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ABSTRACT

We study the electrothermal actuation of nanomechanical motion using a combination of numerical simulations and analytical solutions.
The nanoelectrothermal actuator structure is a u-shaped gold nanoresistor that is patterned on the anchor of a doubly clamped nanome-
chanical beam or a microcantilever resonator. This design has been used in recent experiments successfully. In our finite-element analysis
(FEA) based model, our input is an ac current; we first calculate the temperature oscillations due to Joule heating using Ohm’s law and the
heat equation; we then determine the thermally induced bending moment and the displacement profile of the beam by coupling the temper-
ature field to Euler–Bernoulli beam theory with tension. Our model efficiently combines transient and frequency-domain analyses: we
compute the temperature field using a transient approach and then impose this temperature field as a harmonic perturbation for determin-
ing the mechanical response in the frequency domain. This unique modeling method offers lower computational complexity and improved
accuracy and is faster than a fully transient FEA approach. Our dynamical model computes the temperature and displacement fields in the
time domain over a broad range of actuation frequencies and amplitudes. We validate the numerical results by directly comparing them
with experimentally measured displacement amplitudes of nano-electro-mechanical system beams around their eigenmodes in vacuum. Our
model predicts a thermal time constant of 1.9 ns in vacuum for our particular structures, indicating that electrothermal actuation is efficient
up to �80MHz. We also investigate the thermal response of the actuator when immersed in a variety of fluids.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0157807

I. INTRODUCTION

An electromechanical actuator,1,2 in the most general sense,
converts a given signal from the electrical domain into the mechan-
ical domain. This conversion is accomplished by applying a time-
dependent force to a mechanical element, which causes prescribed
movements. In many applications, the actuator drives the mechani-
cal element by a harmonic force, causing it to oscillate. More com-
plicated mechanical signals in a variety of applications—from
macroscopic robots3–5 to mechanical computers6,7—are accom-
plished by a host of different electromechanical actuators, working
at different length and time scales and based on different physical
actuation principles. The current trend for creating electromechani-
cal systems with micrometer- and nanometer-scale linear dimen-
sions has necessitated the development of reliable and efficient
miniaturized actuators. Thus, in the fields of micro- and
nano-electro-mechanical systems (MEMS8–10 and NEMS1,11–14),

electromechanical actuators have been one of the research foci.
Some recent areas of interest in miniaturized actuator research are
exploring novel physical mechanisms15–17 and exotic materials18,19

for nanoscale actuators; developing ultra-responsive actuators20

that work reliably in different environments, including in
liquids21–23 and harsh environments;24,25 and formulating accurate
physical models of actuators.26–31

Different actuation approaches based on electrical and optical
coupling have been explored in the domain of NEMS. Here, we
provide a brief—and admittedly incomplete—review of the main-
stays in the electrical domain; more details can be found in recent
review articles.1,32,33 Using electrical coupling, appreciable forces
can be exerted on MEMS and NEMS devices through piezoelec-
tric,6,34,35 electrostatic,11,36 and electrothermal13,37,38 transducers.
Most of these actuation methods have been modeled and studied
parametrically. Modeling of electrically coupled actuators typically
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requires numerical simulations, although analytical models are also
useful for simpler structures.

In the case of piezoelectric actuation, an applied electric field
results in a mechanical stress in the material. Inversely, a mechani-
cal strain in a piezoelectric material results in a proportional electri-
cal field, which can be detected and related to the amplitude of the
displacement. Typical piezoelectric materials used for manufactur-
ing nanoscale actuators and resonators include AlN,45 GaAs,46 and
AlGaAs.47 Coupling between mechanical and electrical domains of
a piezoelectric actuator is governed by linear piezoelastic rela-
tions,48 and the stress and strain can be computed from the electric
field and polarization density and vice versa. In a study of small
displacements of a doubly clamped nanomechanical beam, Knobel
and Cleland46 simplified the constitutive relations into a lumped
model, where the displacement-induced electrical charge was calcu-
lated from Ohm’s law for a capacitor and the lumped force was
related to the beam antinode displacement through Hooke’s law. In
another study by Sinha et al.,49 two layers of ultrathin piezoelectric
AlN were stacked in a NEMS cantilever for inducing vertical
bending through the bimorph effect. A finite-element software was
employed to simulate the displacement amplitude of the cantilever
for various geometries and applied voltage values and closely
matched the experiments.

For electrostatic (capacitive) actuators, the interaction force is
simply governed by Coulomb’s law. In the domain of MEMS and
NEMS, the magnitude of the elastic force becomes comparable to
the electrostatic force, and the displacement can be computed from
the balance of forces. At the sub-micrometer length scale, the elec-
trostatic actuator cannot be assumed to be two ideal capacitor
plates.50 The plate dimensions become comparable to the separa-
tion distance, and the contributions from the sides of the structure
become significant, resulting in fringe effects.51 Furthermore, as the
electrostatic force varies non-linearly with the separation distance
and due to the presence of geometric nonlinearities in the struc-
ture, it is challenging to precisely compute the force balance. As a
result, it is generally impossible to come up with a closed-form sol-
ution for a micro- or nanoscale capacitive actuator system,51 and
numerical approaches are preferred.52 Shavezipur et al.53 have per-
formed a finite-element study using Poisson’s equation and rele-
vant boundary conditions for a MEMS capacitive switch, where the
contact was established by an electrostatic force. Their numerical
model accurately captures the electrostatic force and capacitance,
whereas a simplified analytical model, which neglects fringe effects,
will under-predict these values.

