, this positive semi-definite matrix is typically cho-245

sen as a kernel matrix (K) that defines the similarity measure246

between pairs of data points. For this paper, we use a stan-247

dard and commonly used similarity measure defined using248

a Radial Basis Function (RBF) kernel matrix [49]. Specifi-249

cally, each entry in LY for two data points with index i and j250

is:251

[LY ]i, j = exp
(
−γ · ||xi −x j||2

)
(2)

The hyper-parameter γ in the DPP kernel can be set in the252

interval (0,∞) and will turn out to be quite important in how253

well we can measure diversity. The next section explores this254

choice in more depth, but to provide some initial intuition:255

set γ too high and any selection of points looks equally di-256

verse compared to any other set, essentially destroying the257

discriminative power of the DPP, while setting γ too low258

causes the determinant of L to collapse to zero for any set259

of cardinality greater than the feature-length of x.260

With L in hand, we can now turn Eq. 1 into an equality261

by using the fact that ∑Y⊂Y det(LY ) = det(L+ I), where I is262

an identity matrix of the same shape as the ensemble matrix263

L. Then, using Theorem 2.2 from [40], we can write the264

P(Y ∈ Y ) as follows:265

P(Y ) =
det(LY)

det(L+ I)
(3)

This is the probability that a given set of points (Y ) is266

highly diverse compared to other possible sets (Y )—that is,267

the higher P(Y ) the more diverse the set. The popularity of268

DPP-type measures is due to their ability to efficiently sam-269

ple diverse samples of fixed size k. Sampling a set of k sam-270

ples from a DPP is done using a conditional DPP called k-271

DPP [50]. k-DPP are able to compute marginal and condi-272

tional probabilities with polynomial complexity, in turn al-273

lowing sampling from the DPP in polynomial complexity.274

k-DPPs are also well researched and there exists several dif-275

ferent methods to speed up the sampling process using a276

k-DPP [51, 52]. Our approach allows sampling in constant277

complexity however there is a trade-off in complexity in gen-278

erating the DPP distribution. The complexity for generating279

traditional DPP distributions is independent of ‘k’, while our280

approach has linear dependence on ‘k’. Since, existing k-281

DPP approaches lack the ability to efficiently sample from282

different percentiles of diversity and thus make it computa-283

tionally expensive to regenerate the distribution to alterna-284

tively sample from different percentiles.285

To tackle this problem, our approach is designed to sam- 286

ple efficiently from different percentiles of diversity. This is 287

made possible by creating an absolute diversity score. This 288

score is generated by taking a logdeterminant of the kernel 289

matrix defined over the set Y . Randomly sampling the k- 290

DPP space allows us to bound errors in generating this abso- 291

lute score through the use of concentration inequalities. The 292

details about how to sample from this distribution and calcu- 293

late the score are mentioned in the supplementary material, 294

so as not to disrupt the paper’s main narrative. Additionally, 295

the supplementary material provides empirical results to sup- 296

port our earlier claims regarding efficient sampling from our 297

approach vs the traditional k-DPP approach, as well as the 298

trade-off in complexity when generating the DPP distribu- 299

tion. Figure 2 shows example sets of five points and their 300

corresponding DPP score, where the diversity score is mono- 301

tonic and a positive score corresponds to a more diverse sub- 302

set. 303

Fig. 2: Scatter plots showing randomly chosen sets with k=5 High Diver-
sity and Low Diversity samples with their diversity score on top of each of
the chosen set.

2.1.1 Selecting the hyper-parameter for the DPP kernel 304

As mentioned above, the choice of γ impacts the accu- 305

racy of the DPP score, and when we initially fixed γ to |Yi|
10 , 306

where Yi is the set of data points over which the RBF kernel 307

is calculating the DPP score as suggested by [53], the DPP 308

seemed to be producing largely random scores. To select an 309

appropriate γ we designed a kernel-independent diagnostic 310

method for assessing the DPP kernel with four steps. 311

First, we randomly generate M samples of size k sets 312

(think of these as random k-sized samples from Y ). Sec- 313

ond, we compute their DPP scores for different possible γ 314

values and then sort those M sets by that score. Third, we 315

compute the rank correlation among these sets for different 316

pairs of γ—intuitively, if the rank correlation is high (toward 317

1) then either choice of γ would produce the same rank or- 318

ders of which points were considered diverse, meaning the 319

(relative) DPP scores are insensitive to γ. In contrast, if the 320
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rank correlation is 0, then the two γ values produce essen-321

tially random orderings. This rank correlation between two322

different γ settings is the color/value shown in each cell of323

the matrix in Fig. 1. Large ranges of γ with high-rank cor-324

relation mean that the rankings of DPP scores are stable or325

robust to small perturbations in γ. Lastly, we use this “robust326

γ” region by choosing the largest range of γ values that have327

a relative correlation index of 0.95 or higher. We compute328

the mean of this range and use that as our selected γ in our329

later experiments. We should note that the functional range330

of γ is dependent on sample size (k), and so this “robust γ”331

needs to be recomputed for different initialization sizes.332

The detailed settings for the results as seen in Figure 1333

are as follows: the M = 10000; k = 10; γ ∈ [e−7,e−2]. The334

correlation matrix shows a range of γ with strongly correlat-335

ing relative ordering of the test sets. All γ within this range336

provide a consistent ranking.337

2.2 A Test Function with Tunable Complexity338

A problem that is common across the study of initial-339

ization methods is their inconsistency across problems of340

varying difficulty, motivating the need to test BO’s search341

behavior on a problem class with variable complexity. Syn-342

thetic objective functions are often used to test the efficiency343

of different optimizers and there are several libraries online344

to choose these functions from [54], though these functions345

are largely static, in the sense that there is only a single test346

function definition. There has been research into develop-347

ing objective function generators; for example, in [55], the348

author uses a mixture of four features to generate synthetic349

objective functions. These have been well categorized and350

the relative performance of different optimizers documented351

on each landscape. Similar to this, [56] looks at using a mix-352

ture of different sinusoidal functions to create a noisy 1-D353

function. Both the generators discussed are capable of gener-354

ating complicated landscapes, but the complexity arises from355

mixing different randomly generated sinusoids and thus are356

unable to control or quantify a measure of complexity of the357

generated landscapes.358

To address this controllable complexity problem di-359

rectly, we created a simple 2D test function generator with360

tunable complexity parameters that allow us to instantiate361

multiple random surfaces of similar optimization difficulty.362

We modified this function from the one used in [57] where it363

was referred to as “Wildcat Wells”, though the landscape is364

functionally just a normal distribution with additive noise of365

different frequency spectra. We used four factors to control366

the synthetic objective functions: 1) the number of peaks,367

2) noise amplitude, 3) smoothness, and 4) distance between368

peaks and a seed. The number of peaks control the number369

of layers of multivariate normal with single peaks. The noise370

amplitude in the range of [0,1] controls the relative height of371

the noise compared to the height of the peaks. Setting this to372

1 would essentially make the noise in the function as tall as373

the peaks and give the function infinite peaks. Smoothness374

in the range of [0,1] controls the weighted contribution of the375

smooth Gaussian function compared to the rugged noise to376

the wildcat-wells landscape. Setting this to 1 would remove 377

the noise from the function because then the normal distri- 378

bution completely controls and dominates the function. The 379

last parameter, the distance between peaks, can be tuned in 380

the range of [0,1]. This parameter prevents overlap of peaks 381

when the function is generated with more than 1 peak. 382

Some of these parameters overlap in their effects. For 383

example, N controls the number of peaks, and ruggedness 384

amplitude controls the height of the noise in the function, 385

so increasing the noise automatically increases the peaks in 386

the function thus we will only look at varying the rugged- 387

ness amplitude. Apart from this, ruggedness frequency (the 388

distance between peaks) plays the same role as smoothness 389

(radius of influence of each individual on its neighbor). Thus, 390

for the numerical experiments presented in Sections 3–5 only 391

the ruggedness amplitude and smoothness will be varied be- 392

tween [0.2,0.8] with increments of 0.2. To provide some vi- 393

sual examples of the effect of these parameters on the gener- 394

ated functions, Fig. 3 visualizes an example random surface 395

generated with different smoothness and ruggedness ampli- 396

tude parameters. 397

2.3 Bayesian optimization 398

Bayesian optimization (BO) has emerged as a popular 399

sample-efficient approach for optimization of these expen- 400

sive black-box (BB) functions. BO models the black-box 401

function using a surrogate model, typically a Gaussian pro- 402

cess (GP). The next design to evaluate is then selected ac- 403

cording to an acquisition function. The acquisition func- 404

tion uses the GP posterior and makes the next recommen- 405

dation for function evaluation by balancing between explo- 406

ration and exploitation. It allows exploration of regions with 407

high uncertainty in the objective function, and exploitation 408

of regions where the mean of the objective function is op- 409

timum. At each iteration, the GP gets updated according to 410

the selected sample, and this process continues iteratively ac- 411

cording to the available budget. 412

Each data point in the context of Bayesian optimization 413

is extremely expensive; thus, there is a need for selection of 414

an informative set of initial samples for the optimization pro- 415

cess. Toward this, this paper investigates the effect of level 416

of initial diverse coverage of the input space on convergence 417

of Bayesian optimization policies. 418

For the purpose of numerical experiments, the optimizer 419

used is from the BOTorch Library [58]. The optimizer uses 420

a Single Task GP Model with Expected Improvement; the 421

kernel used is a Matérn kernel. 422

A GP is specified by its mean and covariance functions, 423

as: 424

f (x) ∼ GP (µ(x),k(x,x)) , (4)

where µ(.) and k(., .) are the mean function and a real-valued 425

kernel function encoding the prior belief on the correlation 426

among the samples in the design space. In Gaussian pro- 427

cess regression, the kernel function dictates the structure of 428

the surrogate model we can fit. An important kernel for 429
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Fig. 3: A Grid plot showing how the landscape of wildcat wells changes with smoothness and ruggedness amplitude.

