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Heywords: Robotzs are expected to play an important role in future construction work. However, they are not yet widely
Human-robot collaboration adopted by the industry because it is difficult and expensive to program robots to conduct a variety of con-
Leaming from demonatration struction tasks. Thiz paper presents a method for intuitively and fAexibly teaching robots to perform various
Canstruction rabot construction tasks through demonstrations. Robots are first programmed with basic =kill primitives and then
;”"’“’lﬂl."'f“’ﬁ . el leam the sequencing of these primitive skillz to perform different types of construction work under the guidance
Bobot 1al - of human supervizors. The constroction workflow and the interaction processes are enabled by a process-level

digital rwin system. Case studiez with three azsembly scenarics and a wooden frame consouction experiment
are used to present and wverify the proposed method. The proposed approach enables automatic robot motion

adoption of robotz on constructon sites.

1. Introduction

The construction mdustry plays an impeortant role in modern ciwvili-
zation and accounts for 13% of the global Gross Domestic Product (GDFP)
[1]. Despite ite significant role in the economy, the industry 1= facing
several issues that affect its long-term development. On one hand, the
construction industry has stagnant productivity, which not only extends
the duration of construction projects themeelves but also delays other
activities that will take place in the constructed facilities [2,3]. On the
other hand, the industry iz facing a serious chortage in its workforee,
with 73% of general contractors in the U.S. reporting the izsue in 2022
[4,5]. The heavy physical demand poses a high nsk of work-related
musculockeletal dizorders to the workers and excludes many female
workers and people with physical disabilities from the construction
workforce, which further aggravates the issue [6].

Robots have been widely proposed as a solution to reduce the
phyeical workload of construetion workers and mitigate productivity
and labor shortage issues In the construction industry [2,7,2]. Several
commercial construction robote have been developed and entered the
market in recent years, such as the layout drawing robot “Dusty™ by
Dusty Roboticz [9], the bricklaying robot “SAM” by Construction
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Roboties [10], the rebar tying robot “Tybot” by Advanced Construction
Roboties [11], and the overhead dnlling robet “Jaibot™ by Hilt [12].
However, many construction robote are single-tack robote that are spe-
cifically designed to conduct one type of construction work [13]. These
robots can only be used at a certain stage of a construction project [14].
Meanwhile, the construction industry 1z fragmented [15]. Many con-
tractors have a limited number of projects going on at the same time and
the projects can have long phyeical distances between each other. It 15
not cost-effective for these contractors to invest in robots that can only
perform a certain type of work and stay inactive during other phases of
the project. As a result, construction robots are not widely adopted by
the industry nowadays.

Therefore, multi-task robotsz that can be confisured to perform
different types of construction work and be involved in multiple con-
struction stages are nesded. However, a construction project includes
many different types of construction tasks. It iz a significant effort to
preprogram robots with a wide variety of construction tacsks, especially
when robotic engineers who program the robot lack construction
domain knowledge [16]. Because of the complexity and uncertainty of
construction work, Improvieation, and adjustments are frequently
required to perform the work, which adds to the diffieulty of
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preprogramming robots to effectively perform a great number of con-
struction tasks [17,12]. Moreover, with preprogramming, the robot
follows the previcusly determined motion sequence until all the motions
in the sequence are completed. As a result, the robot cannot adapt to
failures at the intermediate steps (c.g., failure to grasp the workpicee).

When human apprentices learn construction work, they start with
some basie construction skille and then they learmn how to apply and
sequence these ghkille to achieve construction task objectives. For
example, apprentice carpenters usually learn some basic woodwork
glallzs, such as cutting, nailing, filing, ete. Then, they choose and apply
these skills in different sequences to perform construction work, which
usually requires experience and fexibility. While there are many
different types of construction tasks, the number of basie skills that need
to be learned 15 limited. Inspired by this workflow, this paper proposes to
program robots with basic construction skills (e.g., reaching, opening
gripper, closing gripper, nailing) and deploy the robot to the construe-
tion site to learn how to sequence these skills to flexibly perform
different construction tasks under the guidance of construction workers.

In order to enable thiz process, a Human-Robot Collaborative Con-
struction (HRCC) method that integrates interactive Learming from
Demonstration (LfD) with a process-level digital twin system is pro-
posed. This method focuses only on learning the sequencing of different
known motions through LD instead of learming the execution of indi-
vidual motionz. More specifically, it focuses on construction assembly
tasks by enabling a consclidated workflow from preproceseing assembly
parts, workpiece manipulation, and connecting the assembly parts, to
performing fimshing work, which are the most common tasks in con-
struction. The proposed method iz based on robotic manipulators, which
offer high degrees of freedom and have high flexibility to be configured
for a variety of complex construetion tacks [19]. The robot ie equipped
with the proposed syetem and a set of parametenzed skill primitives
when delivered to construction eitez. The system allows robotz to
automatically sequence their motions by interactively requesting and
leaming from human demonstrations. While the robot mostly follows
human co-workers' guidance az a novice in the beginning, it becomes
inereasingly intellipent and independent az it learns more from its

A proecess-level digital twin system adapted from the authors’ pre-
vious work iz used for construction site monitoring, computing, and bi-
directional interaction between the human and the rebot [20]. It in-
tegrates the Robot Operation Environment (ROE), a Building Informa-
tion Model (BIM), the Robot Operating Syetem (ROE), and a Graphieal
User Interface {GUI). The system takes information from the BIM for task
planming. It senses the state of the construction site and wses the state
topether with the task objectives to decide ite next action or request a
human demonstration. During the construction process, human workers
and robots collaborate az master-apprentice teams. Human workers take
the role of supervisors who teach, supervize, and intervene in the robotic
construction process. Robots act as apprentices and are responsible for
tagk planming, motion planning, and task execution. A Scene Distance
Array (S5DA) based on multi-layer scene state representation arrays has
been proposed. SDAs serve as the identifier to record and retrieve
knowledge. During the leaming stage, robots build and save probabi-
listic mappings from the SDA to modular glkll primitives in their
knowledge base based on human demonstrations in the digital twin
gyetem. The leamned knowledge, which can be shared among robots, 1=
then used for automatie high-level motion sequencing for different types
of construction tasks. During the decision-making stage, the robot
queries the knowledge base with the SDA to find the corresponding
primitive to execute. Based on the proposed approach, a delivery
framework for construction robots 15 presented.

The proposed method 1z demonstrated through case studies that
contain three types of construction tasks, exterior wall cheathing,
drywall installation, and timber frame construction. A wooden frame
construction experiment in Gazebo simulation is used to verify the
proposed system as a proof-of-concept implementation. The proposed
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construction robot delivery framework, along with the robot task
learning and sequential motion planming capabilities, has the potential
to improve the usage and cost efficiency of construction robots, and thus
improve the acceptance and deployment of HRCC.

This paper iz organized to first present a detailed review of existing
methods of robot LD and how to determine the motion sequences of
robote (Section Z). Related research gaps are discussed. Mext, slall
primitives for construction robots and the technical approach to enable
automatic high-level motion sequencing of construction assembly tasks
are diseusssd In Section 3. Then, case studies and the proof-of-concept
implementation are presented in Sections 4 and 5. Pinally, the case
study and implementation resulte are analyzed and discussed in S=ction
6, followed by the conclusions of this research (Section 7).

2. Related work
2.1. Robot learning from demonstration

LfDy enables robotz to acquire skills by observing and imitating
human actions or decisions [21]. It does not require robot programming
expertize from the teachers or demonstrators, and thus allows experts
with greater domain knowledge, such as construction workers, to teach
the robot to perform work in the specific domain (2., construction)
[22]. A typical LfD problem often entails ereating a mapping between
the environment state and the robot’s action. Howeser, since robots are
usually unable to fully cbeerve the environment state, most LD studies
also incorporate an observed state, which serves az a bridge between the
environment state and the robot's action. In this situation, both the
mapping from the environment state to the observed state and the
mapping from the observed state to the robot action need to be
considerad in the framework design.