In this paper, we focus on electrothermal actuation of NEMS
resonators.13,37 Electrothermal actuation is based on a nanoscale
distributed resistor fabricated on the anchor of the NEMS structure.
The actuation mechanism is based on Joule heating from a sup-
plied current, whereby the temperature gradients induce bending
moments via thermoelastic processes. This type of actuation can
produce large forces for relatively low drive currents54,55 and
provide a large bandwidth of actuation, thus allowing for many
harmonic modes to be actuated efficiently. Moreover, electrother-
mal actuators can operate in liquids22,23 and are compatible with
complementary metal–oxide–semiconductor (CMOS)56–58) tech-
nology. Other well-established designs of micro- and nanoscale
electrothermal actuators include hot-arm actuators,59–62 where the

actuator system consists of a more electrically resistive hot arm and
a less resistive cold arm. This resistance mismatch results in asym-
metric Joule heating, which in turn generates mechanical displace-
ment. Another configuration is a V-shaped chevron actuator,63,64

where a linear displacement can be achieved by Joule
heating-induced thermal expansion of symmetric connecting arms.

Previous models of electrothermal actuators mainly focus on
the quasi-static mechanical response due to electrical drive. The
analytical thermal model was developed based on Joule heating and
heat transfer. For slender actuators, thermal equations can be sim-
plified further by approximating the actuator as a 1D system; i.e.,
the temperature is the same for the entire cross-sectional area at a
particular position along the actuator. The calculated temperature
distribution is then related to mechanical displacements and
bending moments using relevant constraining boundary condi-
tions, linear thermal expansion, and the virtual work method.60–62

The results from analytical equations agree well with finite-element
simulations and experiments but do not provide insight into the
dynamic response of a system to a periodic excitation. To this end,
Bargatin et al.13 simulated and experimentally validated the electro-
thermal actuation efficiency as a function of the drive frequency for
a doubly clamped NEMS resonator. The resonator’s frequency
response resembled a low-pass filter partly due to the effect of
thermal roll off, where at high drive frequencies, the temperature
increase lags behind the Joule heating, resulting in a smaller tem-
perature oscillation. In another numerical study, Hickey et al.65

investigated a time and frequency response of two-arm electrother-
mal actuators. Here, the thermal model was based on the one-
dimensional Joule heating, and the model captured the contribu-
tion from all three modes of heat transfer, which allowed for com-
puting the thermal time constant and the thermal response at
various drive amplitudes and frequencies. However, the model did
not explicitly show the subsequent mechanical response of the
system. As a result, a comprehensive, dynamical model of oscilla-
tions that reveals essential variables of interest, such as the instanta-
neous bending moment, the actuator temperature field, and the
mechanical displacement field across a broad range of excitation
frequencies, has not yet been developed. This is primarily due to
the intricacy of the coupled physical phenomena, which are sensi-
tive to the specifics of the model. Understanding the thermal and
mechanical responses of a system is vital to designing an efficient
electrothermal actuator and predicting its actuation limits both in
terms of frequency bandwidth and power dissipation. We present a
comparative table in order to put our modeling approach into
context with respect to the alternative analytical and finite-element
analysis (FEA) models developed within the last five years. As
shown in Table I, we make comparisons across the types of electro-
thermal actuators, the modeling approaches, and the validation
methods.

Our aim in this paper is to develop an extensive and reliable
model of electrothermal actuators by efficiently combining relevant
physics domains. We first compute the steady-state oscillations of
the temperature field in a NEMS resonator in response to input
current at a particular excitation frequency due to Joule heating.
We then calculate the displacement field of the resonator by con-
sidering the effects of differential thermal expansion of the struc-
ture. We validate our model by comparing numerical results with
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recent experimental measurements from the literature: our model
matches both the frequency and the amplitude observed in the
experiments accurately. We also calculate the thermal stresses and
the induced bending moments in the structure. Finally, we discuss
how these numerical results can also be incorporated into the
Euler–Bernoulli beam theory with tension.31 The structure of this
paper is as follows. In Sec. II, we introduce the NEMS geometry
under study and describe the details of the numerical approach. In
Sec. III, we present the results of FEA simulations and compare
these with experiments. We also study the thermal response of the
structure when immersed in a fluid. Finally, in Sec. IV, we discuss
our numerical approach and its connection with the Euler–
Bernoulli beam theory with tension.

II. APPROACH

A. Device geometry and parameters

Our study is based on commonly used NEMS doubly clamped
beam resonators with tension patterned on a silicon nitride (SiN)
wafer. A scanning electron microscope (SEM) image of a represen-
tative beam is shown in Fig. 1(a). The linear dimensions of the
beam are l � w� h � 30 μm� 900 nm� 100 nm. There is an
undercut region at both ends of the beam with a length of
ξ1 � 800 nm. Hence, the beam itself and the two undercut regions
make up the suspended part of the device. We denote the total
length of the suspended part of the device as L, and thus,
L ¼ l þ 2ξ1, as shown in Fig. 1(b). The suspended region is shown
in bright green in the SEM image in Fig. 1(a) and illustrated in
Fig. 1(b). The boundary line at the interface between the bright and
dark green regions is assumed to be clamped to the substrate
underneath, as indicated in the inset of Fig. 1(a). The inset also
shows the magnified image of the gold nanoresistor, which is the
electrothermal actuator. The nanoresistor and the connecting pads
are patterned using electron beam lithography. Each nanoresistor
has a thickness of 135 nm and a width of 120 nm; ξ1 � 800 nm
and ξ2 � 600 nm are, respectively, the lengths of the nanoresistor
fabricated on top of the undercut and the beam. The following rele-
vant parameters were determined in previous experiments:66 the
intrinsic tension in all the beams is FT ¼ 68:8+ 12:9 μN; Young’s
modulus of SiN is Es � 300GPa; and the density of the SiN is
ρs ¼ 2960+ 30 kg=m3. The resistivity of the gold film is
ρg � 2:82� 10�8 Ωm, and the total resistance of the nanoactuator,
including the contacts, is R � 25Ω.67

