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Abstract
This research focuses on developing a robot digital twin (DT) and the communication methods to connect it with the cor-
responding physical robot in collaborative human–robot construction work. Robots are being increasingly deployed on con-
struction sites to assist human workers with physically demanding work tasks. Robot simulations in a process-level DT can be 
used to extend design models, such as building information modeling, to the construction phase for real-time monitoring of 
robot motion planning and control. Robots can be enabled to plan work tasks and execute them in the DT simulations. Once 
simulated tasks and trajectories are approved by human workers, commands can be sent to the physical robots to perform 
the tasks. However, a system to bridge a virtual DT and a physical robot and allow for such communication to occur is a 
capability that has not been readily available thus far, primarily due to the complexity involved in physical robot operations. 
This paper discusses the development of a system to bridge robot simulations and physical robots in construction and digital 
fabrication. The Gazebo robot simulator is used for DT, and the robot operating system is leveraged as the primary frame-
work for bi-directional communication with the physical robots. The virtual robots in Gazebo receive planned trajectories 
from motion planners and then send the commands to the physical robots for execution. Two different robot control modes, 
i.e., joint angle control mode and Cartesian path control mode, are developed to accommodate various construction strate-
gies. The system is implemented in a digital fabrication case study with a full-scale KUKA KR120 six-degrees-of-freedom 
robotic arm mounted on a track system. We evaluated the system by comparing the data transmission time, joint angles, and 
end-effector pose between the virtual and physical robot using several planned trajectories and calculated the average and 
maximum mean square errors. The results showed that the proposed real-time process-level robot DT system can plan the 
robot trajectory inside the virtual environment and execute it in the physical environment with high accuracy and real-time 
performance, offering the opportunity for further development and deployment of the collaborative human–robot work 
paradigm on real construction sites.
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1  Introduction

The deployment of collaborative robots on construction 
sites is believed to have the potential to relieve safety issues 
and chronic occupational disease (Lundeen et al. 2019) and 
further improve the efficiency of the construction process 
(Eversmann et al. 2017). For instance, the construction robot 
can partner with human workers on job-sites to assist with 
physically demanding tasks, while human workers focus on 
the robot control or work process plan (Liang et al. 2020, 
2022). This is similar to the assembly line in the manufactur-
ing industry, where the robots focus on repetitive and pre-
cise motion control tasks, and humans focus on planning 
and quality-checking functions. Human–robot interaction is 
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defined as humans and robots working in a shared environ-
ment with all types of interactions (Schmidtler et al. 2015). 
Wang et  al.  (2019) classified the relationships between 
humans and robots into four categories: coexistence, interac-
tion, cooperation, and collaboration. Human–robot collabo-
ration (HRC) is among the most active interactions between 
humans and robots, where humans and robots are sharing the 
workspace and coordinating on the same task synchronously 
(Musić and Hirche 2017; Liang et al. 2021).

Symbiotic human–robot collaboration is one of the HRC 
methods applicable in solving complex tasks (Farrell et al. 
2016; Nikolakis et al. 2019) by combining the expertise and 
complementing the proficiencies of humans and robots, 
which typically requires significant computational effort and 
training data. This type of HRC is among the most suitable 
for construction robots and human workers. For example, the 
human worker has cognitive skills, decision-making ability, 
and the ability to react reasonably to unexpected situations 
that might arise on a construction site, whereas the construc-
tion robot has the advantage of high precision, strength, and 
repeatability (Hentout et al. 2019).

Since the symbiotic HRC consistently engages the human 
and robot with each other during the process, bi-directional 
communication is required to minimize the interruption 
and ensure safety (Wang et al. 2019). In the human-to-robot 
direction, communication can be achieved with direct com-
mands through the user interface to determine the robot goal 
or using sensors to observe human movement, such as hand 
gestures, and interpret the intended commands (Mohammed 
et al. 2017). The robot can parse the received commands and 
execute the work plan. In the robot-to-human direction, the 
human has to be informed of the robot’s work plan before 
execution. This can be achieved by providing a virtual rep-
resentation, i.e., simulation or digital twin (DT), of the robot 
and the environment. The robot’s work plan can be demon-
strated in the DT to the human in real-time and with high 
precision (Wang et al. 2019), allowing the human workers 
to make decisions based on the information.

1.1 � Process‑level DT and simulation

Simulation and DT play a significant role in the robotics and 
construction industry to manage and increase the productiv-
ity of the process, especially in the design and operation 
phase. They utilize digital models, such as 3D CAD mod-
els, in the virtual environment to represent physical objects 
and imitate the operation to verify the different designs or 
compare the outcome. In the simulation, different types of 
parameters are used to define the environment and analyze 
the result to determine the quality of the design. For exam-
ple, a mobile robot simulation can test the performance of 
the path planning and localization algorithm before being 
actually deployed to the real robot platform (Xu et al. 2019).

The DT offers opportunities to virtually mimic the con-
ditions of the entire physical (real) environment and inte-
grates all associated data during the process, which allows 
the DT system to run several simulations simultaneously. 
For example, a building DT can take building information 
modeling (BIM) and environmental data to simulate and 
monitor the building performance. The construction site 
is an unstructured and dynamically changing environment, 
making it difficult for robots to perform construction tasks or 
for operators to program the robots. Therefore, DT provides 
the opportunity to mimic the work environment and offers 
a visual programming interface to control the construction 
robot (Sartori and Schlette 2021). The main advantages of 
DT are real-time data integration and look-ahead simulation. 
The DT regularly collects the current information from the 
physical environment and tries to achieve real-time visu-
alization and control. In addition, it also allows look-ahead 
simulations using the current state for initializing the simula-
tion, which is termed as online simulation (Song and Eldin 
2012).