Robots can learn skills on different levels through LfD. Low-level LD
focuses on learning motor policy for mamipulation, referred to as “tra-
jectory encoding”, such as leamning peg-in-hole or shide-in-groove
23-25]. Compared to computational-based motion planners, motor
control policy leamed from demonstrations has higher adaptability and
can zolve more complex cases. On the other hand, high-level LfD learns
“gymbolic encoding” about how to organize predefined motion primi-
tives into a sequence, such as sorting colored blocks into different bowls
[25,26]. With the goal of achieving automatic sequencing of high-level
motions for construction assembly, this paper focuses on high-level LD,

There are several demonstration methods for lngh-level LID. Humans
can demonstrate motion sequences using the kinesthetic approach by
phyzically moving the robot's passive jointz [27]. While allowing
demonstrations to be 1dentically transferred to the robot, thiz approach
ie restricted by the seale of the task and safety considerations. Thus,
teleoperation 15 used instead, such that the human movements are
captured by vision-based systems [28], motion capture systems [29],
hand-coded controllers [30], Virtual Reality (VE) [31,32], or a combi-
nation of eeveral sources [23-25], and used as demonstrations. Never-
theless, these demonstrations are continuous movements, which need to
be segmented into motion primitives for the robot to leamn the
sequencing of primitives [36]. Some demonstration approaches can
directly use motion primitives to achieve high-level tazk objectives
thereby avoiding the segmentation process. The most widely-used
method iz to use the GUI to select the primative [37,22]. Additionally,
language-based demonstrations can guwde the robot to implement
certain motion primitives in specific sequences with language in-
structions [39,40].

2.2, Robotz" motion sequence determination

Although advancements in machine learning have greatly improved
commeon method to determine motion sequences for construction ro-
botic manipulators [41—43]. Another popular approach is to guide the
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robot through a series of motions continuously through teleoperation or
step-by-step to complete construction tasks [44,45]. Some studies have
used automatie planners such as the Stanford Research Institute Problem
Solver (STRIPS] to determune robot motion sequences [46,47]. Howew-
er, it is extremely challenging to accurately and consistently account for
all pre-conditions and post-conditions when defimng construction
movements for these planners.

Hierarchical task modeling orgamizes different levels of task primi-
tives of a complex task into a hierarchical structure and uses symbolic
reprezentations to identify task primitive relations [48]. The task
primitives and their relationships in the hierarchical model greatly
reduce search space and thus improve robot planning efficiency. It has
been used to represent the knowledge the robot leamed from human
demonstrations [37,22]. However, the leammed motion sequence has
limited flexability and adaptability. Hierarchical task networks and And-
Or-Graph have been used to represent knowledge achieved from human
demonstrations to facilitate robot planning on the sequencing of motion
primitives [49,50]. These studies mainly focus on resolving multiple
sequential solutions of individual tasks and emphasize the combination
of different demonstrated sequences to provide the most preferred

option.
Reinforcement learning 1= also a popular approach for robot
sequential decisions n its motions [51]. It allows the robot to conduct

exploration by iteelf and provides feedback to the robot with rewarde to
guide the robot to find the solution [52]. In [53,54], the authors used
two separate policy models to decide which motion primitive to select
simulation and iz then transferred to the phyzical world for execution. In
onder to further reduce the robot exploration load and accelerate the
reinforcement learning process, some studies take advantage of the ro-
bot's prior experience [55,56]. Demonstration iz also a popular
approach to be used together with reinforcement learming [16,51]. Ex-
plorations are biased toward demonstrated actions to expedite the trial-
and-error process [57,58].

2.3, Summary

The aforementioned approaches present certain limitations in
generating motion sequences for construction robots. First, construction
work typically oceurs on a large scale and invobres manipulation of large
and heavy construction components. Therefore, 1t takes considerable
effort and consumes mgmificant resources for human workers to
demonstrate one type of tazk repeatedly in the physical world. It alzo
makes demonstrations through direct robot operations like motion
capture or kinesthetic approaches infeazible. Moreover, effectively
mapping the environment state to the observed state presents a signif-
icant challenge. While most approaches use wision-based systems to
model scene states [39,59], identifying object relationships and
detecting seene changes in a construction environment direetly from the
camera iz difficult due to the large space and complexity of the
environment.

Second, construction assembly encompasses a wide variety of tasks,
making it erucial to enable the previously acquired motion sequencing
ability to be transferred to other tasks with minimal additional dem-
onstrations required. While some existing studies transferred previously
learned skille to different tasks, the task differences tend to be limited,
such as picking up a tray versus picking up a stud [52,54].

Third, construction assembly tasks are typically quasi-repetitive,
requiring workpieces to be picked up from and installed in different
locations. This necessitates the parametrization of motions (Le., taking
inputs from the environment), which inereases the difficulties to explore
solutions through methods like reinforcement leaming. It iz also chal-
lenging to accurately segment construction operations from a movement
sequence detected by motion sensors or cameras.

Lastly, construction involves numerous uncertainties. It also involves
a variety of operations that are extremely challenging for the robot to
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solve through exploration or automatie planners. Rather than adhering
to a fixed predetermined or leamed sequence, robots must adapt their
plan based on work status to effectively execute construction tasks.
Thuz, the system should also allow human supervizion (e.g., previewing
the robot plan before execution) and intervention (e.z., modifying the
robot plan) to ensure construction safety and quality.

An efficient HRCC eystem chould enable construction robots to
develop motion sequences that are robust to uncertainties, generalizable
acroes different types of construction assembly tasks, supports parame-
terized motion primitives, and only requires a minimal number of prior
exploration trials or human demonstrations. To address these 1zsues, this
paper adapts the previously proposed closed-loop BIM-driven HRCC
digital twin system [20] and incorporates the LfD meodule into the
workflow. The digital twin enables real-time momtoring of the robotic
construction workspace, providing effective construction workspace
seene state observations. Additionally, it provides a 3D/VR interface
that allows human co-workere to cbeerve the scene states and facilitates
intuitive human demonstrations through direct selection of primitives
from the mterface.

3. Techniecal approach
3.1. IDngital twin gystem for BIM-droven HRCGC

In thiz system, the relationship between the human co-worker and
the robot i1z based on the master-apprentice model. The human co-
worker ie the master and supervisor, and the robot 1z the apprentice
and learner. At the onset, the robot has no knowledge about sequencing
itz slalls to perform constructon tasks. Thus, the human co-worker
needs to show the robot how to do the work through demonstrations.
After demonstrations, the robot learns and remembers the knowledge.
When they perform the same or similar tazks in the future, they can
apply what they learned to automatically perform the task on their own.
To ensure the safety and reliability of the syetem, we propose to have the
human co-worker supervize the process and approve each step before
the robot actually takes any physical actions. The HRCC process is
achieved through a closed-loop digital twin system for BIM-Driven
HRCC adapted from the authors’ previous work [20]. The proposed
LfD process 1= integrated into the system. Fiz. 1 shows the syetem
framework. The following paragraphs provide a brief overview of the
syetem and highlight the differences compared to the previous version,
whereas more details of the system ean be found mn [20].
represents the construction site, robots, and sensors. Since thiz study
mainly focuses on the LfD algorithme, the ROE iz simulated in the Ga-
zebo robotics stmulator. Howewver, the syetem has the capability to work
with phyeical robots through fiduecial marker-bazed object localization
and TwinCAT Automated Device Specification (ADS), which has been
diseussed in detail in [20,50].

The user mterface 1z mplemented in Umty with both 3D and VR
options. It reflects construction site status in real-time and provides
augmented information (e.g., the as-designed scene from the BIM) to
assist with human co-workers” decision-making The automatically
generated digital twin alzo allows human co-workers to teach and send
instructions to robote, supervise the constructon work process, and
intervene in the robot’s work when necessary. In addition to adding
interactive functions to the previous system to enable LD, the current
syetem queries workpiece poses multiple imes during the construction
process. The previous system only detects material stacking poses at the
beginning of the task and follows the predefined motion sequence to
conduet the pick-and-place operation. Timely reflection of workpicee
poses to human co-workers and the robot through the interface can
make them aware of Interruptions and intermediate failures, which are
ertical to deciding the next-step motion in the sequence.

Az the middleware of the syetem, ROS enables communication
among the user interface, robot, sensors, and the BIM on different
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Flg. 1. Digital twin system framework.

devices through the local area network. It 15 alzo the central processing
unit of the system that controls the workflow, fuses and processes senzor
data, and performs most of the computation work. ROS iz also the
platform to create the skill set of robots. Skills of the robot are imple-
mented in ROS programs and are activated to plan the trajectories and
control the robot during the teaching and construction processes. ROS
can bi-directionally communicate with the BIM and the knowledge base
For the BIM to support the robotic construction process enabled by
the proposed digital twin syetem, the BIM needs to contain (1) shop-
drawing level geometry; (2) construction sequence data; (3] workpiees
relationships (1.e., ontology); (4) object layers based on a predefined
layer structure (whether the object belongs to Targets, Materials, As-
Bult, As-Designed, or Virtual Collizion); and (5} necessary robot oper-
ation support (e.g., component atiribute data such az how to grip the
component). A detailed diseussion can be found in Section 3.2 of [20]. It
must be noted that some of these categories of information in the BIM
can be or have high potential to be automatically generated in the
future, although they are manually created in this research [61,62].

