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Abstract—We present an approach to secure wireless
communication based on dynamically changing the apparent
phase center of a two-element antenna array using spatial
amplitude dynamics. We implement phase center dynamics by
modulating the relative amplitudes of the signals fed to two
antenna elements. By moving the phase center symmetrically
with respect to the geometric center of the array, the far-field
amplitude pattern remains mostly constant while the phase
pattern changes, imparting modulation onto the transmitted
or received signals that is a function of angle. The resulting
directional modulation effectively scrambles the information in
the radiated waveform at angles outside of the information beam,
where the modulation impacts are negligible. The result is a
narrow region where information is recoverable, and since the
radiated power does not change, the efficiency remains high.
We present the design of a 2.5 GHz two-element array with
asymmetric amplitude modulation and characterize the phase
center location as a function of the amplitude ratio between
the elements. We demonstrate secure wireless communication
experimentally in a high signal-to-noise ratio (SNR) environment,
demonstrating the reduction in throughput due solely to the phase
center dynamics. Finally, we analyze the information beamwidth
and present a design procedure relating the amplitude ratio, SNR,
element spacing, and QAM modulation format to the information
beamwidth.

Index Terms—Directional modulation, dynamic antennas,
dynamic arrays, phase center

I. INTRODUCTION

Security is becoming an increasingly important aspect
of wireless communications as the number of network
devices rapidly increases, making intentional or unintentional
interference between systems more likely. Whereas traditional
security approaches relying on encryption of the information
generated at baseband remains crucial, there is increasing
interest in applying additional security techniques at the
physical layer. Physical layer security approaches have the
potential to be applied in a way that is effectively separate
from the underlying information, providing an approach that
is transparent to the larger communication system and that can
be applied to existing as well as future system architectures.
When implemented at the aperture in particular, physical
layer security can be implemented in an angle-dependent
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manner such that the signal encryption is unique at all angles.
Directional modulation (DM) is a technique that imparts such
encryption through modulation of the antenna radiation pattern
in amplitude and/or phase at angles outside of a desired
information beam. Thus, while energy may be transmitted
over a wide angular range, the recoverable information is
constrained to a narrow information beam, the width of which
can be far narrower than the beamwidth of the power pattern.

Directional modulation has been implemented using a range
of antenna techniques. Array-based DM approaches have been
implemented, which rely on modulating the phase weights of
the elements [1]–[3], by switching subsets of antennas on and
off [4], [5], or by switching the feed between two antennas in
a two-element array in an on/off keyed (OOK) approach [6].
While these approaches are able to generate DM, the
approaches generally result in reduced gain since the aperture
is not efficiently utilized. Other approaches have sought to
implement DM using switching schemes to maximize the
bit-error ratio (BER) in undesired directions by combinatorial
interference [7] based on using vector synthesis analysis
of DM transmitter designs [8]. However, these methods
require complicated antenna architectures that are electrically
large and may not be feasible in all applications. Other
approaches include near-field parasitic element switching to
implement DM [9]. Modeling of such systems is complex, and
typically their characterization requires rigorous calibration
to determine a lookup table of states that correspond to
given directions. To overcome the reduction in efficiency
that generally accompanies DM implementations, a dynamic
distributed array was implemented in [10] where, using the
additional degree of freedom of element motion, DM was
implemented while maintaining maximum transmit power at
all times. However, this approach relied on platform motion,
which may be a limiting factor to secure high data rates.
Demonstrating directional modulation within a small aperture
has also been investigated at the single element level using a
simple dipole architecture [11], and with arrays of electrically
small antennas [12]. Other compact structures use stacked
patch antennas to excite different modes [13].