In the robotics industry, the DT constructs a cyber-physi-
cal system (CPS) (Aheleroff et al. 2020) where information 
of the current and forecast future states of the robot can 
be displayed for decision-making and evaluation prior to 
task execution (Freedy et al. 2007). The work plan of the 
robot can also be determined in the DT and subsequently 
executed on the physical robot. Madni et al. (2019) defined 
four levels of DT (pre-digital twin, digital twin, adaptive 
digital twin, and intelligent digital twin) based on the level 
of intelligence. The pre-digital twin and the digital twin are 
the common DT in the four levels. The adaptive digital twin 
combines user interface and machine learning with regu-
lar DT, whereas the intelligent digital twin further utilizes 
reinforcement learning to process the state in a partially 
observed and uncertain environment.

An adaptive digital twin replicates the entire physical 
process in real time (Colledani et al. 2009), such as the 
manufacturing assembly line process. Real-time is defined 
as whether the DT is able to complete the process correctly 
within pre-defined timestamps, i.e., deadlines (Shin and 
Ramanathan 1994). The real-time system can be categorized 
as a hard real-time system, firm real-time system, and soft 
real-time system (Kopetz 2011). The hard real-time system 
has to accomplish each subtask before deadlines and can 
cause failures upon missing any deadlines. For example, a 
3D printer is considered a hard real-time system since the 
filament must be extruded at the right time as the extruder 
crosses the print bed. The firm real-time system can tolerate 
infrequent missing of deadlines and consider those as low-
quality results. The soft real-time system can accommodate 
missing deadlines by reducing the quality of the result, such 
as live broadcasting of video streams. The real-time process-
level DT has to meet all deadlines to represent the physical 
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environment and thus is defined as a hard real-time system 
(Mertens et al. 2020).

One of the major aspects of the adaptive digital twin or 
process-level digital twin is the synchronized model (Lu 
and Xu 2018). The DT first constructs the virtual model 
based on the physical environment, then records and tracks 
the changes in the physical environment and reflects them 
in the virtual model. The virtual model can be extracted 
from the designed construction model such as building 
information model (BIM) or scanned 3D point clouds of 
the as-built environment (Delbrügger et al. 2017; Marshall 
and Redovian 2019; Lu et al. 2020a). On the other hand, a 
communication mechanism is required to synchronize the 
data between the physical environment and the virtual model 
(Wang et al. 2019; Aheleroff et al. 2020). The communica-
tion needs to be bi-directional so that the virtual model can 
reflect the changes of the physical environment, and the user 
can determine the next steps in the virtual model and send 
the command to the physical environment. This level of data 
communication and connectivity is one of the challenges to 
applying DT in the architecture, engineering, and construc-
tion domains (Al-Sehrawy and Kumar 2020).

1.2 � Research objective

To enable productive human–robot collaboration in con-
struction work, we investigate the real-time process-level 
DT to bridge the virtual and physical construction robots, 
and characterize the extent of the state synchronization 
between the two systems. In this research, we focus on the 
robot state synchronization in the DT system and assume 
that the human and environmental data can be collected and 
integrated into the virtual simulator using our prior work 
(Xu et al. 2019; Lundeen et al. 2017; Feng et al. 2015; Xiao 
et al. 2018); therefore, only the robotic arm is included in 
the DT system in this paper. The robot path is planned in 
the virtual robot environment, and the commands are sent 
to the physical robot for execution. Three specific research 
questions are evaluated: first, how precisely can the state 
synchronization between two robots be achieved; second, 
how to ensure the work plan is executed correctly on the 
physical robot; and third, what kind of approach can a robot 
follow to determine its work plan and control commands.

The proposed framework can be adapted to any robotic 
arm models reflecting physical robots. We implement the 
system in a digital fabrication laboratory with a full-scale 
KUKA KR120 six-degrees-of-freedom (6DOF) robotic arm 
and evaluate the system by comparing a series of poses of 
the physical robotic arm with the virtual robotic arm. We 
create several complex trajectories and sets of joint angles 
to test the proposed system. Finally, to validate the hard real-
time feature of our process-level DT system, we measure 

the data transmission time between the virtual robot and the 
physical robot.

The remainder of this paper is organized as follows. 
First, existing digital modeling methods and DT robotic 
systems are identified and reviewed to define the research 
gap. Second, the real-time process-level DT of the robotic 
construction process is developed. Third, the communica-
tion system and an algorithm for checking synchronization 
are introduced. Finally, experiments of robot motion plan-
ning and execution are conducted and used to evaluate the 
synchronization of the proposed real-time process-level DT.

2 � Related work

To enable the virtual simulator to mimic the physical robot 
and its workspace, two aspects need to be considered. First, 
the virtual simulator has to reconstruct the physical envi-
ronment and dynamically reflect the changes, which is the 
digital modeling method. Second, the virtual simulator has 
to plan the robot’s work plan and send commands to the 
physical robot, which is the DT for the robotic system. The 
virtual simulator keeps tracking the changes of the physi-
cal robot and reflects those in the virtual robot. We discuss 
existing digital modeling methods and DT for construction 
robots in the following subsections.

2.1 � Digital modeling methods

Digital modeling methods, such as 3D visualization or 
BIM, are used in the construction industry for design, man-
agement, and operation throughout the building life cycle 
(Kamat and Martinez 2005; Eadie et al. 2013). These mod-
eling methods document the project information and provide 
a platform for stakeholders to record changes, collaborate, 
and resolve conflicts (Sampaio and Berdeja 2017; Wu et al. 
2017). To achieve a productive collaboration, the model 
must be fully synchronized with the physical environment. 
It is time and cost-prohibitive to update the model manually 
(Ochmann et al. 2016). Thus, existing research focuses on 
automatically generating and updating the 3D model (Ham-
ledari et al. 2017).