Bayesian optimization is the Matérn kernel, which incorpo-430

rates a smoothness parameter ν to permit greater flexibility431

in modeling functions:432

kMatérn(x1,x2) =

21−ν

Γ(ν)

(√
2ν

||x1 −x2||
θ

)ν

Hν

(√
2ν

||x1 −x2||
θ

)
,

(5)

where Γ(.) and Hν(.) are the Gamma function and the Bessel433

function of order ν, and θ is the length-scale hyper-parameter434

which denotes the correlation between the points within each435

dimension and specifies the distance that the points in the de-436

sign space influence one another. Here, we use a constant437

mean for the mean function. The Model Building advan-438

tage that we refer to in this paper corresponds to learning439

these hyper-parameters. The hyper-parameters of the Gaus-440

sian process, namely, the parameters of the kernel function441

and the mean function are:442

Lengthscale of the Matérn Kernel In Eq. 5, where θ is the443

lengthscale parameter of the kernel. This parameter controls444

the ruggedness expected by the Bayesian optimizer in the 445

black box function being studied. 446

The effects of the parameter are similar to ν, but ν is not 447

learned during the optimization process while lengthscale is. 448

So, ν is not studied as a parameter that influences the mod- 449

eling behavior but rather studied as an additional parameter 450

for sensitivity. 451

Output scale of Scale Kernel Output scale is used to con- 452

trol how the Matérn kernel is scaled for each batch. Since 453

our Bayesian optimizer uses a single task GP, we do not use 454

batch optimization. Thus, this parameter is unique for us and 455

the way it’s implemented using BoTorch can be seen Equa- 456

tion 6. 457

Kscaled = θscaleKorig (6)

Noise for likelihood calculations The noise parameter is 458

used to model measurement error or noise in the data. So, 459

as the Gaussian Process gets more data the noise term de- 460

creases. So, ideally, this term should converge to 0 when the 461
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Bayesian optimizer has found an optimal value since our test462

functions did not have any added noise.463

Constant for Mean Module This constant is used as the464

mean for the Normal distribution that forms the prior of the465

Gaussian Process as shown in Equation 4.466

Further studies and results regarding the effects of the467

hyper-parameters are available in the Supplemental Material.468

We now describe the first experiment where we explore469

the effects of diversity of initial samples on the convergence470

of Bayesian Optimizers.471

3 EXPERIMENT 1: DOES DIVERSITY AFFECT472

OPTIMIZATION CONVERGENCE?473

3.1 Methods474

To test the effects of diversity of initial samples on opti-475

mizer convergence, we first generated a set of initial training476

samples of size (k) 10 either from low (5th percentile of di-477

versity) or high diversity (95th percentile of diversity) using478

our procedure in S2.1. Next, we created 100 different in-479

stances of the wildcat wells function with different randomly480

generated seeds for each cell in a 4x4 factor grid of 4 values481

each of the smoothness and ruggedness amplitude parame-482

ters of the wildcat wells function (ranging from 0.2 to 0.8, in483

steps of 0.2). For simplicity here, we refer to these combina-484

tions as families of the wildcat wells function. This resulted485

in 1600 function instances.486

Our experiment consisted of 200 runs of the Bayesian487

Optimizer within each of the smoothness-ruggedness func-488

tion families, where each run consisted of 100 iterations, and489

half of the runs were initialized with a low-diversity training490

sample, and half were initialized with a high-diversity train-491

ing sample.492

We then compared the cumulative optimality gap across493

the iterations for the runs with low-diverse initializations494

and high-diverse initalizations within each smoothness-495

ruggedness combination family. We did this by comput-496

ing bootstrapped mean and confidence intervals within each497

low-diverse and high-diverse sets of runs within each family.498

Given the full convergence data, we compute a Cumulative499

Optimality Gap (COG) which is just the area under the Op-500

timality Gap curve for both the 5th and 95th diversity curves.501

Intuitively, a larger COG corresponds to a worse overall per-502

formance by the optimizer. Using these COG values we can503

numerically calculate the improvement of the optimizer in504

the 95th percentile. The net improvement of COG value505

while comparing the 5th and 95th percentile is also presented506

as text in each subplot in Figure 4.507

3.2 Results508

As Figure 4 shows, the Cumulative Optimality Gap does509

not seem to have a consistent effect across the grid. Diver-510

sity produces a positive convergence effect for some cells,511

but is negative in others. Moreover, there are wide empirical512

confidence bounds on the mean effect overall, indicating that513

should an effect exist at all, it likely does not have a large514

effect size. Changing the function ruggedness or smooth- 515

ness did not significantly modulate the overall effect. As ex- 516

pected, given sufficient samples (far right on the x-axis) both 517

diverse and non-diverse initializations have the same opti- 518

mality gap, since at that point the initial samples have been 519

crowded out by the new samples gathered by BO during its 520

search. 521

3.3 Discussion 522

Overall, the results from Fig. 4 seem to indicate that di- 523

versity helps in some cases and hurts in others, and regard- 524

less has a limited impact one way or the other. This seems 525

counter to the widespread practice of diversely sampling the 526

initial input space using techniques like LHS. Figure 4 shows 527

that it has little effect. 528

Why would this be? Given decades of research into ini- 529

tialization schemes for BO and Optimal Experiment Design, 530

we expected diversity to have at least some (perhaps small 531

but at least consistent) positive effect on convergence rates, 532

and not the mixed bag that we see in Fig. 4. How were the 533

non-diverse samples gaining such an upper hand when the di- 534

verse samples had a head start on exploring the space—what 535

we call a Space Exploration advantage? 536

The next section details an experiment we conducted to 537

test a hypothesis regarding a potential implicit advantage that 538

non-diverse samples might endow to BO that would impact 539

the convergence of BO’s hyper-parameter posteriors. As we 540

will see next, this accelerated hyper-parameter posterior con- 541

vergence caused by non-diverse initialization is the Achilles’ 542

heel of diversely initialized BO that allows the non-diverse 543

samples to keep pace and even exceed diverse BO. 544

4 EXPERIMENT 2: DO LOWER DIVERSITY SAM- 545

PLES IMPROVE HYPER-PARAMETER POSTE- 546

RIOR CONVERGENCE? 547

After reviewing the results from Fig. 4, we tried to deter- 548

mine why the Space Exploration advantage of diversity was 549

not helping BO as we thought it should. We considered as 550

a thought experiment the one instance where a poorly ini- 551

tialized BO model with the same acquisition function might 552

outperform another: if one model’s kernel hyper-parameter 553

settings were so grossly incorrect that the model would waste 554

many samples exploring areas that it did not need to if it had 555

the correct hyper-parameters. 556

Could this misstep be happening in the diversely sam- 557

pled BO but not in the non-diverse case? If so, this might 558

explain how non-diverse BO was able to keep pace: while 559

diverse samples might give BO a head start, it might be un- 560

intentionally blindfolding BO to the true function posteriors, 561

making it run ragged in proverbial directions that it need not. 562

If this hypothesis was true, then we would see this reflected 563

in the comparative accuracy of the kernel hyper-parameters 564

learned by the diverse versus non-diverse BO samples. This 565

experiment set out to test that hypothesis. 566
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Fig. 4: Experiment 1: Optimality gap grid plot showing the difference in current Optimality Gap between optimizers initialized with 5th vs 95th
percentile diverse sample (y-axis) as a function of optimization iteration (x-axis). The different factors in the factor grid plot the effects of diversity as the
noise amplitude and smoothness are varied in the range [0.2,0.8]. Each plot also has text indicating the Net Cumulative Optimality Gap (NCOG), a positive
value corresponds to a better performance by high diversity samples compared to the low diversity samples. The plot shows that BO benefits from diversity
in some cases but not others. There is no obvious trends in how the NCOG values change in the grid. The results are further discussed in S3