In this work, we present a new approach to achieving
high-efficiency DM that synthesizes the motion of the
electrical location (phase center) of the transmitter using
spatial amplitude dynamics. By dynamically changing the
relative amplitudes of the signals fed to a two-element antenna
array while keeping the array power constant and relative
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phases equal, a dynamic phase pattern is implemented while
the amplitude pattern of the array remains largely constant. In
contrast to OOK arrays, we show that using an amplitude ratio
between a traditional 50/50 split used in typical two-element
arrays and a 100/0 split (used in OOK) achieves effectively
the same radiated power, gain and efficiency while the OOK
approach yields significantly reduced gain. We characterize the
motion of the phase center of the antenna both numerically
and through measurements using established phase center
estimation techniques [14], and demonstrate that by changing
the amplitude ratio between the two elements, the phase
center of the antenna moves, synthesizing electrical motion
of the antenna, which leads to dynamics in the radiated phase
pattern. While our recent work demonstrated the design of
an asymmetric power divider providing a single amplitude
ratio [15], in this work we present experimental results of
a 2.5 GHz antenna with four different relative amplitude
ratios, demonstrating the ability to obtain a narrow information
beam. Furthermore, experiments were conducted with high
signal-to-noise ratio (SNR), such that all errors obtained
outside the information beamwidth are due solely to the
antenna dynamics, and not due to reduced SNR. Finally, we
present a detailed characterization of the information beam and
obtain a formula for determining the information beamwidth
in terms of the amplitude ratio, the separation between the
antennas, SNR, and the QAM constellation format.

II. DYNAMIC ANTENNA THEORY AND DESIGN

A. Theory

The dynamic phase center antenna is based on rapidly
switching the relative amplitudes of the signals fed to two
antennas. In the far field, the electric field intensity of an array
of two identical elements with different currents is given by

E (r) = jkη
e−jkr

4πr
a (θ, ϕ)AF (θ, ϕ) (1)

where k = 2π/λ is the wavenumber, η is the impedance of
the medium, and

a (θ, ϕ) =
∫
V

J (r′) ejkr̂·r′dV ′ (2)

is the element pattern where J is the normalized current
density, assumed to be equal on each antenna, and the antenna
extends over the volume V . Primed coordinates refer to the
locations of the sources, while unprimed coordinates refer to
locations of the fields. The term

AF (θ, ϕ) =
∑
i=1,2

Ii
I0
ejkxi cosϕ (3)

is the array factor which accounts for different weighting of the
antenna currents through the terms Ii

I0
, where I0 is a nominal

reference current. The driving signals to each antenna can then
be characterized as a current given by

Ii = wiIo (4)

where wi is a complex weighting factor on each current, which
can be defined for a desired beamsteering angle, for example.
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Fig. 1: The dynamic array rapidly switches two amplitude-asymmetric inputs
between the two antenna feeds. The magnitude of the radiation pattern remains
constant between the two states; however, the phase patterns undergo a sign
flip. This generates an angle-dependent phase modulation onto the pattern
that is negligible at broadside but prominent at angles away from broadside.
Information transmitted or received away from broadside undergoes additional
modulation due to the phase modulation imparted by the dynamic pattern,
making the information unrecoverable and generating a narrow information
beam near broadside. The information beam can be steered using additional
complex signal weighting.

This work considers the use of differential amplitude
weighting to impart directional modulation. The differential
amplitude weights may be applied in addition to the complex
weights wi, thus we can write the drive currents as

I ′i = AiIi (5)

We consider the antenna weights to be asymmetric, and to
switch the signals between two states with a given periodicity.
The weights can be thus given as

A1 = α(t)

A2 = 1− α(t) (6)

where

α(t) =

{
a, (n− 1)T0 < t <

(
n− 1

2

)
T0

1− a,
(
n− 1

2

)
T0 < t < nT0

(7)

in which 0 ≤ a ≤ 1, T0 is a period over which the
antenna switches between the two states, and n is an integer.
The two states thus consist of the same two drive currents,
but they are switched between the two antennas, mirroring
the drive current weights at each antenna. The differential
weighting can be characterized in terms of the amplitude ratio
χ = 20 log10[

a
1−a ]. In this work, we consider the ratios ±0 dB,

±6 dB, ±12 dB, and ±∞ dB. The ±0 dB case is equivalent
to a standard array with equal amplitude weighting at each
element, while the ±∞ dB case is equivalent to an OOK
scheme, where only one antenna is driven at a time in each
state.



