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ARTICLE INFO ABETRACT

Eeywords: Full-contact physical interactions inherent in typical construction workflow, such az material handowers, hawve
Phywical | : robot collabaration yat to be adequately rezolved or adopted in HumanRobot Collaboration (HRC) due to zafety concerns. Repli-
Human physical state avarenem cating protective behavior norms for robots can help achieve safe robot material handovers to human workers.
I ; " To build such a human-adaptive model, fretly, we present a comprehensive receiver grip state indicator that

encompasszes both gripping strength and gestures with whole-hand tactile sensors. Secondly, a Learning from
Demonstration (L) model built to replicate the human grip state-reactive behavior norms for robots iz
described. The proposed method outperforms other robot-to-human object handover methods using only one-
zhot demonstrations of natural handovers. Additionally, the LfD-based programming interface iz accessible to
conztruction workers without programming expertize and can continnously collect data for a future large-zcale
LY model covering a wide range of handover materials, users, and gestures to further enhance worker safety

during close-proximity material handovers.

1. Introduction

The ahility to efficiently procure, store, transport, and stage mate-
rials and components on construction sites 1z a key determinant of
project success [1]. Construction material handling and staging connect
warchouses and laydown areas with installation locations on job sites,
and efficiency in these steps often determines overall job site produe-
tivity [2]. Howewer, due to the unstructured nature of construction sites,
material handling and staging incur a significant cost to the health and
well-being of construction workers. Multiple studies have chown that
material staging workers are more susceptible to Musculoskeletal Dis-
ornders (MSD) than those in other trades, which iz correlated to the
accumulation of phyzically demanding work over long durations,
especially that invelving handling and transporting heavy materials and
components [3-7]. Since 2001, around $50 billion has been spent
annually to compensate for the productivity and wage losses resulting
from the oecurrence of MSD in construction workers [5-10]. This state
of affairs often compels construction workers to retire early [2,10] and
dizcourages individuals in vounger generations or of different abilities
from considering careers in field construction [11].

* Correzponding author.

The deployment of robots in field construction work has often been
proposed to relieve human workers from phyeically challenging tasks
and to provide an ergonomically favorable construction site environ-
ment [12,13]. Specifically for construction sites, Human-Robot
Collaboration (HRC) has recently been widely accepted in the hterature
az a feasible method of adopting a co-robotic workforce to boost the
productivity of field construction work while redueing the oceurrence of
errors and rework [14-17]. However, most of these construction HRC
cooperation of human workers and robote, primarily to ensure human
safety [1£]. The types of work and job site conditions that require or can
benefit from rich phys=ical interactions between human workers and
robote are not abundantly considered. This lack of physical interactions
ture and slows down the introduction of productive and human-centrie
construction robotic applications on account of the following reasons.

On the one hand, many tasks invelving dexterous manipulation of
construction tools often require creativity and improvisation. Such
abilities are currently associated only with experienced human workers,
making the full robotization of several field construction tasks
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particularly challenging. On the other hand, many workers have a strong
passion for construction and a deep sense of pride In craftemanship and
the phyzical manipulation of construction teols [11,19,20]. The possi-
bility of such workers serving as remote supervisors potentially im-
proves their safety but iz also likely to take away crucial elements of job
zatisfaction which they achieve from performing field construction
worlk.

Thus, a practical human-centric HRC [21] must ensure the ability of
construction workers to directly participate in the performanee of field
construction tasks. In such an HRC scheme, the carrving, handling, and
transporting of heavy construction material: and compeonents can be
outsourced to co-robots, with technical studies and safety standards well
developed to aveid direct collisions with human workers by the robots
and the robot-held objects. [22-228] In comjunction, human workers can
be near the robots and use their knowledge, experience, and improvi-
zation skills necessary to install the materials and components suceess-
fully with physical separations from the robote [29,30]. With the
worker's zafety ensured in both stepe, the feambility of thiz physical
Human-Robot Collaboration (pHRC), therefore, heavily depends on the
zafety and flueney in the robot-to-human material transfer dynamic.

In thiz regard, thiz paper proposes to replicate the mutual phyeieal
state aware and adaptive collaboration mechanismes inherent in human-
to-human partnership within the context of human-robot teams. The
research develope an overarching two-step framework that enables nich
phyzical interactions between human workers and co-robots to create a
symbiotic HRC construction site environment. The proposed approach
starts with safety baselines on contact energy limitations to minimize
human injury and pain in case of unintended contact and collizions
[26-2£]. In addibon, the method also features adaptive and human-
aware robot motion planning that iz based on the robot’s real-time un-
derstanding of the human workers' phyeical state, such as the strength of
their grip on clasped matenials. Such human-aware systems have been
proven effective for functions such as robot path planning in other pHRC
applications [31-33].

The contribution and novelty of the research desenibed in thiz paper
lie in the following facts:

1} This paper proposes a new method that uses both grip strength and
gesture to represent the human's grip state and ploneers the use of
full-hand tactile gloves to comprehensively sample the pressure map
of an entire hand as the machine learning model input.

2} Thiz paper iz also among the select few in the Literature that recog-
nizes the mmportance of Imitation Learning to the robot-to-human
object handover problem. In our research, we also propose to use a
25-z one-chot natural object handover as the demonstration to
mimmize the human worker's workload. Our method 1= much more
efficient and accurate compared to other prior work that, for
instance, requests humans to repeat purposeful touch to the robot 50
times to only teach the robot two elementary actions in the handover
problem.

3) By combining the above novel methods and carefully testing several
human grip state accuracies. This method was also shown to be very
effective for inferring a human's grip state under unseen scenarios, az
mentioned in the Results section of the paper.