3.2. Skill primitives for construction robotz

Previous research has utilized motion primitives, defined az robot
movement generators that ean be reused in a modular manner, for the
purposes of robot programming and learming [258,62,64]. In this
research, we build upon this concept and extend it into skill primatives
for construction robotics applications. Skill primitives can be defined as
previcusly acquired modular gkills that robote can uhlize directly to
perform a given tazk. They can be grouped into three categories: motion
primitives, sensing primitives, and reasoning primitives.

The motion primitives serve as the fundamental operation eklls for
successfully ecarrying out conmstruction work. Previous research has
explored the idea of construchion operation modulanzation For
instanece, [65] identified ten basic activities, including placing,

connecting, attaching, finishing, coating, conerete building, inlaying,
covering, and jointing for robotics building construction. In another
study, eleven basic tasks (1.e., connect, cover, dig, inspect, measure,
place, plan, position, spray, spread, finish) are proposed as a construe-
tion automation taxonomy, which can be conducted by both construe-
tion workers and equipment [66]. Building on this taxonomy, [67]
proposed a construction automation methodology by adding informa-
tion input essential for cach type of basic task.

Despite the efforts in previous studies, the proposed elements fail to
provide the requizsite details necessary to program robot motions. Taking
the “connect” basic task as an example, which iz defined as "join or
fasten together” (e.g., nail). However, programming a robot to nail re-
quires a sequence of two to three motions, including posibioning the
robot end-effector in the correct location, using it to drive the nail, and
potentially withdrawing the robot end-effector from the workpicce.
Although [56] sugsests using elemental motions to break down basic
tazks, examples for construchion robotz or machines are not given
Therefore, construction motions that are modularized and reusable by

In order to facilitate robot programming and motion sequencing, we
propose to treat motion proimitives as a dynamie and flexible repository
adapting “Basic Tasks” and “Elemental Motions™ from [55]. For
example, the basic tagk of “place™ iz dizaszsembled into primitives of
“reach” and “open gripper”, which can be reused in other taskes such as
“pick’” [“reach™ and “close gripper’™). Some taske like “spray” invelve two
simultaneous elemental motions of end-effector moving along a trajec-
tory while spraying, which are coded as one motion primitive. New
primitives can be dynamiecally added to the collection. Taking ceiling tile
placement as an example, it iz challenging to automatically senerate the
motion plan to mamipulate the tile through the celling grid with motion
planners. However, robote can learn the mampulation processes from
construction workers" demonstrations [17]. In this case, the process 1s
considerad a standalone motion primitive even though it iz a “reach™
motion in reality.
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In addition to motion primitives that directly result in construction
robotic construction. Sensing primitives refer to skills that enable a
robot to comprehend its environment by percelving various sensory
inputs, including visual, auditory, and haphe feedback (e.g., spesch
recogmtion and mapping). Reasoming primifives, on the other hand,
serve as the robot’s brain. Reasoning primitives take the form of system
function modules of learning, processing, and computation, such as
solvers or trained modele.

In previous studies, a unified hierarchy to deseribe construction work
iz missing, making it challenging to develop a coherent framework to
modularly program and teach construction robots. To overcome this
ambiguity, thiz study adopt= a bottom-up hierarchical tax-
onomy—elemental motion, operation, task, and activity—by adapting
concepts from prior studies [65,66,62]. Elemental motions are reusable
motion primitives (e.g., reaching, closing gripper, spraying along a
path). An operation consiste of a sequence of elemental motions and/or
other operations. For example, the nailing operation requires the robot
end-effector to move to the nalling location, activate the nail gun, and
pull the end-effector away from the workpiece. A construction task re-
fers to a completed piece of work, such as installation of a piece of
curtain panel An activity representz a subdivision of a construction
project as the umt in the work breakdown structure, such as “Install
drywall” [59]. Fiz. 2 chows an example of the proposed hierarchical
taxonomy of a drywall installabon activity. Thiz research aims at
sequencing elemental motions to perform construction activities, which
can be broken down into construction tazks by querying task targets one
by one from the sequence.

3.2. LfD module overview

With the coneept of skill primitives, we conceive a framework for
construction robot delivery. Robotic engineers apply the proposed dig-
ital twin system with the LfD module to the robot. Then, they program
the robot with a zet of reasoning, motion, and sensing pomitives. After
the robot arrives at the construction site, it learns how to sequence these
primitives and, if needed, new primitives, to perform different types of
Firetly, the knowledge zap between two domains, construction and ro-
botice, 1z bridged. Robotic engineers apply their programming expertize
to software development, and construction workers provide high-level
development productivity and quality of the produced work. Secondly,
the robot can conduoct multiple construction tasks and constantly
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acquires new knowledge by leaming from workers. Az a result, 1t iz more
cost-efficient compared to single-purpose robote that are active at
certain stages of a construction project and remain idle for an extended
period.

The paper presents the integration of the LD module with the digital
twin syetem. Then, it demonstrates how construction workers use the
syetem to teach robotic construction assembly work, to enable automatic
sequencing decisions, and to supervise the process. It needs to be pointed
out that a construction assembly tazk typically entails multiple tools,
and thus requires a system that incorporates various robots or devices.
This study assumes that primitives have been previously distnbuted to
distinet robotz with different end-effector toole or devices such as
Computer Numerical Control (CNC) machines. The device or end-
be used for planming and execution at each step. To ensure clarity and
brevity, the term “robot™ denotes the automation syetem that consists of
several robots and viable deviees in the subsequent sections.

In the course of interactive LfD, robots acquire knowledse by actively
secking and processing demonstrations [70]. This interaction process is
facilitated by the digital twin system, which enables human-robot bi-
directional communication, robot control and supervision, and BIM data
extraction. By actively tracking object locations and updating compo-
nents relationshipes (e.g., workpiece grabbed or not grabbed by the
robot), the digital twin also enables mapping from the environment to
the obeerved scene state. When the robot 12 delivered to the construction
gite, skill primitives programmed by robotic engineers are stored as
reusable components, which are accessible by the human co-worker
from the GUI of the digital twin. These primitives need to be triggered
by the robot az learned knowledse or by the human co-worker as
demonstrations. The system alzo comes equipped with some sensing and
reazoming functions that activate under specific condibions [20]. For
example, the digital twin needs to be generated by loading the BIM and
construction workspace data when construction starts [20]. The robot
needs the capabilities to detect and localize workpieces and to model the
workspace for collision avoidance [71-74].

The learming cutcome 1= that the robot iz capable of autonomously
performing construction assembly activities by selecting primitives in a
step-by-step manner under human supervision. One task 1z addressed at
a time. The target workpiece 1z decided sither by the constructon se-
quences in the BIM or by the human co-worker. The acquired knowledze
applies to subsequent targetes in the current and future construction tasks
and can be shared with other robote.

Fiz. 3 depicte the LfD workflow. At the onset of a construction ac-
tivity, the target workpiece suggested by the BIM iz highlizhted in the
GUI Upon human approval or reselection, an imitial SDA iz ereated. The
robot then searches its knowledge base to identify the SDA (Section 3.4).
If the robot 1z unable to recognize the SDA, it will request 1t human co-
worker to demonstrate the primitive. After obeerving the seene from the
digital twin, the human co-worker can intuitively makes demonstrations
by selecting from the drop-dewn liste in the GUL The mapping from the
SDA to the demonstration iz saved in the robot knowledge base to
facilitate automated invocation of thiz knowledge later, without neces-
sitating a demonstrabion when the SDA iz encountered again. When the
SDA exizte in the knowledge base, the corresponding slkill primitive of
the SDA iz eelected using the probabilistic mapping saved in the robot
knowledge base.

In order to reduce the risk of hazardous consequences caused by
incorrect or suboptimal robot decizions, primitives selected by the robot
need to go through human co-workers' confirmation through the
interface in the digital twin. Te ensure consistent safety, robot actions in
the current workflow will not be executed without human approval The
selected primitive iz shown to the human co-worker on the user inter-
face. The human co-worker can either approve the primitive or opt to
choose another primitive az a demonstration, and the robot will learn
the knowledge. As a result, the system can always prioritize the human
co-worker's preference.
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Fig. 3. LD workflow.

If a reazoning primitive iz determined, the system will execute the
corresponding function and update SDA accordingly. If the approved
primitive iz a mobon primitive, the robot will acquire input parameters
(e-g., 6DOF reaching poses) needed for motion planming (if applicable).
The parameter can be obtained from BIM, human demonstration, or a
combination of both. For robot manipulation (e.g., reaching the mate-
rial, moving the material to the target place), after the motion plan 1=
generated, it is sent to the digital twin and processed into high-fidelity
simulations of the execution process. It allowe human co-workers to
preview the motion plan before approving the plan for execubtion. If
human co-workers feel the plan is not optimal, they can request the
robot to generate another plan for approval The detailed methods of
motion planning, optional plan preview, and execution are outlined in
[44]- Following motion completion, the SDA i updated, with the pro-
cess continuing until all task-related procedures are concluded.