3

Switching the amplitudes between the two symmetric states
results in a far-field amplitude pattern that is unchanged, while
the phase pattern is mirrored. For a two-element array aligned
along the x-axis, centered at the origin, and with weights wi =
1, the array factor reduces to

AF (ϕ) = A1e
−jk d

2 cosϕ +A2e
jk d

2 cosϕ (8)

where d = |x2 − x1| is the separation of the antennas. The
magnitude of the array factor is

|AF (ϕ)| =
[
A2

1 +A2
2 +A1A2 cos (kd cosϕ)

]− 1
2 (9)

and the phase is

∠AF (ϕ) = tan−1

[(
A2 −A1

A1 +A2

)
tan

(
kd

2
cosϕ

)]
(10)

When the antenna driving currents are swapped, i.e. A1 → A2

and A2 → A1, the magnitude (9) is unchanged. The phase
(10), however, undergoes a sign change at all angles except
ϕ = 90°, thus creating a phase differential in the radiation
pattern away from the broadside direction when the inputs
are swapped, while keeping the magnitude the same. This is
illustrated in Fig. 1. By switching rapidly between these two
states, phase modulation commensurate with the differential
phase will be imparted on the signals transmitted or received
by the array. The region where this modulation is sufficiently
small such that the information is recoverable is referred to
as the information beam. In Section V we characterize the
beamwidth of this region. Note that the information beam can
be steered by modifying the complex weights wi.

B. Antenna Design

A two-element microstrip patch antenna array was built
at 2.5 GHz to evaluate the concept. The antenna was
fabricated on Rogers 4350b with a thickness of 1.542 mm.
The antennas each had a length of 29.95 mm and a width
of 39.28 mm [16]. The length of the ground plane and
substrate have an additional λ

4 or greater spacing for a
total length of 181 mm and width of 99.5 mm. The feed
point was then designed to impedance match the antenna to
50 Ω which was 9.6 mm from the edge of the patch. The
antenna was simulated in Ansys High Frequency Structure
Simulator (HFSS), and the simulated gain was 5.74 dBi.
A gain measurement of the single antenna was done in a
fully enclosed anechoic chamber yielding a measured gain of
5.7 dBi at the designed frequency of 2.5GHz. The two-element
array was then constructed and evaluated in HFSS, and
an ideal simulation conducted in MATLAB. Source feed
amplitudes were simulated with different amplitude ratios in
HFSS, and the resulting magnitude and phase patterns were
exported into MATLAB to compare against measured results.
Two 2.5 GHz single element antennas were manufactured and
placed physically 0.75λ apart as shown in Fig. 2(a) with
the manufactured array shown in Fig. 2(b). This spacing was
chosen to ensure the presence of high sidelobes greater than
−20 dB, which in a static array would result in information
transmission in directions outside the mainbeam. This also

181 mm

99.5 mm

90 mm

39.28 mm

29.95 mm

9.6 mm

(a)
RO4350b

3.66
1.542 mm

99.5 mm

(b)
Fig. 2: Two-element microstrip patch array designed at 2.5 GHz with 0.75λ
spacing. (a) HFSS model and (b) Fabricated antenna.

mitigates mutual coupling, which is most prominent up to
half-wavelength element separations.

The antenna system was measured in a semi-anechoic
environment using the setup shown in Fig. 3. The setup was
used to characterize the differential patterns of the antennas
as a function of angle and amplitude ratio, which are later
analyzed to characterize the impact on BER (see Section IV).
The two-element array was placed on a rotating platform
and operated in receive mode. The transmitter consisted of a
Keysight N5183A continuous wave signal generator connected
to an L-Com HG2458-08LP-NF log-periodic antenna and was
located approximately 3.61 m down range. The array was
calibrated for amplitude ratios of 0 dB, 6 dB, 12 dB, and
∞ dB with a tolerance of ±0.1 dB and a phase tolerance of
±1° by using attenuators and cables. While the attenuators
would not be used in a practical communication system due
to added resistive losses in the system, here they are used as a
proof of concept. A Narda 3752 precision coaxial phase shifter
was used to ensure that both radiated signals were in-phase
at broadside, and then the power from both radiators were
combined before being received by a Keysight MSOX92004A
oscilloscope. For each amplitude ratio case, two magnitude
and two phase patterns (one for each state) were measured.
The transmitted signal was split between the transmit antenna
and a second channel on the oscilloscope, and was used
to compare to the received signals to calculate the relative
phase patterns of the antenna in its two states. The magnitude
and phase patterns were measured from ϕ ∈ [−90, 90]
in 1° increments. An intentionally high SNR experiment
was conducted to ensure that any bit errors would be the
result only of the differential array patterns, and not due to
noise. The minimum SNR at broadside was approximately
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Fig. 3: Experimental test setup. (a) Block diagram of the setup. The array
was set in receive mode, with the signals phase and amplitude matched to
obtain the desired amplitude ratios. The cables were swapped to synthesize
the two antenna states. (b) Photograph of the test setup in a semi-anechoic
environment.