Thiz paper iz organized to first provide a Literature review on adap-
tive robotic behaviors based on human's phyzsical state in pHRC, ezpe-
cially the observations used to profile the human giver's behavior during
object handovers. Second, the pHRC construction material handhng
framework focusing on co-robot to human worker object handover 1=
illustrated in the Technical Approach section. The supplementary indirect
collision mitigation safety standard iz also ntroduced in this zechon
Finally, a case study with objects of various shapes, weights, and mass
distribution patterns is used to test the validity of the construction object
handover model under different conditions.
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2. Literature review

This section summarizes relevant previous studies and safety stan-
dards to identify the gap between existing work and practical on-site
pHRC applications, particularly those relevant to construction sites.

To propoee safety measures, the first step is to understand the sourees
of safety rigks [33]. The whole material staging phase can be divided
into two parts: the material pre-handover (material pickup and trans-
port) and the robot-to-human material handover. Firstly, in the material
pickup phase, the robot needs to recognize the intended material
accurately and pick it up accordingly. Many pieces of research have
ensured accurate object recogmition and adaptive object pickup

22,31,34-32]. In the material transport phase, the robot firet needs to
operate under a given speed and foree threshold defined in the [SO
15066:2016 standard [26]. In addition, the robot also needs to be aware
of the human’s phyeical location to adaptively plan and modify ite path
to avold physical contact with proximate humans [23,20-50].

In a robot-to-human object handover, two conditions can inflict
injury upon the human: 1) direct colliszions between the end-effector and
the human, and 2) indirect collizions between insecure or falling objects
and the human reeeiver [26-28,36]. Extensive prior research has etud-
1ed and formalized human-aware and direct collision-free robot control
schemes by understanding the human's hand locations and availabality
to receive objects [24,25,51-55]. The nsks from indirect collizions are,
however, not extensively studied or organized. Therefore, thiz section
primarily reviews the state-of-art studies that addrezsed indirect colli-
sion mitigation during robot-to-human object handover processes.

2.]. Human grip state awareness in robot-to-human object handover

The most intuitive measure to reduce the risk of indirect collizion 18
to increase the object transiion success likelihood [56]. The corre-
sponding technical methods have progressed through three phases, as
outhned below.

Phase 1: Understanding the giver’s or recetver’s phyzical state changes
that trigger the human giver's releaze actions in human-to-human object
handevers [38,57-50].

In thiz phase, the goals of studies are to track the physical states of
human givers and recervers during the handover process and model the
giver's release actions based on certain phyeical state changes. Az for the
giver's phyeical state, parameters such as the intentional walting time
after the recerver’s first grasp [55-60], the grp force counterbalancing
object foree [52], and the grip foree change ratio [59], have been
studied. Furthermore, the receiver's grip foree values [58,59], the gnp
foree change ratio [60], wrist accelerations [32], and upper arm musele
activities [61] have also been assumed to trigger the giver's release de-
cision. However, these studies have the following three hmitations.

First, the test objects have light weights and single grip locations.
However, construction materials and components are typically heavy
and arbitrarily shaped with multiple grip locations [57]. Az a result, the
applicability of the above conclusions to construction materials and
objects needs to be tested. For example, the vanation of static grip foree
along the object has been observed, which seems to be correlated with
the distance between the human's holding hand and body mass center.
As shown In Fig. 1, a 2.4 kg. wood board will impose an average of 1.1
kPa preszure on the holding hand when grasped in the middle. The
contact pressure of the object will increase to 0.52 pei when it iz held at
the farther end.

Second, the quantitative measurements from different studies are not
in alignment For example, in [60], the giver intentionally waite for an
average of 0.036 = after the recerver's first contact with the object
[weight = 0.09 kg). However, in [62], the experimental observations of
intentional wait were 0.323 s (weight = 0.15 kg). The object weight
appears to be correlated with the intentional waiting time change.
However, without a quantitative study of the cauzal effects, it is unclear
how the value will change for any new objects with different weights.
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Fig. 1. The average grip pressure when holding a wood board.
*number marked in the lower graph shows the grip location where the hand
pressure was sampled.

Third, the foree change ratio iz also easily affected by wrist flexions
and extensions [62], which can happen during the handover process and
introduce noize in real-time wrist foree tracking.

Moreover, the human recerver may have different expectations to-
wards the behavior of the robot giver and the human giver. Az a result,
the robot controller that 1s built considering the above human giver
behavior profiles might not be trusted by human collaborators [64]. For
example, when the robot used conclusions from [57] and immediately
released objects after the receiver's initial grasp, the human receiver
evaluated it with a lower level of confidence and acceptability [64].
These lmitations motivated the Phase 2 studies.

Phasze 2: Preprogramming a human-giver-inzspired robot controller and
optionally using human evaluation to determine or improve parameters in a
handover controller [56,61,64-68].

In thiz phase, handover controllers are developed by direetly letting
humans evaluate preprogrammed robot controllers to select trustworthy
controllers. For example, [64] let human recelvers compare their pref-
erences for three sete of the robots’' intentional waiting time. Most
human receivers favored the intentional waiting ime of 0.25 g, but this
study also observed a high vanation in personal preferences regarding
walting time. However, this posterior evaluation method can only test a
limited nmumber of robot controller parameter settings. Therefore, this
method iz not efficient for captunng the personally most comfortable
setting for each receiver [64].

Moreover, in [64], the authors taught the robot to release grasped
objects when it detected or predicted the human reeeiver's pull event as
the trigger based on probabilistic inference. However, thiz study did not
provide the range for the perceptible force exerted by the user, and its
generalizability for different objects was not evaluated either. These
missing conclusions limit the application of the study to other receiver
and object ecenarios.