In order to enable a direct comparison between the finite-
element model and experiments, we define a set of model parame-
ters and boundary conditions. Specifically, we numerically compute

the beam’s intrinsic stress s(0)xx and modal isotropic dissipation ηn so
that the modal frequencies fn and quality factors Qn correspond to
experimental measurements. The computed intrinsic tensions used
for simulation, i.e., s(0)xx =(wt), are 75:3 and 73:4 μN for the 30 and
50-μm beams, respectively, which agrees with the experimentally
measured tension force FT for high-tension beams.23 The main
factors affecting the Qn of the devices are intrinsic losses, e.g.,
defects and clamping losses;68 the dissipation arising from the sur-
rounding air is negligible for these particular measurements.69 All
experimentally obtained mechanical properties are shown in
Table II.

Figure 1(b) shows the top view of our NEMS beam geometry
used in the simulations along with electrical boundary conditions
for the electrothermal actuator. We also show the fixed constraints,
i.e., hard clamp conditions for the suspended part of geometry.
Figure 1(c) shows a side view of the same model geometry with a
magnified image of the electrothermal actuator, where we indicate
the constant temperature boundary condition. In this work, we are
modeling single-sided actuation, where only one of the nanoresis-
tors is engaged for driving the beam. The second nanoresistor is
typically used for piezoresistive detection and is not of relevance to
this study other than slightly changing the geometry. We include
both nanoresistors in the simulations, as this will affect the overall
vibrational response of the beam.

B. Numerical models

The main workflow of the simulation process is as follows.
We first model temperature oscillations within the structure due to
an ac current input into the nanoresistor; here, we essentially use
Ohm’s law, find the Joule heating in the nanoresistor, and then
solve the heat equation with the Joule heating. This is done for
various actuation frequencies between 100 kHz and 500MHz.
Next, we compute the induced stresses and bending moments
using the linear thermal expansion equation based on the com-
puted harmonically varying temperature fields. Finally, we solve the
Euler–Bernoulli equation for the dynamic beam with tension to
calculate the beam displacement for various excitation frequencies.
All simulations are carried out within the COMSOL
Multiphysics®70 software environment using its built-in modules,
including electrothermal actuation and the frequency response of
NEMS.

The model geometry is directly based on the experimental
devices.66 The linear dimensions of the doubly clamped beam,
nanoresistors, and undercuts are identical to those in our devices.
However, the larger electrodes that are connected to the

TABLE I. Comparison of modeling techniques for electrothermal actuators published within the last five years.

Actuator type Model approach Validation method Reference

Multilayer FEA quasi-static Experimental Ref. 39
Hot arm FEA quasi-static Analytical Refs. 40 and 41
Chevron Analytical quasi-static FEA Refs. 42 and 43
Bimorph Analytical quasi-static Experimental Ref. 44
Bimorph FEA dynamic Experimental This work
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nanoresistor are considerably smaller in our model than their
actual size, as depicted in Fig. 1(b). The fabricated electrodes are
rectangular in shape and are partially shown in Fig. 1(a). We trun-
cate the y dimension of these electrodes in our simulations, because
we have determined that increasing the size of the electrode beyond
a certain critical value does not change the temperature field of the

nanoresistor. To find the critical length of the electrode, we kept
the width of the electrode at its actual value and swept its y dimen-
sion until the temperature field, as computed from Eq. (4), no
longer changed. The critical length of the electrode was determined
to be dc ¼ 6 μm and is shown to scale in Fig. 1(b). This computa-
tional step identifies the minimal geometry that guarantees a reli-
able heat transfer model. Table III summarizes material properties
of gold (Au) and silicon nitride (SiN) used in simulations. Young’s
modulus and density of SiN, as well as the resistivity of Au for the
devices, were determined in previous experiments66 and closely
match with the values in Table III.

Prior to performing a dynamic simulation of NEMS under
electrothermal actuation, we set the intrinsic stress and mode
damping in the doubly clamped beams so that the modal frequen-
cies fn and quality factors Qn match the experimental values in
Table II. We determine a uniaxial tensile stress s(0)xx in the
x-direction normal to the yz plane and a modal isotropic loss
factor ηn for the entire suspended geometry. For linear elastic mate-
rials, incorporating the isotropic dissipation into the dynamics is
equivalent to making Young’s modulus complex, i.e., E(1þ iηn),
which results in a complex-valued stiffness matrix and contributes
to the values of the modal quality factor Qn. To determine the
eigenfrequencies, we solve the following elastic equation of motion:

ρsA
@2W(x, t)

@t2
� s(0)xx A

@2W(x, t)
@x2

þ Es(1þ iηn)I
@4W(x, t)

@x4
¼ @2My(x, t)

@x2
: (1)

Equation (1) describes the position- and time-dependent displace-
ment, W(x, t), of a rectangular beam of length L, cross-sectional
area A ¼ wh, mass density ρs, tension s(0)xx A, and flexural rigidity
EsI. Here, the x axis is along the length of the beam, and the dis-
placement W(x, t) is along the z axis (Fig. 1). We assume that a
position-dependent harmonic bending moment My(x, t) is acting
near the beam anchor, where the electrothermal actuation is taking
place, and is responsible for driving the beam.