60 dB, with a minimum SNR of 30 dB spanning all other
angles. These patterns were then imported into a simulated
communication channel to model spatial pattern dynamics and
communications performance (see Section IV).

The HFSS-simulated and measured magnitude and phase
patterns of the array are shown in Fig. 4 for the amplitude
ratio cases of |χ| = 0 dB, |χ| = 6 dB, |χ| = 12 dB, and
|χ| = ∞ dB for the two states S1 and S2. The amplitude
patterns remain constant between the two states regardless of
χ, which matches the theoretical magnitude pattern (9). For
the equal amplitude case |χ| = 0 dB, which corresponds to
the traditional phased array amplitude weighting, the phase
pattern does not change as the states are switched. However,
for |χ| ̸= 0 dB, the amplitude pattern undergoes a sign flip,
mirroring the phase pattern across broadside. This behavior
matches the theory in (10). If the array is rapidly switched
between the two states, a differential phase will be modulated
onto the transmitted or received signals at all angles except
at broadside (ϕ = π

2 ) where the phase is equal for both
states. This modulation, if done at a sufficiently fast rate, will
effectively scramble the information outside of a region close
to broadside, making it unrecoverable. Note that the equiphase
point at broadside can be steered to any angle by changing
the weights wi of the driving signals (4) in a traditional
beamsteering operation.

TABLE I: Array Performance vs. Amplitude Ratio

Ratio (dB) HPBW(°) Gain (dB) Eff (%) EIRP (dBm)
0 35 9.2 80.5 15.4
6 38 8.7 81.0 15.5
12 44 7.8 81.3 15.5
∞ 76 6.2 81.6 15.5

C. Array Performance Comparison

One of the challenges of implementing directional
modulation in arrays involves reduced gain or efficiency when
modifying the element weights. In particular, many approaches
rely on switching elements off periodically or otherwise lose
mainbeam gain. In a two-element array, an OOK approach will
result in only a single element driven at a time, as seen by (3),
which will lead to reduced gain since the added directivity of
the array factor is not utilized. Furthermore, turning elements
off in larger arrays without reallocating the power will lead to
reduced effective isotropic radiated power (EIRP).

We consider the impact on the array half-power beamwidth
(HPBW), gain, efficiency, and EIRP as a function of the
amplitude ratio by simulating the array performance in HFSS.
The results are given in Table I. EIRP is calculated using
the total array input power of 10 dBm. The conduction and
dielectric losses are approximately 0.8 dBm. In the 0 dB
ratio (a 50/50 amplitude split corresponding to a typical
two-element antenna array), the parameters are commensurate
with a typical two-element antenna array. In the other extreme
case, the ∞ dB case where only one antenna is driven at
a time, the HPBW increases commensurately, and the gain
reduces due to the lost array gain. Since all the signal power
is now directed to one antenna, the EIRP is effectively
unchanged, however the gain reduction is significant. The
two cases with asymmetric but nonzero amplitudes provide
more interesting results. For both the 6 dB and 12 dB cases
the HPBW increases slightly, and the gain decreases slightly,
while the efficiency and EIRP remain constant. In both cases,
the performance is close to that of the standard two-element
array. However, since the amplitude ratio is changed, the
antenna phase center will also move, leading to differences in
the radiated field patterns, as shown below in Section III. Thus,
by implementing an asymmetric but nonzero amplitude ratio,
high gain and efficiency can be maintained while supporting
dynamic phase differences in the radiation patterns.

