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Abstract— Koopman liftings have been successfully
used to learn high dimensional linear approximations for
autonomous systems for prediction purposes, or for con-
trol systems for leveraging linear control techniques to con-
trol nonlinear dynamics. In this paper, we show how learned
Koopman approximations can be used for state-feedback
correct-by-construction control. To this end, we introduce
the Koopman over-approximation, a (possibly hybrid) lifted
representation that has a simulation-like relation with the
underlying dynamics. Then, we prove how successive ap-
plication of controlled predecessor operation in the lifted
space leads to an implicit backward reachable set for the
actual dynamics. Finally, we demonstrate the approach on
two nonlinear control examples with unknown dynamics.

Index Terms—reachability, constrained nonlinear con-
trol, data-driven control

[. INTRODUCTION

HE goal of backward reachability analysis is to identify

a set of states called the backward reachable set (BRS),
which guarantees the existence of a control strategy to direct
a system’s trajectories towards a predetermined target region
within a finite time. Having BRS can significantly simplify
controller synthesis while ensuring safety. Particularly, it pro-
vides a state-feedback controller defined over the entire BRS
as opposed to point-to-point planners. However, for general
nonlinear systems, computation of maximal BRS is considered
a challenging problem [1]. To overcome this fundamental
limitation, one approach is to compute inner-approximations
which still guarantee existence of safe controllers at the
expense of being conservative.

One strategy for addressing nonlinear control problems
involves the application of Koopman operator theory to extend
the use of well-studied linear system analysis [2]. Particularly,
a lifting function is sought which transforms the coordinates
to a higher dimensional space over which the nonlinear
dynamics flows in a linear fashion. However, for an arbi-
trary nonlinear system, such a lifting function is in general
infinite-dimensional. Therefore, in practice, it is only possible
to construct finite-dimensional approximations, which in-turn
introduces an approximation error. By bounding the approxi-
mation error, we provide a novel Koopman-inspired approach
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to compute correct-by-construction inner approximations of
the BRS of discrete-time nonlinear systems. We also show how
this approach can be used for unknown systems where lifted
local linear approximations to the dynamics are computed
from data and used for BRS computation.

A. Related work

Creating linear approximations of nonlinear systems is a
highly recognized subject in the field of systems and control.
There are various approaches such as Taylor approximation
based linearization, feedback linearization [3] and lineariza-
tion through state immersion [4]. More recently, approaches
motivated by Koopman operator theory start to draw revived
attention in control research. Several ways to use Koopman
lifted systems to address nonlinear control problems using
linear methods are proposed in literature [5], [6]. Koopman-
like lifted systems are also used to identify forward reachable
sets [7] and invariant sets of autonomous systems [8], [9].

Backward reachability analysis has also been extensively
studied as a useful tool to solve constrained control prob-
lems. Existing techniques include set-based methods [1], [10]-
[12], discrete-abstractions [13], [14], Hamilton-Jacobi (HJ)
reachability [15], [16], and more recent work for unknown
dynamics [17]. However, most of the existing methods cannot
be extended to general nonlinear systems, especially when the
state space dimension is large [15]. All in all, there is a trade-
off between generality, scalability, and conservativeness, and
new methods striking a different balance between these factors
are needed.

B. Notation

For a matrix A, A; denotes its i row. For a vector-valued
function f, f* is the i™ component of f. The Lipschitz con-
stant of a function f is denoted by L. A norm is represented
by the notation ||z||, when it is applied to a matrix it indicates
induced norm. The notation B(c,r) denotes a closed norm-
ball centered at point ¢ with a radius of . The symbol & is
used for Minkowski sum. When x is applied to sets it is to
indicate cartesian product.

Il. PROBLEM STATEMENT

We consider discrete-time systems of the form

oot = fa,uw), (1)
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with state + € X C R” and input v € Y C R™. We use
uncertain systems of the form

Yot =gz, u,w) 2)

as approximations of a given system Y., where the disturbance
input w € W C R! accounts for the mismatch. For an
uncertain system, one-step backward reachable sets are defined
as follows.