Instead of defining the full azssembly sequence beforchand, either the
robot or the human co-worker determines the subsequent primitive at
cach step according to the latest SDA. Az a result, the system has the
robustness of withstanding disruptions during the construction process,
such as failure grabbing objects. In such cases, the SDA will remain the
zame and the robot will attempt again with the updated input parame-
ters (e.g., the re-detected object location).

In construction assembly, there are a wide variety of tasks but the
sequence of motions needed to perform an assembly task is relatively
fixed. Therefore, a robot without any prior knowledge can learn and
perform subsequent work only after a human co-worker has demon-
strated the task, although the system also supports multiple users to
provide demonstrations. The system uses two designs to handle human
errore to ensure they provide effective demonstrations and guide the
robot. First, the human co-workers can cancel the primitives they
gelected. Some primitives associated with low-level operations such as
Nail{ ) are irreversible after execution. However, these primitives have
reversible reasoning primitives (e.g., start_nailing()] and sometimes
come with reversible preparatory motions (e.g., reach the naling loca-
tion), which greatly reduce the possibility of mistakenly performing the
Nail{ ) motion. Second, the robot leamned knowledge 1z dymamically
updated. Even if the robot 1z imtially taught to perform work in an un-
common way, the demonstrator or other demonstrators can correct it
later by selecting another primitive to proceed. The probabilistic map-

ping in the knowledge base will update accordingly, and the robot will
select the primative with the highest possibility to proceed later.

3.4, Representing sequencing knowledge with scene distance Armay

While robotz and human co-workers are deciding the motions to
take, two scenes are taken into account: the current seene showing the
present construction environment and the target scene reflecting the
dezired goal Therefore, the SDA used to determine the primitive needs
to consider both the current and the target scene. Additionally, due to
the nature of construction tasks, several requirements should be met
when designing the data structure of SDAz. First, construction comprizes
a broad range of assembly tasks with vanous motion sequences, thus
5DAs need to be flexible to depict a wide vanety of construction as-
sembly situations. Moreover, an excessive vanety of SDAzs will impoee a
considerable demonstration workload on human workers. Therefore,
needed for similar taske. Purthermore, the SDA should be formulated in
a manner that enables the robot to construct it automatically during the
construction process, using its sensor data and information retrieved
from the BIM. The SDA also needs to be comprehenzible to the robot and
computabionally efficient.

To address the identified factors, an SDA representation caleulated
from two multi-layer scene state representation arrays, Current State
Array (CEA) and Geal State Array (GSA), iz proposed. The upper layer of
the proposed arrays can be better explained in the form of 4 by 4
matriees (Table 1), Cell values in the array represent the state or rela-
tionship of the specific row and column (material (M), target place (T,
robot (R], and connection (C)). For example, “At”, which iz calculated by
Eq. 1, reflects whether two components are close enough. The threshold

Table 1
Multi-Layer Scene State Array (Upper Layer].
0] T R C
M Preparation At
T Fimichi
: 4 At At Withdrasw
[+ Connsction
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Table 2 Table 4

Multi-Layer Scene State Arrays (Transit Layer). Examples of Transit-Layer SDA= that Require Unnecessary Demonstrations.
m Num m Num m Num m Num
id1 Number fmizhed idl Number needed 1 ] 1 ]
ida Number finiched idz Number nesd=d 1 2 4
- - - -

A B
{a) Current tate (b)) Ooal State

cocfficient iz a constant value determined by the toleranee of the con-
struction tazk or operation. Multiple constant values can be used for
different tasks or operations when the tolerances are different, such as
using one value for material placement and another value for nailing.

“On" in Cell MR shows whether the material iz being held by the
robot. Cell MM, TT, and CC respectively represent material preparation
(e.g., cutting), target finiching (=g, painting), and connection. These
values are 1 in the GSA if the corresponding operation iz needed. In CSA,
values in these cells represent the percentage of completed operations in
the corresponding category. Moreover, Cell RR in the CSA indicates
whether the robot has withdrawn ite end-effector. After withdrawal, the
value changes from 0 (falee) to 1 (true). Cell BR in the GSA 15 usnally set
to 1, indicating the robot should withdraw ite end-effector for a specific
distanee instead of staying in contact with the workpicee. The form of 2D
array iz only used for explanation purposes. In the software, the arrays
are saved as vectors with only occupied cells for better efficiency.

1, distance (A, B) < threshold
AIH’B}={D; else B = 8
SDA iz calculated by deducting CSA from GSA, signifying what iz stll
mizsing to achiewve the goal and subsequently determining the next
motion. The robot selects the corresponding skill primitives based on the
SDA, which either updates SDAs (for reasoning primitives) or plans /
executes motions (for motion primitives). In the cases when one SDA 1=
projected to multiple primitives, the robot by defanlt selects the primi-
tive with the highest correspondence probahbility. Mevertheless, the
gystem offers human co-workers the ability and the flexability to
improviee and guide the robot through the way they prefer, by giving
humans the option to deny the step proposed by the robot and select
another primitive to proceed. The probabilistic mapping updates cach
time a primitive, either proposed by the robot or selected by the human
co-workere, iz executed.

To mummize the demonstrabions required for robots to leam vanous
tasks, we introduce transit-layer and bottom-layer arrays. The rabonale
behind incorporating multiple layers in the array stems from the
observation that many assembly tasks in construction share similar se-
quences, with only a few stepe differing between them. For instance,
construction assembly has several different forms of connection

Table 3
Algorithm for Transit-Layer SDA Caleulation.

operations, but they typically happen at the same stage in the sequence.
The robot may need to pick up and place a workpieee and connect it with
nails, or it may need to pick up and place a workpicee and connect it
with screws. Requiring humans to demonstrate the entire assembly
sequence to the robot repetitively iz a waste of their efforts. By intro-
ducing multi-layer arrayzs, only the pereentage completed 12 included in
the upper-layer array. When connecting operations are required, the
transit-layer array iz pulled out. According to the decided operation, the
bottom-layer array iz created to guide the connection operation. For
each step, the SDA ie calculated bazed on the CSA and GSA on the cor-
responding layer at that step.

The transit-layer CSA and GSA structures are shown in Table 2. This
layer determines the selection of low-level operations (e.g., screwing or
nailing) in the category of a high-level operation (e.g., connecting). If a
connecting operation requires nailing and caulking, a 2 by 2 array will
be generated on the transit layer. Each row signifies a specific low-level
operation needed for a particular high-level operation with a distinet
integer identifier. The number of finiched and required low-level oper-
ations 1= recorded in the CSA and GSA respectively. On this layer, the
EDA 1z caleulated with the algonthm in Table 3 instead of direct
subtraction.

Monetheless, transit-layer SDA has a imitation that leads to unnee-
essary extra human demonstrations. Taking the two SDAs from different
construction tasks az an example (Table 4), the material processing
operations in both tasks require two types of low-level operations, cut-
ting (1d: 1) and dnlling (1d: 2). A requires two cuthing operations and six
drlling operations, while B requires two cutting operations and four
drlling operations. Although the material processing operations for the
two tasks are quite similar, the knowledge learned to handle A cannot be
applied to B because the robot pereeives them as two distinet SDAs. To
address this issue, fuzzy search iz employed to mateh similar SDAz on the
transit laver so that the robot can make the best uee of previcusly
learned knowledge to select which low-level operation to procesd with
The objective of the fuzzy search is not to guarantee that the robot se-
lects the exact correct primitive but to have the robot provide a possible
close solution to the human co-worker for approval, instead of prema-
turely azking for human demonstrations even though a similar case has

Input: currentTransMat 4, current TransMat 8

Output: result SDA R

for each (goalMethod, goalNum) in B:
e thodFound +— False;

for each (currentMethod, currentNum) in 4:

if currentMethod 1= goalMethod then contimoe;

A currentMethod equals goalMethod
mrim DN = goaiNum = currentNum;

if rum D is 0 then R.AddRow(0, 0); // all operations of this method finished
else RAJARow({currentMethod, mumDiff); [/ not all operations of this method finished

methodFound +— Troe;
if not method Found:

R.AddRow(goalMethod, goalNum); |/ operations of this method haven’t started

return R
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Table 5 Table 7
Example Transit-Layer SDAs for Fuzzy Search. Multi-Layer Scene State Array (Bottom Layer).
18] Num m Num T R
In Ry M T T Finizh (motion id)
L Mz Ny iz R At (start poing) Withdraw

already been leamed. The human co-worker needs to approve the
primitive proposed by the robot through fuzzy search If human co-
workers do not agree, they can opt to select another primitive to
proceed.