Collecting the 3D point cloud is one of the methods 
used for generating the 3D model of the indoor environ-
ment (Xiao et al. 2018). This type of method requires a 
registration method for obtaining 3D points from cameras 
or laser scanners (Xu et al. 2019; Feng et al. 2015; Bos-
ché et al. 2015) and then applies segmentation methods to 
separate objects and reconstructs the semantic model (Dim-
itrov and Golparvar-Fard 2015; Macher et al. 2017; Sto-
janovic et al. 2018). Object recognition algorithms are also 
applied to identify different objects in the point cloud (Wang 
and Cho 2015; Lin et al. 2019). Finally, algorithms such 



60	 Construction Robotics (2022) 6:57–73

1 3

as site-to-BIM data transfer automation or derivative-free 
optimization are required to automatically update the digital 
model based on the identified objects (Hamledari et al. 2018; 
Xue et al. 2019). In the DT system, geometry assurance is 
developed to ensure the quality of the model (Söderberg 
et al. 2017; Tabar et al. 2020). The data transmission in these 
types of methods is from the physical environment to the 
virtual environment. To further control the physical robot 
and the environment, a DT for a robot system is required to 
plan the task from the digital modeling methods.

2.2 � Digital twin for construction and assembly 
robots

Digital twins have been envisioned to be the next generation 
of construction cyber-physical systems that can benefit the 
construction industry in decision-making and monitoring 
(Kan and Anumba 2019). A similar approach can be used to 
integrate a construction robot with digital modeling meth-
ods for visualization and task planning (Tandur 2015). For 
example, Yang et al. (2019) utilized BIM and robot path 
planners to find and visualize the construction process of 
modular construction. Shahmiri and Ficca (2016) developed 
a parametric model that can directly control industrial robots 
to assemble the structure. Bruckmann et al. (2016) used BIM 
as the data source to program a cable-driven parallel robot 
to construct masonry buildings. Similarly, Usmanov et al. 
(2017) used BIM to program an industrial robotic arm to 
lay bricks. In addition, robot programming software also 
provides a simulation environment for offline programming 
to assemble components in the manufacturing industry 
(RoboDK 2021; OCTOPUZ 2021).

However, these types of systems are typically not syn-
chronized between the virtual model and physical robot 
and require further adaptation to address the design-build 
discrepancy (Lundeen et al. 2017). For example, the size 
of each physical construction component might not be the 
same due to fabrication discrepancies and loose tolerances 
and may need on-site improvisation to fit them in desired 
locations. One way to resolve the discrepancy is to use 
sensors to adapt to the robot control (Lundeen et al. 2019; 
Sharif et al. 2016), but the adapted workspace geometry 
needs to be updated in the virtual model. On the other hand, 
the robot DT system developed in this work fulfills the 
demand for real-time data exchange, which is widely uti-
lized in the manufacturing industry, digital fabrication, and 
human–robot collaboration assembly (Zhuang et al. 2018; 
Bilberg and Malik 2019; Malik and Brem 2021). For exam-
ple, Naboni and Kunic (2019) used DT for complex wood 
structure manufacturing and assembly. Furthermore, by 
combining with other techniques such as augmented reality 
(AR), the synchronization and communication mechanism 
of the robot DT system can be improved (Cai et al. 2020). 

The data transmission in these types of methods is from the 
virtual environment to the physical environment.

3 � The digital twin of the robotic 
construction process

The proposed real-time process-level robot DT system con-
sists of three modules: the physical robot module, the virtual 
robot module, and the communication module, as shown in 
Fig. 1. First, the virtual robot module includes the DT for 
visualizing the robot and the motion planner for planning the 
trajectory and solving the inverse kinematics (IK) problems. 
We create a robotic arm model representing the physical 
robotic arm in the Gazebo simulation environment (Koenig 
and Howard 2004). Various robot motion planning methods 
are implemented in the DT system to control the physical 
robotic arm, including joint angle control and Cartesian path 
planning. Second, the physical robot module includes the 
physical robotic arm and the embedded sensors for measur-
ing joint angles. Third, the bi-directional communication 
module includes two different communication protocols 
[message queuing telemetry transport (MQTT) (Light 2017) 
and automation device specification (ADS) (Beckhoff and 
Beckhoff 2021)] for data exchange and synchronization. The 
MQTT is a common industrial communication protocol that 
provides the generalization of the proposed DT system. The 
ADS is specific for data exchange in the Beckhoff associ-
ated system, which provides high performance in the sys-
tem. Finally, the algorithm for checking the synchronization 
between the physical robotic arm and the virtual twin is also 
developed.

The system is developed in the robot operating system 
(ROS), since it is a meta-operating system that provides a 
message exchange mechanism between platforms across a 
network (Quigley et al. 2009). For instance, the motion plan-
ner in the virtual robot module plans a trajectory and then 
sends the control commands to the DT robot for execution 
and visualization. Each platform can be operated under dif-
ferent operating systems or programming languages. ROS 
and the Gazebo simulator have been utilized as modeling 
and operating tools for robotic buildings and environments 
(Linner et al. 2011) or multi-robot collaboration across dif-
ferent robot platforms (Vasey et al. 2020).

Fig. 1   The framework of the online process-level robot digital twin 
system
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Figure  2 shows the flowchart of the data exchange 
between each platform in the MQTT version and the ADS 
version of the proposed DT. On the left side is the virtual 
robot module, on the right side is the physical robot, and 
in the middle is the communication module. The system 
requires at least one personal computer (PC) to run the DT 
system and one PC embedded on the robot to process the 
commands and send them to the controller to control the 
robot. The two PCs are connected with ethernet (blue line) 
for data exchange and communication using the MQTT or 
ADS protocol. The circle in the figure represents differ-
ent ROS nodes that process and exchange data. A detailed 
description of each module is provided in the following 
subsections.

