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AbstractÐWe propose a systematic application-specific hard-
ware design methodology for designing Spiking Neural Net-
work (SNN), SNNOpt, which consists of three novel phases: 1)
an Olliver-Ricci-Curvature (ORC)-based architecture-aware net-
work partitioning, 2) a reinforcement learning mapping strategy,
and 3) a Bayesian optimization algorithm for NoC design space
exploration. Experimental results show that SNNOpt achieves a
47.45% less runtime and 58.64% energy savings over state-of-
the-art approaches.

Index TermsÐSpiking Neural Network, Network-on-Chip, Re-
inforcement Learning

I. INTRODUCTION

Real-time cyber-physical systems (CPS) applications based

on biosignal interpretation and control (e.g., brain-machine-

body interfaces [17]) require algorithms and hardware with

low latency and low power consumption features [3]. Due to

their unique characteristics, the combination of spiking neural

networks (SNN) and neuromorphic systems have become the

preferred choice. However, the compatibility between SNNs

and neuromorphic systems hinders low latency and low power

consumption. Thus, several challenges must be addressed to

optimize their collaborative deployment: (1) most existing neu-

romorphic chips possess hardware constraints that compromise

the computing power of SNN models. For example, each

TrueNorth neurosynaptic core [1] consists of 256 axons, a

256x256 crossbar, connecting neurons between two layers,

and 256 neurons, yet limiting the number of post-synaptic

neurons that a neuron can connect to inside a core. Hence,

multiple cores are required for implementing the whole SNN.

(2) SNN synaptic connections have many one-to-many con-

nections between neurons. NoCs are designed for one-to-one

or one-to-few connections, leading to high average latency and

violating SNN timing constraints. Neuromorphic computing

requires real-time processing of spikes at the same time step,

or they will be discarded and affect system performance. (3)

Prior works lack a comprehensive design analysis and deploy-

ment approach. For instance, PACMAN [6], SpiNeMap [2],

SNEAP [11] and [7] address the SNN mapping to single and

multiple crossbars). However, SpiNeMap and SNEAP do not

involve NoC optimization for latency reduction, while [8] and

[15] are hardware-specific.

To overcome all the above-mentioned challenges, we pro-

pose a comprehensive analytical application-specific method-

ology as summarized in Figs. 1&2, i.e., SNNOpt, for op-

timizing SNN on neuromorphic hardware and making the

following novel contributions: (1) We are the first to exploit the

Fig. 1. SNN design challenges and SNNOpt’s key features.

differeential geometry concepts, i.e., Olliver-Ricci curvature

(ORC), to partition the SNN computational graph into strongly

interacting heterogeneous processing clusters of neurons that

not only satisfy the hardware constraints of the neuromorphic

chips but also reduce the network traffic, hence, minimizing

the network latency and energy consumption. (2) We propose a

reinforcement learning (RL)-based approach with spike traffic

re-balancing to map the identified heterogeneous processing

clusters of neurons onto crossbars of the neuromorphic chip

while minimizing the spike latency and congestion level.

(3) We provide a Bayesian optimization (BO) NoC design

space exploration (DSE) framework for specific SNN appli-

cations on neuromorphic chips, which completes the end-to-

end co-optimization framework. SNNOpt identifies a set of

fine-grained NoC design parameters that satisfy the timing

constraints of the SNN and minimize energy consumption.

(4) We demonstrate the effectiveness and benefits of our

general methodology on SNN structures with three widely-

used machine learning datasets. This pioneering SNNOpt

methodology achieves 32% runtime reduction and 52% energy

savings over the state-of-the-art approaches. Overall, SNNOpt

provides a comprehensive methodology for optimizing SNN

on neuromorphic hardware, by seamlessly integrating ORC-

based clustering, RL-based mapping, and BO-based NoC de-

sign space exploration. This methodology enables the efficient

implementation of SNN on neuromorphic chips, reducing en-

ergy consumption while meeting the timing and performance

requirements of specific SNN applications.

II. ORC-BASED SNN-COMPUTATION PARTITIONING

SNNs tend to have more neurons and synapses than one

crossbar can accommodate. Hence, the SNN has to be par-

titioned into clusters before deploying onto neuromorphic

hardware. A good partition balances the load of each cross-

bar for parallel execution and minimizes inter-cluster spike

communication. In addition, the hardware constraints of the

crossbar restrict the size of each neuron cluster. We propose

an ORC-based partitioning algorithm that can obtain optimal
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Fig. 2. Overview of SNNopt workflow.

partitioning with better convergence and faster runtime. It has

several benefits: Firstly, it is deterministic and will not en-

counter oscillations which is common to Kernighan-Lin (KL)

and other heuristic algorithms. Secondly, it tends to see the

finer subdivisions in the network structures based on the local

topology as quantified by the edge Ollivier-Ricci curvature

(ORC) and hence higher accuracy with small communities.