The robot needs to go through each transit-level SDA in the knowl-
edge base. Table 5 shows the two example SDAs considered at the same
time. SDA}sameq has already been learned by the robot, and the mapping
knowledge of SDA| pameq 18 2aved in the knowledge base. [t represents the
situation when my; instances of Operation L; and ny: instances of
Operation L are needed. SDAy,, that the robot just encountered re-
quires ny; instances of Operation N, and ny instances of Operation N;.
The possible conditions and corresponding sclutions are presented n
Table 6.

If the two EDAs are the same (L; = Ny AND Ly = Ny 15 True, and
ngy = Ay AND nps = mym 18 Troe), the robot will follow the mapping of
the exact matched SDA to select the primative. If only the number of
operations needed iz different and the types of operations required are
the same, the mapping knowledge from one SDA can be transferred to
another SDA (L1=N1A.NDI.2 =Nz 1z True, and ngy = nyg AND ngz =
My 15 False). For example, both A and B require cutting and dnlling
operations (i.c., the same types of operations). The only difference is that
A requires six dnlling operations but B only requires four. The robot
previously only learned to perform the cuthing operation first in the case
of A. When it comes acroes B, instead of requesting humanes to demon-
strate the selection again, the robot will mateh B with A and automati-

Table 6
Fuzzy Search Conditions and Solutions.
Ly = Ny AND Ly = Ny iz True, and Exact match Use the
Ap = Ay AND Rz = myg i Troe. primitive of
EDA -
In= Ny ANDL; = N; in Cmlly one SDA in the Use the primitive of
True, and myy = nm knowledge bage can DA faerrad -
AND ny 5 = myy in match.
Paloe.
More than one SDA Use the primitive of
‘bace can match, and DA -
the corresponding
primitive for each
matching SDA iz the
mame.
More than one SDA Use the primitive of
base can match but with the shortest
the corresponding Diigtance to ST pine-
matching S5DAz are
different
Ly = Ny AND Ly = Ny iz Paloe. The two 504z do not
match. The robot
neeis to find other
SDAx in the
knowledge base that
can match or request:
human
demonstrations to
proceed.

cally select the cutting operation. Upon confirmation of the selection,
mapping from B to cutting iz alzo eaved in the knowledge base.

For the situation where the knowledge base contame multiple SDAs
with the same operation types but different corresponding primatives,
the robot will choose the one with the shortest distance D (Eq. 2) by
default, where Num(A;) iz the number of operations with ID = i For
example, in the robot knowledge basze, the A corresponds to the start of
the cutting operation, but there iz another SDA with one cutting oper-
ation and two dnlling operations corresponding to the start of the drl-
ling operation first, possibly due to human mntervention. When the robot
comes across the B, it will propose to start the cutting operation because
it hazs a chorter distance with A.

D= Zwmm.-] — Num(B;) | (2)

The sequence needed for a low-level operation 1= determined by the
bottom-layer array (Table 7). For example, to perform a nailing opera-
tion, the robot needs to reach, nail, and withdraw. Same azs the upper-
layer array, Cell RT and RR represent the “At” relationship and “With-
draw”. Cell TT indicates whether the motion has been completed by the
assigned motion ID (e g., for connection operations, nail is 1 and chalk is
2). The provided standard array supportz low-level operations that
consist of up to three primitives: approaching certain locations, with-
drawing, and one additional zkill primitive. To further improve the
fexibility of handling special low-level operations that require more
than three or other types of primitives (e z., the floor underlayment
connection operation requires the robot to reach the attaching location,
flatten the underlayment, attach the underlayment, and withdraw), the
bottom-layer array structure can be customized. The customization can
be based on the specific needs of the operation, either by defining extra
celle or by modifying the functions to compute cell values. In cases when
a epecial bottom-layver array is required by an operation, the robotic
enginesr will program the reasoning primitive to mmitiate the operation
as generating the customized bottom-layer array instead of the standard
one. As a result, the operation can be integrated into the construction
workflow for automatic sequencing. For SDAs on different layers, the
probabilistic mappings are saved separately in the robot knowledge
base.

For the three high-level operations, connection (CC), material
preparation (MM), and target finishing (TT), multiple layers of arrays
are involved to determine the elemental motion sequences. Transibons
between different layers are facilitated by reasoning prinutives
following the process in Fiz. 4. The reasoning primitives can retrieve
BIM data (e.z., number of operations) to generate SDA or switch to
another layer. Durng human demonstrations, reasoning primitives can
be selected from the GUI of the digital twin system.

The system incorporates six default transitions that are activated
when epecific conditions are met. First, if values in the transit- or
bottom-layer SDA are all zero, signifying the completeness of the oper-
ations, the system will switch to the upper layer. Second, if there iz only
a solitary row present in the transit-layer SDA, revealing the require-
ment of just one type of low-level operation, the system will by default
directly begin the operation. Third, regardless of the number of identical
low-level operations (e.g., 4 screws) needed in a transit-layer SDA, only
the array of a eingle operation (e.g., 1 serew) 1= created at a ime. Onee
the operation i1 completed, the system reverts to the transit layer to
verify if all operations of the sgame type have been executed. If not, the
syetem will, by default, automatically proceed with thiz type of
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Flg. 4. Decizion process for moton sequences of high-level operations.

need for repeated demonstrations when multiple same type operations
are required for workpiece assembly. Sequencing skille learned can be
leveraged to automatically establish the motion sequence for subsequent
operations of the same type. Finally, the start transibion retrieves the
next target from the BIM and generates the imtial upper-layer SDA, and
the finich transition concludes the SDA to advance to the next target.

support their generation and inter-layer transition. It also provides an
intuitive user interface, making it accessible to construction workers
with minimal training. When developing motion primitives, three fac-
tors must be taken into aceount: (1) the robot or machine designated for
task execution; (2) the required BIM and sensor data as input for plan-
ning and execution, along with the process of requesting the informa-
tion; (3] the method to control the robot given the tools and information
required. By infuitively selecting encapeulated skill primitives through
learmning, the robot can autonomously determine the motion sequence

vanation or step-by-step human suidance.

4. Experimental case studies

Cage studies featuring three representative scenarios in construction
assembly (exterior wall sheathing, drywall installation, and timber
frame construction), are presented to verify the proposed approach. The
objective of thiz section is to present in detail how SDAs change with the
construction seene and decide the motion eequence and to demonstrate
how learned knowledge is reused for the same task and iz transferred to a
different construction task. Therefore, we selected exterior wall
sheathing and drywall installation as the first two scenanos, sinee they
have many similarities, and a third scenano of imber frame construc-
tion that iz more complex than the other two. The number of human
demonstrations requested and the number of automatic decisions made
by the robot throughout the three assembly processes are Investigated.
Following the incorporation of the LD module, the digital twin syetem
retaing the workflow and functionalities outhined in [20]. Considering



Table 8
Motion Primitives Beaconing Primitives
Reachi{P) gtart conmectiond)
Grazp(l otart material processing()
Releage() atart nailing{)
Withdraw{} atart perewing(}
Nail() tart cuttingi)
Srew() atart drilling{)
Cuat(C) retumn_ upper lages()
Drill(D)

that thie study pnmarily focuses on motion sequencing, only processes
and information in the digital twin eystem that are pertinent to motion
sequencing and LD are discussed.

Two rebotic arme and a CNC machine form the robotic system in the
case studies. One robotic arm manages workpiece manipulation, while
serewing, with different tools attached to ite end-effector. The tool can
either be manually switched by a human co-worker or automatically
switched by an automatic tool changer [75] or a quick changer [76].
Workpieees can be cut into different shapes by the CNC machine ae-
cording to predefined cutting planes. Table 2 lists the slkall pomitives
provided to the robotic system. The robotic arms can generate collizion-
free motion plans to reach different poees with Mowvelt [77,72]. The
withdrawal of the robotic arm iz predefined. The knowledge base is
divided into zeveral sessions, denoted az M (upper-layer), TM(transit-
layer material preparation), TC(transit-layer connection), C{bottom-
layer connection operations), and MP{bottom-layer material prepara-
tion operations). The information needed for the task and detailed mo-
tion planning, such as the construction sequence, targeting poses, and
cutting planes, iz retrieved from a BIM, which can be generated by
computational desizn or manually defined [61]. In this case study, only
material preparation and connection are used as examples of high-level
o 1ons. MNevertheless, the system iz capable of handling tarset

4.1. Exterior wall sheathing

In the first seenanio, the robot has just been deployed on the con-
struchion zite to perform the extenor wall sheathing task. Mo prior
knowledge about construction assembly exists in the robot knowledge

Ny

7

ny

7

Flg. 5. Nustration of BIM information for Robot Planning.
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Flg. 6. GSA of Scenario 1.

base. Data related to the next sheathing target, including material
ETipping pose sequence M(mp,m), target placing pose sequence
Plpp. py. p2) and nailing pose indicators N{ng, ny, na, ng) can be accessed
from a BIM (Fiz. 5). Noted that instead of using a single 6DOF pose,
material gripping and target placing contain a series of poses following
manipulation convention. This is to guarantee that the sheathing staye in
firm contact with ite neighbor. The objective of the task is to install the
sheathing at the designated location and fasten it to the frame uzing
nailz, as indicated by the GSA in Fig. 6.