3.1 � Virtual robot module

We use the Gazebo simulator and the rviz 3D visualizer to 
develop the DT in the virtual robot module on a Linux PC 
(Koenig and Howard 2004; Kam et al. 2015). The Gazebo is 
a real-world physics simulator that creates a world and simu-
lates the robot, whereas the rviz is visualization software that 
can read and display the data from Gazebo or real-world sen-
sors. The robotic arm model is imported to the Gazebo and 
rviz using the unified robot description format (URDF), as 
shown in Fig. 3. Two different robots are used as examples in 
the DT, i.e., KUKA KR5 and KUKA KR120 robotic arms. 
The joint angles of the robotic arms are exchanged between 
the two programs to ensure synchronization.

To plan the specific construction task or motion, a motion 
planner is required in the module. Either MATLAB or the 
MoveIt! motion planning framework can be used as the 
motion planner to achieve the task (Coleman et al. 2014). 
The Robotic System Toolbox in MATLAB can plan the tra-
jectory and solve the inverse kinematics problems encoun-
tered by the robot. The built-in functions in MATLAB pro-
vide a faster programming ability to control the robot in 
various ways. However, it suffers from a latency issue and 
is not fast enough for real-time planning purposes.

On the other hand, the MoveIt! is a motion planning pack-
age for ROS, which plans the motion inside rviz and sends 
it to Gazebo. Figure 3a shows the interface of the MoveIt! 
motion planning in rviz. The goal state, velocity, and time 
parameters can be customized and determined by the user 
as input to the motion planner. The result of the motion 
planning will then be demonstrated in rviz and sent back to 
Gazebo for execution. Both MATLAB and MoveIt! can be 
run on the same Linux PC as the DT or run on a different 
PC and connected through the network.

To allow the robot to perform different construction tasks, 
we include two control modes in the DT: joint state control 
mode and Cartesian path control mode. In the joint state 
control mode, the user can determine the target joint angles 
of the robot and let the MoveIt! package plan the trajectory 
starting from the current robot joint states. This is an intui-
tive way for the user to control the robot to the desired pose. 
In the Cartesian path control mode, the user can specify a 
list of waypoints and let the robot end-effector follow the 
trajectory. The MoveIt! package will calculate the robot joint 

Fig. 2   The flowchart of the data exchange between each platform
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angles using inverse kinematics and control the robot to exe-
cute the plan. For example, the user extracts the waypoints 
from a BIM model geometry for a 3D-printing robotic arm 
to determine the work plan.

For the data exchange, only the current robot joint angles 
and the next robot joint angles are displayed within the vir-
tual robot module. Both Gazebo and rviz read the current 
robot joint angles to visualize the robot state. The MATLAB 
or MoveIt! package read the robot joint angles, determine 
the next robot joint angles, and send them back to Gazebo 
and rviz for execution. The joint state publisher (JSP) is the 
ROS node for publishing the current robot state to different 
ROS nodes, including the current robot joint angles from the 
physical robot module.

3.2 � Physical robot module

In the proposed process-level DT system, the KUKA KR120 
robotic arm is the physical robot, as shown in Fig. 4. The 
KUKA KR120 robotic arm is a 6DOF robot with an addi-
tional external degree-of-freedom for the track system. 
The central control and communication node consists of a 

software PLC (Beckhoff and Beckhoff 2021) running on an 

embedded PC that communicates over TCP/IP with the DT 
system. Joint angles are then communicated via a hardware 
bridge using the EtherCAT protocol to the robot IO, which 

Fig. 3   The KUKA KR5 robotic arm in a rviz with MoveIt! package and b Gazebo. The KUKA KR120 robotic arm in c rviz with MoveIt! pack-
age and d Gazebo

Fig. 4   The KUKA KR120 robotic arm for the physical robot module
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is read via the Kuka Robot Sensor Interface (RSI). The 
embedded encoders on the robotic arm are used to measure 
the joint angles and written to the EtherCAT bus by RSI. 
In the ADS communication version, the TwinCAT ADS is 
also running on the embedded Windows PC to publish and 
receive the messages.

After activating the robotic arm, the system first records 
the current robot joint angles as the origin of the robot for 
robot controlling purposes. Once the physical robot receives 
the next joint angles from the virtual robot, it will calculate 
the differences of the joint angles and then uses the recorded 
origin to control the robotic arm in the relative mode. The 
robot control command and the sensor measurement are two 
data exchanges inside the physical robot module, as shown 
on the right side of Fig. 2.

Due to the limitation of the hardware data transmission 
speed and the missing data issue, some jitter effects might 
occur on the physical robot. To resolve this issue, we use 
two different methods in the MQTT communication and the 
ADS communication. In the first method, we apply the first-
order delay filter in the TwinCAT PLC to smooth the robot 
trajectory. If a situation where missing data might arise, the 
delay filter can still interpolate and smooth the robot tra-
jectory and avoid the jitter effects or sudden movements. 
In the second method, we apply the TwinCAT computer 
numerical control (CNC) package to generate the physical 
robot motion. The CNC package can plan and interpolate the 
received waypoints to control the robot while respecting all 
dynamic limits and singularities of the robot. The density of 
the robot waypoints can be very high (up to 10 × higher than 
in a normal robot program) while maintaining look ahead 
and synchronization of all robot and external axes.