4.1 Methods567

The key difference from Experiment 1 is that, rather568

than comparing the overall optimization convergence, we in-569

stead focus on how the initial samples’ diversity affects BO’s570

hyper-parameter posterior convergence, and compare how571

far each is from the “ground truth” optimal hyperparameters.572

As with Experiment 1, we used the same smoothness573

and ruggedness amplitude families of the wildcat wells func-574

tion. To then generate the data for each instance in one of575

these families, we sampled 20 sets of initial samples. Half576

of the sampled 20 sets were low (5th percentile of diversity)577

and the other half from high diversity (95th percentile of di-578

versity) percentiles.579

For each initial sample, we then maximized the GP’s580

kernel Marginal Log Likelihood (via BOTorch’s GP fit581

method). We then recorded the hyper-parameters obtained582

for all 20 initial samples. The mean of the 10 samples from583

low diversity was then used as one point in the box plot’s584

low diversity distribution as seen in Fig. 5. We then repeated585

this process for the high diversity initial samples. Each point586

in the box plot can be then understood as the mean hyper- 587

parameter learned by BOTorch given just the initial sample 588

of size (k) 10 points. To get the full box plot distribution for 589

each family the above process is repeated over 100 seeds and 590

Fig. 5 provides the resulting box plot for both diverse and 591

non-diverse initial samples for all the 16 families of wildcat 592

wells function as described in Experiment 1. 593

To provide a ground truth for the true hyper-parameter 594

settings, we ran a Binary search to find the size of the sample 595

(koptimal) for which BO’s kernel hyper-parameters converged 596

for all families. The hyper-parameter found by providing 597

koptimal amount of points for each instance in the family was 598

then plotted as a horizontal line in each box plot. An interest- 599

ing observation is that some families have non-overlapping 600

horizontal lines. This is because for some families there are 601

more than one modes of ‘optimal hyper-parameters’. The 602

mode chosen as the ‘optimal hyper-parameter’ is the more 603

observed mode. The process for finding the ‘optimal hyper- 604

parameter’ and which mode is chosen as the optimal hyper- 605

parameter has been described in the Supplemental Material. 606
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Fig. 5: Experiment 2: Box plot showing distribution of ‘Lengthscale’ hyper-parameter learned by BO when initiated with diverse (orange) and non-
diverse samples (blue) for 16 different families of wildcat wells functions of the same parameters but 100 different seeds. The optimal hyper-parameter
for each of the 100 wildcat wells instances from each family is also plotted as horizontal (blue) lines—in many but not all cases these overlap. Each cell
in the plot also has the 95th percentile confidence bound on Mean Absolute Error (MAE) for both diverse and non-diverse samples. The results show that
MAE confidence bounds for non-diverse samples are smaller compared to diverse samples for all the families of wildcat wells function. Thus, indicating a
presence of Model Building advantage for non-diverse initial samples. The results of this figure are further discussed in S4

If an initial sample provides a good initial estimate of the607

kernel hyper-parameter posterior, then the box plot should608

align well or close to the horizontal lines of the true pos-609

terior. Figure 5 only shows the results for the Matérn Ker-610

nel’s Lengthscale parameter, given its out-sized importance611

in controlling the GP function posteriors compared to the612

other hyper-parameters (e.g., output scale, noise, etc.), which613

we do not plot here for space reasons. We provide further de-614

tails and plots for all hyper-parameters in the Supplementary615

Material for interested readers.616

To quantify the average distance between the learned617

and true hyper-parameters, we also plot on Fig. 5 the Mean618

Absolute Error (MAE) for both highly diverse (95th) and less619

diverse (5th) points. The MAE is the sum of the absolute620

distance of each predicted hyper-parameter from the optimal621

hyper-parameter for the particular surface of each wildcat622

wells function. The range as seen in each cell in Figure 5 cor-623

responds to a 95th percentile confidence bound on the Mean624

absolute error across all the 100 runs. 625

4.2 Results and Discussion 626

The results in Figure 5 show that the MAE values for 627

low diversity samples are always lower compared to the 628

MAE for high diversity samples. This general behavior is 629

also qualitatively visible in the box plot. This means that 630

after only the initial samples, the non-diverse samples pro- 631

vided much more accurate estimates of the kernel hyper- 632

parameters compared to diverse samples. Moreover, BO sys- 633

tematically underestimates the correct lengthscale with di- 634

verse samples—this corresponds to the diverse BO modeling 635

function posteriors that have higher frequency components 636

than the true function actually does (as shown via the peda- 637

gogical examples in the Supplemental Material). 638

This provides evidence for the Model Building advan- 639

tage of non-diverse samples that we defined in Sec. 2.3. It 640

also confirms our previous conjecture from the thought ex- 641
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Fig. 6: Experiment 3: Optimality gap plot showing effects of diversity when the optimizer is not allowed to fit the hyper-parameters for the Gaussian
Process and the hyper-parameters are instead fixed to the values found in Experiment 2. The results from this plot show positive NCOG values for all
families of wildcat wells function, showing that once the Model Building advantage’ is taken away the diverse samples outperform non-diverse samples.
Further discussion on this plot can be read in S5

periment that diverse samples might be impacting BO by642

causing slower or less accurate convergence to the right BO643

hyper-parameters. The Space Exploration advantage of the644

diverse samples helps it compensate somewhat for its poor645

hyper-parameters, but BO trained with non-diverse samples646

can leverage the better hyper-parameters to make more judi-647

cious choices about what points to select next.648

We did not see major differences in the other three ker-649

nel hyper-parameters such as Output Scale, Noise, or the650

Mean Function (see Supplemental Material); however, this651

is not surprising, since BO is not highly sensitive to any of652

these parameters and the lengthscale parameter dominates653

large changes in BO behavior.654

Comparing the different smoothness and ruggedness655

settings, when the function is more complex (the top right656

of the grid at low smoothness and high ruggedness ampli-657

tude values) the function’s lengthscale is lower and closer to658

the value learned by the diverse samples. Looking at the low659

diversity MAE values (‘MAE 5’), we can see they are much660

closer to those of the high diversity samples (‘MAE 95’), in661

contrast to when the function is less complex (bottom left662

side of the grid). Under such conditions, low diversity sam-663

ples lose some of the relative Model Building advantage they 664

have over high diversity samples. This conjecture aligns with 665

Experiment 1 (Fig 4) where the COG values on the top right 666

part are positive while those on the bottom left are negative. 667

Figure 5 demonstrated our hypothesized Model Build- 668

ing advantage that non-diverse initial samples confer to BO. 669

But how do we know that this is the actual causal factor 670

that accelerates BO convergence, and not just correlated with 671

some other effect? If correct, our conjecture posits a nat- 672

ural testable hypothesis: if we fix the values of the hyper- 673

parameter posteriors to identical values between the non- 674

diverse and diverse samples and do not allow the BO to 675

update or optimize them, then this should effectively elim- 676

inate the Model Building advantage, and diverse samples 677

should always outperform non-diverse samples. Metaphor- 678

ically, if we were to take away the arrow that Paris used 679

against Achilles, would the Battle of Troy have ended dif- 680

ferently? Our next experiment finds this out. 681
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5 EXPERIMENT 3: DOES DIVERSITY AFFECT682