Definition 1 ( [10]): Given an uncertain system ., a tar-
get set X C X and a state-input constraint set S, =
Sy XSy, C X XU, the one-step backward reachable set (BRS)
Pres, (X, Szy) of the set X with respect to X, and constraint
set Sy, 1S given by

Prey, (X, S.,) ={x €S, |Fue S, : glz,u,W) C X}.
3)
We denote PreX (X, S,,) = X and define recursively the k-
step backward reachable set (k-step BRS) of X by

Pre% (X, S,,) = Pres (Preg_l(X7 Szw)s Sau)- 4)

The definition of BRS applies to systems in (1) just by taking
the trivial disturbance W = {0}. For linear systems and poly-
topic sets X and Sy, the k-step BRS of X in (4) is again a
polytope, making it computable relatively efficiently [18], [19].
However, if the system X is nonlinear, the k-step BRS can be
highly nonconvex, which makes its computation challenging.
The focus of this work is to find inner approximations of the
k-step BRS for nonlinear systems.

Problem 1: Given a nonlinear system X, a polytopic target
set Xg, and a polytopic constraint set .S;,,, find inner approx-
imations of the k-step BRS X}, = Pre%(Xo, Szu).

In the next section, we recast Problem 1 into a problem of
computing BRSs for uncertain linear systems with polytopic
sets using ideas from Koopman operator theory.

[1l. KOOPMAN OVER-APPROXIMATIONS

Inspired by Koopman operator theory, several recent works
propose to approximate a nonlinear system X by a higher-
dimensional linear system. More specifically, for the nonlinear
system 3, there may exist a lifting function ¢ : X — RP for
which the dynamics of ¢ (x) is approximately linear, i.e.,

U(f(z,u)) ~ Ap(x) + Bu.

Given a lifting function ¢ : X — RP, and the system matri-
ces A and B, we define the approximation error E4 p(z,u)
by

Eap(z,u) = ¢(f(z,u)) = AY(x) — Bu. (5)

When the lifting function v and system matrices A and B are
selected properly, the approximation error can be very small
over a domain of interest (see examples in [5]). The evolution
of the lifted state z = ¢ (x) can be captured by an uncertain
linear system

Yiin 12T = Az + Bu+ w, (6)

with 2 € RP, u € Y C R™ and w € W C RP if the set
W C RP bounds the error E4 p(x,u) over given state and
input domains X, and Usyp.

Definition 2: The tuple (¢, ¥;,) of a lifting function v :
X — RP and a linear system X, is an Koopman over-
approximation of the system X over subdomains X, C X
and Uy, C U if for all (z,u) € Xsup X Usyp, We have

EA,B(.’L‘,U) eWw. @)
When the lifting function v is clear from the context, we say
that X, is a Koopman over-approximation of ». Here we
do not require the subdomain X,; to be forward invariant
or controlled invariant. If Us,, and W are all {0}, then ()
is just a finite-dimensional Koopman eigenmapping for the
autonomous system zt = f (x,0) over Xgyup [20].

To compute the BRS of X using the Koopman over-
approximation, we need to map the target and constraint sets
X and S, from X to RP. A straightforward method is to find
the images ¢(X) (or ¥(S;)) of X (or S,) with respect to
1, which is computationally challenging since 1 is typically
nonlinear. Instead, we propose a more relaxed and flexible way
to lift the sets in X to the higher-dimensional space RP.

Definition 3: Given a lifting function ¢ : X — RP, a set
7 C RP is a y-implicit inner approximation of a set X C X
if {x | ¢¥(x) € Z} C X. If these two sets are equal, then Z is
called a y-implicit representation of X.

Note that implicit inner approximations (or representations)
of a set may not be unique. The following assumption is made
in the remainder of this work, which allows one to construct
an implicit representation of any subset of &A™ easily.