3.3 � Communication module

Finally, the communication module links the virtual robot 
module and the physical robot module. We develop two dif-
ferent communication protocols, i.e., MQTT communica-
tion protocol and TwinCAT ADS communication protocol, 
for data exchange between the ROS system in the virtual 
robot module and the PLC in the physical robot module. 
Both the MQTT communication protocol and the TwinCAT 
ADS communication protocol are capable of near real-time 

communication (4 ms update rate) and thus are suitable for 
smooth robotic control. First, we develop an MQTT Bridge 
ROS node (M) to connect the MQTT to the ROS system, 
as shown in the middle of Fig. 2. The MQTT Bridge node 
is run on the same Linux PC as the DT system to exchange 
the joint angles with the JSP node and connect with PLC in 
the physical robot module through the ethernet cable. The 
data exchange frequency in the MQTT Bridge ROS node is 
set to be 250 Hz to match the update rate of the Kuka RSI 
software.

The joint angles of the robotic arm and the location of the 
track system are the primary data streams exchanged in the 
MQTT bridge ROS node. Figure 5 illustrates the data struc-
ture and exchange process in the MQTT bridge ROS node. 
The data stream concatenates the robot joint angles from A1 
to A6 and the track location E1 joint with a plus-minus sign 
and comma. Each joint angle is rounded to three decimal 
places (E1 joint is rounded to four decimal places) and pads 
zeros to the left. Thus, the length of the data is consistent 
and easily retrieved by the PLC. The data streams have to 
be converted between ROS topic, Python string, and MQTT 
string formats to process the data correctly.

After receiving the joint angles data from the virtual robot 
module through the ROS topic, the system first converts 
the data to python string for easy storage and access. Next, 
the data are converted to the MQTT string type and sent 
to the physical robot module. This process can also avoid 
the corrupted text issue when directly converting from the 
ROS topic to the MQTT string type. The data stream from 
the physical robot module is also processed with the same 
procedure and data structure and sent to the virtual robot 
module.

Second, we develop a TwinCAT ADS Bridge ROS node 
(ADS) to connect the TwinCAT ADS to the ROS system, 
as shown in the middle of Fig. 2. Similar to the MQTT 
Bridge node, the TwinCAT ADS Bridge node is also run 
on the same Linux PC as the DT system to exchange the 
joint angles with the JSP node and connect with TwinCAT 
ADS and PLC in the embedded PC through the ethernet 
cable. The data exchange frequency in the TwinCAT ADS 
Bridge node is set to be 1,000 Hz to ensure the transmis-
sion speed on the robotic arm. The joint angles of the 
robotic arm and the location of the track system are stored 

Fig. 5   The data structure and 
exchange in the MQTT Bridge 
ROS node
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in an array and directly sent between the ADS and the 
ROS system. Both ADS and the ROS system can read 
and change the array data to reflect the work plan and the 
robot condition.

When exchanging the data between the virtual robot 
module and the physical robot module, the system must 
ensure the control commands are executed completely, and 
the pose of the physical and virtual robot is synchronized. 
We develop a robot pose checking algorithm to confirm 
the synchronization between the two robotic arms. Algo-
rithm 1 shows the pseudo-code of the pose checking algo-
rithm (PCA). The algorithm takes the current virtual robot 
pose �virtual , current physical robot pose �physical , and the 
next robot pose �next as input.

First, the PCA calculates the difference between �virtual 
and �physical . If the difference exceeds the pre-defined 
threshold, the next joint angles �next will be assigned 
with the current joint angles �virtual to ensure the physical 
robot can reach the desired joint angles. The trajectory 
also needs to be re-planned to reflect the new current joint 
angles. On the other hand, if the difference does not exceed 

the threshold, the robot will simply execute the next joint 
angles.

4 � Experiments and results

The real-time process-level robot DT system is implemented 
and deployed in the Digital Fabrication Laboratory at the 
Taubman College of Architecture and Urban Planning and 
the Civil Engineering Robotics Laboratory at the College 
of Engineering. Three KUKA KR120 robotic arms are the 
target physical robots, as shown in Fig. 4.

4.1 � Transmission time experiment and result

To evaluate the proposed system, we conducted experiments 
to verify the transmission time between the ROS system and 
PLC, and confirm that the pose between the physical robot 
and its DT are synchronized during trajectory execution. In 
the first experiment, we set up a local network between two 
computers and built the MQTT communication protocol and 
the TwinCAT ADS communication protocol to test the ROS 
Bridge node. Figure 6 shows the first experimental setup 
and the data exchange. The robot motion is planned on the 
1st computer, and the trajectory is sent to the 2nd computer 
through the MQTT or ADS for execution. The Cartesian 
path control mode is applied to plan four different motions, 
i.e., x-axis motion, y-axis motion, z-axis motion, and triangle 
motion. During the experiment, the timer is triggered when 
the pose from the 1st computer is sent and stopped when 
the corresponding pose from the 2nd computer is received 
to record the data transmission time.

For the transmission time between the virtual and the 
physical robot, we replicated the above experiment and 
recorded the time when the corresponding pose data from 
the physical robot was received. The robot motion is planned 
in the virtual robot module, and the pose is sent to the physi-
cal robot. The physical robot will then send the pose data 

Fig. 6   Two virtual robots are used to evaluate the MQTT and ADS data transmission time
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back to the virtual robot to record the transmission time. 
In this experiment, the pose is not executed in the physi-
cal robot to avoid the first-order delay filter effect and only 
focuses on the data transmission time.

Table 1 shows the result of the data transmission time 
experiment. MQTT (VtoV), ADS (VtoV), MQTT (VtoP), 
and ADS (VtoP) are four different settings, where VtoV 
represents Virtual robot to Virtual robot and VtoP repre-
sents Virtual robot to Physical robot. We executed four 
trajectories (x-axis, y-axis, z-axis, and triangle motion) 
100 times and collected 400 data points for two VtoV set-
tings. For two VtoP settings, we executed four trajectories 
four times and collected 16 data points. The average data 
transmission time for MQTT (VtoV) is 8.786 ms, and for 
ADS (VtoV) is 5.173 ms due to the transmission frequency 
limitation of the MQTT communication protocol (250 Hz). 
For MQTT (VtoP), the average data transmission time is 
12.547 ms. Finally, ADS (VtoP) was found to have an aver-
age of 9.483 ms of data transmission time to exchange data 
between the DT and the physical robot to execute the work 
plan. The results of the MQTT version were higher than the 
ADS version because of the additional data conversion steps 
and the limitation of the MQTT frequency.