OPTIMIZATION CONVERGENCE IF HYPER-683

PARAMETERS ARE FIXED TO OPTIMAL VAL-684

UES?685

5.1 Methods686

This experiment is identical to Experiment 1, with two687

key differences: (1) we now fix the kernel hyper-parameters688

to the ‘optimal hyper-parameter’ values we found in Exper-689

iment 2 for all the instances in each family of the wildcat690

wells function, (2) and we do not allow either BO model to691

further optimize the kernel hyper-parameters. This should692

remove the hypothesized Model Building advantage of non-693

diverse samples without altering any other aspects of Exper-694

iment 1 and the results in Fig. 4.695

5.2 Results and Discussion696

Figure 6 shows that once the kernel hyper-parameters697

are fixed—removing the Model Building advantage of non-698

diverse samples—diverse samples consistently and robustly699

outperform non-diverse initial samples. This holds for both700

the initial Optimality Gap at the beginning of the search as701

well as the Cumulative Optimality Gap and is not qualita-702

tively affected by the function smoothness or roughness am-703

plitude. Unlike in Experiment 1 where diversity could either704

help or hurt the optimizer, once we remove the Model Build-705

ing advantage, diversity only helps.706

6 GENERAL DISCUSSION AND CONCLUSIONS707

6.1 Summary and Interpretation of Findings708

This paper’s original goal was to investigate how and709

when diverse initial samples help or hurt Bayesian Op-710

timizers. Overall, we found that the initial diversity711

of the provided samples created two competing effects.712

First, Experiment 2 showed that non-diverse samples im-713

proved BO’s abilities to quickly converge to optimal hyper-714

parameters—we called this a Model Building advantage.715

Second, Experiment 3 showed that conditioned on the same716

fixed hyper-parameters diverse samples improved BO’s con-717

vergence to the optima through faster exploration of the718

space—we called this a Space Exploration advantage. In Ex-719

periment 1, diversity had mixed-to-negligible effects since720

both of these advantages were in play and competed with721

one another. This interaction provides insight for academic722

or industrial BO users since common practice recommends723

initializing BO with space-filling samples (to take advantage724

of the Space Exploration advantage), and ignores the Model725

Building advantage of non-diverse samples.726

Beyond our main empirical result, our improvements to727

existing diverse sampling approaches (Sec. 2.1) provide new728

methods for studying how different percentile diversity sets729

affect phenomena. Researchers may find this contribution of730

separate technical and scientific interest for related studies731

that investigate the impact of diversity.732

6.2 Implications and Future Work 733

Beyond the individual results we observed and summa- 734

rized in each experiment, there are some overall implications 735

and limitations that may guide future work or interpretation 736

of our results more broadly, which we address below. 737

Where does this Model Building advantage induced by 738

non-diverse samples come from? As we conjectured in 739

Experiment 2 (S4), and confirmed in Experiment 3 (S5), 740

the key advantage of using non-diverse initial samples lies 741

in their ability to induce faster and more accurate poste- 742

rior convergence when inferring the optimal kernel hyper- 743

parameters, such as length scale and others. This allowed 744

the BO to make more judicious and aggressive choices about 745

what points to sample next, so while the diversely initial- 746

ized models might get a head start on exploring the space, 747

non-diversely initialized models needed to explore less of the 748

space overall, owing to tighter posteriors of possible func- 749

tions under the Gaussian Process. 750

While we do not have space to include it in the main pa- 751

per, the supplemental material document’s section 5 shows 752

how this model building advantage occurs as we provide BO 753

with a greater number of initial samples. Briefly, there are 754

three “regimes”: (1) sample-deficient, where there are too 755

few samples to induce a modeling advantage regardless of 756

how diversely we sample the initial points; (2) the “modeling 757

advantage” region, where low-diversity samples induce bet- 758

ter hyperparameter convergence than high-diversity samples; 759

and (3) sample-saturated, where there are enough initial sam- 760

ples to induce accurate hyper-parameter posteriors regardless 761

of how diversely we sample initial points. We direct inter- 762

ested readers to Section 5 of the supplemental material for a 763

deeper discussion on this. 764

What this behavior implies more broadly is that non- 765

diverse samples, whether given to an algorithm or a per- 766

son, have a unique and perhaps underrated value in cases 767

where we have high entropy priors over the Gaussian Pro- 768

cess hyper-parameters or kernel. In such cases, sacrificing a 769

few initial non-diverse points to better infer key length scales 770

in the GP model may well be a worthwhile trade. 771

We also saw that in cases where the BO hyper- 772

parameters were not further optimized (as in Experiment 3 773

where hyper-parameters were fixed to optimal values), using 774

diverse points only helped BO. Researchers or practitioners 775

using BO would benefit from carefully reviewing what ker- 776

nel optimization strategy their library or implementation of 777

choice actually does since that will affect whether or not the 778

Model Building advantage of non-diverse samples is actually 779

in play. 780

What if Hyper-parameters are fixed to non-optimal val- 781

ues? We showed in Experiment 3 that fixing BO hyper- 782

parameters to their optimal values ahead of time using an 783

oracle allowed diverse initial samples to unilaterally outper- 784

form non-diverse samples. An interesting avenue of future 785

work that we did not explore here for scope reasons would 786

be to see if this holds when hyper-parameters are fixed to 787

non-optimal values. In practical problems, we will not often 788
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know the optimal hyper-parameters ahead of time as we did789

in Experiment 3 which caused diversity’s unilateral advan-790

tage, so we do not have evidence to generalize beyond this.791

However, our explanation of the Model Building advantage792

would predict that, so long as the hyper-parameters remain793

fixed (to any value), BO would not have a practical mecha-794

nism to benefit much from non-diverse samples, on average.795

What are the implications for how we currently initialize796

BO? One of our result’s most striking implications is how797

it might influence BO initialization procedures that are of-798

ten considered standard practice. For example, it is common799

to initialize a BO procedure with a small number of initial800

space-filling designs, using techniques like Latin Hypercube801

Sampling (LHS) before allowing BO to optimize its acqui-802

sition function for future samples. In cases where the BO803

hyper-parameters will remain fixed, Experiment 3 implies804

that this standard practice is excellent advice and far better805

than non-diverse samples. However, in cases where you plan806

to optimize the BO kernel during search, using something807

like LHS becomes more suspect.808

In principle, from Experiment 1 we see that diverse sam-809

ples may help or hurt BO, depending on how much leverage810

the Model Building advantage of the non-diverse samples811

can provide. For example, in the upper right of Fig. 4 the812

function is effectively random noise, and so there is not a813

strong Model Building advantage to be gained. In contrast,814

in the lower left, the smooth and well-behaved functions al-815

lowed non-diverse initialization to gain an upper hand.816

Our results propose a perhaps now obvious initialization817

strategy: if you plan on optimizing the BO hyper-parameters,818

use some non-diverse samples to strategically provide an819

early Model Building advantage, while leveraging the rest820

of the samples to diversely cover the space.821

How might other acquisition functions modulate diver-822

sity’s effect? While we have been referring to BO as823

though it is a single method throughout this paper, individual824

BO implementations can vary, both in terms of their kernel825

structure and their choice of acquisition function—or how826

BO uses information about the underlying fitted Gaussian827

Process to select subsequent points. In this paper’s experi-828

ments, we used Expected Improvement (EI) since it is one of829

the most widespread choices, and behaves qualitatively like830

other common improvement-based measures like Probabil-831

ity of Improvement, Posterior Mean, and Upper Confidence832

Bound functions. Indeed, we hypothesize that part of the833

reason non-diverse initial samples are able to gain a Model834

Building advantage over diverse samples is due to a faster835

collapse in the posterior distribution of possible GP functions836

which serves as strong input to EI methods and related vari-837

ants.838

Yet EI and its cousins are only one class of acquisi-839

tion function; would our results hold if we were to pick an840

acquisition function that directly attacked the GP’s poste-841

rior variance? For example, either Entropy-based or Active842

Learning based acquisition functions? This paper did not843

test this and it would be a logical and valuable future study.844

Our experimental results and proposed explanation would 845

predict the following: the Model Building advantage seen 846

by non-diverse samples should reduce or disappear in cases 847

where the acquisition function explicitly samples new points 848

to minimize the posterior over GP function classes since in 849

such cases BO itself would try to select samples that reduced 850

overall GP variance, reducing its dependence on what the 851

initial samples provide. 852

To what extent should we expect these results to gen- 853

eralize to other types of problems? We selected a sim- 854

ple 2D function with controllable complexity in this paper 855

to aid in experimental simplicity, speed, replicability, and 856

ease of visualization; however, this does raise the ques- 857

tion of whether or not these results would truly transfer to 858

more complex problems of engineering interest. While fu- 859

ture work would have to address more complex problems, 860

we performed two additional experiments studying how the 861

above phenonmena change as we (1) increased the wildcat 862

wells function from two to three dimensions, and (2) how this 863

behavior changes for other types of common optimization 864

test functions—specifically, we chose the N-Dimensional 865

Sphere, Rastrigin, and Rosenbrock functions from two to five 866

dimensions. While the existing paper length limits did not al- 867

low us to include all of these additional results in the paper’s 868

main body, we direct interested readers to Sections 6 and 7 869

of the supplemental material document. Briefly, our results 870

align overall with what we described above for the 2D wild- 871

cat wells function, and we do not believe that the phenomena 872

we observed are restricted to only our chosen test function 873

or dimension, although clearly future research would need to 874

conduct further tests on other problems to say this with any 875

certainty. Beyond these supplemental results, we can also 876

look at a few critical problem-specific factors and ask what 877

our proposed explanatory model would predict. 878

For higher dimensional problems, standard GP kernel 879

choices like RBF or Matérn begin to face exponential cost 880

increases due to how hyper-volumes expand. In such cases, 881

having strong constraints (via hyper-parameter priors or pos- 882

teriors) over possible GP functions becomes increasingly im- 883

portant for fast BO convergence. Our results would posit that 884

any Model Building advantages from non-diverse sampling 885

would become increasingly important or impactful in cases 886

where it helped BO rapidly collapse the hyper-parameter 887

posteriors. 888

For discontinuous functions (or GP kernels that assumed 889

as much), the Model Building advantage of non-diverse sam- 890

ples would decrease since large sudden jumps in the GP pos- 891

terior mean and variance would make it harder for BO to 892

exploit a Model Building advantage. However, in discontin- 893

uous cases where there were still common global smoothness 894

parameters that governed the continuous portions the Model 895

Building advantage would still accelerate advantages for BO 896

convergence. 897

How might the results guide human subject experiments 898

or understanding of human designers? One possible im- 899

plication of our results for human designers is that the ef- 900
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fects of example diversity on design outcomes may vary as901