When the task begins, the CSA iz imtated (Fiz. 7). The SDA is
caleulated as the distance from CSA to GSA (SDA100). Since SDA]OD
doezs not exist in the robot knowledge baze, the human co-worker pro-
the digital twin. Then, they will follow syetem guidance to select the
construction material as the input of Reach(). The pose sequence M to
grp the selected matenial 1= retrieved from the BIM. After the motion
plan iz developed and approved by the human co-worker, Reach(M) is
executed. Mapping from SDA100 to Reach(M) is recorded as upper-level
mapping knowledge (U1). Since the robot end-effector 15 located at the
material location after completion of motion Reach(M), value of Cell BM
changes to 1 and SDA iz updated accordingly (SDA101). Next, Grasp()
primitive iz eelected by the human co-worker to request the robot to grab
the material workpieee. As a result, the material iz on the robot, and Cell
MR updates to 1. Mapping from SDA101 to Grasp() iz saved az U2 in the
knowledge base.

After the material iz picked up, the robot 1= guided by the human co-
worker to bring the material to the target place. After Reach(P) 18
selected, the robot generates a collizion-free motion plan to reach the
target placing poses P{po, p1, pz). After the operation, both the robot and
the material are located at their corresponding target place, updating
Cell MT and RT to 1 (Fiz. 8). Then, the connection operation is activated
with the start_connection() reasening primitive. The reasoning primitive
obtaings details of the connection operation from the BIM and creates the
transit-layer SDA (SDA104), which indicates 4 nailing operations (ID =
1) are needed. Similar to the motion primitive, mapping from SDA103 to
thiz reasoning primitive iz also saved in the upper-level knowledge base
(U4).

Since only the nailing operation iz needed for connection, the
start_nailing() reasoming primitive iz avtomatically chosen without
requiring demonstration, as specified by the system default transibions.
The bottom-layer CSA and SDA for the first nailing operation are created
accordingly (Fiz. 2). Then, the robot follows a series of human guidance,
withdrawing the end-effector to perform the nailing operation. Mean-
while, the bottom-layer SDAs change at each step (SDA106, SDA]O7,
5DA108). The demonstrations are saved as connection mapping (C1, C2,
C3) in the lmowledge base After withdrawal, all the walues in the
bottom-layer SDA become zero. Therefore, the system returns to the
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Flg. 7. Scenario 1 Steps 1 and 2 Updates.

transit layer, as defined by default transitions. It then restarts the loop
and drives in another nail using learned mappings (C1, €2, C3) untl all

When all nails are installed, values in the transit-layer SDA are all
zeros, signifying the completeness of all connection operations (Fiz. 10).
Therefore, it refurme to the upper layer. Human co-workers continue to
guide the robot to release and withdraw itz gripper (Fiz. 11). After
withdrawal, all values in the upper-layer SDA are zero, indicating the
current workpiece iz fully assembled and installabion of the next work-
piece in the row can start.

4.2 Drywall inztallation

After finiching exterior wall cheathing, the robot is assigned to work
on drywall installation. Drywall installation bears a resemblance to
exterior wall sheathing, with the distinetion being that drywall panels
already acquired expertize in exterior wall sheathing, the learned
knowledge iz applied to automatically decide skill primatives for drywall

Auwtomation in Construction 155 (2023) 105071
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Filg. B. Scenario 1 Steps 3 and 4 Update.

installation. Similar to Scenario 1, the material gripping pose sequence
Mimyg, m; ), target placing pose sequence P{po, p1. pz), and ecrewing pose
indicatore S(sp, 21, 82, 83) for thie scenano are also saved in a BIM.

The initial array of drywall installation is identical to that of exterior
wall sheathing. With the learned mapping from the knowledge base, the
robot makes decisions for the first four stepe, which are consistent with
wall cheathing (Fiz. 1 2). However, a new transit-layer with a different [D
iz ereated after the connection operation starts because a new type of
low-level operation (screwing) 1= needed for thiz seenario. Sinee
serewing is the only type of connection operation, it automatically starts
serewing and ereates the bottom-layer SDA.

Since SDA205 has not been encountered by the robot, the human co-
worker needs to provide two demonstrations az new connection map-
pingz, after which the robot can utlize the learmned knowledge to auto-
matically decide all the subsequent primitives in the connection
operation (Fiz. 12). After returning to the upper layer, US and Us
mapping in the knowledge base 1z used to automatically decide the

4.3, Timber frame construction

In contrast to the two highly similar scenanos in Section 4.1 and 4.2,
assembly of the timber frame has greater complexaty. Fiz. 14 illustrates
the process for this scenario. After the workpieee iz picked up following
poses M(my,my ) (Fig. 14a), it iz brought to the CNC machine for cutting
based on the predefined cuthing plane C. Then, the workpiece iz held in
place when being drilled by another robot at D{dy,. d;. ds, da) (Fiz. 14b).
Finally, the workplace 1z placed onto the target posibon after being
manipulated through a sequence of defined poses Pipy. by, p2) (Fiz. 14€)
and iz ecrewed onto the wall frame through the drilled holes S(z0,51)
(Fig. 1a4d).

Different from the two previous scenanos, Cell MM mn the GSA 1= 1
because some material preparation operations are needed (Fiz. 15). Aza
result, the mtial SDA has not been learned by the robot, and human
demonstrations are required to guide the robot to reach and grasp the
stud material At Step 3, the material preparation operation 1= mitiated
by the human co-worker (Fiz. 16). In this caze, two low-level operations,
cutting (ID = 1) and drlling (ID = 2) are needed, cach representing a
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Flg. 10. Scenario 1 Step 25 Update.
Blo o oo il o o o o
row in the transit-layer SDA. Therefore, the low-level operation to start 0o 1 o0 Mo o0 0 o
first needs to be selected by the human co-worker as a demonstration
Onee the cutting operation is finished, values on the corresponding row o0 o0 0 1 “ 0 o0 0 O
in the transit-layer SDA change to zero (Fig. 17). As a result, the robot
automatically initiates Hﬂt dnllmﬁ ﬂpﬂmtﬂm brﬂuﬂr there is only one Robot default: Finish()
type of low-level operation remaining in the transit-level array. Other {upper-layer SDA aull)

stepe are similar to the previous seenaros and thues are not listed.
Flg. 11. Scenario 1 Step 26 and 27 Updates.
5. Proof-of-concept implementation
] ] ] ) ) achieved with the proposed system, we explored a wooden frame con-
_ The scope of this study i= the interaction, leaming from demonstra- struction activity in simulation az a proof-of-concept implementation.
hnm,mddu]]an.dscm:rcprcs:ntahﬂui:chmqu:ﬁbu:ﬂablctb:aum- The experimental platform is shown in Fiz. 15, The construction task iz
matic motion sequencing process. To venfy that this objective canbe  porformed by a Kuka KR120 industrial robotic arm. Its end cffector can
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Robot learned: Reach({M)
Step 1 Knowledge: U1
Robot learned: Grasp()
Step 2 # Knowledge: U2
Robot learned: Reach(P)
e & ‘ Knowledge: U3
Step 4 Robot learned: start_connection()
Knowledge: U4
CSA204 SDAZ04
0 0 2 4
Robot default: start_srewing()
Step 5 (one operation type)
CSA205 SDAZ05
o 0 2 0
o 0 0 1

Fig. 12. Scenario 2 Steps 1 to & Updates.

Step 6 Human demo: Reach(s,)

Knowledge: C4

CSA206 SDA206

0 0 2 0

1 0 -1 1
Human demo: Screw()

Step 7 Knowledge: C5

CSA207 SDA207

2 0 0 0

1 0 -1 1

Robot learned: Withdraw()
S ‘ Knowledge: C3

Fig. 13. Scenario 2 Steps 5 to 7 Updates.

both grip and nail by combining a vacuum gripper and a nail gun. The
digital twin for HRCC 1= developed with Unity (user mterface) and ROS
(muddleware). Construction-related information is saved in a BIM n
Bhino (Fiz. 19), which can communicate with both Unity through
Grasshopper using Rhino Inzide and with ROS using Rosbrnidge [79].
There are two virtual robot models in Unity that can be controlled with
joint state data from ROS. The virtual “execution” robot 1z eynchromzed
with the robot in Gazebo to reflect robot statuz in ROE, while the wirtual
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'dz d3
m
1 5 C
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e
dﬂ' ﬁ1
(a) (b)
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P4
P2 Po
5
(c) (d) oy

Fig. 14. Timber frame consouction workflow.