4.2 � MATLAB joint angle control mode experiment 
and result

In the second experiment, the physical robot execution accu-
racy is evaluated using two different communication proto-
cols. We use MATLAB to plan the robot trajectory using the 
joint angle control mode in the DT and send the work plan 
through the MQTT or TwinCAT ADS communication proto-
col to the physical robot. Figure 7 shows the procedure of the 
second process-level robot DT system experiment. In both 
MQTT and ADS versions, we develop the first-order delay 
filter on the physical robot with a 20 ms delay to resolve the 
jittering effect instead of using the CNC package to com-
pare the physical robot execution trajectory under the same 
condition.

Table 1   Data transmission time between two robots using the MQTT 
and ADS communication

VtoV virtual to virtual robot, VtoP virtual to physical robot

Average time (ms) Maximum 
time (ms)

Minimum 
time (ms)

MQTT (VtoV) 8.786 9.024 8.141
ADS (VtoV) 5.173 5.905 4.237
MQTT (VtoP) 12.547 15.771 11.754
ADS (VtoP) 9.483 12.688 9.095

Fig. 7   The procedure of the MATLAB and MoveIt! planned robot 
process-level digital twin system experiment using the MQTT com-
munication protocol and TwinCAT ADS communication protocol

Once the reaching task trajectory is planned and executed 
in MATLAB and Gazebo DT, the joint angles are sent to 
the physical robot using the MQTT or ADS communica-
tion. The robot poses and control commands are generated 
by the Inverse Kinematics package in MATLAB. We use 
the stationary robotic arm in this experiment, i.e., excluding 
the track system (E1) joint and the embedded encoders on 
the physical KUKA robotic arm to measure the joint angles 
of the physical robot during the execution. The pose data 
are sent back to the virtual robot module PC to record the 
executed trajectory. The differences between the planned and 
the executed trajectory are compared.

Figure 8 shows the results of the MQTT communicated 
virtual and physical robot joint angles using the MAT-
LAB planned reaching trajectory. Each line represents the 
angle of each joint (A1, A2, A3, A4, A5, and A6) in radi-
ans. The trajectory from the virtual robot consists of 1500 
waypoints, and the measurement from the physical robot 
includes 18,802 data points. The reason for the higher data 
points from the physical robot is that the data acquisition 
rate in ROS (approximately 1000 Hz) is higher than the rate 
in MATLAB (approximately 100 Hz). The results showed 
that the line of each joint angle had the same trend in the 
two robots, which demonstrated the consistency of the syn-
chronization between the two robots using the MQTT com-
munication protocol.

On the other hand, the ADS version is also evaluated 
using the same procedure. Figure 9 shows the results of the 
ADS communicated virtual and physical robot joint angles 
using the same MATLAB planned reaching trajectory. The 
trajectory from the virtual robot consists of 1500 waypoints, 
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and the measurement from the physical robot includes 
17,145 data points. The results showed that the ADS com-
munication could also synchronize the joint angles between 
two robots successfully.

To further evaluate the synchronization accuracy, we 
calculated the average error and the maximum error of 
each joint angle between the two robots. We first align the 
virtual robot and physical robot results by interpolation 
to obtain the same number of data points from the two 
robots to calculate the mean square error. Table 2 lists the 
results of the average and maximum joint angle error using 

the MATLAB planned trajectory in the MQTT and ADS 
communication. In the MQTT communication, the average 
errors of each joint angle are less than 0.0013 in radians, 
and the maximum errors of each joint angle are less than 
0.0025 in radians. In the ADS communication, the average 
errors of each joint angle are less than 0.0012 in radians, 
and the maximum errors of each joint angle are less than 
0.003 in radians. Due to the robot system specification 
and decimal conversion in the physical robot, the errors 
under 0.001 are neglectable. These results indicated that 
the synchronization of the virtual and the physical robot 
demonstrated high accuracy using both communication 

Fig. 8   The results of the MQTT communicated virtual and physical robot joint angles using the MATLAB planned reaching trajectory

Fig. 9   The results of the ADS communicated virtual and physical robot joint angles using the MATLAB planned reaching trajectory
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methods. The proposed pose checking algorithm (PCA) 
also helps minimize the discrepancy between two robots 
during the data transmission.

4.3 � MoveIt! joint control mode experiment 
and result

In the third experiment, we used the MoveIt! package to 
plan the robot trajectory and compare the accuracy of the 
trajectory execution between the two communication meth-
ods. Figure 7 shows the procedure of the MoveIt! planned 
process-level robot DT system experiment using the MQTT 

or ADS communication method. The joint angle control 
mode is evaluated in this experiment. Ten different goal 
joint angles are randomly generated, and the trajectories 
are planned using the MoveIt! package. This information 
is then executed in the Gazebo DT and sent to the physi-
cal robot. Finally, the joint angles of the physical robotic 
arm are measured and recorded to compare with the virtual 
robotic arm.

