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Abstract—We propose a systematic application-specific hard-
ware design methodology for designing Spiking Neural Net-
work (SNN), SNNOpt, which consists of three novel phases: 1)
an Olliver-Ricci-Curvature (ORC)-based architecture-aware net-
work partitioning, 2) a reinforcement learning mapping strategy,
and 3) a Bayesian optimization algorithm for NoC design space
exploration. Experimental results show that SNNOpt achieves a
47.45% less runtime and 58.64% energy savings over state-of-
the-art approaches.

Index Terms—Spiking Neural Network, Network-on-Chip, Re-
inforcement Learning

I. INTRODUCTION

Real-time cyber-physical systems (CPS) applications based
on biosignal interpretation and control (e.g., brain-machine-
body interfaces [17]) require algorithms and hardware with
low latency and low power consumption features [3]. Due to
their unique characteristics, the combination of spiking neural
networks (SNN) and neuromorphic systems have become the
preferred choice. However, the compatibility between SNNs
and neuromorphic systems hinders low latency and low power
consumption. Thus, several challenges must be addressed to
optimize their collaborative deployment: (1) most existing neu-
romorphic chips possess hardware constraints that compromise
the computing power of SNN models. For example, each
TrueNorth neurosynaptic core [1] consists of 256 axons, a
256x256 crossbar, connecting neurons between two layers,
and 256 neurons, yet limiting the number of post-synaptic
neurons that a neuron can connect to inside a core. Hence,
multiple cores are required for implementing the whole SNN.
(2) SNN synaptic connections have many one-to-many con-
nections between neurons. NoCs are designed for one-to-one
or one-to-few connections, leading to high average latency and
violating SNN timing constraints. Neuromorphic computing
requires real-time processing of spikes at the same time step,
or they will be discarded and affect system performance. (3)
Prior works lack a comprehensive design analysis and deploy-
ment approach. For instance, PACMAN [6], SpiNeMap [2],
SNEAP [11] and [7] address the SNN mapping to single and
multiple crossbars). However, SpiNeMap and SNEAP do not
involve NoC optimization for latency reduction, while [8] and
[15] are hardware-specific.

To overcome all the above-mentioned challenges, we pro-
pose a comprehensive analytical application-specific method-
ology as summarized in Figs. 1&2, i.e., SNNOpt, for op-
timizing SNN on neuromorphic hardware and making the
following novel contributions: (1) We are the first to exploit the
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Fig. 1. SNN design challenges and SNNOpt’s key features.
differeential geometry concepts, i.e., Olliver-Ricci curvature
(ORC), to partition the SNN computational graph into strongly
interacting heterogeneous processing clusters of neurons that
not only satisfy the hardware constraints of the neuromorphic
chips but also reduce the network traffic, hence, minimizing
the network latency and energy consumption. (2) We propose a
reinforcement learning (RL)-based approach with spike traffic
re-balancing to map the identified heterogeneous processing
clusters of neurons onto crossbars of the neuromorphic chip
while minimizing the spike latency and congestion level.
(3) We provide a Bayesian optimization (BO) NoC design
space exploration (DSE) framework for specific SNN appli-
cations on neuromorphic chips, which completes the end-to-
end co-optimization framework. SNNOpt identifies a set of
fine-grained NoC design parameters that satisfy the timing
constraints of the SNN and minimize energy consumption.
(4) We demonstrate the effectiveness and benefits of our
general methodology on SNN structures with three widely-
used machine learning datasets. This pioneering SNNOpt
methodology achieves 32% runtime reduction and 52% energy
savings over the state-of-the-art approaches. Overall, SNNOpt
provides a comprehensive methodology for optimizing SNN
on neuromorphic hardware, by seamlessly integrating ORC-
based clustering, RL-based mapping, and BO-based NoC de-
sign space exploration. This methodology enables the efficient
implementation of SNN on neuromorphic chips, reducing en-
ergy consumption while meeting the timing and performance
requirements of specific SNN applications.