In order to find the eigenfrequencies, we remove the external
drive by making the right-hand side of Eq. (1) zero and implement
fixed constraint boundary conditions on clamped locations of the
beam, as depicted in Figs. 1(b) and 1(c). This boundary condition

FIG. 1. (a) False-colored SEM image of a silicon nitride (green) doubly clamped
beam with u-shaped gold nanoresistors (yellow) patterned on both anchors. The
linear dimensions of the beam are l � w � h � 30 μm� 900 nm� 100 nm.
The bright green region is the suspended part of the device, which includes the
beam and two undercuts. The inset shows a magnified SEM image of the nanore-
sistor, i.e., the electrothermal actuator, along with the suspended part of the SiN
layer and the location of the clamping surface. The nanoresistor cross section is
120 nm� 135 nm; the suspended (undercut) region on the beam is
ξ1 � 800 nm, and the region on the anchor is ξ2 � 600 nm. (b) Top view of the
full geometry used for the FEA simulations with imposed electrical and structural
boundary conditions. (c) Side view of the model focusing on the electrothermal
actuator with applied thermal boundary conditions.

TABLE II. Experimentally obtained mechanical properties of the measured devices
from Ti et al.66

l ×w × h (μm3) Mode fn (MHz) Qn

50 × 0.90 × 0.1 1 5.2 3.1 × 104

2 10.4 2.7 × 104

3 15.6 2.6 × 104

4 20.8 2.9 × 104

30 × 0.90 × 0.1 1 8.6 1.1 × 104

2 17.2 8.7 × 103

3 25.9 7.9 × 103

4 34.7 7.1 × 103
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implies W(0, t) ¼ W(L, t) ¼ dW(0, t)
dx ¼ dW(L, t)

dx ¼ 0, where L
denotes the total length of the suspended part of the NEMS resona-
tor. We note that the geometry of the suspended region deviates
from an ideal beam since the cross-sectional area A varies along
the length L. As a result, FEA is particularly suitable compared to a
simplified analytical model. We can express the eigenvalue solu-
tions as fn(x)e

�iωnt , where fn ¼ ωn
2π is the complex linear eigenfre-

quency and fn(x) is a normalized eigenfunction along the length
L. The modal eigenfrequencies are complex-valued due to the pres-
ence of isotropic dissipation, and we calculate the mode quality
factor Qn as

Qn ¼ <(fn)
2=(fn) , (2)

where < and = refer to the real and imaginary components,
respectively. We conduct a parametric sweep of the uniaxial tensile
stress s(0)xx and isotropic damping factor ηn to match the experimen-
tally observed modal eigenfrequencies fn and quality factors Qn

from Table II. The intrinsic stress for a given beam determines all
the modal frequencies. The damping factor, on the other hand,
varies across natural modes of the resonator and is tuned for each
mode. To quantify the elastic behavior of a beam with tension, we
adopt the non-dimensional tension parameter U ¼ FT

EI=L2 used by

Barbish et al.,31 which represents a ratio of the tension force to the
rigidity of the beam. A system with U ¼ 0 is an Euler–Bernoulli
beam, and a system with U � 1 behaves as a string. For our
beams, U � 103, and thus, for all practical purposes, they behave
like strings. Our numerical model is designed to work for a broad
range of U . Without loss of generality, we shall refer to our nano-
mechanical systems as NEMS beams with tension.

For the subsequent dynamic simulations, we demonstrate our
approach on a doubly clamped beam with tension with l ¼ 50 μm
driven exactly at its fundamental frequency. The intrinsic stress and
dissipation are applied such that the fundamental frequency is at
f1 ¼ 5:2MHz and the mode quality factor Q1 ¼ 3:1� 104, match-
ing the experimental values in Table II. A detailed synopsis of the
process with intermediate results is presented in Fig. 2. We begin
the modeling process by introducing the following inputs for each
physical domain. In the electrical domain, we inject an ac current
of Id ¼ 1mA at 2.6 MHz, which is half the resonant frequency of
the fundamental mode f1, into one of the electrodes, as depicted in
Fig. 2(a). This is equivalent to supplying a drive current of

I(t) ¼ Id sinωdt, where ωd ¼ 2πfd ¼ 2π( f1
2 ) is the angular drive

frequency. The mechanical actuation frequency ωa is always equal
to twice the electric drive frequency ωd due to the nature of electro-
thermal actuation; ωn are the mechanical modal resonant frequen-
cies. We calculate the instantaneous local current density within
the gold layer using Ohm’s law as follows:

J(r, t) ¼ σgE(r, t)þ @D(r, t)
@t

þ Je(r, t): (3)

Here, J(r, t) is the current density, σg is the electrical conductivity
of gold, E(r, t) is the electric field strength, D(r, t) is the electric
flux density, and Je(r, t) is the externally applied current density.
Bold symbols here indicate vector quantities. The input current is
related to Je(r, t) as Id(t) ¼

Þ
Je(r, t) � n dS, which indicates that

Id(t) is the integral of the normal input current density integrated
over the cross-sectional area of the electrode. Figure 2(a) shows the
electrode on the actuation side of the beam, with the inset showing
a closeup of the nanoresistor that acts as the transducer. We also
compute electric current streamlines that show the current density.
Here, the colormap corresponds to the electric potential. The green
trace is the injected ac current in the time domain with a period of
1= fd ¼ 384 ns.