III. DYNAMIC PHASE CENTER INTERPRETATION

At angles within the mainbeam of the array, where ϕ ≈ π
2 ,

the array factor phase (10) simplifies since at these angles
the term cosϕ ≈ π

2 − ϕ ≪ 1, and thus the small argument
approximations tan θ ≈ θ and tan−1 θ ≈ θ can be used. The
phase of the array factor is then

∠AF ≈
(
A2 −A1

A1 +A2

)
kd

2
cosϕ (11)

When the weights are defined as in (6), the phase reduces to

∠AF ≈ (1− 2α)
kd

2
cosϕ (12)
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Fig. 4: Magnitude (top) and phase (bottom) patterns over observation angle π
2
−ϕ for the two-element array for the four amplitude ratio cases of |χ| = 0 dB,

|χ| = 6 dB, |χ| = 12 dB, and |χ| = ∞ dB for the two states S1 and S2. The amplitudes of the drive signals swap between S1 and S2. While the amplitude
patterns remain the same between the two states, the phase patterns undergo a sign change at all angles except at broadside, and except for the 0 dB case,
which corresponds to equal amplitude on each antenna (the typical array weighting). Thus, for |χ| ̸= 0 dB, as the antenna is switched rapidly between
the two states, the transmitted or received signals are modulated by the differential time-varying phase of the patterns everywhere except at broadside. The
unmodulated region near broadside may be steered by adding additional complex weights to the drive signals.

The phase is thus linearly proportional to the amplitude
factor α for angles ϕ ̸= π

2 . When α = 0, the phase is
∠AF = kd

2 cosϕ; when α = 1, ∠AF = −kd
2 cosϕ; and when

α = 1
2 (broadside to the array), ∠AF = 0. Note that when

ϕ = π
2 , ∠AF = 0 for all α.

In essence, the above indicates that the apparent electrical
location of the array changes linearly as a function of α, which
generates a change in the phase of the received signal that is
commensurate with the change in electrical location relative
to the observation point. The electrical location of the antenna
is referred to as the antenna apparent phase center [17],
[18]. The phase center of an antenna is an idealized point
in space where radiation is emitted such that the phase is
a constant over the surface of an outward radiating sphere.
Since real antennas cannot support isotropic radiation [19],
the phase center only corresponds to the physical location
of the antenna for theoretical point radiators. The geometries
of physical antennas generate complex current densities that
cause the phase center to deviate from the physical location
of the antenna, thus in practice the apparent phase center is
considered. The apparent phase center varies with frequency,
the geometry of antenna, antenna polarization, and angular
position of observation.

The phase center of the two-element array can be visualized
as a radiating point xpc that exists between the phase centers
of the two antennas. The phase center varies in position as a
function of α between the locations of the two antennas, i.e.,

−d
2
≤ xpc (α) ≤

d

2
(13)

As the phase center moves, the phase of the outgoing spherical
wave ψ changes in response to the phase center location and
observation angle by

ψ = 2π
xpc
λ

cosϕ = kxpc cosϕ (14)

Comparing to (12), it can be seen that the dynamic phase
center can be characterized in terms of the amplitude ratio by

xpc = (1− 2α)
d

2
(15)

such that the phase of the radiation pattern is

∠AF ≈ ψ = kxpc cosϕ (16)

Thus, by characterizing the phase center of the antenna as
a function of the amplitude ratio, the relative change in the
radiation pattern phase can be determined.

Estimating the phase center of an antenna is challenging
in general; however, various methods have been developed.
These include the edge diffraction method [20], which is well
characterized to large horns, the vector method [18], which
derives an expression for the horn phase center based off
the two-point method [21], and the second derivative method,
which is well characterized for parabolic reflectors [17]. Other
phase center determination methods are measurement-based,
such as the differential phase correction method [22] and the
three-antenna method [23]. Analytical solutions to determining
phase center are iterative in their approach such as the
weighted phase efficiency method [24], the differential phase
method [25], and the mean electrical phase center (MEPC)
method [14], which derives the phase center geometrically
from a set of two phase pattern measurements. In this work
we use the MEPC method because it operates in closed form,
is not specific to the antenna geometry, and does not require
significant computation. MEPC provides a cluster of phase
center locations; we modify the MEPC approach by taking
the mean of the cluster, and we calculate the phase center
over ±18° of the mainbeam of the array.