Assumption 1: The lifting function 1 in Definition 2 has a

linear left inverse. That is, there exists a matrix C' € R"™*P
such that for all x € X, Cy(x) = .
Assumption 1 can be satisfied by including the states x of
Y as part of the outputs of v (z). The following proposition
shows how to utilize this assumption to construct implicit
representations.

Proposition 1: Under Assumption 1, for any subset X C
X, the set Z = {z | Cz € X} C RP is a ¢-implicit
representation of X. In particular, if X is a polytope, Z gives
a polytopic -implicit representation of X.

Proof: By definition of Z, the set {x | ¥(z) € Z} is
equal to {x | Cy(x) € X}, which is further equal to X since
C(xz) = = by Assumption 1. [ |
The next theorem shows how easily we can control the
nonlinear system ¥ using a Koopman over-approximation ¥;;,,
of ¥ and v-implicit representations of sets.

Theorem 1: Suppose that (¢(z), X;,) is a Koopman over-
approximation of X over Xg,p X Usyp. Let Z be a ip-implicit
inner approximation of a target set X. Then, for any state
T € Xsyp of X, if there exists an input u € Uy, such that
(AY(z)+ Bu)®W C Z, then the same w steers the next state
2t = f(x,u) of ¥ to X.

Proof: Suppose that there exists (z,u) € Xsup X Usup
such that (Avy(z) + Bu) @ W C Z. By the definition of
Koopman over-approximation, ¢(f(z,u)) € (Ay(z) + Bu) ®
W C Z, which further implies that f(z,u) € X since Z is a
1-implicit inner approximation of X. [ ]
We call the set of inputs u € Uy, in Proposition 1 such
that (Av(z) + Bu) ® W C Z the admissible input set
A(xz, Z) of x with respect to the implicit target set Z. Under
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Assumption 1, when X and W are polytopes, A(x, Z) can be
easily computed via standard polytope operations, thanks to
Proposition 1. The next theorem draws a connection between
the one-step BRS for ¥ and that for 3;,,.

Theorem 2: Let (¢,%;,) be a Koopman over-
approximation of X over Sy, = S; x Sy. If Z and S, are
1-implicit inner approximations of X and S, respectively,
the one-step BRS Prey,, (Z,S5.,), with S, = S, x Sy,
is a t-implicit inner approximation of the one-step BRS
Pres; (X, Sz ). That is,

{z | Y(x) € Prex,,, (Z,54)} C Pres(X, Szu).  (8)
Proof: Let xy be such that ¢(z¢) € Prex,,, (Z,S:u).
Then (i) ¥ (xz¢) € S, which implies zg € S,; and (ii) there
exists ug € S, such that (Ay(zo) + Bupg) ® W C Z.
Because (1), X;,) is a Koopman over-approximation of ¥,
then ¥ (f(x0,u0)) € (A (zg) + Bug) @ W which is a subset
of Z. This shows that 2y € Pres;(X, S, ). Since xg is arbitrary
in {z | Y(x) € Prex,, (Z,S,,)}, the proof is complete. W
By construction, every state x in the set on the LHS of (8)
has a nonempty admissible input set A(z, Z), which can be
easily extracted under Assumption 1. Moreover, according to
Proposition 1, the polytopic sets X and S, in Problem 1 have
polytopic implicit representations

Zy={Czx |z e X}, S, ={Cz|zeS,}

Then, by applying Theorem 2 recursively, the k-step BRS
Zy, = Pre%lm(Z7 Su) of Z provides a polytopic inner ap-
proximation of the k-step BRS X = Pres (X, Sy.). Their
relationship is illustrated in Fig. 1.

So far, we assume that there exists a single Koopman over-
approximation Y;, over Sy,. Similar to local linearizations
in gain-scheduled control, one can also find a set of local
Koopman over-approximations {sz,i}f\gﬁ (with the same
lifting function 1) at each step, where each X, ; over-
approximates ¥ over a subdomain S ; X S, ; of Sy,. Then,
Theorem 2 can be easily extended to show that if Zj;_; is an
1-implicit inner approximation of Xj_1, the union Zj of the
one-step BRSs Prex,,, , (Zk—1,5:4,)" for all i is a ¢-implicit
inner approximation of the k-step BRS X, of X. That is,

{z | v(x) € UM Pres,, (Zk—1,80.4)} C Xp.