Thirdly, since the algorithm utilizes the differential geometry

concept of network curvature, it performs particularly well for

weighted graphs with internally densely-connected community

structures, which is usually the case for neural networks.

To illustrate the ORC-based partitioning strategy, we define

G(N,S) to be a weighted and directed graph that represents

an SNN with a set N of neurons and a set S of synapses. A

synapse sij connects neuron i to j and fires wij spikes. We

also define P (V,E) to be a weighted and directed graph that

represents the SNN partition graph with a set V of clusters of

neurons and a set E of inter-cluster connections. vi is the set

of neurons of cluster i. A inter-cluster connection eij connects

cluster i to j and transmits kij spikes.

Using these definitions, the problem of SNN partitioning

under hardware constraints can be formulated as follows:

Given a G(N,S) describing an SNN computation, find

the non-overlapping clusters P (V,E) that maximize
∑|V |

i=1 (
Wi−Ai

W
− (Wi−W )2

W
), where Wi stands for the number

of spikes transmitted inside a cluster vi, Ai represents the

number of spikes transmitted from and to cluster vi, W is the

average number of spikes of all clusters, and W is the total

spike count. The first term indicates the difference between

the inner-cluster spikes and the inter-cluster spikes. To

maximize the first term, we minimize the inter-cluster spike

communication. The second term captures the difference

between the inner-cluster spikes of each cluster and the

average spikes of each cluster. The minus sign ensures the

maximum degree of load-balancing. Meanwhile, Nc ≥ |V |
and ∀vi ∈ V, |vi| ≤ c enforce the hardware constraints, where

Nc is the number of crossbars of the neuromorphic chip, |vi|
is the number of neurons of cluster i, c is the crossbar size.

The details are shown in Algorithm 1. For more information

on differential geometry characterization of weighted net-

works, the reader can refer to [13], [14]. The time complexity

of this algorithm is O(|S|D2), where |S| is the number of

edges in G(N,S), and D is the average degree.

Algorithm 1: ORC-based Partitioning Algorithm

Input: G(N,S)
Output: P (V,E)

1 Ǵ(N,S)← G(N,S) Calculate Ollivier-Ricci curvature for
all edges;

2 while there is negative edge curve do
3 Remove the most negatively curved edge;
4 Re-calculate the Ollivier-Ricci curvature for the affected

existing edges;

5 PreferentialAttachment(Ǵ(N,S), number of communities,
minimum community size );

6 Label each node in Ǵ with its community ID;

7 Regroup Ǵ into P (V,E);
8 if (Nc ≥ |V |) ∧ (∀vi ∈ V, |vi| ≤ c) then
9 return P (V,E);

10 else
11 if Nc < |V | then
12 Merge two of the smallest clusters;
13 return P (V,E);

14 if ∃vi ∈ V, |vi| > c then
15 Apply ORC Community Detection to the over-sized

cluster;
16 return P (V,E);

III. RL-BASED MAPPING

The choice of mapping neuron clusters onto tiled-based

NoC heavily affects the latency and energy consumption

because mapping different clusters on different tiles incur

different routing paths that the spikes have to traverse. We

proposed an RL-based mapping approach, which utilizes the

deep neural network (DNN) as the decision-making engine.

As DNN has a generalization ability, unseen raw states can

also be well handled by good actions. Moreover, it is possible

to train for objectives that are hard to optimize directly as long

as the reward function correlates with the objective.

Objective Function and Problem Statement Prior work

[2], [4], [11] minimize the average hop count of the inter-

cluster spike since it is related to minimizing latency and

energy consumption. The hop count is given by H =∑|V |
i=1

∑|V |
j=1 md(i, j)kij , where H stands for the total hop

count of the mapping, and md(i, j) represents the Manhattan

distance between two tiles onto whom the neuron clusters i

and j are mapped, respectively. kij denotes the total number of

spikes transmitted between clusters i and j. We define A(T,R)
to be a directed graph that represents the architecture of the

neuromorphic chip. Each ti in T represents a crossbar tile

and each rij in R stands for the routing from tile ti to tj .
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Fig. 3. (A) A partitioned SNN P (V,E). (B) An NoC mapping of a
partitioned SNN. (C) The mapping-aware SNN partition graph with edge
weight multiplied by manhattan distance. (D) The adjacency matrix of
the mapping-aware partition graph. (E) The mapping state is generated by
flattening the adjacency matrix. (F) The Deep Q-Network of the reinforcement
learning agent. (G) The 12 possible swaps of the mapping action space.