The phase center of the array was estimated for an
ideal array consisting of two isotropic antennas modeled in
MATLAB, a patch antenna array simulated in HFSS, and
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Fig. 5: Estimation of the phase center in wavelengths as a function of the
amplitude ratio α for the two-element 0.75λ array. The phase center was
estimated in simulation from an array of ideal isotropic radiators in MATLAB,
a simulation of the patch antennas in HFSS, and from measurements of the
fabricated antenna. All were based on the MEPC method [14] but modified
to take the mean over an angular region of ±18°. The phase center follows
a linear progression between the two extremes, which correspond to the
locations of the individual antenna elements.
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Fig. 6: Block diagram of the simulated QAM communication channel

from the measured patterns of the fabricated antenna array
for the amplitude ratios ±0 dB, ±6 dB, ±12 dB, and ±∞
dB. The estimation of the phase center in wavelengths using
all three are shown in Fig. 5. The phase center follows a
linear progression over a span of d = 0.75λ, which is the
electrical spacing of the antennas, and which matches (13).
At the extremes, the phase center is located at one of the two
elements in the array and progresses approximately linearly
between the two antennas.

IV. SECURE WIRELESS COMMUNICATION EVALUATION

The communications performance of a dynamic array
switching between two amplitude states was simulated in
MATLAB. The complex radiation patterns for the two
simulated cases (isotropic radiators simulated in MATLAB and
the patch array simulated in HFSS) as well as the measured
patterns from the fabricated two-element array were imported
into the communications channel model shown in Fig. 6. The
model generated a 48 kbit pseudo-random bit sequence that
was modulated onto a 16-QAM signal using Gray coding. The
array patterns were then implemented and switched between
the two states at a rate equal to the symbol rate of the data,
generating an angle-dependent signal. The amplitude patterns
are equal for each state, but the phase patterns differ, thus the
information is modulated by an additional phase modulation
that is dependent on the angle as shown in (10) and (16).
Additive white Gaussian noise (AWGN) was then added to
yield an SNR of 40 dB. This SNR is sufficiently high to ensure
that there are no bit errors from noise alone, thus any increase
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Fig. 7: Differential phase pattern (left column) and resulting BER (right
column) for (a/b) |χ| = 0 dB, (c/d) |χ| = 6 dB, (e/f) |χ| = 12 dB, and
(g/h) |χ| = ∞ dB for a 16-QAM signal with 40 dB SNR. The |χ| = 0 dB
case yields low BER at nearly all angles since the differential phase pattern
is essentially zero for all angles. For other values of χ, the BER increases
significantly outside of the broadside region (π

2
− ϕ ≈ 0) due to the large

phase differential imparted by switching between the two states. As the phase
differential increases, the information beam, where the BER is low and thus
the information is recoverable, narrows.

in the BER is due solely to the directional modulation added
by the dynamic array. Demodulation was implemented without
assuming the additional modulation due to the dynamic array
pattern, after which the BER was calculated as a function of
angle.

While this work analyzed the case where the switching rate
and symbol rate are equal, it is reasonable to expect that the
technique will be as effective if the switching rate is close
to that of the symbol rate, but not exactly the same. Faster
switching rates are also expected to be effective; however, an
analysis of significantly slower switching rates is outside the
scope of this paper. A random switching rate with mean equal
to that of the symbol rate was explored through simulation,
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Fig. 8: Information beamwidth versus element spacing and amplitude factor
a (see (7)) for 8-QAM, showing the exponentially decaying dependence with
respect to both variables.

and did not show a degradation in BER compared to the
periodic switching case. Different switching rates may impact
performance because of spurious signals generated by the
RF switch; in [15] we presented an analysis showing that
such spurious signals were negligible for typical switching
parameters and RF hardware.