Joule heating induces a time-dependent temperature field
T(r, t) on the entire structure that oscillates at twice the drive fre-
quency, i.e., at 2fd . This temperature field is numerically calculated
using the heat equation

Qe ¼ ρcp
@T
@t

� ∇ � (k∇T): (4)

In Eq. (4), Qe(r, t) is the Joule heating rate and is defined as
Qe(r, t) ¼ J(r, t) � E(r, t), where the dot indicates a scalar product;
ρ is the mass density, cp is the isobaric heat capacity, and k is the
thermal conductivity. In addition to the Joule heating, we set a few
other boundary conditions in the heat transfer domain. First, we
assume that all external surfaces of the device are in thermal insula-
tion, i.e., �n � ∇T ¼ 0, which implies that there is no heat flux
going to the surrounding environment. This is a reasonable
assumption for modeling electrothermal actuation in a vacuum
setting. Second, we define a bath temperature, Tb ¼ 293:15 K, at
the bottom of the silicon nitride layer, as shown in Fig. 1(c). Tb is
also the reference temperature, which is the initial temperature of
the entire device before actuation. In other words, the structure is

TABLE III. Material properties used in the simulations.

Property SiN Au Air Water

Electrical conductivity σ (S/m) … 45.6 × 106 … …
Thermal conductivity k (W/m K) 2.1 317 0.026 0.594
Thermal expansion coefficient α (K−1) 2.3 × 10−6 14.2 × 10−6 … …
Heat capacity cp (J/kg K) 700 129 1005 4200
Mass density ρ (kg/m3) 3000 19 300 1.2 1000
Young’s modulus E (GPa) 300 70 … …
Poisson’s ratio ν 0.23 0.44 … …
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FIG. 2. A synopsis of the finite-element simulation process. (a) An ac is supplied to the transducer at the frequency of f1
2 ¼ 2:6 MHz. The colormap of the current stream-

lines shows the electric potential across the nanoresistor. The green trace shows the change of the current amplitude in time. (b) A harmonic temperature field at frequency
f1 ¼ 5:2 MHz results from the Joule heating. The red trace shows the temperature change of a point on the top of the gold actuator (marked by a red dot). Top views of
the actuator’s temperature field are shown at the indicated time points. (c) Thermal expansion induces harmonic mechanical stresses. The blue trace shows the stress of a
point at the interface of the transducer and the beam (marked by a blue dot). Stress fields of the beam at the indicated time points are presented. Here, a positive stress
value signifies tension, and a negative value implies compression. (d) We extract the bending moment along the length of the beam from the stress field. We show four
instantaneous bending moment diagrams at the corresponding stress values (points 1–4).
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undeformed and free of thermal stresses at T ¼ Tb. Figure 2(b)
shows the computed temperature fields T(r, t) on the nanoresistor
and the beam at various time points. The red trace shows T(r, t) at
r ¼ r1, which is the temperature change of the highlighted point in
Fig. 2(b). For Id ¼ 1mA, the harmonic temperature oscillations
have a peak-to-peak amplitude of approximately ΔT ¼ 0:1K and
oscillate at the fundamental resonant frequency of f1 ¼ 5:2MHz.

Subsequently, ac-induced harmonic temperature oscillations
generate thermal stresses in the actuator-beam system. This is
partly due to the difference between the coefficients of thermal
expansion of the gold nanoresistor and the silicon nitride beam.
We switch the variable dependence from time t to the actuation
frequency ωa, indicating that T(r, t) ¼ ΔT(r, ωa)

2 sin(ωat) due to the
harmonic nature of temperature field oscillations. In the simulation
software, this is equivalent to performing a frequency-domain
study, where the external perturbation is the harmonic thermal
load that results from the computed temperature field T(r, ωa).

71

This thermal load can be quantified by thermal stress, strain, and
bending moment. We can solve for the thermal stress field by com-
puting the strain field due to the differential thermal expansion
using

ϵ
~
lmðr; ωaÞ ¼ α

~
lmðTðr; ωaÞ � TbÞ; (5)

where ϵ
~
lm is the second-order strain tensor and α

~
lm is the thermal

expansion coefficient tensor. The thermal strain contributes to the
stress field along with the initial stress s(0)xx , and the total stress can
be computed as

s
~
jkðr; ωaÞ ¼ sð0Þxx þ C

~
jklm : ϵ

~
lmðr; ωaÞ; (6)

where s
~
jk is the second-order stress tensor, C

~
jklm is the fourth-order

elasticity tensor, and the colon operator signifies a double dot
product; the tensor indices run from x to z, and a sum is implied
over a repeated index. We note that the thermal expansion effect is
dominating in the x direction due to the geometry of the structure,
and thus, it is relevant to show the stress field sx ¼ sxx(r, ω1)� s(0)xx .
The trace in Fig. 2(c) shows the stress value for r ¼ r2, where r2 is
the coordinate of the blue point. The colormaps show three
instances of the harmonic stress field at the corresponding time
points indicated on the trace. Here, we virtually cut the beam along
the dashed lines as shown to expose the stress field inside the
beam.

From computed stresses in the beam, we extract the bending
moment in the y direction along the length of the beam, as
depicted in Fig. 2(d). To this end, we first average the
xx-component of the stress as 1

w

Ð w=2
�w=2 sxx(x, y, z, ωa)dy over the

width of the beam w to find sxx(x, z, ωa). Next, we integrate in the
directions specified by the following expression:

My(x, ωa) ¼
ðz
0
(sxx(x, z, ωa)� s(0)xx )(z � zn)dz: (7)

In Eq. (7), zn(x, ωa) is the location of the neutral axis at a given x

and is defined as

zn(x, ωa) ¼
Ð z
0 sxx(x, z, ωa)zdzÐ z
0 sxx(x, z, ωa)dz

: (8)

We show four instantaneous bending moment profiles in Fig. 2(d)
at time points 1–4 along the stress trace indicated in Fig. 2(c). The
schematic picture in Fig. 2(d) shows a side view of the nanoresistor
and the clamped end of the beam, which is the starting point of the
bending moment diagram.