II. ORC-BASED SNN-COMPUTATION PARTITIONING

SNNs tend to have more neurons and synapses than one
crossbar can accommodate. Hence, the SNN has to be par-
titioned into clusters before deploying onto neuromorphic
hardware. A good partition balances the load of each cross-
bar for parallel execution and minimizes inter-cluster spike
communication. In addition, the hardware constraints of the
crossbar restrict the size of each neuron cluster. We propose
an ORC-based partitioning algorithm that can obtain optimal
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partitioning with better convergence and faster runtime. It has
several benefits: Firstly, it is deterministic and will not en-
counter oscillations which is common to Kernighan-Lin (KL)
and other heuristic algorithms. Secondly, it tends to see the
finer subdivisions in the network structures based on the local
topology as quantified by the edge Ollivier-Ricci curvature
(ORC) and hence higher accuracy with small communities.
Thirdly, since the algorithm utilizes the differential geometry
concept of network curvature, it performs particularly well for
weighted graphs with internally densely-connected community
structures, which is usually the case for neural networks.

To illustrate the ORC-based partitioning strategy, we define
G(N, S) to be a weighted and directed graph that represents
an SNN with a set NV of neurons and a set S of synapses. A
synapse s;; connects neuron ¢ to j and fires w;; spikes. We
also define P(V, E) to be a weighted and directed graph that
represents the SNN partition graph with a set V' of clusters of
neurons and a set I of inter-cluster connections. v; is the set
of neurons of cluster 7. A inter-cluster connection e;; connects
cluster ¢ to j and transmits k;; spikes.

Using these definitions, the problem of SNN partitioning
under hardware constraints can be formulated as follows:

Given a G(N,S) describing an SNN computation, find
the non-overlapping clusters P(V,E) that maximize
Zl‘;‘l (Wimin - (W’;VW)Q ), where W, stands for the number
of spikes transmitted inside a cluster v;, A; represents the
number of spikes transmitted from and to cluster v;, W is the
average number of spikes of all clusters, and W is the total
spike count. The first term indicates the difference between
the inner-cluster spikes and the inter-cluster spikes. To
maximize the first term, we minimize the inter-cluster spike
communication. The second term captures the difference
between the inner-cluster spikes of each cluster and the
average spikes of each cluster. The minus sign ensures the
maximum degree of load-balancing. Meanwhile, N, > |V
and Yv; € V, |v;| < ¢ enforce the hardware constraints, where
N. is the number of crossbars of the neuromorphic chip, |v;]
is the number of neurons of cluster ¢, ¢ is the crossbar size.

The details are shown in Algorithm 1. For more information
on differential geometry characterization of weighted net-
works, the reader can refer to [13], [14]. The time complexity
of this algorithm is O(|S|D?), where |S| is the number of
edges in G(N, S), and D is the average degree.

Algorithm 1: ORC-based Partitioning Algorithm
Input: G(N, S)
Output: P(V, E)

1 G(N,S) < G(N, S) Calculate Ollivier-Ricci curvature for

all edges;

2 while there is negative edge curve do

3 Remove the most negatively curved edge;

4 Re-calculate the Ollivier-Ricci curvature for the affected

existing edges;
5 PreferentialAttachment(é(N ,S), number_of_communities,
minimum_communi}y_size );

Label each node in G with its community ID;

Regroup (7 into P(V, E);

if (N > |V]) A (Vo; € V, |vs| < ¢) then

| return P(V, E);

10 else

1 if N. < |V| then

12 Merge two of the smallest clusters;

13 L return P(V, E);

14 if Jv; € V, |v;| > c then

D-T- I B

15 Apply ORC Community Detection to the over-sized
cluster;
16 return P(V, E);

III. RL-BASED MAPPING

The choice of mapping neuron clusters onto tiled-based
NoC heavily affects the latency and energy consumption
because mapping different clusters on different tiles incur
different routing paths that the spikes have to traverse. We
proposed an RL-based mapping approach, which utilizes the
deep neural network (DNN) as the decision-making engine.
As DNN has a generalization ability, unseen raw states can
also be well handled by good actions. Moreover, it is possible
to train for objectives that are hard to optimize directly as long
as the reward function correlates with the objective.

Objective Function and Problem Statement Prior work
[2], [4], [11] minimize the average hop count of the inter-
cluster spike since it is related to minimizing latency and
energy consumption. The hop count is given by H =
sVl le‘gl md(i, j)k;j, where H stands for the total hop
count of the mapping, and md(i, j) represents the Manhattan
distance between two tiles onto whom the neuron clusters %
and j are mapped, respectively. k;; denotes the total number of
spikes transmitted between clusters ¢ and j. We define A(T', R)
to be a directed graph that represents the architecture of the
neuromorphic chip. Each ¢; in T represents a crossbar tile
and each r;; in R stands for the routing from tile ¢; to ¢;.

Authorized licensed use limited to: University of Southern California. Downloaded on December 22,2023 at 19:24:00 UTC from IEEE Xplore. Restrictions apply.