Fig. 7 shows the differential phase patterns and resulting
BER for each amplitude ratio. The differential phase pattern
for the equal amplitude case |χ| = 0 dB is essentially zero
across all angles. This can be interpreted as the phase center
remaining stationary at the centroid of the two antennas even
when switching between the two states. The BER remains
low across all angles; no bit errors were seen in most cases.
Some errors were observed at the nulls of the beam pattern,
where the amplitude approached zero and thus the noise was
prominent. Outside of these narrow regions, however, the SNR
was sufficiently high to result in zero bit errors.

As the amplitude ratio is changed, the differential phase
pattern becomes appreciable, imparting additional phase
modulation onto the information at angles away from
broadside (π2 − ϕ ≈ 0). The result is a significant increase
in BER due to the additional phase modulation. The region
where the BER remains low is referred to as the information
beam and is the angular region where the information
remains recoverable. As the amplitude ratio is increased, the
information beamwidth decreases, resulting in a narrower
information beam, and thus a narrower region where the
information is recoverable. This is despite the fact that energy
is still being transmitted to all angles, as can be seen by
the magnitude patterns of Fig. 4. Thus, the additional phase
modulation due to dynamic switching of the array between the
two states successfully impart directional modulation onto the
information.

V. INFORMATION BEAMWIDTH MODEL

In this section we obtain an empirical model of the
angular width of the information beam, called the information
beamwidth (IB), in terms of parameters of the antenna system,
the information, and the SNR. The objective is to predict the
spatial parameters of a secure wireless operation in terms of
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(c)
Fig. 9: Information beamwidth versus SNR and amplitude ratio with a
0.75λ element spacing transmitting 8-QAM constellation symbols. (a) 3D
surface plot showing a logarithmic dependency of SNR upon the information
beamwidth. (b) The normalized unit (N.U.) and averaged relationship across
all amplitude ratios showing consistent effect of SNR. (c) The 2D curve fit
of the averaged N.U. data shows good agreement using trust-region reflection
algorithm and least absolute residuals (LAR) robustness.

the controllable aspects in a given design. We obtain a model
for the information beamwidth as a function of the following
parameters:

• Amplitude factor a (see (7))
• Antenna separation d
• SNR
• QAM modulation order

The IB is defined in this work as the angular separation at
which BER ≤ 10−3 and that corresponds to the mainbeam of
the array. The beamwidth is evaluated for isotropic radiators
simulated in MATLAB assuming that the array states are
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TABLE II: Information Beamwidth Model Parameters

Modulation c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
4-QAM 9.3930E1 5.2948 1.2905 45.894 2.5419 4.0641 23.257 4.1543 0.0321 -22.560
8-QAM 2.3329E1 10.788 1.2730 28.024 2.4638 2.5935 1.0049 5.3642 0.5117 -0.2251
16-QAM 1.0293E4 11.485 3.7600 8.9482 2.4549 0.8314 1.1804 4.9773 0.5000 -0.4220
32-QAM 6.4374E4 15.568 2.3447 10.545 2.4151 1.0019 0.9874 5.3609 0.5100 -0.1944
64-QAM 1.8174E5 19.700 0.6816 27.943 2.3782 2.7077 65.740 4.1961 0.0091 -64.971

128-QAM 1.1013E5 25.716 0.0161 845.74 2.3201 84.151 37.969 4.4037 0.0140 -37.169
256-QAM 1.6369E5 30.843 0.0016 6698.0 2.2877 681.49 18.939 4.3782 0.0275 -18.138
512-QAM 1.5277E8 33.088 0.4044 16.101 2.1652 1.6997 124.34 4.5742 0.0035 -123.50
1024-QAM 4.4095E5 30.932 0.0033 1241.3 1.8970 130.53 159.91 4.1395 0.0033 -159.11

TABLE III: Information Beamwidth Model Error

Modulation RMSE (°)
4-QAM 1.22
8-QAM 1.08

16-QAM 1.15
32-QAM 1.21
64-QAM 1.27
128-QAM 1.25
256-QAM 1.15
512-QAM 1.01

1024-QAM 0.97

switched at a rate equal to the symbol rate of the information.
The same communications channel model as in Section IV
was used, with at 48 kbit pseudo-random bit sequence using
Gray coding and an SNR of 40 dB. QAM modulation orders
from 4-QAM to 1024-QAM were evaluated.