a function of designer’s prior knowledge of the design prob-902

lem. More specifically, the Model Building advantage ob-903

served in Experiment 2 (and subsequent removal in Experi-904

ment 3) suggests that when designers have prior knowledge905

of how quickly the function changes in a local area of the906

design space, they can more reliably benefit from the Space907

Exploration advantage of diverse examples. This leads to a908

potentially counter-intuitive prediction that domain experts909

may benefit more from diverse examples compared to do-910

main novices since domain experts would tend to have prior911

knowledge of the nature of the design problem (a Model912

Building advantage). Additionally, perhaps under conditions913

of uncertainty about the nature of the design problem, it914

would be useful to combine the strengths of diverse and non-915

diverse examples; this could be accomplished with a cluster-916

sampling approach, where we sample diverse points of the917

design space, but include local non-diverse clusters of exam-918

ples that are nearby, to facilitate learning of the shape of the919

design function.920

While these implications might be counter-intuitive in921

that common guidance suggests that the most informative922

method is to only diversely sample initial points, the crux of923

our paper’s argument is that non-diverse points can, surpris-924

ingly, be informative to Bayesian Optimization due to their925

ability to quickly concentrate the posterior distribution of the926

kernel hyper-parameters, and thus accelerate later optimiza-927

tion. Given this tension, a natural question is “how many928

non-diverse samples do I really need to take advantage of929

the modeling advantage without giving up the space explo-930

ration advantage?” If I have, say, a budget of ten experi-931

ments, should I spend only one low-diversity sample? Or do932

I need two? Half of my budget? We did not explore these933

practical questions in this work, due to space constraints, but934

we think this would be an excellent avenue for continued935

study.936
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2004. “Quasi-random initial population for genetic al-1026

gorithms”. Computers & Mathematics with Applica-1027

tions, 47(12), June, pp. 1885–1895.1028

[22] Li, Q., Liu, S.-Y., and Yang, X.-S., 2020. “Influence1029

of Initialization on the Performance of Metaheuris-1030

tic Optimizers”. Applied Soft Computing, 91, June,1031

p. 106193. arXiv:2003.03789 [cs, math].1032

[23] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.,1033

2002. “A fast and elitist multiobjective genetic algo-1034

rithm: Nsga-ii”. IEEE transactions on evolutionary1035

computation, 6(2), pp. 182–197.1036

[24] Shu, L., Jiang, P., Shao, X., and Wang, Y., 2020. “A1037

New Multi-Objective Bayesian Optimization Formu-1038

lation With the Acquisition Function for Convergence1039

and Diversity”. Journal of Mechanical Design, 142(9),1040

Mar.1041

[25] Simpson, T. W., Poplinski, J., Koch, P. N., and Allen,1042

J. K., 2001. “Metamodels for computer-based engi-1043

neering design: survey and recommendations”. Engi-1044

neering with computers, 17(2), pp. 129–150.1045

[26] Queipo, N. V., Haftka, R. T., Shyy, W., Goel,1046

T., Vaidyanathan, R., and Tucker, P. K., 2005.1047

“Surrogate-based analysis and optimization”. Progress1048

in aerospace sciences, 41(1), pp. 1–28.1049

[27] Jin, R., Chen, W., and Simpson, T. W., 2001. “Compar-1050

ative studies of metamodelling techniques under mul-1051

tiple modelling criteria”. Structural and multidisci-1052

plinary optimization, 23(1), pp. 1–13.1053

[28] Sexton, T., and Ren, M. Y., 2017. “Learning an opti-1054

mization algorithm through human design iterations”.1055

Journal of Mechanical Design, 139(10).1056

[29] Tauber, S., Navarro, D. J., Perfors, A., and Steyvers,1057

M., 2017. “Bayesian models of cognition revisited:1058

Setting optimality aside and letting data drive psycho-1059

logical theory.”. Psychological Review, 124(4), July,1060

pp. 410–441.1061

[30] Kemp, C., and Tenenbaum, J. B., 2008. “The discov-1062

ery of structural form”. Proceedings of the National1063

Academy of Sciences, 105(31), pp. 10687–10692.1064

[31] Lu, H., Yuille, A. L., Liljeholm, M., Cheng, P. W.,1065

and Holyoak, K. J., 2008. “Bayesian generic priors1066

for causal learning”. Psychological Review, 115(4),1067

pp. 955–984. Place: US Publisher: American Psycho-1068

logical Association.1069

[32] Lu, H., Chen, D., and Holyoak, K. J., 2012. “Bayesian1070

analogy with relational transformations.”. Psychologi- 1071

cal Review, 119(3), p. 617. 1072

[33] Fuge, M., Stroud, J., and Agogino, A., 2013. “Auto- 1073

matically inferring metrics for design creativity”. In In- 1074

ternational Design Engineering Technical Conferences 1075

and Computers and Information in Engineering Con- 1076

ference, Vol. 55928, American Society of Mechanical 1077

Engineers, p. V005T06A010. 1078

[34] Ahmed, F., Ramachandran, S. K., Fuge, M., Hunter, 1079

S., and Miller, S., 2021. “Design variety measurement 1080

using sharma–mittal entropy”. Journal of Mechanical 1081

Design, 143(6). 1082

[35] Miller, S. R., Hunter, S. T., Starkey, E., Ramachan- 1083

dran, S., Ahmed, F., and Fuge, M., 2021. “How 1084

should we measure creativity in engineering design? a 1085

comparison between social science and engineering ap- 1086

proaches”. Journal of Mechanical Design, 143(3). 1087

[36] Ahmed, F., Ramachandran, S. K., Fuge, M., Hunter, S., 1088

and Miller, S., 2019. “Interpreting idea maps: Pairwise 1089

comparisons reveal what makes ideas novel”. Journal 1090

of Mechanical Design, 141(2), p. 021102. 1091

[37] Ahmed, F., and Fuge, M., 2018. “Ranking ideas for 1092

diversity and quality”. Journal of Mechanical Design, 1093

140(1), p. 011101. 1094

[38] Ahmed, F., and Fuge, M., 2017. “Ranking ideas for 1095

diversity and quality”. arXiv:1709.02063 [cs], Sept. 1096

arXiv: 1709.02063. 1097

[39] Ahmed, F., 2019. “Diversity and novelty: Measure- 1098

ment, learning and optimization”. PhD thesis. 1099

[40] Kulesza, A., and Taskar, B., 2012. “Determinantal 1100

point processes for machine learning”. Foundations 1101

and Trends® in Machine Learning, 5(2-3), pp. 123– 1102

286. arXiv: 1207.6083. 1103

[41] Li, C., Chu, X., Chen, Y., and Xing, L., 2015. “A 1104

knowledge-based initialization technique of genetic al- 1105

gorithm for the travelling salesman problem”. In 2015 1106

11th International Conference on Natural Computation 1107

(ICNC), pp. 188–193. ISSN: 2157-9563. 1108

[42] Dong, N., Wu, C.-H., Ip, W.-H., Chen, Z.-Q., Chan, 1109

C.-Y., and Yung, K.-L., 2012. “An opposition-based 1110

chaotic GA/PSO hybrid algorithm and its application 1111

in circle detection”. Computers & Mathematics with 1112

Applications, 64(6), Sept., pp. 1886–1902. 1113

[43] Eskandar, H., Sadollah, A., Bahreininejad, A., and 1114

Hamdi, M., 2012. “Water cycle algorithm – A novel 1115

metaheuristic optimization method for solving con- 1116

strained engineering optimization problems”. Comput- 1117

ers & Structures, 110-111, Nov., pp. 151–166. 1118

[44] Mishkin, D., and Matas, J., 2016. All you need is a 1119

good init, Feb. arXiv:1511.06422 [cs]. 1120

[45] Yuan, W., Han, Y., Guan, D., and Lee, S., 2011. “Initial 1121

training data selection for active learning”. p. 5. 1122

[46] Settles, B., 2012. “Active learning”. Synthesis lectures 1123

on artificial intelligence and machine learning, 6(1), 1124

pp. 1–114. 1125

[47] Yoon, J., Arik, S., and Pfister, T., 2020. “Data Valua- 1126

tion using Reinforcement Learning”. In Proceedings of 1127

the 37th International Conference on Machine Learn- 1128

14



ing, PMLR, pp. 10842–10851. ISSN: 2640-3498.1129

[48] Eysenbach, B., Gupta, A., Ibarz, J., and Levine,1130

S., 2018. “Diversity is all you need: Learning1131

skills without a reward function”. arXiv preprint1132

arXiv:1802.06070.1133

[49] Schölkopf, B., and Smola, A. J., 2018. Learning1134

with Kernels: Support Vector Machines, Regulariza-1135

tion, Optimization, and Beyond. June.1136

[50] Kulesza, A., and Taskar, B. “k-DPPs: Fixed-Size De-1137

terminantal Point Processes”. p. 8.1138
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1 Fast sampling DPP Method 6