(A) (B) ©) i (D)
Mapping-aware SNN

SNN Pa;(t{{'%'; Graph Mapping Partition Graph Adjacency Matrix
@ 03400

3 2 00

020

O O) 000

1 00 4

0 4 0
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Mapping M = A(T, R) < P(V, E) is represented by a binary
matrix (mg;) € {0, 1} 77! where m,; is 1 if cluster v; is
mapped to crossbar ¢;, and O otherwise. Each cluster can only
be mapped to one crossbar. The RL formulation of neuron
cluster mapping consists of three aspects: state representation,
action representation and rewards function.

Mapping State Representation We represent the mapping
state with a vector of size |V'|?, where |V/| denotes the number
of vertices in a partitioned neuron cluster graph P(V, E). In
order to encode the neuron spikes and hop count into the
state representation, we first calculate the Manhattan distance
between each (v;, v;) pair based on the current mapping. Then
we multiply the distance with the corresponding weight in the
partition graph to get a mapping-aware partition graph and
its adjacency matrix. Finally, we flatten the mapping-aware
adjacency matrix to get the state representation. Fig. 3(A)-
(E) shows the process of mapping an SNN partition graph
with 6 clusters onto a 3x3 neuromorphic chip. A tile of value
0 in Fig. 3(B) means the crossbar tile is idle. Since each
crossbar can accommodate up to one neuron cluster, there are
(W x H + 1)! possible mapping states in total, where W and
H are the width and height of the 2D mesh.

Mapping Action Representation At each time step, the
agent will move at least one neuron cluster to a different
crossbar to either explore or exploit a better mapping. To keep
the action space small and avoid duplicate mapping, we define
action as swapping neuron clusters on adjacent crossbars. As
shown in Fig. 3(G), for a 3x3 2D mesh neuromorphic chip,
the action space is significantly reduced to 2WH — W — H.

Rewards Based on the objective function in eq. III, the step
reward is represented as R(s,a) = H(s) — H(s'), where s’ is
the new state by taking action a on state s. We give a positive
reward when the new state generates a lower hop count and
penalize the agent when the new state has a higher hop count.

We use Q-network [12] to approximate the action-value
function, Q(s,a;0) =~ @Q*(s,a), where 6 represents the
weights of the neural network. As shown in Fig. 3(F), the
network takes a mapping state vector as input and outputs the

approximate action value of all possible swaps.

IV. BAYESIAN OPTIMIZATION FOR NOC DSE

In this section, we propose a BO-based algorithm to identify
a set of NoC design parameters that strike a balance between
latency and power with the fewest possible evaluation runs.

NoC Design Space Exploration Formulation We formu-
late the NoC design as a multiple-objective optimization prob-
lem over a discrete design space X C R to minimize latency
and energy consumption. We define two objective functions:
f = (fi(z) = latency(x), fo(x) = power(x)), which are
evaluated by Booksim2 [9], a cycle-accurate NoC simula-
tor. The design space consists of 6 NoC design parameters,
including routing function, virtual channel (VC) allocation,
arbitration type, priority type, number of VCs, and VC buffer
size. A design point x = (xg, z1, T2, T3, T4, Z5), specifying a
set of NoC design parameters. The design space has 36288
points in total. Our goal is to identify the Pareto front of f,
a set I' C X of points, which are not dominated by any other
points. To conduct the application-specific search, we modified
BookSim?2 so that it supports trace-based simulation. In each
iteration of the search, the BookSim?2 is configured based on
the parameters of a design point in the design space and takes
the spike trace of the SNN application as input to generate the
latency and energy consumption data.

Bayesian Optimization for NoC DSE The objective func-
tion f; = latency(z) and fo = power(x) are modeled as
two independent Gaussian Processes (GP), which are charac-
terized by their means p(z) and co-variates k(z, z*). We first
randomly sample several observations for both objectives to
construct GP. Next, at each iteration ¢, the algorithm selects
an NoC design point x; based on x; = argmax,a(x),
where a(x) is the acquisition function. And for evaluation,
it generates a noisy sample as y;; ~ N(f;(x:),vs;), where
vy,; 18 the variance of noise introduced into the function
observations. The evaluations of the acquisition function are
cheap compared to the evaluations of the objective functions,
and hence the overhead is negligible. We use a probability
of improvement (PI) acquisition function to determine how to
select an NoC design point x4y in the next iteration. Later,
we append the (zy,v:;) to the observation set. We repeat
these steps until the maximum number of iterations is reached.
Finally, we construct the Pareto front from the observation set.