Mapping M = A(T,R)← P (V,E) is represented by a binary

matrix (mij) ∈ {0, 1}
|T |×|T |

, where mij is 1 if cluster vi is

mapped to crossbar tj , and 0 otherwise. Each cluster can only

be mapped to one crossbar. The RL formulation of neuron

cluster mapping consists of three aspects: state representation,

action representation and rewards function.

Mapping State Representation We represent the mapping

state with a vector of size |V |2, where |V | denotes the number

of vertices in a partitioned neuron cluster graph P (V,E). In

order to encode the neuron spikes and hop count into the

state representation, we first calculate the Manhattan distance

between each (vi, vj) pair based on the current mapping. Then

we multiply the distance with the corresponding weight in the

partition graph to get a mapping-aware partition graph and

its adjacency matrix. Finally, we flatten the mapping-aware

adjacency matrix to get the state representation. Fig. 3(A)-

(E) shows the process of mapping an SNN partition graph

with 6 clusters onto a 3x3 neuromorphic chip. A tile of value

0 in Fig. 3(B) means the crossbar tile is idle. Since each

crossbar can accommodate up to one neuron cluster, there are

(W ×H + 1)! possible mapping states in total, where W and

H are the width and height of the 2D mesh.

Mapping Action Representation At each time step, the

agent will move at least one neuron cluster to a different

crossbar to either explore or exploit a better mapping. To keep

the action space small and avoid duplicate mapping, we define

action as swapping neuron clusters on adjacent crossbars. As

shown in Fig. 3(G), for a 3x3 2D mesh neuromorphic chip,

the action space is significantly reduced to 2WH −W −H .

Rewards Based on the objective function in eq. III, the step

reward is represented as R(s, a) = H(s)−H(s′), where s′ is

the new state by taking action a on state s. We give a positive

reward when the new state generates a lower hop count and

penalize the agent when the new state has a higher hop count.

We use Q-network [12] to approximate the action-value

function, Q(s, a; θ) ≈ Q⋆(s, a), where θ represents the

weights of the neural network. As shown in Fig. 3(F), the

network takes a mapping state vector as input and outputs the

approximate action value of all possible swaps.

IV. BAYESIAN OPTIMIZATION FOR NOC DSE

In this section, we propose a BO-based algorithm to identify

a set of NoC design parameters that strike a balance between

latency and power with the fewest possible evaluation runs.

NoC Design Space Exploration Formulation We formu-

late the NoC design as a multiple-objective optimization prob-

lem over a discrete design space X ⊆ R to minimize latency

and energy consumption. We define two objective functions:

f = (f1(x) = latency(x), f2(x) = power(x)), which are

evaluated by Booksim2 [9], a cycle-accurate NoC simula-

tor. The design space consists of 6 NoC design parameters,

including routing function, virtual channel (VC) allocation,

arbitration type, priority type, number of VCs, and VC buffer

size. A design point x = ⟨x0, x1, x2, x3, x4, x5⟩, specifying a

set of NoC design parameters. The design space has 36288

points in total. Our goal is to identify the Pareto front of f ,

a set Γ ⊆ X of points, which are not dominated by any other

points. To conduct the application-specific search, we modified

BookSim2 so that it supports trace-based simulation. In each

iteration of the search, the BookSim2 is configured based on

the parameters of a design point in the design space and takes

the spike trace of the SNN application as input to generate the

latency and energy consumption data.

Bayesian Optimization for NoC DSE The objective func-

tion f1 = latency(x) and f2 = power(x) are modeled as

two independent Gaussian Processes (GP), which are charac-

terized by their means µ(x) and co-variates k(x, x⋆). We first

randomly sample several observations for both objectives to

construct GP. Next, at each iteration t, the algorithm selects

an NoC design point xt based on xi = argmaxx a(x),
where a(x) is the acquisition function. And for evaluation,

it generates a noisy sample as yt,i ∼ N (fi(xt), vt,i), where

vt,i is the variance of noise introduced into the function

observations. The evaluations of the acquisition function are

cheap compared to the evaluations of the objective functions,

and hence the overhead is negligible. We use a probability

of improvement (PI) acquisition function to determine how to

select an NoC design point xt+1 in the next iteration. Later,

we append the (xt, yt,i) to the observation set. We repeat

these steps until the maximum number of iterations is reached.