III. RESULTS

A. Parametric studies

Using the approach described in Sec. II, we investigate the
response of the NEMS actuator as a function of drive parameters.
The relevant parameters for the electrothermal actuation are the
magnitude of the ac drive Id and the mechanical linear actuation
frequency fa. Our device for simulation is the 50-μm beam with
tension with its characteristics shown in Table II. For the paramet-
ric study of the effect of Id , we affix the value of fa ¼ f1 and sweep
the values of Id from zero to 1:2mA. For the parametric study of
fa, we maintain a constant Id ¼ 1mA while sweeping fa from
100 kHz to 500MHz.

Figure 3(a) shows the oscillatory peak-to-peak temperature ΔT
of the actuator measured on top of the gold actuator (black point).
Here, we essentially repeat the procedure outlined in Fig. 2 while
varying the magnitude of Id . The current oscillates at the frequency
of 2.6 MHz, and the beam resonance frequency is 5.2 MHz. This
temperature ΔT is the difference between the maximum and
minimum temperature values, i.e., peak-to-peak amplitude, on the
actuator after the system reaches a steady state—as shown in the
upper inset of Fig. 3(a). The lower inset shows a snapshot of the
temperature field on the actuator and the beam region for the case
of Id ¼ 1mA; we note that ΔT / Id2.

Figure 3(b) shows the spatially averaged peak amplitude of the
bending moment along the beam as a result of the oscillating tem-
perature field. Here, we first compute the bending moment for the
fundamental flexural mode at f1 ¼ 5:2MHz starting from the
clamped end on the actuation side using Eqs. (7) and (8). The inset
shows the peak bending moment diagram from Fig. 2(d) for
Id ¼ 1mA. Then, for a range of Id , we compute the corresponding

spatially averaged bending moment �My ¼
Ð ξ

0
My(x)dx

ξ , where ξ is the

spatial extent of the bending moment along the x axis, as depicted
in the inset of Fig. 3(b). Here, we also indicate the nanoresistor
dimensions ξ1 and ξ2 on the bending moment diagram for refer-
ence. This normalization of the peak bending moment removes the
position dependence. As expected, we observe that �My / Id2.

Next, we investigate the thermal frequency response of electro-
thermal actuation for a fixed electric drive of Id ¼ 1mA. We repeat
the simulation procedure for the 50-μm beam with tension as out-
lined in Fig. 2 while varying the actuation frequency fa. Here, we
are interested in the peak-to-peak oscillatory temperature ΔT as a
function of actuation frequency fa, where ΔT is extracted from the
point indicated in Fig. 3(a). The mechanical response of the device
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at the actuation frequency fa is linearly proportional to the thermal
response as established in Figs. 3(a) and 3(b). We plot ΔT(fa) on
logarithmic axes in Fig. 4(a) and on linear axes in the inset, from
which we extract the effective frequency range of actuation. The
simulation results predict that our NEMS doubly clamped beams
with tension can be actuated efficiently up to 84MHz (3 dB cut-off
frequency), and the thermal time constant is τ � 1:9 ns. We high-
light the resemblance between the nanoactuator’s thermal response

and the transfer function of a low-pass filter, which is in accor-
dance with how nanoscale electrothermal actuators behave.13

As the oscillatory temperature range ΔT decreases at higher
actuation frequencies, the dissipated power translates into a higher
average temperature of the actuator, �T . We formally define the
average temperature as �T ¼ Tp � ΔT , where Tp is the peak temper-
ature with respect to Tb. Note that the temperature oscillations
cannot reach below Tb; thus, �T ¼ 0 if ΔT ¼ Tp � Tb, as is the case
shown in Fig. 2(b). We show �T(fa) on linear axes in Fig. 4(b).

The magnitude of �T is more substantial at higher actuation
frequencies, as there is a prominent ramp-up period before the
oscillatory temperature oscillations become steady. Thus, the tem-
perature evolution in time is described by the following equation:

T(r, t) ¼ Tb þ �T þ ΔT
2

� �
(1� e�

t
τ)þ ΔT

2
sinωat: (9)

The second term in Eq. (9) is the dc thermal response of the
system, and the time constant τ ¼ 1:9 ns; the third term is the
oscillatory temperature, which is responsible for electrothermal
actuation.

FIG. 4. (a) Oscillatory temperature ΔT as a function of the actuation frequency
fa. The cut-off frequency is 84 MHz, and the system thermal time constant is
1.9 ns. The inset shows ΔT (fa) in linear axes. (b) Average temperature magni-
tude �T as a function of the actuation frequency fa.