The information beamwidth was computed across a range
of element spacing between 0.5λ ≤ d ≤ 0.8λ in 0.01λ
increments, 0.8λ ≤ d ≤ 2.0λ in 0.05λ increments, and
an amplitude factor range between 0.51 ≤ a ≤ 1 in 0.01
increments. The information beamwidth was plotted versus
amplitude ratio and element spacing for nine different QAM
constellations ranging from 4-QAM to 1024-QAM. A 3D
surface was curve fitted to the response, from which it
was determined that the surface displayed an exponentially
decaying relationship with respect to each variable. Fig.
8 shows the result of the information beamwidth versus
element spacing d and the amplitude factor a for 8-QAM,
showing the exponentially decaying dependence on both
variables. Similar plots were generated for other QAM orders,
each with exponentially decaying dependence, although with
different specific weights, yielding an information beamwidth
dependence of the form

IB1 = [c1e
c2a + c3][c4e

c5d + c6] (17)

where ci, i = [1, 6] are coefficients that are determined
empirically based on curve fitting.

Since SNR is independent of the physical array design,
we consider the impact of SNR to be separable from that
of the amplitude ratio and element spacing. The information
beamwidth was thus characterized for 6 ≤ SNR ≤ 40 dB in
increments of 1 dB for all QAM modulation orders and versus
amplitude ratio for an element spacing of 0.75λ. The 3D
surfaces were generated as a function of SNR and amplitude
factor a as shown in Fig. 9(a). Each 2D curve of SNR versus
the information beamwidth was individually normalized to unit
data (N.U.) and plotted as shown in Fig. 9(b). The average

of all normalized data was used as the reference for curve
fitting. These parameters fit to a logarithmic dependence on
SNR given by

IB2 = c7|log10 (SNR− c8)
c9 |+ c10 (18)

where ci, i = [7, 10] are additional coefficients determined
empirically via curve fitting.

The final empirical model of the information beamwidth is
thus given by

IB = IB1 × IB2

= [c1e
c2a + c3][c4e

c5d + c6][c7|log10(SNR− c8)
c9 |+ c10]

(19)

For each surface generated, multiple algorithms were
used to extract coefficients to fit the model, including the
Levenberg-Marquardt and the trust-region reflection [26], [27]
and two robustness methods, least absolute residuals and
bisquare residuals [28], [29]. The RMS error of the models
were then compared to the surfaces for each QAM order. The
parameters of (19) resulting from the model fit are given in
Table II, and the error between the model and the simulated
ideal information beamwidth are given in Table III. The total
RMS error in estimating the information beamwidth using the
model (19) is less than 1.3°. In addition to the RMSE analysis,
we evaluated the maximum error. For amplitude ratios greater
than 2 dB, the maximum model error was less than 3°; for
amplitude ratios between 12 dB and 15 dB, the maximum error
was less than 1°. Fig. 9 (c) demonstrates that (19) provides
good agreement between the model and simulation results for
8-QAM.

VI. CONCLUSION

Dynamically switching the input signal feeds with only
amplitude changes in a two-element array yields sufficient
phase dynamics to support directional modulation while
negligibly impacting the magnitude pattern. For low amplitude
ratios (6 dB or 12 dB) the array gain is minimally impacted
while the information beamwidth is significantly narrowed
compared to a traditional 0 dB amplitude ratio case. We
analyzed the theoretical impact of dynamic amplitude
weighting and showed through theory and measurement
that it can be interpreted as dynamic motion of the array
phase center. This provides a physical interpretation of the
mechanics of the subsequent directional modulation that can
be useful in a design procedure. Furthermore, the information
beamwidth model can be used as a design guideline to
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determine desired amplitude weights for given modulation
orders. Used in a dynamic array, the differential phase
pattern resulting from the motion of the phase center yields
a narrow information beam that is the result of the array
dynamics, and not low SNR. Since the presented amplitude
modulation can be implemented separately from traditional
phased array weighting, the information beam can be steered
using standard phased array beamsteering approaches. This
work demonstrated the concept using a simple two-element
array as a proof-of-concept; however, the technique should be
applicable to larger arrays as well.
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