Figures 10 and 11 show the results of the MQTT and 
ADS communicated virtual and physical robot joint angles 
using the MoveIt! joint angle control mode planned trajec-
tory. The trajectory from the virtual robot consists of 10 

Table 2   The average and the 
maximum joint angle errors 
(rad) between the virtual and 
the physical robot using the 
MATLAB planned trajectory 
in the MQTT and ADS 
communication

Joint (rad) MQTT ADS

Average error Maximum error Average error Maximum error

A1 0.00024 0.00056 0.00034 0.00136
A2 0.00040 0.00076 0.00032 0.00073
A3 0.00077 0.00149 0.00077 0.00148
A4 0.00127 0.00241 0.00120 0.00293
A5 0.00030 0.00068 0.00037 0.00068
A6 3.535e-05 7.623e-05 4.345e-05 0.00017

Fig. 10   The results of the MQTT communicated virtual and physical robot joint angles using the MoveIt! joint angle control mode planned tra-
jectory
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Fig. 11   The results of the ADS communicated virtual and physical robot joint angles using the MoveIt! joint angle control mode planned trajec-
tory

Table 3   The average and 
maximum joint errors (rad and 
m) between the virtual and 
the physical robot using the 
MoveIt! joint angle control 
mode in the MQTT and ADS 
communication

Joint (rad) MQTT ADS

Average error Maximum error Average error Maximum error

A1 0.00239 0.00549 0.00272 0.00711
A2 9.117e-05 0.00024 0.00061 0.00099
A3 0.00072 0.00193 0.00088 0.00269
A4 0.00434 0.01143 0.00601 0.01600
A5 0.09804 0.19458 0.09887 0.19594
A6 0.00162 0.00427 0.00190 0.00565
E1 (m) 0.00410 0.00108 0.00048 0.00144

random goal poses, which include 2507 waypoints, and the 
measurement from the physical robot includes 2513 data 
points. The trajectory patterns of the virtual and the physical 
robot are similar and only have minor errors. Table 3 shows 
the results of the average and maximum joint angle error 
using the MoveIt! joint angle control mode in the MQTT 
and ADS communication. In the MQTT communication, 
the average errors of each joint angle are less than 0.099 
in radians and less than 0.0042 in m for the E1 joint. The 

maximum errors of each joint angle are less than 0.195 in 
radians and less than 0.0011 in m for the E1 joint. The A5 
joint has the highest error in the MQTT experiment.

In the ADS communication, the average errors of each 
joint angle are less than 0.099 in radians and 0.0005 in m 
for the E1 joint. The maximum errors of each joint angle 
are less than 0.196 in radians and 0.0015 in m for the E1 
joint. The A5 joint also has the highest error in the ADS 
experiment, and the average error of the E1 joint in ADS 
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is smaller than the MQTT E1 joint. The results showed 
that the joint angle control mode in the MoveIt! package 
can precisely control the robot to the goal pose with some 
minor errors due to the first-order delay filter and synchro-
nize with the physical robot by using the proposed PCA 
algorithm to ensure the accuracy of the joint angles.

4.4 � Cartesian path control mode experiment 
and result

In the final experiment, we used the MoveIt! package to 
plan the trajectory using the Cartesian path control mode 
to evaluate the physical robot execution accuracy. Four dif-
ferent sets of end-effector trajectories were prepared (x-axis 
motion, y-axis motion, z-axis motion, and triangle motion), 
executed in the Gazebo DT, and sent to the physical robot. 
Both MQTT and ADS communication methods are used 
for data exchange. The pose of the physical robotic arm 
end-effector is measured and recorded to compare with the 
planned trajectories and the pose of the end-effector of the 
virtual robotic arm. Each trajectory was repeated two times, 
and eight sets of data points were collected for evaluation.

Figure 12 shows the results of the MQTT and ADS com-
municated virtual and physical robot end-effector pose using 
the MoveIt! Cartesian path control mode planned trajec-
tory. The solid blue line represents the planned trajectory 
in the virtual robot module, the red dashed line represents 
the MQTT executed trajectory, and the yellow dotted line 
represents the ADS executed trajectory. Each line represents 
the position of the robot end-effector in world coordinates 
(X, Y, Z). The results showed that both the MQTT and ADS 
trajectories matched the virtual robot trajectory with some 
minor errors due to the first-order delay filter.

In addition, to further evaluate the performance, the aver-
age and maximum errors of the robot end-effector pose are 
also calculated, as listed in Table 4. The average errors of 
the robot end-effector are 1.422 mm on the x-axis, 5.015 mm 
on the y-axis, 1.967 mm on the z-axis, and overall 6.487 mm 

for the MQTT communication protocol, where the maxi-
mum errors are 7.787 mm on the x-axis, 14.345 mm on the 
y-axis, 7.204 mm on the z-axis, and overall 16.052 mm. For 
the ADS communication protocol, the average errors are 
1.543 mm on the x-axis, 3.667 mm on the y-axis, 1.842 mm 
on the z-axis, and overall 5.284 mm. The maximum errors 
are 8.027  mm on the x-axis, 7.695  mm on the y-axis, 
6.854 mm on the z-axis, and overall 10.314 mm.

5 � Discussion

The difference in the transmission time between the MQTT 
communication and the ADS communication is less than 
5 ms. The ADS communication can directly modify the joint 
angle variable in the TwinCAT system, and the MQTT com-
munication has to convert joint angle data to several different 
formats and thus requires extra time to process the data. For 
the accuracy of the physical robot execution, both the MQTT 
and ADS communication achieve similar performance, and 
the errors of the joint angle are within 0.1 radians. With 
additional modifications, the CNC package can also pro-
vide the opportunity to connect to both the MQTT and ADS 
communication protocols and precisely control the physical 
robot.

The first-order delay filter causes some minor errors since 
the joint angle data received by TwinCAT are slightly dif-
ferent each time, and the smoothed trajectories are differ-
ent. The errors are reduced by the proposed pose checking 
algorithm (PCA). Both MATLAB and the MoveIt! package 
achieve similar performance on planning the robot motion 
by joint angle control mode and Cartesian path mode and 
communicating with the communication module. However, 
the MATLAB package has limited the data communication 
frequency (up to 100 Hz) and requires a code generation 
function to improve the execution speed.