FIG. 3. Change in transducer performance based on the injected ac drive
amplitude Id . (a) Peak-to-peak oscillatory temperature ΔT as a function of Id .
The lower inset shows a temperate field with the point of measurement of the
steady-state temperature oscillations. The upper inset shows a snapshot of the
steady-state temperature oscillations in the time domain. (b) Spatially averaged
bending moment �My as a function of Id . The inset shows the peak bending
moment diagram My (x) corresponding to the drive amplitude of 1 mA.
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B. Validation

We validate our FEA model by comparing beam oscillation
amplitudes from experiments66 with simulations. Figure 5 shows a
comparison between the experimental rms displacement as a func-
tion of actuation frequency of two different beams with tension
with linear dimensions given in Table II and our simulation results
for the same beams. The transducers for these beams have the
same dimensions as the representative sample in Fig. 1(a). The
experimental data are shown by hollow symbols, and the numerical
results are shown by red solid lines. The numerical results for the
beam displacement are obtained as follows. We first find all
required input parameters, including the intrinsic stress, dissipa-
tion, and input ac current. We then compute the harmonic temper-
ature field from the Joule heating due to a supplied ac drive using
Eqs. (3) and (4). Next, we solve the Euler–Bernoulli dynamic beam
equation with tension, where the external drive term is the har-
monic thermal load that arises from the temperature field.71 These
steps are entirely carried out in the FEA software environment and
allow us to calculate the displacement field for any beam geometry,
drive amplitude, and actuation frequency following the procedure
shown in Fig. 2. In Fig. 5, we demonstrate good agreement for a
30-μm beam and a 50-μm beam around their first four flexural
modes. We also show the rms resonance displacement amplitude
as a function of the drive current Id for the first and fourth modes
of the 30-μm beam in the insets of Fig. 5(a).

C. Temperature in fluids

We extend this analysis to an electrothermal actuator
immersed in a fluid, as it is relevant for investigating nanoscale
fluid-structure interactions and nanomechanical sensing applica-
tions. We investigate frequency-dependent parameters ΔT(fa)
and �T(fa) when the NEMS structure is immersed in air and
water. From the perspective of the software implementation, we
surround the entire NEMS structure in an ellipsoid-shaped fluid
domain and impose a uniform initial temperature Tb, as shown
in Fig. 6(a). We define an infinite-element domain so that the
size of the fluid volume is large compared to the nanoactuator.
For computing the temperature field, we solve the heat
equation (4) with additional contributions from the surrounding
fluid. Relevant fluid properties used in simulations are shown in
Table III.

We show the oscillatory temperature ΔT(fa) on logarithmic
axes in Fig. 6(b) and the average temperature �T(fa) on semi-
logarithmic axes in Fig. 6(c) for both air and water. For reference,
we also plot the thermal response in vacuum. The insets in
Figs. 6(b) and 6(c) show the same data in linear axes. As expected,
the presence of a fluid reduces the peak oscillatory temperature as
well as the average temperature across the frequency range as com-
pared to vacuum. Additionally, the fluid decreases the cut-off fre-
quency and, as a result, increases the thermal time constant of the
electrothermal actuator.

FIG. 5. Comparison of experimental displacement data from Ti et al.66 (black hollow squares) with FEA simulation results (red solid lines). (a) Rms displacement as a
function of frequency at an antinode of the 30-μm beam for modes 1–4. Insets show the rms displacement at the corresponding mode resonance as a function of Id . (b)
Rms displacement as a function of frequency at an antinode of the 50-μm beam for modes 1–4.
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IV. DISCUSSION

The developed finite-element model is broadly applicable to
electrothermal transducers with linear dimensions varying from m
to nm. The innovative modeling approach here is based on a care-
fully defined coupling of the thermal and mechanical domains of
electrothermal actuation. More specifically, we utilize a time-
dependent solver, which is the most intricate but also computation-
ally expensive method, for finding steady-state thermal behavior.

This step provides the oscillatory temperature ΔT for a given drive
and frequency, and ΔT is the only input required for coupling the
thermal domain to the mechanical domain. For the mechanical
simulation, we incorporate the computed temperature field as a
harmonic perturbation to the system, which allows us to compute
the stress and displacement fields, as well as bending moments and
strain fields. Besides its computational efficiency and reliability, our
method for simulating electrothermal actuation overcomes a few
key challenges associated with a fully coupled transient model that
is typically used in FEA software environments. For instance, it is
impractical to define isotropic dissipation within COMSOL
Multiphysics® software environment if one is working in the time
domain.71 This limitation will compromise the accuracy of the
NEMS response as the modal quality factor Qn cannot be properly
established. However, since our mechanical response is modeled in
the frequency domain, this limitation does not apply.

Furthermore, the results obtained from our simulation model
can be integrated with recently developed analytical models that
govern nanoscale systems; for example, for externally driven
nanoscale beams with tension immersed in viscous fluids,
Barbish et al.31 derived analytical expressions for calculating the
driven beam amplitude. In this analytical approach, the electrother-
mal drive was modeled as a uniform force per unit length f (x)
along the beam over a certain length, which was treated as a param-
eter. The authors demonstrated that such a uniform force distribu-
tion must be extended significantly further than the actuator length
in order to match the experimental results,31 which shows the
complexity of modeling electrothermal drive. The FEA model
developed in this paper provides both the force distribution and
the spatial extent for various drive amplitudes and frequencies.
These parameters can be computed either by numerical differentia-

tion of the bending moment, i.e., f (x) ¼ d2My(x)
dx2 , or by direct extrac-

tion of the normal force from the FEA model, and the results can
be readily incorporated into analytical expressions. Thus, informed
with the output from FEA, one can better investigate the dynamic
response of various nanoscale devices using analytical expressions
in conjunction with numerically computed excitation parameters,
such as thermal stresses, forces, and bending moments.