In addition, other similar preprogrammed controllers have also
shown to be effective in teaching the robot safe handover behaviors
[51,564,66,67]. Howewer, the common disadvantages are: Firetly, the
analyziz and programming are strenuous. Secondly, the controllers show
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weak generalizability to unseen handower settings. Furthermore,
although differences in personal preferences are obeerved, the above
methods only illustrate how to adapt to the majonty of users. The user
experience of some users will thus be affected when they are not in
alisnment with the majonty. Therefore, a readily programmable and
personalized method would be needed.

Phase 3: Humans directly demonstrating some physical statez and their
corresponding action tntents, and a machine learning model being automat-
tcally tuned to imitate thiz demonstration without extra programming [69].

Learming from Demonstration (LfD) fits the abowve readily program-
mable requirement and directly illustrates personal preferences to co-
robote. LD iz a method that tranclates the human’s actions directly
with a robot controller by tuning controller parameters to minimize the
inconsistency of human behaviors [70]. Por example, to teach the robot
to differentiate the subtle intent, such az "mild touch™ and “proper
grasp”, a supervised classification model was used to map the grip forees
to the human's action intent [69]. However, the demonstration of effi-
cleney in this study iz still a concern. Fifty instances in ten triale were
needed for every small table object to achieve a 93.9% accuracy in
recogmizing the human's intent Howewver, on a construction site,
although with the increased popularity of LfD [71], the demonstration of
heavy construction materials will inerease the physical workload of
human workers and defeat the purpose of the study. Therefore, this
study aime to leverage the inhuntiveness of the LfD scheme but improve
the learning efficiency and handover success rate.

2.2, Falling objectz mitigation in current safety standards

Another problem with existing robot-to-human handover studies 15
the mherent desire to achieve handovers with a 100% success rate.
However, the cost to improve the success rate from an already high level
to 100% can be significant [72]. Therefore, safety standards usually
allow technology adoption when the nsk i= acceptable [26,73]. The
acceptability of physical collision risks is determined bazed on the
human's subjective pain [25]. For example, IS0 15066:2016 provides
contact speed and energy limitations to limit human pain from a po-
tential collision to a mild lewel [26].

However, such rizk quantification and mitization are cnly provided
indirect eollizion, from objects held by the robet, iz only included by
adding to the mass of the robot's body. Such caleulations neglect the
robot gripper, although they are aleo identified az hazardous in multiple
safety standards in construction and rebotics [49,50,73].

In quantifying the collizion risk, the United States (US) Occupational
Safety and Health Adouimistration (OHSA) standards have two sumilar-
ities with 80 standarde. Firetly, unintended object drope have always
been considered hazardous [73]. Based on the height difference of the
falling location, the hazardous level vanes as well Falling objects across
multiple stories are the most dangerous due to the highest contact en-
ergy. Those from the same story and overhead are treated as compara-
tively less dangerous. Thie leads to the second smmilarity m evaluating
the level of danger based on the collision energy. However, OHSA does
not provide quantitative hmitations either. Therefore, this paper also
aims to extend the contact limitations in 150 standards to fulfill the
OHSA requirement of reducing falling objects.

3. Techniecal approach
3.1. System overview

Based on the limitations in existing studies identified above, the
eritical components in mitigating physical risks for material handling in
HRC include: 1)} enhancing handover suceess rate with robust human
grip state understanding; and 2) alleviating human perceived pain by
limitine falline obiects’ . ]
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To establish robust grip state understanding with the shghtest pro-
gramming effort, the LfD-imduced physical state classification model was
deployed, az suggested in [69,71]. A short natural handover process is
proposed to serve as the demonstration to further reduce human
demonstration efforts. The human participant thus only needs to
perform a short object handover with another human giver to provide a
demonstration. This approach i1z more intmtive and less repetitive than
the previous study [62].

Moreover, this study aims to simplify the computing model to reduce
the computational load and enhance robot responsivencss. Based on
suggestions from [69], innovations in sensor systemes are alzo leveraged
to improve sensory information density. Tactile gloves are used to
capture both the human's grip foree and grip gesture simultaneously.
Under the LfD method structure, the human should also show the robot
an expected action corresponding to each demonstrated grip state. With
the haptic map — expected action pairs demonstrated, a grip state haphie
map classification model was built, which can be used to build the robot
handover controller. In addition, as most robot-to-human handowvers
cannot achieve 100% success, additional safety measures were proposed
to minimize the perceived pain [26] in case of objects falling on humans.

Therefore, the robot workflow for material transport was modified
with the above technical approach, as illustrated in Fiz. 2. After picking
up materiale [37-41], the robot started by calculating the maximum
permissible handower height based on the confidence of handover sue-
cess. Using this height and the human hand detected [35,32] as the path
destination, the robot can therefore navigate to the handover location
and start the matenal transition [42-4£8]. With a human's haptic map
detected, the robot can infer the grip state in real-time and deeide
whether to release the object with the classification model built with the
human’s demonstration

The detailed steps for building such a framework are deseribed in the

3.2. The recetver’s grip state profiling

The core of the safe robot-to-human handowver 1= the robust human
grip state understanding. Therefore, az the start of technieal details for
the zafe handover framework, thiz section illustrates how thie study
proposes to analyze the grip state and combine natural LD and human
grp state understanding.

3.2.1. The receiver’s force profiling
To efficiently quantify the human's preferred intentional waiting
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time, the backward analyeiz deseribed in [57,58] was first repeated to
retrieve the human giver's preferred releaze time. Even though this
backward analysiz cannot be uzed to guide the real-time robot action, itz
numerical concluzions will reveal the human receivers personalized
preferences more efficiently than those reported in [54].