Init ‘ Robot default: Start()

CSA300 SDA300
IuuDE  EOuG

a1 1 0 0
i

=]

=]
=
=
EIE
o
(=]
o
)

o o o o
o o
o o
o o
o o
o o
=
= =

Flg. 15. Scenario 3 Initial States.

Human demo:
Step 3 start_material_prepartion()
Knowledge: U9

CS5A303 SDAZ03
0 0 1 1
0 0 2 4
Human demo: start_cutting()

Stap 4 Knowledge: TM1
CSA304 SDA304
0o 0 1 0

0o 0 0 1

Fig. 16. Scenario 3 Steps 3 and 4 Updates.
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Robaot default:
Step 8 return_trans_level()
{bottom-layer SDA null)
CSA308 SDA308
1 1 0 0
0 0 2 4

Robot default: start_drilling()
{one operation type)

Step 9 '

Fig. 17. Scenario 3 Steps 8 and 9 Updates.

“planming™ robot 1z used to demonstrate plan preview to human co-
workers as animations and appears only when needed. The robot
model in ROS 15 used for motion planning.

The ROE 1z simulated in Gazebo. Simulation enables the testing and
evaluation of emersing robotic evstems in a manner that is both safe and
economacal, significantly mutigating the associated nsks and costs. It has
been adopted by several studies to verify the feasibility of new proposed
robotic methods (e.g., [13,20,21]). Gazebo 1= a robust physical engine
that allows rapid prototyping of robotic tasks and 1z considered a wali-
dated digital twin to evaluate new robotic methods such as those pro-
poeed in thiz study within a virtual environment [22,23]. Through ROS
and Automation Deviee Specification (ADS), movements of the robot
emulator in Gazebo can subsequently be synchronized with the phyeical
robot in real time [20,60], which enables Gazebo-based zimulations to
be widely employed as the prototype to assess the feasibility of newly
proposed methods [54,25]. Although there are uncertainties and chal-
lenges such as arm control synchronization or localization errors for a
between simulation and real robot execution do not dimimich the
sequencing. The authors have other studies epecifically addressing robot
synchromized control between Gazebo and a real robot [60], phyeical
robotic syetem setup [20], and adaptive contrel [25] for real robot
execution

The robot will first install the two studs at the bottom, followed by

Auwtomation in Construction 155 (2023) 105071

O\

Target frame to
build l

Timber materials

Fig. 19. BIM of the wooden frame construction acitivity.

Table 9
BIM Component Diata Struciure.

Name Name of the component

Family The category of the component Options are Workpisce, Connection
(e.g., position indicator of a screw), or Procesging (indicator of a
cutting plane].

Parents The component the target iz associated with. Optional for Wodkpisce
anid mandatory for Connection or Processing families.

Type ‘Corresponiling material type.

Poae A list of 6DMF posen containing a sequence of poces to reach the
Component.

Order ‘Congtruction sequence

Conmection Apply to comp in the Workpiece family. It io a list of
connection operations associated with the component (e.g., [nailing,
pcrewing] ).

Proceming M Apply to comp in the Workpiece family. It iz a list of material
preparation operations aseocizted with the component (e.g.,
[drilling, cutting]).

Proceming T Apply to comp in the Workpiece famiby. It io a list of target
Emishing operations associated with the component (e.g., [painting,
poliching] ).

Methoda Mandatory for comp in the Connection or Processing family.
It indicates the correspondding operation method of the component
Por example, for a screwing point indicator, the method chould be
“m“-q“.

,.u- ------------- -u\
Kuka KR120
(Physical robot)

Rhino
(BIM)

Uﬁhinu.lnsida

e —
o mmwmwm

v Not included in this sfudy

o -

Unity ROS
{User interface)

(Middleware)

Gazebo
(ROE Simulation)

—

R

wirtual wirtual robot
“execution” “planning” rmodel for
robot robot planning

%

Kuka KR120
robat
emulator

Flg. 18. The experimental platform for wooden frame installation experiment
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the three studs on the top. Bight naile (four on each side) are used to
secure cach top stud to the bases. A data structure to store attribute
information in BIM has been proposed (Table 9). Compared to the data
structure in [20], the new version supports more intricate construction
tasks involving diverse operations (e.z., connection).

Calculation for the “At” relation requires the 3D Euclidean distance
to be chorter than 0.0] m for two objects to be considered at the same
position. When determining whether the robot end-effector reaches an
object, the robot end-effector position iz offeet based on the gripper
chape to calculate the Euclidean distance to the object. At the same time,
all the roll, pitch, and yaw orientation differences need to be smaller
than 0.005 rad. The expression to determine the “At” relationship with
the threshold coefficient 1= shown in Eq. 2.

L o/ — %)+ 04 — ya) + (s — )" <0.0Im
Alga — @s| < 0.005 rad
A6, — 85| < 0.005 rad
Ay — gl = 0,005 rad

At{A,B) = (3

0, else

for two ohjects Alxg,¥a. %4, @y 04w, and Bxa,¥e, g, @, 0. Pa).
where x, ¥, & denote positions and g, &, i denote the roll, pitch, and vaw
of the object.

Throughout the HRCC proecess, the human co-worker uses the digital
twin interface to monitor the ROE and interact with the robot. After the
target component and its pose suggested by the BIM are confirmed by
the human co-worker (Fiz. 20a), the SDA 1= created and the LD process
begins. For unknown SDAs, human demonstrations will be requested by
the robot. The digital twin provides the interface for humans to choose
corresponding primitives (Fiz. 20b). Purthermore, the human co-
workers will be prompted to demonstrate the input related to the
selected primitive, if applieable (Fig. 20¢). Otherwize, the robot displays
ite derisions in the digital twin for human approval if the SDA existz in
the robot’s knowledge base (Fiz. 20d).

In cases where the chosen pnmitive iz a motion primitive that re-

Want to install this?

ect Target to Reach
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quires motion planning, such as Reach, a detailed motion plan generated
by the robot will be previewed by the human co-worker. They can either
approve the plan for execution or request the robot to devise an alter-
native if they are unsatisfied with the demonstrated one. When a
reacoming primitive is selected, the SDA 1=z automatically updated.
Furthermore, if human co-workers are unhappy with the primitive se-
lection, they can opt for a different primitive. A video demonstrating the
LfD process iz uploaded as Supplementary Data.

6. Resultz and discussion

For a robot to successfully perform construction activities, a variety
of technological advancements (e.g., perception, localization, hardware
design, control} need to come together. Instead of attempting to address
all these challenges at onee, this study focuses on a specific aspect of how
to enable automatic motion sequencing for multi-task construction ro-
bots. Therefore, three case studies and a wooden frame construction
activity are designed. Eight motion prinutives, seven reasoning primi-
tives, and six default transitions are provided. The objectives of these
experiments are: (1) to evaluate and characterize how thiz workflow
reduces human effort in guiding the robot to perform a construction
activity; and (2) to characterize how thiz workflow allows the knowl-
edge leamned to be reused by the robots across multiple construction

In order to understand the robot learning performance, the efficiency
of human demenstration, and the quality of the defined default transi-
tions, four evaluation metrniecs are proposed and used, meluding (1)
teaching effort: the percentage of demonstrations needed from the
human co-worker out of steps other than default transitions (Eqg. £); (2)
teaching quality: the percentage of decizions made by the robot using
knowledge learned from humans out of steps other than default transi-
tions (Eq. 5); (3) teaching efficiency: the number of robot decizions from
learned knowledge to the number of human demonstrations ratio (Eq.
6); and (4) default transition quality: the pereentage of decizions made
by the robot uzing the six defined default transitions introduced in

ne unkown. Please demonstrate next step

Flg. 20. Digital twin LD interface.
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Section 3.4 out of all steps (Bq. 7) [32]. Numpm, NUMyomed, and
Numjefmge in the equations represent the number of steps decided by
human demonstrations, robot leamed knowledge, and default transi-
tione respectively. The knowledge tranefer 15 evaluated by analy=ing the
trend of these metrice across tasks.