V. EXPERIMENTAL RESULTS

Experimental Setup Three biomedical applications
(e.g., SNN_ECG, SNN_EMG, and SNN_EEG [16] and
two Convolutional networks (e.g. ConvNet CIFAR10 and
LeNet_CIFAR10) are used for evaluation. We first convert
these applications into SNN using SNN-IIR [5]. Then we
collect the spike information and feed it into an in-house
cycle-accurate TrueNorth simulator, which generates output
spikes and crossbar trace. Finally, we modified BookSim?2
[9] to support trace-based simulation for NoC DSE. Our
evaluation consists of: (1) three individual phase approach
comparisons with the state-of-the-art and (2) an ablation
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Fig. 4. The (A) partitioning, (B) mapping, and (C) NoC DSE comparison
between the SNNOpt and benchmarks on 16 and 32 cores.

study to examine the effects of each component of our
toolchain. We choose SpiNeMap [2] with Better-History SA
(BHSA) NoC DSE [10] for end-to-end comparison. For the
partitioning and mapping comparisons, we use SpiNeMap and
SNEAP [11], while for NoC DSE baseline we use BHSA.

Results Fig. 4(A) shows the number of spikes on the
shared interconnect normalized to that of SpiNeMap on 16-
core, and 32-core configurations. Compared to KL algorithm
of SpiNeMap, ORC reduces the spike count on average by
21% and 17% on 16-core and 32-core, respectively. This is
because KL is highly sensitive to its initial random solution
and requires the partitions to be equal in size, missing the op-
portunities to find the global optimal sizes when some neurons
are more densely connected than others. ORC outperforms
SNEAP by 21% and 17% fewer inter-cluster spikes on 16 and
32 partitions, respectively. Our ORC-based algorithm tends to
better discover the hierarchical structure of the network and
minimizes the spike communication between neuron clusters.

Next, in Fig. 4(B), we compare our RL-based mapping
algorithm with two heuristics, i.e., simulated annealing (SA)
and particle swarm optimization (PSO). Compared to SA,
our mapping algorithm achieved an average of 10.8% and
13.6% less hop count on 16-core and 32-core configurations,
respectively. This is because SA searches instead of learning
the changing environments while the adaptive characteristics
of pre-trained RL agents enable a fast convergence. Moreover,
our RL outperforms the PSO of SpiNeMap by as much as 18%
when running ConvNet_CIFAR10 on the 32-core chip. The
PSO is prone to converge prematurely and be trapped into a
local minimum, especially when the design space is large as
shown in the case of a 32-core configuration.

Fig. 4(C) demonstrates the superiority of BO-based NoC
DSE over BHSA in terms of both spike latency on intercon-
nect. BO obtains an NoC configuration with a maximum of 7%
less average latency. The SA falls out of favor especially when
the dimension of 2D-mesh NoC increases. BO is able to work
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Fig. 5. Pareto fronts of SNN_ECG, SNN_EMG, SNN_EEG.
directly over the black box of the NoC DSE with relatively
few iterations and supports multiple objectives evaluation.

We perform ablation studies to evaluate the impact of our
three proposed techniques on three applications, and present
the results in Fig. 5. The baseline is SpiNeMap with BHSA,
i.e. KL+PSO+BHSA. Our methodology, ORC+RL+BO, sig-
nificantly outperforms the baseline. In the ablation study,
ORC+PSO+BHSA replaces the KL partitioning scheme,
achieving a 23.78% reduction in packet delay and 14.05%
reduction in power consumption. The RL-based mapping
approach improves delay and power by an average of 12.24%
and 18.78%, respectively. BO alone reduces delay by 9.1%
and power by 15.95% on average in KL+PSO+BO. When
all three approaches are combined, our framework achieves
47.45% lower runtime and 58.6% lower power consumption
compared to the baseline of SpiNeMap with BHSA. While
we recognize the importance of detailed accuracy comparison,
due to the page limitation, we plan to investigate this aspect
in future work. However, preliminary results suggest SNNOpt
achieves less degradation of accuracy since the spike latency
is dramatically reduced.

VI. CONCLUSION

This paper introduces a systematic design methodology for
SNN with three phases: 1) an ORC-based network partitioning,
2) an RL-based mapping strategy, and 3) a BO-based NoC
DSE. Significant runtime reduction and energy savings are
achieved when compared with the state-of-the-art.
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