Grip force has been a popular choice to record amd analyze the re-
cetvers grip foree change during the handover process [56,57,59,69].
Even without the LfD model, this sensory data still contains rich infor-
mation about the receiver's intent. As mentioned in Section 3.1, a po-
tential giver's action can be inferred from the giver action profiles
deseribed n [57]. Although our data has slightly different forms
compared to wrist grip foree in [57], the conclusions in that study =till
apply to our haptic map data. The reasons are shown as follows. As can
be seen in Fig. 3, the whole hand-holding foree, which is the product of
contact pressure and contact areas, counterbalances the grip foree. For
the same user, the area of the hand will be a fixed coefficient, making the
contact pressure proportional to the grip foree, as ehown in Egs. (1) and
(2). Therefore, the giver's preferred release moment [57], in terme of its
firet-order derrvative change, can be inferred from the contact pressure
change.

Az the receiver's expected release moment was also collected, its
difference from the giver's release moment can be caleulated. This dif-
ference chowe the receiver's expected giver waiting time after the re-
cetvers first grasp of objecte and before the giver's release action. The
receiver's expected walting time has erocial importanee for the following
[52,60,62], which was tolerable within the original human workforee.
However, the HRC team usually has a clear leader-followership, with the
human (recetver) being the leader [17]. Therefore, the preferred
collaboration flow of the human recerver should be well understood and
paszed on to the robot. Obeerving the non-negligible waiting ime helps
oppoee the giver-centric robot imitation learning scheme by addressing
the difference between the givers and the receiver's preferences.
Therefore, the receiver should lead the demonstration for robots to
enhanece the user experience for human receivers.

In addition, thiz ealeulation i= more efficient in addreszing the re-
cetver's personal preference for robot controller design compared to that
deseribed mn [64]. In that study, the research team proposed three sets of
intentional waiting times used controllers and then selected one based
on collective preferences. Compared to their method, this research slaps
the prior selection of potential intentional time and addresses the pref-
erences of every receiver.

Planning and Safety Check

Robot path planning and
move to handover
destination

e

Decide
object
handover
height

IS0-15066 max permissible energy

Maove to material
stock and pick up

Start

Handover

Reach out and wait with
receiving human haptic

signal

Wait for
release
threshold
met

Semi-supervised SVC haptic map classification

Release object,
record performance
and plan for next task

End

Flg. 2. Computational workflow in HRC material staging.
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Eq.(1)
Eq.(2)
p — Hand pressure when holding the object, kPa;

Gop; — Object gravity, N;

Farip
A

A — Object contact area, m?,

Fgrip = Guf.lj

P

Fig. 3. Static force analysiz for human hand holding an object.

3.2.2 Senszorz and sampling settings

H. Yu etal

The demonstration process starts with the sensory syetem ready to

computation model and provide fast robot reactions. A Tekscan 4256E record the receiver's grip state. One demonstration lasted 60 s, The giver
In the demonstration, the receiver’s preference for release time was

assumed to have a higher prionty than that of the giver, considering that

the receiver has a good haptic sense of whether the object 12 secure.

kay"
ST T g
(starting from 12.5 &= before the receiver command object release and
ending at 12.5 s after commanded releaze) were cropped out to establish
a grip state understanding model. The recording length was selected as

*Each zhort vertical line shows a time interval of 0.01 =
datazet of haptic maps before and after the release, the muddle 25 =

65]. Therefore, In
3.2.3. Human handover demonstration

this research, firstly, as for the sensory system, tactile gloves were used

to understand the grip state

however, only the numencal value changes were
typically analyzed. In human-to-human handovers, the receiver’s grip

ndly, as robots need fast reactions to adapt to human’s constantly-

changing phyeical state, the increased information density from the

The pressure sensor precizion was set to one psi, and its sampling
frequency was set to J00 He based on similar rezearch experiment set-
tinge [53]. Every 0.01 &, a haptic map contmining data from 52 (hor-
zontal) x 46 (vertical) hand pressure sensors was created, as shown in

Fig. 5.

The receivers preference modeling method In Section 321 iz a
feazible but inefficient way considering the amount of data needed. A

more efficient way is to include more suitable analyeis models and nch

sensory information. Force-based sensors are widely used in robot-to-
grip sensor was eelected and glued to eoft tactile work gloves, as shown transitions the object to the reesiver at around 30 =. To shape a balaneced

gloves have been commonly used in touch sense-based studies and their Flg. 5. The soundwave when the receiver signaled the giver to releaze.

to show both foree and gesture changes during the handover. Haptic
cost will be gradually reduced with technological advancements [74].

human handover studies

[53,54,61,64,60]

gestures also contain useful grip state information [51

robot pereeption eyetem iz assumed to help simplify the corresponding
in Fiz. 4 (right). In thiz way, the haptic sensors had fixed locations
relative to the tactile gloves dunng the handover process and could
capture the human receiver's grip patterns more accurately.
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Flg. 4. The haptic map sampled by the Tekscan tactile glove.
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Therefore, the receiver will lead the demonstration. The human receiver
wears the haptic glove to collect the haptic hand mape during the
handover. A fixed giver transitioned tested objects over to the receiver
and asked the reeciver to receive the objeets uzing different grip loea-
tions and gesturez. When the receiver subjectively feels a stable zrip on
the object, the receiver will verbally signal the giver by saving a short
multiple-gyllable word/sentence such as “okay” or "1 got it”. A voice
recorder with a resolution of 0.01 & then recorded the whele handover
process to understand the receivers subjectively comfortable release
moment.

The reason for using multiple-eyllable words was that their sound-
waves would have a distinet pattern near the release moment, az shown
in Fiz. 5. Therefore, the exact time of the receiver's verbal command of
release can be captured with a resolution of 0.01 . Moreover, the re-
celver's reaction ime causes a delay between the anzing of the intent of
perceiving a firm grip to the outputhing actions of verbal expression
With such a delay, the actual release time 1= assumed to be 0.25 s [75]
earher than the verbal command.