Our idea seeks to reduce the complexity of the sampling method and the construction time for DPP as well as investigate 7

a Diverse sampling method that can generate both low-diversity and high-diversity samples. To do this we build on the work 8

from [1] to rank and compare the diversity of the two sets. To define our diversity measure, let’s assume X ⊂ RF , where 9

|F | is the number of features of X. Then we can define a set as Sk
Y ⊂ X of size k. This means Sk

Yi
∈ RF ×Rk, then using a 10

similarity measure (RBF kernel) W on this set, we can define the DPP score for a set Sk
Yi

as follows: 11

f (WYi) =
log(det(K(WYi)))−

(
∑
|Sk|
i log(det(K(WYi)))

)
√

∑
|Sk|
i (log(det(K(WYi)))−

(
∑
|Sk|
i log(det(K(WYi)))

)
)2

,where |Sk|=
(
(

dim(X)

∏
i

dim(Fi)

)
k

)
(1)

12

13

As we can see in Eq. 1, the number of sets or cardinality of the distribution |Sk| needed to be sampled grows combina-
torially with the changes in the size of the sample space for Xs, and the size of the set k. For example for a X ∈ Z2 where
each feature Zi ∈ [0,100]. Then, the number of possible sets of size k is given by

(100×100
k

)
, thus normalizing the distribution

∗Address all correspondence to this author.
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using a mean and standard distribution is an expensive task. We can re-write Eq. 1 in words as follows:

DPP Score(Sk
Yi
) =

DPPScore(K(WYi)−mean score
s.d. of DPP scores for the k-HDPP

(a) Compares the construction time for regular k-DPP distribution with different
size of samples

(b) Compares the sampling time time for regular k-DPP vs our approach as the
size of k is increased from 5 to 100.

Fig. 1: Compares the relative performance/speed-up of our method over the traditional k-dpp methods. The figure contains
two plots showing the tradeoff between the two methods. In the traditional method constructing the DPP distribution is
costly but generating a distribution is only dependent on the number of points in X , and independent of training size (k).
While, sampling from a k-DPP has a polynomial complexity on the training size (k), while both these facts are inverted for
our approach.

1.1 Sampling method14

The sampling method for our DPP approach is straightforward. Based on the constructed DPP, our approach samples15

randomly from either above a certain percentile or below a certain percentile. As shown in Fig. 1(b), our approach’s sampling16

time is faster than that of a regular k-DPP, where the cost of sampling increases as a function of training size (k). Conversely,17

generating the distribution for our approach is dependent on ‘k’, while the same distribution can be used for different k(s)18

with a traditional k-DPP approach. Our approach’s biggest benefit is the ability to draw samples of different diversity. Using19

our approach this is as simple as sampling from different percentiles of the distribution.20

Algorithm 1 Constructing the DPP sub distribution

1: for i ∈ range(M) do

2: Sample Sk
Yi
∼ IID(Sk)

3: Calculate g(Sk
Yi
) = gyi and append this to ScoresSk

4: end for

5: Return DPP Score=
ScoreSk−mean(ScoreSk )

s.d.(scoreSk )
.
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The uniqueness of our approach lies in an easy trick to upper bound the error on the generated DPP scores, and thus our 21

approach can provide certain guarantees on whether the sampled Sk
Y is in fact from the percentile that the method claims it is 22

from. 23

1.2 Upper bound on errors 24

The guarantee is based on method’s independence of choosing the SK
Y from a combinatorially large set. For IID sampling 25

each set, SK
Yi

, needs to be sampled independent of the other and the sampling should be done with replacement. But since the 26

distribution of Sk needs to mirror that of a k-DPP, all the sets in the space are sampled over X without replacement and are 27

unordered because DPP scores for two Sk with the same points (Y ) will always correspond to the same score. Thus, sampling 28

IID on Sk means identically sampling unordered sets of X without replacement. 29

If we sample the sets Sk
Yi

such that they are Independent Identical Distributed (I.I.D.) sets, then we can upper bound the 30

Expected Value of population mean through the use of Hoeffding’s inequality: Eq. 2 as discussed in [2]. The inequality states 31

that if a distribution is sampled using i.i.d random variables, we can then put a bound on the Error for estimating Expected 32

Values of the population mean (|Mn =
1
n ∑

n
i [Mi]|), where Mn is the mean of the sample of size n. 33

P{|Mn −E(Sk)| ≤ ε} ≥ 1−2 · exp
{

−2 ·n2ε2

∑
n
i=1(bi −ai)2

}
(2)

Using Eq. 2 we can guarantee the probability of this error to be some 1−δ, where the δ term is given by the exponential. 34

This allows us to limit the cardinality of the |Sk| to M given we choose an ε. Based on this guarantee a schematic explanation 35

for the construction of our sub-distribution using the approach detailed till now is then documented well in Algorithm 1. 36

This approach is extensively discussed and proved in an upcoming paper. 37

A clear shortcoming of this approach is the need to generate the distribution whenever the k is changed. But, because of 38

the faster construction speed for our approach, this cost outweighs using a k-DPP. Another, shortcoming our approach faces 39

is the limited number of samples that can be drawn from the distribution, which requires us to construct a new distribution if 40

more than M samples need to be drawn. 41

(a) Effect of changing the ν hyper-parameter on the Gaussian Process. (b) Effect of changing the lengthscale hyper-parameter of the Matern
Kernel. The figure has 2 similar GPs with shorter (bottom) and longer
(top) lengthscales.

Fig. 2: Effect of ν and lengthscale on Gaussian Process.
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Fig. 3: Grid plot showing how changing ν affects the relative performance of diverse and non-diverse initialization on
Bayesian optimizers. To understand the plot better quantitatively, each subplot also has the Net Cumulative Optimality Gap
(NCOG) for each value of ν. No trends are seen when relative performance of the diverse and non-diverse samples.

2 Effects of additional hyper-parameters on performance of the optimizer42

As described in the Methods section in the main paper Bayesian Optimizer that uses a Matern kernel has several hyper-43

parameters. This section will serve to further explore the effects that each parameter has on the Gaussian Process (GP). The44

main paper provides a brief introduction to each hyper-parameter apart from ν. So, let’s begin this section with a brief look45

into the hyper-parameter ν.46

ν of the Matérn Kernel The kernel used with the Gaussian Process is the Matern kernel which essentially is a scaled RBF47

kernel controlled by the parameter ν [3] as shown in Eq. 3.48

kMatérn(x1,x2) =

21−ν

Γ(ν)

(√
2ν

||x1 −x2||
θ

)ν

Hν

(√
2ν

||x1 −x2||
θ

)
,

(3)

The hyper-parameter (ν) dictates how smooth or differentiable the function is. Changes in this parameter then influence49

the expectation of the Gaussian Process in terms of its acquisition function. A more differentiable function or a higher ν50

means that the acquisition function samples assuming a smoother Gaussian Process function. It can be seen in Fig. 2(a) how51

changes in ν changes the prior of the GP.52

While, ν controls the prior µ and ‘lengthscale’ control how the data is scaled and thus indirectly control the expectations53

of the GP. The effects of lengthscale on GP can be seen in Fig. 2(c). The effects are similar to that of the parameter ν. Thus,54

we can conclude that ‘lengthscale’ can be used to control the expectations of the GP. Since, ν is not a parameter that is55

learned during the optimization process it does not have significant effect on “Model Building advantage”. This can be seen56

4



in Fig. 3, even as ν is changed there is no significant change in the performance of the optimizer, and thus we can conclude 57

that ν is an insignificant factor in studying “Model Building advantage”. 58

To provide some empirical evidence to the importance of ‘lengthscale’ as a hyper-parameter. Let us look at results from 59

additional plots that were generated while working on experiment 2. 60

Fig. 4: Box plots showing the distribution of different hyper-parameters of the Gaussian Process as learned by Bayesian
optimizer when fitted with just the initial examples as training data. The shown hyper-parameters are specific to Wildcatwells
configuration with smoothness = 0.2 and ruggedness amplitude =0.2. The data is collected over 100 seeds. The horizontal
lines across the boxplot indicate the optimal hyper-parameters learned over 100 different seeds.