. Numg
Tl:E.E"I:IJ'Ig effort = m » Im {4}
. . Ni
Teaching quality = % » 100% (3)
. . L T—
Teaching efficiency = T — (6)
D

Nump g
Ny~ Nt + VUM, s

Default transitions quality = = 100%:

(7
The human-robot collaborative wooden frame construction process
iz demonstrated through the proposed digital twin system. Sinee the
robot startz with no prior knowledge, ligher teaching effort iz needed
from the human co-workers at the onset. The teaching effort i= 100% (5
steps) for the first stud on the base (Fiz. 21). Por the first stud on the top,
the teaching effort reduces to 27.59% (8 steps) even though the pro-
cedures are different, which indicates that the robot haz effechvely
leamed from a different previous task. After learming, the robot can
automatically decide the whole sequence of primitives to install the
second or third stud (1.e., 0% teaching effort). More specifically, for the
top studs, after the motion sequence to perform the firet nailing opera-
tion on the first stud 1z learned, the robot can take advantage of the
leamed knowledge and automatically perform all the remaining nailing
operations.
Installation for the studs on the top 1= more complicated because
connection operations with nails are needed. The provided default
transitions play an important role in enabling the high autonomy level

Auwtomation in Construction 155 (2023) 105071

for complex operations such as thiz. There iz a deerease In teaching ef-
ficieney when the system performe the new task of top stud installation
for the firet ttme. Howewver, when it repeats the previous tasks, the
teaching efficiency iz extremely high sinee no human demonstration is
needed. In total, the robot makes 91.77% (53.16% from learnsd
knowledge and 39.87% from default transitions) of decizsions during the
overall frame construction process, and the human worker only teaches
8.23% of the total steps. These experiments demonstrate that the system
not only allows humans and robots to collaboratively sequence the given
primitives to perform construction work, but also reduees human effort
and inereases eystem autonomy by enabling robot learning.

The resulte for the three case study scenarios are shown in Table 10,
Dieepite the limited number of default transitions provided, they
constitute a significant portion (37.93% or 37.50%) of the decisions to
assist in the transitioning between different layers. For the first seenanio,
human teaching effort iz 50% (9 steps) to sheath the firet panel, and
another 50% (9 stepe) are solved by robot learned knowledge. As the
learned knowledge iz taken to the second scenario to perform the
drywall installation, the teaching effort 15 only 11.11% (2 stepe) and 16
(88.89%) stepe can be solved by robot leamed knowledge. The sub-
stantial decrease in the proportion of human demonstrations iz due to
the similarities in the assembly sequences between the two scenarios.

When it comes to the more complicated timber frame construction
seenario, the teaching effort inereases slightly compared to Scenario 2 as
it involves addibional material preparation stepe such as drlling and
cutting, making it more intricate and distinet from the other two sce-
narios (Fiz. 22). Nevertheless, the robot can still solve 74.29% of steps
with itz knowledge, and the human co-worker only needs to demon-
strate 9 (25.71%) steps. Even though the teaching efficiency decreases
significantly for Scenario 3 because more demonstrations are needed
due to higher task complexity, the teaching quality maintainz at a
relatively high level since the robot experiences more scenarios. These
obeervations demonstrate that the system can inecrease motion
sequencing autonomy and reduce human effort by transferring learned

Wooden Frame Construction Results

100% = 10
80% 8
E]
o B0% 6 =
= >
*E >
] e
¢ o
i
& 40% - 4 g
W
29
20% A 15 |2
5
2 2
0% o Iy . ORe 0, 0
Basel Base2? Topl Top2 Top3
default transitions

teaching effort ———

teaching quality

quality

—— teaching efficiency

Flg. 21. Human and robot decizion distribution for wooden frame construction (Teaching efficiency iz prezented as 10 when no demonstration iz needed).
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Table 10
Results of Caze Smudy Scenarios.

Auwtomation in Construction 155 (2023) 105071

Scenario 1 (Exterior wall cheathing) Scenario 2 (Drywall ingtallation] Scenario 3 (Timber frames constroction)
Teaching effort (stepa) S0.00% (99 11.11% (2) 25.71% (%)
Teaching quality {ctepa) 50.00% () BE.89% (16} 74.29% (26)
Defanlt trangition quality (stepa) 37.93% (11} 37.93% (11) 37.509 (21)
Teaching efficiency 1 B 289
Total stepe 29 29 56

knowledge within the task and to different types of construction activ-
ities. It should be noted that we assume there are only four serews or
nails for each panel in Scenario 1 and Scenario 2. Real-life construction
seenarios typically require a higher number of serews or naile for cach
panel, regulting in higher autonomy and lower human effort.

Some limitations are observed through the case studies and proof-of-
concept implementation. Firet, even though the robot can automatically
make decizions by learning from human demonstrations, we still request
the human co-worker to approve each decizsion before the robot can take
any action. Thiz increases human workload and reduces system pro-
ductivity to some extent when plenty of similar nailing operations are
needed and approval iz required at each step in the proof-of-concept
implementation. This 1= related to the tradeoff between eafety and
human workload of supervision. From our observations, human co-
workers are more comfortable when they are aware of robot mowve-
ment at the next step, especially when they are working with the actual
robot. Thus, the functions of previewing and approving plans are pro-
vided. In the future, human co-workers’ supervision workload can be
optmized by investigating their trust in the robot decisions under
different srtuations and dynamiecally encapsulating primitives. Second, it
takes effort to prepare the shop drawing model and semantic informa-
tion in the BIM to dnve the construction process [87]. In the future,
computational design should be considered to automate the process to
prepare the BIM for the system, such as automatically generating nailing
positions, calculating cutting planes, and adding atinbutes to

components [51,558]. Third, the proposed method mainly focuses on the
sequencing of primitives instead of the execution of a epecific operation.
The capability of the system for epecific construction applications also
depends on the capability of the skill primitives known to the robot
However, preprogrammeed, autonomous, or learned skills from human
demonstration can be conveniently added as skill primitives for the
robot to work on broader construction assembly applications in the
foture.

Compared to other state-of-the-art methods for motion sequencing,
the proposed method has several distinet characteristice to support
complex construction assembly tasks while reducing human effort and
computation resources. Pirst, the current task status iz tracked with the
digital twin system and represented by multi-layer SDAs, which are
better at handling complex construction assembly scenarios with prep-
aration, connection, and finishing operations compared to vision-based
state detection [37,39]. The robot plans bazed on the detected enwi-
ronment states instead of assuming that all prior motions are completed
successfully, making 1t more robust to uncertainties [22,49]. Second, the
syetem requires fewer demonstrations and computation resources
compared to methods based on machine learning or the Markov decizion
process [458,50,52-54]. The system only requires the human co-worker
to demonstrate the task once to build the corresponding SDAz and
learn the sequencing knowledge. Even within one construction task, the
human co-worker does not need to demonstrate the whole process. For
example, when one nailing operation 1= demonstrated, the sequence to

Case Studies Results
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Flg. 22. Human and robot decizion distribution for case studies.
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install other nails can be automatically generated. Third, the system
supports transferring the learned knowledge within and across different
construction tazks. By extracting workpieces one by one from the con-
struction sequence in the BIM, the status modeling SDA focuses on one
workpicce at a time. As a result, the similarity and repeatability between
tasks and activities inerease, allowing efficient transfer of the knowledge
within the task (e.z., apply the knowledge for one operation to other
operations) and acroes different activities (e.g., use the knowledge from
exterior wall sheathing to reduce the teaching effort for drywall
installation).

7. Concluzions

Thiz paper aimes to investigate robot automatic motion sequencing so
that they are capable of multiple construction assembly tazks and can
keep expanding their gkillset. A process-level digital twin iz used for the
robot to determine motions from the task objectives and scene state or to
request human demonstrations for unencountered situations. Not only 1=
the acquired knowledge applicable to the same types of construction
tasks, but it can aleo be transferred to other taske to minimize the
amount of teaching required.

The research makes several notable contributions. First, it establiches
a four-level taxonomy—elemental motions, operations, tasks, activi-
tiee—and uses skill primitives to facilitate modular construction robot
“programming”, making robots acceszible for construchion workers.
Second, mult-layer SDAs are used to effectively save the learned
knowledge as probabilistic mapping and retrieve the knowledge for
automatic motion sequencing. From three case studies and the wooden
frame construction activity, we observed that robots have higher au-
tonomy and are less dependent on human demonstrations after learning
a variety of construction tasks. Third, based on the automatic motion
sequencing technique developed, we concetve a construction robot de-
livery framework that bridges the domain knowledze zap between ro-
botice and construction while improving construction robot work
quality and cost efficiency. This research has the potential to enable the
widespread application of robote in construction. In the future, we will
optimize the human supervision workload by exploring primitive
encapeulation and investigating robot confidence levels in decizion
making.

Supplementary data to thizs article can be found online at https://
org,/10.1016/].autcon. 2023.105071.
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