3.2.4. Grip state machine learning model

After the receiver's demonstration, an action label of “hold™ was
assigned to haptic maps collected before the release moment. A “releaze”
artion was assigned to those collected after the release moment With
the labeled haptic mape, a classification moedel was built to teach robots
to recognize the haptic maps that euggest a firm receiver grip.

The firet step n bmlding this classification model 1= to choose the
Several common classification algorithme were experimented with,
including Random Forest, Support Vector Machine (SVM), Neural
Metwork, and Ensemble Methods [76]. With the combination of
normalization preprocessing and SVM chowing the highest accuracy,
only the results of this combination will be discussed further.

Moreover, semi-supervised ML was adopted to address the action
labeling errors due to human reaction time. Semi-supervised ML was
first proposed in [77] to reduce the cost and effort needed to annotate
the noizy data Thie algorithm starte with choosing a guess ratio and
randomly marke thiz ratio of data as unknown labeled ones. Afterward,
an ML model iz applied to the unlabeled part of the data and tested for
optimal parameters by comparing their performances in predicting the
known label parts of the data. Thus, the optimal value of the guess ratio
also reflects the trustworthiness of the data annotstions. When the
optimal guess ratio 1= closer to 0, the whele model 15 szmilar to super-
vised learning, implying trustworthy data annotations. In contrast, when
the optimal guess ratio is closer to 1, the model works like unsupervized
learning, suggesting high noizes in the data labels. Therefore, the guess
ratic from O to 1 (increment of 0.1) iz used with SWVM to test the reli-
ability of the release moment labeling method. The whole process is

i
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shown in Fig. 6.

In addition, to reduce human demonstration efforts, this classifica-
tion model aleo provides knowledze beyvond known grip settinge. For
example, the recelver can grasp any location in a handover process, and
it is exhausting to demonstrate every potential zrip point to the robot.
Therefore, supposing n grip points on the objects were sampled during
the demonstration process, only (n-1) data sets will be input to the ML
model and leave one grip location as the test data to show the model
generalizability. This leave-one-out approach will be used to test all the
zrip location and gesture vanations in Section 4.

To summarize, as shown in Fiz. 7, the audio system was adopted to
mark the human receiver's statement of a firm grip on the object. A semi-
supervised structure was first used to test the reliability of the werbal
signal-based releass moment recording process. Then, with optimal
parameters selected from this semi-supervised structure, the grip state
claszification ML model was built and tested on various grip settings to
test ite robustness. Moreover, the generalizability of the classification
model was alzo tested with unseen grip settings.

3.2.5. Receiver grip state-bazed robot control

The grip state clasesification model based on the receiver's demon-
stration iz the core of a material staging robot controller. With the
clagsification model bumlt offline, the robot control eystem can thus be
bualt. As shown in Fiz. 2, the classification model parameter was stored
in the robot control system and used to control the robot's real-time
action. Due to the low-level architecture dependencies, the Tekscan
4256E grip sensor can only connect to a Windows machine. However,
the robot simulation and control system — Robot Operation System
(ROS), runz on the Ubuntu/ Linux environment Therefore, a data
condut and connects the C# Tekscan APl with the ROS system. As
demonstrated in Fig. 2, the data read by Tekscan APl was converted to a
long string with the fastest transmizsion speed.

The data transmission speed was also evaluated. With the average
transmiesion speed for one frame of a haptic map averaging 0.0693 g, the
syetem reacts faster than the typical human visual reaction ime of 0.15 =
[72]. Therefore, the wireless data tranemission system iz concluded to
have a latency that does not affect the fluency of the robot-to-human
handover evstem.

3.3, Indirect collision mitigation

Section 3.2 explored how to maximize the robot's handover success
rate az an effort to reduce the chance of early release and dropping
objects on unprepared human receivers. Another important consider-
ation in the safe robot handowver 1z the posterior risk mitigation that
mimmizes the consequences of early release [66,62]. Inm [SO

| Hand haptic map based R2H
handowver

Haptic glove
Semi-supervised haptic map

classification model P

@ B o

Data quality examination

Flg. 6. Human grip state understanding analyziz.
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15066:2016, for mitigating human ecllisions, contact energy imitations
are used to reduce subjective pain [24,49,50]. The 150 15066:2016's
pain iz poeitively related to the collision energy and the collizion energy
iz azsumed to be very close and even equivalent to the end-effector ka-
netic energy [26] based on the Law of Conservation of Energy [79]. The

ponents — mass and spead.

Similarly, this method ie aleo applicable to falling objects with the
same energy conversion scheme. When the object falls from the robot's
hand, itz potential energy 1= converted to the collizion's contact energy
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considered az 0 mysz [20], the collision energy will be zimilar to the
onginal potential energy of the objects. In thiz way, az both object mass
and height determine the potential energy, the maximum permissible
handover height was proposed for different objects with different masses
to mitigate falling objectz collision. This height limitation can also be
used as the path destination for robotic material transport.

Quantitative limitations are also proposed to guide the caleulation of
maximum permiseible handover height. For any object, itz potential
energy 1s caleulated as follows:

mt
Eienis = mgh = Eitivicm +T (3)

where

h - the height where the object was held/ robot gripper location, m;

m - object weight, kg

g - Gravitational Constant, 9.8 m/s%

v - object contact speed, m/s;

Therefore, suppose the inear veloeity 1= close to 0 at the moment of
collision [65] when collision energy reaches maximum permissible en-
€rE¥ Epermissible, the potential energy aleo reached ite upper bound. With a
fixed mazs for each object, the height should thus be Limated.