Later, our numerical examples show that using local Koop-
man over-approximations allows us to compute much larger
BRSs, while as a cost, if Nj > 1, the k-step implicit BRS Zj,
needs to be represented by a union of polytopes (instead of a
single polytope).

IV. COMPUTATIONAL APPROACH FOR FINDING
KooPMAN OVER-APPROXIMATIONS

In this section, we first discuss how to obtain global
Koopman over-approximations. When the system dynamics
is unknown, we discuss how one may use data to obtain
such over-approximations. Then, we provide a method to
efficiently find local Koopman over-approximations based on
the obtained global Koopman over-approximations.

Here Szu,i = Sz,i X Su,; With S, ; a ¢-implicit representation of Sy ;.

z =1)(x) K
Dynamics over a;;rlz)mamnat"on
+_ ver- Ximati
“ f@,u) 2T e Az+BueW
x=0Cz
BRS | ] BRS
Xi Implicit Zy
Inner Approx.

Fig. 1. Relation between different systems and their BRSs.

A. Computing Koopman over-approximations

Trivially, if we can bound the error in (5) in the entire
constraint set, i.e., for all (z,u) € Sy, Ea p(z,u) € B(c,¢),
then the linear system X;;,, defined by A, B and W = B(c, ¢)
is a Koopman over-approximation of 3 over S,,. Note that
such a bounding ball always exists if f and 1 are continuous
and S, is compact (see Theorem 4.15 in [21]). Moreover, it
can be computed analytically or using optimization techniques
(e.g., [22]) when the dynamics of X is known.

Let us now assume the dynamics is unknown and we are
given a finite data set D = {(z;, u;, ;) }¥V., where (z;,u;) is
sampled in S, and xj = f(x;,u;). We denote by D,,,, the
state-input pairs in the data set D. Let us further assume that
we are given a valid Lipschitz constant Lg, , for the error
function E'4 . We use the dispersion of the data set together
with the Lipschitz constant of the error to evaluate the error
bound.

Definition 4 ( [23]): Given the constraint set .S;,, and data
set Dy, the dispersion b of Dy, in S, is defined by

b=

sup min  ||(z,u) — (Z, ).

(2,1)€Spy (T:U)EDgu
Note that we do not require D,,, C S,,. The next theorem
translates the error on the data set to an error bound.
Theorem 3: Given a constraint set S,,, a data set D for
which D,,, has dispersion b in S, a lifting function 1, and
matrices A, B of compatible dimensions, and consider the
Lipschitz constant Lg, ,. Define

[ (@") — Ay(@) — Bu —cf,

max
(z,u,zt)eD

e(4, B) = min
with ¢* as the minimizer. Let € = Lg, ,b + e(A, B). Then
the linear system X;;,, defined by A, B, and W = B(c*,¢€) is
a Koopman over-approximation of ¥ over the domain S,,,.

Proof: Following [24], for any (Z, @) € Dy, and (z,u) €
S,u, ONE can write

1EaB(z,u) — |

< ||Bap(x,u) = Eap(Z,0)l| + [|[Eap(T,0) — ||

< Lpa pll(@,u) = @)l + [lv(@") — Ap(z) — Bu — ||,
where the last inequality follows from the definition of Lips-
chitz constant and the definition of ZT. Finally, by definition

of b,e and ¢, we conclude that |[E4 g(z,u) —c*|| <, for all
(z,u) € Spu. [ ]
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Given a data set D, Theorem 3 provides a way to find
a Koopman over-approximation over a domain S,,. First,
solve the following convex optimization problem to obtain the
system parameters:

A B= argrglg e(A, B). 9)

Second, find (an over-estimation of) the Lipschitz constant
Lg, , (see Remark 1 below). Third, Theorem 3 provides a
W which leads to a Koopman over-approximation.