Finally, we construct the Pareto front from the observation set.

V. EXPERIMENTAL RESULTS

Experimental Setup Three biomedical applications

(e.g., SNN_ECG, SNN_EMG, and SNN_EEG [16] and

two Convolutional networks (e.g. ConvNet CIFAR10 and

LeNet CIFAR10) are used for evaluation. We first convert

these applications into SNN using SNN-IIR [5]. Then we

collect the spike information and feed it into an in-house

cycle-accurate TrueNorth simulator, which generates output

spikes and crossbar trace. Finally, we modified BookSim2

[9] to support trace-based simulation for NoC DSE. Our

evaluation consists of: (1) three individual phase approach

comparisons with the state-of-the-art and (2) an ablation
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Fig. 4. The (A) partitioning, (B) mapping, and (C) NoC DSE comparison
between the SNNOpt and benchmarks on 16 and 32 cores.

study to examine the effects of each component of our

toolchain. We choose SpiNeMap [2] with Better-History SA

(BHSA) NoC DSE [10] for end-to-end comparison. For the

partitioning and mapping comparisons, we use SpiNeMap and

SNEAP [11], while for NoC DSE baseline we use BHSA.

Results Fig. 4(A) shows the number of spikes on the

shared interconnect normalized to that of SpiNeMap on 16-

core, and 32-core configurations. Compared to KL algorithm

of SpiNeMap, ORC reduces the spike count on average by

21% and 17% on 16-core and 32-core, respectively. This is

because KL is highly sensitive to its initial random solution

and requires the partitions to be equal in size, missing the op-

portunities to find the global optimal sizes when some neurons

are more densely connected than others. ORC outperforms

SNEAP by 21% and 17% fewer inter-cluster spikes on 16 and

32 partitions, respectively. Our ORC-based algorithm tends to

better discover the hierarchical structure of the network and

minimizes the spike communication between neuron clusters.

Next, in Fig. 4(B), we compare our RL-based mapping

algorithm with two heuristics, i.e., simulated annealing (SA)

and particle swarm optimization (PSO). Compared to SA,

our mapping algorithm achieved an average of 10.8% and

13.6% less hop count on 16-core and 32-core configurations,

respectively. This is because SA searches instead of learning

the changing environments while the adaptive characteristics

of pre-trained RL agents enable a fast convergence. Moreover,

our RL outperforms the PSO of SpiNeMap by as much as 18%

when running ConvNet_CIFAR10 on the 32-core chip. The

PSO is prone to converge prematurely and be trapped into a

local minimum, especially when the design space is large as

shown in the case of a 32-core configuration.

Fig. 4(C) demonstrates the superiority of BO-based NoC

DSE over BHSA in terms of both spike latency on intercon-

nect. BO obtains an NoC configuration with a maximum of 7%

less average latency. The SA falls out of favor especially when

the dimension of 2D-mesh NoC increases. BO is able to work

Fig. 5. Pareto fronts of SNN ECG, SNN EMG, SNN EEG.

directly over the black box of the NoC DSE with relatively

few iterations and supports multiple objectives evaluation.

We perform ablation studies to evaluate the impact of our

three proposed techniques on three applications, and present

the results in Fig. 5. The baseline is SpiNeMap with BHSA,

i.e. KL+PSO+BHSA. Our methodology, ORC+RL+BO, sig-

nificantly outperforms the baseline. In the ablation study,

ORC+PSO+BHSA replaces the KL partitioning scheme,

achieving a 23.78% reduction in packet delay and 14.05%

reduction in power consumption. The RL-based mapping

approach improves delay and power by an average of 12.24%

and 18.78%, respectively. BO alone reduces delay by 9.1%

and power by 15.95% on average in KL+PSO+BO. When

all three approaches are combined, our framework achieves

47.45% lower runtime and 58.6% lower power consumption

compared to the baseline of SpiNeMap with BHSA. While

we recognize the importance of detailed accuracy comparison,

due to the page limitation, we plan to investigate this aspect

in future work. However, preliminary results suggest SNNOpt

achieves less degradation of accuracy since the spike latency

is dramatically reduced.

VI. CONCLUSION

This paper introduces a systematic design methodology for

SNN with three phases: 1) an ORC-based network partitioning,

2) an RL-based mapping strategy, and 3) a BO-based NoC

DSE. Significant runtime reduction and energy savings are

achieved when compared with the state-of-the-art.
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