Ettiiion = Eppieniar = mgh (4)
h= mE_.gﬂ (5)
where

Epermissible — Maximum permissible energy for a certain contact area,
as defined in 150 15066:2016 [26];

Different human body areas have different maximum permissible
pain studies [26,32]. Therefore, the lowest imits should be chozen for
each handover scenario with multiple potential contact areas to protect
the most vulnerable areas. For example, for overhead handover with a
potential collizion with a human head as in [66], the maximum
permiesible head contact enersy of 0.23 kJ should be used. The
maximum handeover height above a human's head can thus be caleulated
for different objects with different masses, az shown in Fiz. 9.

The possibibty of object drop will be fixed with the handover success
rate tested and controlled to be a fixed value. Az shown in Fiz. 9, under
such eircumstances, the robot should transfer heavier objects at a lower
handover location. The proposed approach iz generally applicable to
various robot-to-human secondary safety risks mitigation scenarios,

400 500
Max object weight / g

Maximum 100 200 300

permissible

handover height'm | - .. o _ co

16 or risk = 95%

1.4

0.6
0.4

0.2

Flg. 9. Cwerhead handover maximum permizsible handower height
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such as different potential primary colliszion areas, different robot con-
trol algorithme, and different transferred objects. Howewver, it must be
noted that the authors used the same permiszible energy values az the
150 15066:2016 collizion energy limits, which only consider a flat (1.4
cm *% 1.4 cm) contact surface and no Personal Protective Equipment
(PPE) equipment conditions [26]. In this way, the numerical values
shown in Fig. 9 can only reflect the height limitation under these see-
narios. Future studies can experiment with different contact energy
limitations for other contact surfaces and contacts with PPE conditions.

Secondly, Fiz. 9 was produced under the assumption that the indirect
colhizion rick will be 100%. Yet, the safety nsk will be largely reduced
with more robust algorithms and a lower possibility of collisions
[26,31,81-84]. The line m Fig. © will also move towards the nght,
leading to higher permizsible handover height and a more ergonomic
receiving location for the human workers. With PPE-equipped situa-
tions, larger contact surfaces, and higher-performance robot control
algorithms, the permissible handover height could be at higher recom-
mended levels, despite the lack of PPE-equipped permiszible collizion
encrgy studies.

Based on the above discussion, the authors propose the following
recommendations for better worker protection and more ergonomic
handover poses:

Firetly, the robot’s handover success rate and performance should
alwayze be tested before use and monitored during use. As suggested in
[21], the safety rizk will be equal to the product of both possibilities of
collizion and the consequence of the collizion. With a lower unintended
object drop poesibility, the safety risk from such a collision will aleo be
lower. The blue curve in Fig. © will correspondingly move towards the
right, increasing the permiszible handover height Lmitations.

Secondly, human workers should always wear PPE when performing
such worke OHSA requires that PPE, including hard hate and protective
footwear, be worn by construction workers [73,25]. Being PPE equip-
ped, the permissible collision enersy without causing noticeabls pain
will also be inecreased. Correspondingly, the permuemble handower
height for the same-weight object will aleo increase.

Thirdly, for extreme situations, such as the objects being too heavy to
be held at a safe low height, the handover can be performed with a hard
and solid surface separating the potential collision source and the
human receiver [26].

4. Experimental setup
4.1. Grip state estimatton model validity test

Various grip settings on different construction materials were tested
to wvalidate the applicability and generalizability of the proposed
method. Eight different construchon materials with vanations in
dimension, chape, weight, and mass distribution were selected,
including one iron bolt, one lightweight plastic roof board, ene eubeid
wood board, two hammers (uneven mass distribution), and three
lightweight tubes of glue, as shown in Fiz. 10. The dimensions and
weight of used objects are shown in Table 1. All contact surfaces were
wrapped with plastic wrap to unify contact conditions.
shown in Fig. 10 (right), considering that grip foree changes along with
different grip locations on the objects, five different grip locations were
chosen on each wood board/roof board, and four on hammer handles.
For short glue tubes, only one grip location on each was used. Secondly,
grip gesture variations were considered because different grip gesture
preferences cause pressure map variation for the same object. The two
most popular habitual grip gestures (pinch or grasp with all five fingers)
were selected to cover more than 75% of preferred grip gestures for
cuboid and eylinder objects [26], as shown in Fig. 11.

Additionally, az object crientation and relative location to the hand
affect the grip gesture [26-70], the two most extreme object orientations
(horizontal and vertieal) and two grip methods (overhand, underhand)
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Table 1
Object Weight (g) Length (cm) Cirip area diameter {cm)
Balt 216 26.1 1.0
Roofboand 301 75.5 24
‘Wood Boand 46 306 o8
10 o=. Hammes 423 294 28
16 oz. Hammer 678 33.2 35
Great Sagf Glue 472 19.8 6.6
Gorilla Gloe 203 17.2 -
FlaskMate Glue 272 314 42

were added to the combination to show robustnese, as shown in Table 2.
Therefore, six different grip gesture settings were used, with some ex-
amples shown in Fiz. 11. Morcover, three users were invited to be
demonstrators. Thiz small user group size was found to be sutable
considering that high similarities in habitual grip gestures and orienta-
tions have been obeerved [26-20].

4.2, Grip state-aware robot controller feasibility test

Other than the model's validity, its compatibility with a robot control
system chould alze be tested before being applied to the robot An
grp state awareness-based robot controller illustrated in Fig. 2. In this
experiment, as shown in Fig. 12, a human subject interacts with a virtual
robot by lifting a wood board from the edge of the table. The human's
gnp state naturally transitions from subtle contact to a firm grasp of the
objectz, and the virtual robot was supposed to react to this change. The
robot's imtial action was designed to be holding the object (a purple
box). When detecting the human's grip state changes through the haptic
glowve, the robot will release the object (the purple box will detach from
the robots end-effector). A python eeript loaded the trained grip state
classification model and vsed thiz model to control the robot’s motion
[21]- The peeudo-code of such a python seript 15 chown n Table 3.