Remark 1: While it is not possible to obtain deterministic
Lipschitz constant bounds from finite amount of data, esti-
mation of Lipschitz constants is an active research area [25],
[26]. For instance, given A, B, ¢ and a data set D, if Dy,
is independent and identically distributed, statistical methods
such as scenario approach or extreme value theory can be
used to obtain an estimate [24], [27]. The same statistical
techniques can also be applied to directly estimate a bound
on E4 p from data. In the next subsection, we show how a
given valid estimate Ly, , can be used to locally calibrate A,
B in an efficient way.

B. Computing local Koopman over-approximations

The error bound for globally estimated A, B matrices can
be large, possibly resulting in conservative BRS inner approx-
imations. For this reason, we want to establish a smaller error
bound by adapting the globally estimated 3.;;,, parameters to
smaller localities. We rely on the fact that for matrices A and
B, the function A 4,5 defined by

Ajpla,u)=Ej gz, u) —

= (A~ A(z)

Eap(z,u)
+ (B - B)u,

is independent of the nonlinear dynamics f. The following
theorem is useful for developing a method to compute a local
Koopman over-approximation over a subset of Sy.,.

Theorem 4: Given a subdomain S C S,., a data set D
with dispersion b in S,,, a lifting function 1, and matrices
A, B, fl, B of compatible dimensions, consider the Lipschitz
constants LAA,B and Lg, ,. Define D C D such that ﬁw =

Dyu N (S ® B(0, b)), and

max

- Bﬂ - 6“5
¢ (z,u,z+)eD

é(4, B) = min (") — Ay (z) —
with ¢* as the minimizer. Let € = (LAAYB—FLEA,B)b-i-é(A, B).
Then the linear system ilm defined by fl, B, and W =
B(¢*,€) is a Koopman over-approximation of X over the
subdomain S.

Proof: First, let us show that D, has dispersion at most
bin S. If b is finite, then S is bounded and so is S. Let (z, u)
be in the closure of S and let (Z,7) be its closest neighbor
in Dy, (v,u) — (z,u)| < b. But then,
(z,a) € S @ B(0,b) and ﬁnally (Z,1) € Dy, which proves
the claim.

Then, for any (z,u) € S and (Z,%) € SND, one can write

|

|1E4 gz, u) —¢

= B4 p(z,u) — Bz 5(z,0) + E4 5(z,u) — ¢
<|Ejpleu) — Ef g(@,0)| + |E4 5(2,u) — ¢
=|E4 g(z,u) — Eaplz,u) + Ea p(Z,u0)

— E; 3(%,0) + Eap(z,u) — Ea (T, 1)

+E4 5@ 0) =

< ||AA,1§($,U) =A@ )

+ |Ea,p(@,u) — Eap(Z,0)|| + |E4 g(2, 0) — |
< (Laz s+ Leas) (@) —(2,49)

+Ei 5@ u) — .

Since D}m has dispersion at most b in S , then for all (z,u) €
S, |E4 g(z,u) — c*|| < € which concludes the proof. [ |

Theorem 4 can be used to find fl, B and & over a
subdomain S by solving the following optimization problem
A, B,é = arg min
B

{(ta0s 0,0}

(@) — Av(a) - Bu -2 }.
(10)

In general the dependence on La , . makes the optimization
problem (10) hard to solve. However the following theorem
states that if S, is equlpped with the infinity norm and if for
each dimension ¢ = 1,...,p a Lipschitz constant L B g of
EYy g (x,u) = ¢'(f(z, )) — A;p(x) — Byu is known then
a local Koopman over-approximation can be found by solving
p linear programs.

Theorem 5: Given a subdomain S C S, equipped with
the infinity norm, a data set D with dispersion b in S;,, a
lifting function v, and matrices A, B, /1, B of compatible
dimensions, consider the Lipschitz constants L., and L Bl

for i = 1,...,p. Define D C D such that ﬁmyu = Dy N
(S@B(O,b)), and fori=1,...