The advantages of using the proposed bi-directional 
communication protocol to synchronize the virtual and 
real robotic arms are to ensure that the collaborating 
human worker is informed of the work plan of the robot, to 

Fig. 12   The results of the MQTT and ADS communicated virtual 
and physical robot end-effector pose using the MoveIt! Cartesian path 
control mode planned trajectory

Table 4   The average and maximum end-effector pose errors (mm) 
between the virtual and the physical robot using the MoveIt! Carte-
sian path control mode in the MQTT and ADS communication

(mm) MQTT ADS

Average error Maximum 
error

Average error Maximum 
error

X 1.422 7.787 1.543 8.027
Y 5.015 14.345 3.667 7.695
Z 1.967 7.204 1.842 6.854
Overall 6.487 16.052 5.285 10.314
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supervise and review the robot’s work plan, and to control 
the robot accurately. Existing DT systems focus on the analy-
sis and optimization of industrial and construction tasks such 
as assembly. Welding, or asset monitoring (Mertens et al. 
2020; Tabar et al. 2020; Malik and Brem 2021; Lu et al. 
2020b). With the proposed DT communication method, the 
existing DT systems can benefit from high accurate synchro-
nization. On the other hand, the use of the ROS framework 
also has the advantage of adapting to various robot systems 
or controlling software. With the proposed framework, the 
DT system is not restricted to specific hardware or software 
and can easily exchange data across different platforms. For 
example, instead of using MATLAB or the MoveIt! pack-
age, we can use modeling software such as Rhino to directly 
extract the trajectory from components and send it to the 
communication module to exchange with the physical robot 
module.

There are also some limitations in the proposed DT sys-
tem that need to be addressed in future work. First, the pose 
of the physical robot is measured only by the onboard sen-
sors. By applying additional sensors, such as cameras (Liang 
et al. 2018, 2019a, b), to supplement the pose estimation and 
to fuse that data with the onboard sensor data, the accuracy 
of the robot pose measurement can be improved. Second, 
some of the limitations of the physical robot are not reflected 
in the virtual robot. For example, the velocity and the accel-
eration limits of the robot joints are not incorporated into 
the path planning correctly in the first-order delay filter ver-
sion, and the physical robot will stop due to the sudden high 
acceleration. This also constraints the proposed DT system 
to the position-controlled mode. To resolve this issue, the 
dynamic limits can be reflected in the TwinCAT CNC pack-
age to control the physical robot and further expand it to 
force-controlled robots.

Third, the detailed information of the surrounding envi-
ronment, e.g., obstacles in the workspace, is not included 
in the proposed DT system. When planning the robot tra-
jectory, those obstacles need to be considered to avoid any 
unintended collisions. The environmental objects can be col-
lected and modeled into the DT system by sensing technol-
ogy and model registration methods, which also encumbers 
the restrictions inherent in real-time modeling. For example, 
soft and deformable materials such as soil and fresh concrete 
are difficult to integrate into the DT system and manipulate 
using the robot.

6 � Conclusions and future work

This paper presented the development of a real-time pro-
cess-level robot DT system for human–robot collaboration 
in construction and digital fabrication. The system includes 
the virtual robot module, the physical robot module, and the 

communication module. We leveraged the ROS Gazebo and 
rviz components to develop the virtual robot module, i.e., 
the DT of the physical robot, and connect to the physical 
robot module through the MQTT Bridge or TwinCAT ADS 
Bridge in the communication module. The joint angles of 
the robotic arm are exchanged and synchronized between 
the two robots. We also utilized MATLAB or the MoveIt! 
package to plan and control the robotic arm in the virtual 
robot module, and then send the commands to the physical 
robot module for execution. In addition, we implemented 
two different control modes, i.e., joint angle control mode 
and Cartesian path control mode, in the MoveIt! program to 
control the virtual robot by joint angles or end-effector pose. 
Finally, we developed a pose checking algorithm (PCA) to 
ensure that the poses of the two robots were synchronized.

The system was implemented and deployed on a KUKA 
KR120 robotic arm in the Digital Fabrication Laboratory 
and the Civil Engineering Robotics Laboratory at the Uni-
versity of Michigan to evaluate the synchronization and the 
data transmission time. Although the system was developed 
for the specific KUKA robotic arm, it can be easily adapted 
to other robot models. We evaluated the system by com-
paring the data transmission time, joint angles, and end-
effector pose between the virtual and physical robot using 
several planned trajectories and calculated the average and 
maximum mean square errors. The results showed that the 
proposed real-time process-level robot DT system can plan 
the robot trajectory inside the virtual environment and exe-
cute it in the physical environment with high accuracy and 
real-time performance. The human worker can perceive the 
robot work plan in advance and provide instructions to the 
robot in the DT system, thereby improving the safety of the 
human–robot collaboration. In addition, the high accuracy 
and real-time performance of the DT system can ensure the 
information displayed to human workers is accurate and thus 
increase the trust level between human workers and robots.

In future work, we plan to design an improved user 
interface for displaying the information of the physical 
robot in the DT and enabling human workers to collaborate 
with robots intuitively. We are also developing a robot 
planning mechanism that would enable the robot to first 
demonstrate the planned trajectory inside the DT before its 
execution by the physical counterpart (Wang et al. 2021). 
The human worker can thus anticipate the movement of the 
robot in advance and approve the task. On the other hand, 
we will integrate the proposed DT system with BIM to 
synchronize the digital models. The BIM model can auto-
matically populate the DT system to create the workspace 
geometry. After the physical robot executes the work plan, 
the current workspace geometry information will be sent 
back to the BIM model to reflect the evolving changes.
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