The experiment was repeated 50 times with one fixed grip location to
fulfill the goal of this experiment, which was to test the system's tech-
nical feasibility amd responsivencss. The robot’s reaction time was also
recorded and ealeulated, whach is the gap between the robot's receiving
a haptic signal through ROS# and the end of executing the object release
artion.

5. Experimental results

The experimental results from Section 4 were analyzed to provide
answers to the following three questions proposed in Sections 2 and 3:

1)} What 1= the preferred intentional waiting time for selected human
uscTE?

2} How robust iz the proposed method m teaching robot grip state
understanding with various grip settings and objects?

3) How generalized iz the LD method to unseen grip settings?

5.1. Recetvers’ preferred intentional waiting time

The czimple analyziz of grip force with the method illustrated in
Section 3.2.] answers the first question. The receiver's releases command
averages 2.555 g after the imitial contact with objects. The temporal
differences obeerved in seventy handover experiments with three users
are shown in Fiz. 13, Three users have an average delay of 1.343 &,
0.8620 s, and 5.460 &, respectively. Therefore, the robot should inten-
tionally wait for scome time after detecting human recetvers' contact with
objects to make the humans feel comfortable during the handowver
process.

Monetheless, this finding only addressed the peychological prefer-
command can be zafe in some situations. For example, in human-to-
human handovers, the givers release objects immediately after the re-
cetvers contact [57,59], vet the object transitions are generally safe
Thiz cbservation implies that receivers can react to a release action
immediately after they grasp objects. Therefore, as shown in Fig. 14,
though not recommended, releasing any time after the receiver's grasp
of objects iz generally found to be safe.

5.2, Recetver grip state clazsification

The following sub-sections provided answers to the second and third

5.2.]. Known grip settings

The clasmfication model provides an insightful understanding of grip
states after a human's short demonstration. The average grip state pre-
diction aceuracy 1= 98.52%, exhibiting robust learning ability across all



H. Yuetal Auwtomation in Construction 150 (2023) 104529

Vertical Grip Horizontal Grip
Grasp Pinch Overhand Overhand Underhand Underhand
Pinch Grasp Pinch Grasp

Side View
Bird's eye
View
Front View
Flg. 11. Grip gesture variations in this stody's experiments.
demonstrated locations amd gestures. Az for robot control, this high
::-iblez ) accuracy suggested the broad applicability of the proposed LD
P gesture sefngs. approach. With only 25-s demonstrations, the robot can transfer objects
Ohbject orientation Relative location to hand

Qeatare with an intentional wait customized to the receiver's preference for any

Pinch [55] receiving grip location or gesture. As the human needed to perform only
Hok 1 hand Grasp [65] one demonstration for each setting, the demonstration efficiency was

Crasp

Pinch

Crasp

largely improved compared to that deseribed n [59].

Moreover, as mentioned in Section 3.2 4, semi-supervised ML was
adopted to examine the proposed human demonstration collection sys-
tem. Guess label ratio vanations were vsed to reflect assumed trust-
worthiness, and the corresponding model was tested on the same data to
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Flg. 12. Interactive experiments with a virtual robot for the grip state understanding.

10



H. Yu etal

Table 3
Pzeudo-code for robot control algoridum.

Poeuto-cote for the robor control algorithm
Inpuh haptic map of the receivers hand
Outpuh robot’s action of holding/releaging the object being trancitionsd

plan a cartesian path for the robot to a designated object pickup location
execute the planmed path
pick up the ohject
plan a cartegian path for the robot to a designated receivers hand location
execute the planmed path
for every 0.25 ¢ do
mubacribe to the tactile signals tranemitted from ROGF
preprocess haptic map reading and use a0 inputs to the clamification model
if the haptic map iz clamified az a firm grip
robot releage
eloe
robot hold

compare their performance. As shown in Fig. 15, the claseification ae-
curacy decreases when the guess label ratio inereases. Purthermore, the
falee positive classification rate, which showe the robot’s carly release
behaviors, also inereases with the susssed label ratios.

Az shown In Fig. 15, when the guess label ratio was 0, the classifi-
cation model has the highest accuracy and lowest false positive rate.
Thiz obeervation suggested that O should be chosen as the optimal
parameter of the guess ratio. Since the guess ratio of 0 reflects the full
trust towards the data collection process, the reliability of the recording
process for the receiver's phyeical state and expectation towards the
giver's action 1s therefore verified.

5.2.2 Unzeen grip seftings

Az for the unseen grip sethings, the average grip state prediction 1=
88.79% for unseen grip locations and 74.22% for unseen gestures, as
shown in Table 4. This result means that the proposed model has good
generalizability to unseen grip gestures, especially when the demon-
stration was only 25 . However, although the model has lower classi-
fication accuracy for unknown grip gestures, it does not adversely affect
gafety. This claim iz made considering that humans usually have one
habitual gesture for receiving objects. Therefore, considening that Sec-
tion 5.2 ] demonstrated the proposed model's robust learming ability for
all demonstrated gestures, the handover for a fixed user will generally be
zafe.

Az for implications of this accuracy for handover safety, firstly, the
predicted release time and the receiver's release command were
compared. As shown in Table 5, the classification model can accurately
predict the receiver's grip state for most unseen grip settings. As a result,
thiz model will drive the robot to develop aggressive release strategies
after the receiver's contact with objects. However, the grip state recog-

user 1

Lser
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decreazing for all three users. This implies that the robot will be driven
to perform early releases potentially. Nonetheless, humans tend to
recelve with one habitual gesture [55]. This mmphes that the variations
in grip gestures are rare for one fixed receiver, and the grip location
variation it more common. Considering the proposed method has
proven generalizable for unseen grip locations, the proposed method
will generally provide safe handover behaviors for a fixed human user.