3 Further plots for Experiment 2 61

While studying “Model Building advantage” for Gaussian Processes, we looked at not only at ‘lengthscale’ but all 62

hyper-parameters as it can be seen in Fig. 4. The box-plot for each hyper-parameter is constructed in the same way as the 63

steps detailed in Methods section of Experiment 2 in the main paper. To the right of each box-plot in Fig. 4 is also 100 64

kernel density functions that have been used to estimate the ‘optimal hyper-parameter’ for a particular instance of that family 65

(smoothness =0.6, ruggedness amplitude =0.4) of wildcat wells function. 66

Now, as it can be seen in Fig. 4 the optimal noise hyper-parameter is close to 0 for all the instances in the family. 67

While, the one’s estimated using a sample size (k) of 10, in the box-plot, are not. The performance for both diverse and 68

non-diverse is relatively similar for this hyperparameter. This can be seen as the case for both the ‘Mean function’ (µ) and 69

the ‘Outputscale’ as well. While, ‘lengthscale’ is the only hyper-parameter that has varying performance across diverse and 70

non-diverse samples. 71

An important factor while quantifying the “Model Building advantage” is learning the ‘optimal hyper-parameter’ for an 72

instance of wildcat wells function, which is described in the next section. 73

4 Finding optimal hyper-parameters for a given objective function 74

To compute the ‘optimal hyper-parameter’ we first use a Binary search method to discern a robust range (of 200 points) 75

over which all families of wildcat wells functions has a noise parameter value of < 10−5. This essentially means that 76

Bayesian optimizer has found an optimal set of hyper-parameters for the Gaussian Process that accurately imitates the given 77

black-box function. 78

This robust range for all the families of wildcat wells function used in the experiment was determined as 1000-1200 79

points. 80
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Fig. 5: Figure depicting the first step in determining optimal hyperparameters for wildcat wells function with smoothness
0.6 and ruggedness amplitude 0.4 and seed 88. Each hyperparameter in the grid plot has subsequent two adjacent plots. The
observed hyperparameter values over when BOTorch is used to maximize the Marginal Log Likelihood given 1000 to 1200
random points (left), the kernel density function derived from this data (right).

Fig. 6: Figure depicting the second step in determining optimal hyperparameters. Figure shows the peaks evaluated as
potential optimal hyperparameter, and the shaded points that are used to calculate the area under the corresponding peak.

Once, this range is determined the data is collected over the 200 points by maximizing the Marginal Log Likelihood for81

the a Single Task GP model using BOTorch’s ‘fit-gpytorch-model’ [4] method. The resulting data is the hyperparameters that82

BoTorch learns using the given data points. This data is then used to build a kernel density function as indicated by the red83

line-plot (right side of every subplot) next to the data observed over the 200 points in Fig. 5. Then using ‘scipy.signal.find-84

peaks’ [5], peaks are found in the density function labeled by red dots in Fig. 6. Sometimes more than one peak is observed85

this is because there are multiple modes of hyperparameters that provide a stable solution for the problem. For the purpose86

of this paper we only focus on extracting the most observed mode as our optimal hyperparameter.87
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To find the most observed mode, we use the width of the peaks in the kernel density function. The width of the peak is 88

estimated by calculating a numerical gradient on the density function as seen in Fig. 6. The width of the whole peak can be 89

seen highlighted/labeled in each subplot for each peak using a different color. The peak with the largest area is selected as 90

the optimal hyper-parameter for the particular instance of wildcat wells function. 91

Fig. 7: Box plot showing the lengthscale parameter as learned by wildcatwells with ‘high’ level of ruggedness in 2D and 3D
as the training samples are increased. The plot also confirms the existence of a “modeling advantage” for training samples
of a particular size. The results are further discussed in S5

5 Effect of increasing training size on hyperparameter learning 92

While trying to replicate the results for the 3D case we observed that the ‘modeling advantage’ we observed for less 93

diverse examples was also influenced by the number of examples in the initial set. This was because if we initialized the 3D 94

case with the same number of initial samples as the 2D case, the optimizer in the 3D case would not be able to accurately 95

estimate the appropriate hyperparameters regardless of the sampling method and would just set the hyperparameters to zero. 96

This is perhaps obvious if we think about how space coverage degrades for a fixed number of samples as we increase the 97

dimensionality of a design space. What we observed, and show below in Fig. 7, is that there are essentially three “initial 98

sample size regimes” that determine whether or not non-diverse sampling can use its ‘modeling advantage’, although this 99
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advantage exists in both the 2D and 3D case:100

1. Sample-deficient: This is when we provide each optimizer with too few initial examples, such that irrespective of that101

set’s diversity the BO will not be able to meaningfully learn hyperparameters and will instead set them to zero. For102

example, in Fig. 7 bottom, with fewer than 26 initial samples, both the 5th and 95th percentile samples cannot provide103

good estimates of the kernel hyper-parameters104

2. The ‘modeling advantage’ region: With this number of samples, the 5th percentile is able to reasonably estimate the105

hyperparameter values but the 95th struggles to do so. For example, in Fig. 7 top (2D), we can observe this at 10106

samples, which, by coincidence, was the original setting for our 2D example in our initial manuscript. We see that in107

Fig. 7 bottom (3D) this transitions somewhere between 35 to 75 initial samples. In this region, 5th percentile sampling108

can exercise its modeling advantage while the 95th percentile still does not have enough initial samples to consistently109

and accurately estimate the kernel hyper-parameters.110

3. Sample-saturated: In this region, the shear number of initial points we provide BO is sufficiently high such that it can111

estimate the kernel hyper-parameters well, regardless of whether the initial points are diverse or not. For example, in112

Fig. 7 top, this occurs after around 40 initial samples. In Fig. 7 bottom this occurs after around 100 initial samples.113

In this ‘sample-saturated’ case, the modeling advantage of non-diverse sampling disappears, often because this is a114

sufficient number of points that the optima become easy to find at that point (see Fig. 8 where the BO often converges115

at those same number of samples).116

Fig. 8: Optimality gap grid plot showing the difference in current Optimality Gap between optimizers initialized with 5th

vs 95th percentile diverse sample (y-axis) as a function of optimization iteration (x-axis). The different factors in the factor
grid plot are the dimensions across the rows and the ruggedness level across the columns. Each plot also has text indicating
the Net Cumulative Optimality Gap (NCOG), a positive value corresponds to a better performance by high diversity samples
compared to the low diversity samples. The plot shows that BO benefits from diversity in some cases but not others. There
is no obvious trends in how the NCOG values change in the grid. The results are further discussed in S6
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Fig. 9: Box plot showing distribution of ‘Lengthscale’ hyper-parameter learned by BO when initiated with diverse (orange)
and less-diverse samples (blue) for 3 different families of wildcat wells functions of the same parameters but 100 different
seeds in each dimension. The optimal hyper-parameter for each of the 100 wildcat wells instances from each family is also
plotted as horizontal (blue) lines—in many but not all cases these overlap. Each cell in the plot also has the 95th percentile
confidence bound on Mean Absolute Error (MAE) for both diverse and non-diverse samples. The results show that MAE
confidence bounds for non-diverse samples are smaller compared to diverse samples for all the families of wildcat wells
function. Thus, indicating a presence of Model Building advantage for non-diverse initial samples. The results of this figure
are further discussed in S6

6 Effect of increasing problem dimensions on the results 117

To confirm what we observed was not limited to 2 dimensions we decided to run Experiment 1, 2, and 3 with wildcatwells 118

in 3 dimensions. To make the results comparable in a single figure for both 2D and 3D case it was necessary to limit the 119

variability of ruggedness from a 4x4 grid to 3 levels of ‘ruggedness’. These ‘levels of ruggedness’ are ‘low’, ‘medium’ and 120

‘high’, which correspond to (smoothness : 0.8, ruggedness amplitude : 0.2), (smoothness : 0.4, ruggedness amplitude : 0.4) 121

and (smoothness : 0.2, ruggedness amplitude : 0.8) respectively. 122

Further, to see the ‘model building’ advantage for the 3D case we changed the experiment set-up slightly by initializing 123

all the plots generated in 3D with 40 examples instead of the 10 used to initialize BO in 2D. The intuition behind this is 124

further explained in S5. Figure 8 shows the results of Experiment A1, which is a modification of Experiment 1 from the 125

main paper, where we compare 2D and 3D behavior. The results in 3D mirror our observations in 2D. 126