A,
+ max
(z,a,z+)

, p, define

éi(A;,B;) =min  max _[|¢'(a") — Aiy(z) — Biu — &,
¢ (z,u,2+)eD

with ¢} as the minimizer. Let

ei = (147 = AT Ly + BT = BT | + Ly, )b
Then the linear system Yyin defined by /1, B, W =¢& @
szl[fa-,a-] is a Koopman over-approximations of 3 over
the subdomain S.

Proof:  Following the same reasoning as the proof of
Theorem 4, for all (z,u) € S,

\Eg’é(m‘,u)—cﬂ < (L%’éi +LE21’Bi)b+éi(fli,Bi). (11)

We are going to show that

Lai
A,;,B

124

<|[|A] = Al |hLy + |B; = Bill1.  (12)
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Indeed, for all (z!,u'), (x2,u%) € S, using the triangular in-

equality, the definition of Lipschitz constant and the definition
of infinity norms, one can write

|Ai~ - ($1 ut) _Afii,fi (22, u?)]

= ( A) (W) = p(a?)) + (B; = Bi)(u' —u?)|

< (A = A) ((ah) — (@) | +[(Bi = B)(u' —u?)|

< ||AT Al Lyllet = 2®|lo + 1B = B [1]lu' = v?]|

< (IAT = ATIhLy + BT = B I1) @' = 2% 0! = u?)]|oc,

which proves relation (12). Combining (11) and (12) with the
definition of €;, we have \E s(@u)—=¢f| <& forall (z,u) €

S, which concludes the proof. [ |

An important consequence of Theorem 5 is that a Koopman
over-approximation can be found by solving the following
linear programs: For ¢ = 1,...,p,

A, Bi,& =arg_min {(|AT = AT 1Ly + BT — BT I+

B,
)b

max _|¢'(z7) — Ap() —

(z,u,z+)eD

LE’L

A;,By

+ B;u —

5i|}.

13)

V. RESULTS AND DISCUSSION

In this section, our method is illustrated by computing the
BRS of two nonlinear dynamical systems, the forced Duffing
oscillator and the inverted pendulum, and compared with the
HIJB method on these examples. Our code that generates the
figures and implements our algorithm is available at: https:
//github.com/haldunbalim/KoopmanBRS. The re-
ported computation times are obtained with a laptop with a
Quad-Core Intel i7 CPU and 16 GB of RAM.

A. Forced Duffing oscillator
We consider forced Duffing oscillator [28] with dynamics

. Y

x= [2x—2x3—0.5y+u]’
discretized using Runge-Kutta 4(5) scheme with a 0.025 time
step. The state is x = x,y]T € [-0.5,0.5] x [-1.5,1.5]
and the input is v € —5,5]. The target set is Xp
[-0.1,0.1] x [—0.1,0.1] and the considered lifting function
is ¥(x) = [z,y,2%] .

A Koopman over-approximation is estimated from 1000
random tuples (x,u,x") according to (9). Then the error
E4 p is bounded component-wise via the extreme value
theory using 200 samples (see Remark 1). We validated
the fit of an extreme value distribution with significance
0.05 using the Kolmogorov-Smirnov (KS) goodness-of-fit
test [29] with 50 samples. The estimated error bound is
€ = [0.0005,0.0004, 0.0133] "

We use our method to compute a 10-step BRS. The
results are presented in Figure 2 with a comparison with
BRS obtained by the Hamilton-Jacobi (HIB) method [15].
Note that unlike our method, HIB requires knowledge of the

15

— HB
Our Method

1.0 Target Set

0.5 4

=15 y T
0.2 0.4

Fig. 2. Backward reachable sets for the Duffing oscillator.

m— H|B
ours wx) = (x,sin(@))
ours y(x)=x
Target Set

— Trajectory

—4

Fig. 3. Backward reachable sets for the inverted pendulum.

dynamics and can be seen as a ground truth modulo numerical
inaccuracies in PDE solutions. The HIB method took 74.41
s, while our method ran in 0.41 s given the Koopman over-
approximation.