To benchmark the performance of the proposed model, other similar
robot-to-human handover studies were used for comparizon. As shown
in Table &, the proposed haptic map classification model outperforms
the resulte obeserved in prior studies for both known and unseen grip
settings.

5.3. Robot controller feazibility test

In the 50 repetiions of the random grip location interactive experi-
ment, the robot suceeeded in predicting the human's grip state change in
04% of the cases. Among the failed cases, the robot released too early
one time (2% chance) and did not release the object twice (4% chance).
Thiz obeervation verfied the effectiveness of the proposed one-shot
demonstration method, especially for adapting to unseen grip settings.
Moreover, the robot's average reaction ime 1z 0000986 &, much shorter
than the human reachon ttme. This means that the human will not
recogmize the robot’s reaction ime, and the subjective evaluation of the
robot's responsiveness would not be affected by the grip state under-
standing. Additionally, with tested responsiveness and adaptability, the
proposed framework of “sensor upgrading and computation simplifica-
tion” was wverified effective for handling close-proximity pHRC
problems.
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Table 4
Grip state understanding accuracy for unseen grip sentings.
Ungeen pettings Uger 1 Uger 2 Uger 3 Awverage
Location OB. 7% B6.7% B51.0% BE.79%
Gesturs B2.4% 63.4% T3.9% T4.22%
Table 5
Releaze time comparizon with ground outh for unseen grip locations.
Predicted releace moment v Leer 1 Uger 2 Uger 3 Awverage
R“c;':::l“" commanded release +09175 -2135  —1672  —2832
9“’:"“;:"‘" contact with cbjects +3.059  —02475 +0.3933 43205

*."in predicted releaze time means earlier than the receivers commanded
release, “+” means later than the receiver's commanded releaze.

Table 6
Grip state claszification model performance benchmark.
Previous study Pecformance
Unseen data Fnown data.
Grigore et al (2013) 75.63% [55]
Hoene et al. (2014) 949 [55]
Palinko =t al {2016) / 81.5% [57]
Wang et al (2018] / B6.67% [51]
Yang et al. (2020) 64.3% [65]
Proposed model B1.51% QE.52%

6. Discussion

Thiz study proposed a grip state classification model to teach robots
to perecive the zafe and preferred time instants to release handled ob-
jects to human reeeivers. The model had enriched sensory information
to reduce computing load, which can provide prompt responsez to
human’s fast-changing physical intente. The model aleo targeted the
provided satisfactory performance for various grip settinge.

Thiz study also verified that the human receivers prefer that givers
wait around 3 & and then release the objects. However, this obeervation
contradicte the giver's immediate release after the receivers contact.
Therefore, thiz observation can guide the receiver-centric robot
controller to provide safe and personalized object handovers.

12

Moreover, thie study adopted the LfD method to establish the pro-
posed recerver-personalized robot handover controller. Only a one-shot
25-5 natural receiving process 1= needed as the demonstration, which
largely improves the robot's learmning efficiency and reduces the worker's
demonstration workload.

However, there are some limitations to the proposed model. The
current approach requires another new 25-¢ demonstration for a new
object. Although thiz 1= common for recent robot-to-human handeowver
studies, this repetibion can be further simplified. For example, future
studies can focus on expanding the database size with this LD interface
and building a transfer leaming model that can be generalized to any
new object. In addition, for safety reasons, the robot controller was only
tested in the virtual environment n this imitial study. The authors are
currently applying the findings of this work and extending them to real
industrial robots iIn pHRC experimental setups.

Furthermore, the authors only explored the close-proximity collab-
oration of material transfer in thic paper. The cholce was made because
the close-contact human—robot interaction problem iz widely agreed to
be one of the most challenging and underexplored areaz of work
particularly in construction robotics. In comparison, the safety standards
and techmical studiez on human-aware path planming for material
transport have both been well establiched. With a eritical gap of robot-
to-human object handover effectively addressed and the technical
approach shown to be feasible in this paper, future studics can work
towards a full robot-assizted material supply system and continue full-
contact pHRC studies to help realize a field-deployable system. On this
basiz, the ethical and management problems with detailed software and
hardware decompositions [92] can also be explored.

7. Concluzions

This research addresses potential safety concerns during pHRC on
future construction sites. Instead of phyeical separation, this study
proposes to use human phyzical state awareness to reduce robot colli-
slons with human workers. The main contribution is the combination of
LfD and human grip state awareness to improve the object handover
success rate with redueed human effort and enhanced generalizability.

The main conclusions of thiz research nclude the following:

1) The human receiver prefers the giver to intentionally wait for
around 3 s after the receiver graspe the objects in a handowver process.

2) The recogmition of the human grip state in a handover can be
accurate and robust with an SVM classification model. For example, the
proposed model achieved 98.52% accuracy for 70 grip setting varia-
tions, with only a 25-g natural handover needed as a demonstration for
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cach setting.

3) The chort natural handover process can provide robot control
knowledge bevond the demonstrated settings. The model can still pro-
vide accurate grip state recognition when test grip settings are different
from the demonstration setting. For example, the proposed model has an
88.79% accuracy for recognizing a human’s grip state with varying grip
locations. This improvement primarnily reduces the human's workload as
the robot's teacher.

In summary, this research explored an intuitive programming
method demonstrating robust perfformance in teaching the robot safe
handover behavior norme. Contributions are made to both hardware and
software systems to improve human grip state recognition accuracy and
reduce the human workload. This controller aleo can be personalized to
ecach human receiver's preference to enhanece the user experience.
Ongoing research by the authors 15 focused on further improving the
generalizability to new objects. Such research will further reduce the
workload and repetition required from human workers.
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