As with Experiment 2 in the main paper, Fig. 9 shows Experiment A2 that compares with a third dimension. Here, 127

we can see that much like in 2 dimensions, in 3 dimensions the 5th percentile performs better than 95th in estimating the 128

lengthscale, hence confirming the ‘modeling advantage’. 129

Lastly, we can use Fig. 10 to see that when the modeling advantage is taken away the 95th percentile performs better 130

compared to the 5th percentile. These results mirror our original results in 2D. 131

7 Do these results hold on alternative test functions? 132

A natural question is whether our results are limited to just our choice of the wildcat-wells class of function generators, 133

or do they transfer across different functions? To test this, we repeated the experiments described in S6 for three different 134

but commonly used N-Dimensional optimization test functions: the Sphere, Rosenbrock and Rastrigin functions as seeen in 135
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Fig. 10: Optimality gap plot showing effects of diversity when the optimizer is not allowed to fit the hyper-parameters for
the Gaussian Process and the hyper-parameters are instead fixed to the values found in Experiment A2. The results from this
plot show positive NCOG values for all families of wildcat wells function even as dimensions increase, showing that once
the ‘Model Building advantage’ is taken away the diverse samples outperform non-diverse samples. Further discussion on
this plot can be read in S6

Eq. 4. The only major difference with the previous experiments is that instead of plotting the optimality gap directly, we136

instead plot the Percentage difference in the optimality gap in Fig. 13. This was done to bring the plot to a comparable scale137

since the absolute difference in raw optimality gap can be, at certain points, on the order of millions, and at some points less138

than 1.139

Sphere(X) =
dims

∑
i=1

x2
i

Rastrigin(X) = 10×dims+
dims

∑
i=1

[
x2

i −10cos(2πxi)
]

Rosenbrock(X) =
dims-1

∑
i=1

[
100(xi+1 − x2

i )
2 +(1− xi)

2]
(4)

As seen in Fig. 11, when the hyperparameters are allowed to be optimized, in general low-diversity samples led to faster140

convergence than high-diversity initial samples. This is not always that case, as the 4D and 5D Rastrigin functions cases141

shows—in such cases non-diverse samples have comparatively marginal improvement in the longer term. For reference, this142

plot is designed to be a replication of Experiment 1 in the main paper, but just for different test functions.143

Fig. 12 shows that 5th-percentile diversity (low diversity) initial samples learns the kernel hyperparameter more accu-144

rately using fewer samples compared to 95th-percentile diversity initial samples in two dimensions and that this holds true145

irrespective of the choice of test function. However, as the function dimension increases this effect diminishes since the num-146

ber of initial samples needed to activate this “modeling advantage” regime increases (See earlier Fig. 7). With this additional147

set of data, samples from from the 95th-percentile of diversity learn the hyperparameters as well as 5th-percentile samples.148

For reference, like with Fig. 9 above, this plot was designed to be a replication of Experiment 2 in the main paper, but just149
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Fig. 11: Optimality gap grid plot showing the absolute difference in current Optimality Gap between optimizers initialized
with 5th vs 95th percentile diverse sample (y-axis) as a function of optimization iteration (x-axis). The different factors in
the factor grid plot are the dimensions across the rows and the different test functions across the columns. Each plot also has
text indicating the Percentage Cumulative Optimality Gap (PCOG), a positive value corresponds to a better performance by
high diversity samples compared to the low diversity samples. The plot shows that BO benefits from diversity in some cases
but not others. There are no obvious trends in how the PCOG values change in the grid. The results are further discussed in
S7

for different test functions and across increased dimensions. Unlike in Fig. 9 here we see that our proposed causal expla- 150

nation for the “modeling advantage” is less clear since for certain functions the high-diversity samples have better posterior 151

convergence than the 5th-percentile samples, and vice versa depending on the specific function and dimension. 152

In Fig. 13 where the kernel hyper-parameters are fixed to what should be optimal values, (compared to Fig. 11 where 153

the kernel hyper-parameters are learned) we can see several effects. First, we see that the low diversity initial samples had, 154

on average, better initial starting points on these test functions as seen by the PCOG values on the x-axis at “0”. This 155

could largely be luck or a peculiarity with the three test functions, since common optimization test functions often have 156

their optimal points toward the center of the domain, which non-diverse starting points are likely to sample with higher 157

frequency compared to diverse starting points. (Note in our wildcat wells function this was not the case and the optimal point 158

was likely to occur at any point in the domain depending on the seed of the random function generator.) Second, we see 159

compared to Fig. 11 that high diversity initial samples appear to be able to benefit from the ‘Space Exploration’ advantage 160

we hypothesized in the main paper and do catch-up almost instantaneously compared to the lower-diversity samples. For 161

reference, this plot is designed to be a replication of Experiment 3 in the main paper, but just for different test functions. 162

We still see a similar effect, in the sense that fixing the BO hyper-parameters aids the diverse initial sample condition, on 163

average, which mirrors qualitatively the phenomenon we observed on the wildcat wells function (compare this supplemental 164

material document’s Fig. 11 with Fig. 13). 165

In Figs. 14, 15, and 16 we can see how increasing the number of initial training samples induces convergence on the 166

learned kernel hyper-parameters for the Rastrigin, Rosenbrock, and Sphere functions, respectively. We used these plots to 167

choose the number of training samples to be used in Figs. 11, 12, and 13 by selecting the number of samples within the 168

“model building advantage” regime (as opposed to the sample deficient or sample saturated regime). The specific number 169

of training samples used for each function at each dimension can be seen in Table 1. We can see that the performance of 170

high diversity samples is significantly better when compared to the performance in Fig. 11. The high diversity samples still 171

struggle to improve performance for ‘Rosenbrock’ function, our hypothesis is that because the number of samples needed to 172
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learn the hyperparameters is exceedingly large for the Rosenbrock function (see Fig. 15) our proposed “modeling-advantage”173

is not that helpful to the optimizer, since it has already found a reasonable optimum by the time it has collected sufficient174

samples to converge to reasonable kernel estimates.175

Dimension Sphere Rosenbrock Rastrigin

2 8 4 5

3 12 5 7

4 38 8 30

5 75 20 60

Table 1: Table showing the different training size/number of examples used to initialize BO for different test functions in
Figs. 11,12,13.
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Fig. 12: Box plot showing distribution of ‘Lengthscale’ hyper-parameter learned by BO when initiated with diverse (orange)
and less-diverse samples (blue) for Sphere, Rosenbrock and Rastrigin test functions over 200 different seeds in each dimen-
sion. For refernce to how many training samples were used pleae check Table. 1. The optimal hyper-parameter for each test
function over 10 different runs is also plotted as horizontal (blue) lines—in many but not all cases these overlap. Each cell
in the plot also has the 95th percentile confidence bound on Mean Absolute Error (MAE) for both diverse and non-diverse
samples. The results show that MAE confidence bounds for non-diverse samples are smaller compared to diverse samples
for most test functions but at least does as well as the 95th. Thus, indicating a presence of Model Building advantage for
non-diverse initial samples. The results of this figure are further discussed in S7
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Fig. 13: Optimality gap plot showing effects of diversity when the optimizer is not allowed to fit the hyper-parameters for
the Gaussian Process and the hyper-parameters are instead fixed to the values found in Experiment A2. The results from
this plot show signficantly improved PCOG values compared to Fig. 11. ‘Rosenbrock’ is the only test function that does not
benefit from the diverse samples, its performance remains the same as it was when hyperparameters were optimized, Further
discussion on this plot can be read in S7

D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G. A., Ingold, G.-L., Allen,191

G. E., Lee, G. R., Audren, H., Probst, I., Dietrich, J. P., Silterra, J., Webber, J. T., Slavič, J., Nothman, J., Buchner, J.,192
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Fig. 14: Box plot showing the lengthscale parameter as learned by Rastrigin test function in 2D and 3D as the training
samples are increased. The plot also confirms the existence of a ‘modeling advantage’ for training samples of a particular
size. The results are further discussed in S7
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Fig. 15: Box plot showing the lengthscale parameter as learned by Rosenbrock test function in 2D and 3D as the training
samples are increased. The plot also confirms the existence of a ‘modeling advantage’ for training samples of a particular
size. The results are further discussed in S7
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Fig. 16: Box plot showing the lengthscale parameter as learned by Sphere test function in 2D and 3D as the training samples
are increased. The plot also confirms the existence of a ‘modeling advantage’ for training samples of a particular size. The
results are further discussed in S7
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