B. Inverted pendulum

Consider the dynamics of an inverted pendulum:

. 0
x= Eﬁ’ sin(f) + Wflgu} '

It is discretized with time step 0.1 using explicit Euler scheme.
The state is x = [0, 0] T € S, = [0, 2] x [~6, 4], and the input
is u € Sy, = [—0.35,0.35]. The parameters (m, [, g) are set to
(0.1,1, 10) respectively. The target set is [0, 0.2] x [—0.5,0.5]
and the lifting function considered is ¢ (x) = [0, 6, sin(6)]".

Matrices A, B are computed using equation (9) from a
data set of approximately 300,000 samples created via grid-
sampling with 0.04 unit separation in the state dimensions and
0.08 unit separation in the action dimension. The component-
wise Lipschitz constant Lp:  of the error function is esti-
mated using extreme value theory [25] with 40,000 samples
for fitting and 10, 000 samples for KS test with a significance
value of 0.05. We obtain Lg, , = [0,0,0.737]

For each local Koopman over-approximation, matrix B is
kept constant, while matrix A is adapted using Theorem 4.
Since we are only changing A matrix, La ; 5 is replaced with
L ; which only depends on states. Therefore we only need
to mu1t1ply this term by dispersion b, computed over states.

To choose the subdomains for a given target set, we filter
tuples in our dataset for which the next state falls into the
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target set. Then, the subdomain is chosen as a rotated bounding
box around the states of these tuples using [30]. If the 1-
norm of the radii of W for a subdomain is greater than 0.18,
the corresponding target set is split into two halves, through
its Chebyshev center along the axis its bounding box has the
greatest span. This is done to create smaller subdomains where
local Koopman over-approximations found by equation (13)
yield smaller errors.

In Figure 3, we present a comparison of the BRS com-
puted using our method, a variant where v (z) is the identity
function, and the BRS computed using the HJB method.
All three methods are used to compute BRS for a horizon
of 15 and the computation times for these approaches were
245.4 s, 952.6 s, and 85.4 s, respectively. Our results indicate
that the inclusion of a lifting dimension led to a significant
increase in computational speed (thanks to a smaller number
of subdomains being sufficient for achieving small error)
and generated sets with larger volume. Finally, we show a
trajectory starting from x = |7, 0] that is steered to the target
set using control inputs extracted according to Theorem 1. The
pendulum initially moves counter-clockwise to accumulate
energy before proceeding towards the target set. This intricate
maneuver demonstrates the effectiveness of our methodology
in tackling the problem at hand.

VI. CONCLUSION AND FUTURE DIRECTIONS

Inspired by Koopman operator theory, in this paper, we
have introduced Koopman over-approximations for discrete-
time nonlinear systems. These over-approximations allow us
to use linear system backward reachability tools to com-
pute implicit BRSs of nonlinear systems. Crucially, control
inputs steering the system to the target set can be easily
extracted from these implicit BRSs at run-time. We have also
presented computational approaches to construct Koopman
over-approximations from data when the underlying nonlinear
system is unknown. Finally, we have discussed a local version
of these over-approximations, which, in a sense, generalizes
the hybridization approaches, such as [31], in correct-by-
construction control literature using lifting.

While our theoretical results hold for any given Lipschitz
lifting function, a limitation of our work is the lack of a
method for choosing the lifting function, which affects the
size of the computed BRS. Our future work will aim to
overcome this limitation by investigating how to obtain lifting
functions incrementally in a way to yield monotonically better
performance. From an algorithmic point of view, we plan to
replace the polytopic reachability tools used in this paper to
compute the BRS of the Koopman over-approximation with
more efficient zonotopic ones [12] to improve scalability.
Finally, it is also interesting to generalize the results to handle
uncertainty in dynamics and measurements.
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