We now provide a rough estimate for relevant physical proper-
ties related to electrothermal actuation of our NEMS devices, as
computed from the FEA model. For excitation currents �1 mA
and lower actuation frequencies below the thermal roll-off fre-
quency, we achieve an effective temperature oscillation range of
around 0.1 K without a significant increase in the resonator’s
average temperature. This temperature increase generates a har-
monic thermal stress of �1MPa and spatially averaged bending
moments of �10�14 Nm. We attribute the shape of the bending
moment diagram to the geometry of our NEMS doubly clamped
beams. As shown in Fig. 2(d), the undercut starts below the wider
suspended SiN layer; therefore, the suspended part of the structure
contains both the slender SiN beam and part of the wider SiN
layer. This creates an abrupt change in the cross-sectional area,
which results in localized stress concentration. Additionally, the
sharp end of the u-shaped actuator tip also creates a local stress
buildup, which modifies the bending moment. At the cut-off fre-
quency of �80MHz, the amplitude of the temperature oscillations,

FIG. 6. (a) Model geometry for the NEMS immersed in air and water. The outer
shell of the indicated fluid domain is an infinite-element domain. (b) Oscillatory
temperature ΔT as a function of actuation frequency fa in vacuum, air, and
water. The inset shows ΔT(fa) in linear axes. (c) Average temperature �T as a
function of actuation frequency fa for vacuum, air, and water.

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 134, 074302 (2023); doi: 10.1063/5.0157807 134, 074302-10

Published under an exclusive license by AIP Publishing

 22 D
ecem

ber 2023 16:59:02

https://pubs.aip.org/aip/jap


stresses, and bending moments reduce by a factor of 2. The reduc-
tion in the actuation efficiency is due to our system’s thermal time
constant of 1.9 ns, which is the time required for the temperature
to equilibrate in response to ac current. At high actuation frequen-
cies, this results in a reduced oscillatory temperature and an
increased average temperature. As for the amplitude of the ac drive,
we limit the excitation current such that the mechanical response
of the system remains within the linear regime of operation, as
nonlinear effects in NEMS are beyond the scope for this work.

Finally, we discuss the comparison of the beam displacement
as a function of frequency acquired from our FEA model with the
experiments. The intrinsic stress s(0)xx and modal isotropic dissipa-
tion ηn determine the exact resonant frequencies ωn and quality
factors Qn. These parameters are tuned to match closely with the
experiments, as shown in Fig. 5. The displacement amplitude is
sensitive to the temperature field and depends upon thermal and
electrical boundary conditions, material properties, and geometry.
In addition, part of the drive signal in the experiments is reflected
from the nanoresistor due to the presence of parasitic capacitance.
This is not explicitly modeled in our simulations. The reflectance
measurements of similar gold electrodes deposited on the same
batch of NEMS devices were conducted by Ti et al.,66 and the para-
sitic capacitance was found to be Cp � 65 pF. We can compute the
frequency-dependent reflectance coefficient as

Γ(fd) ¼ ZL(fd)� Z0

ZL(fd)þ Z0
, (10)

where Z0 ¼ 50Ω and ZL is the impedance of the nanoresistor.
When we compute the reduction in the power dissipation at the
higher modal frequency of fh ¼ 35:6

2 ¼ 17:8MHz compared to the
lower frequency of fl ¼ 5:2

2 ¼ 2:6MHz, we find that the power is
reduced by 2% at the higher frequency. This power loss in the
drive signal results in an experimentally weaker drive and contrib-
utes to the over-prediction of the displacement amplitude for
higher frequencies (Fig. 5).

In summary, we investigated the electrothermal actuation of
NEMS and quantified the bending moments generated by the actu-
ator and the resulting displacements across experimentally relevant
drive amplitudes and frequencies. While the actuator can continue
to excite the flexural mode of the resonators beyond 84MHz, we
show that significantly more power is required. To illustrate the
effect of device scaling on the actuation bandwidth, we utilize the
developed FEA model for the following parametric study. We iso-
tropically scale down the geometry of the NEMS device by a factor
of 2 and compute the corresponding actuation cut-off frequency
following the modeling procedure described in this paper. Figure 7
shows the cut-off frequency of electrothermal actuation as a func-
tion of the geometry reduction factor plotted using logarithmic
axes. There is a practical limit for miniaturization due to the resolu-
tion of electron beam lithography of �15 nm.72 Thus, scaling the
width of the nanoresistor beyond this is unrealistic. We show this
limit in Fig. 7 by the shaded region. As electromechanical systems
are further miniaturized with higher operation frequencies, our
approach will allow for designing more efficient electrothermal
actuators and devices.
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APPENDIX: MODELING PROCEDURE

This section is intended to provide a more concrete set of
instructions on how to build the FEA model described in this
paper.

The FEA model contains three distinct solvers: (i) a pre-
stressed eigenfrequency solver for determining intrinsic stress and
dissipation, (ii) a time-dependent solver for determining the tem-
perature field of the system via Joule heating, and (iii) a frequency-
domain solver that relates the harmonic thermal load to the stress
field and the displacement field. The main text contains all

FIG. 7. Geometry reduction factor vs actuation cut-off frequency. The shaded
area shows the resolution limit of modern electron beam lithography.
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necessary details for (i), and we, thus, focus our instructions for
parts (ii) and (iii).

The time-dependent Joule heating solver combines electrical
currents and heat transfer in solids interfaces and solves for the
temperature field for a given drive amplitude Id and frequency fd
using Eqs. (3) and (4). The solution time span is set to 40

fd
so that

the system can reach its steady temperature oscillations with a
peak-to-peak amplitude of ΔT .

We extract the solution of the oscillatory temperature field
from (ii) by using the withsol command from a relevant time
domain simulation; then, we provide the extracted thermal field as
an input into the thermal expansion node of the solid mechanics
module, which can be efficiently solved in the frequency domain
by COMSOL. Here, the oscillatory temperature field will contribute
to the external load of the system and act as the excitation source,
and thus, one can compute the mechanical response of the system
by solving Eq. (1) at various actuation frequencies ωa, including the
modal frequencies ωn. This step gives the solution of the stress and
displacement fields.
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