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Abstract
We present a novel computational framework for the simulation of rigid spherical
Janus particle suspensions in Stokes flow. For a wide array of Janus particle types, we
show long-range interactions may be resolved using fast, spectrally accurate bound-
ary integral methods. We incorporate this to our rigid body Stokes platform, which
resolves hydrodynamic interactions and contact. Our approach features the use of
spherical harmonic expansions for spectrally accurate integral operator evaluation,
complementarity-based collision resolution, and optimal O(n) scaling with the num-
ber of particles when accelerated via fast summation techniques. We demonstrate the
versatility of our simulation platform through three test cases involving Janus particle
systems prominent in applications: amphiphilic, bipolar electric and phoretic parti-
cles. For each test case, we formulate Janus particle interactions in boundary integral
form and use our framework to demonstrate examples of self-assembly and complex
collective behavior characteristic of these systems.
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1 Introduction

The term “Janus particle” originated from the synthesis of two-faced spheres with
amphiphilic structure like that of the phospholipid components of cell membranes. It
is now, however, applied to a wide class of colloidal particles with more than a single
type of surface chemistry or composition. The anisotropic structure in most Janus par-
ticles involves two hemispheres that differ in electric, magnetic or optical properties or
in their physicochemical interaction with the surrounding fluid. Dense suspensions of
Janus particles have beenwidely demonstrated to display complex aggregate behavior,
clustering and self-assembly into larger-scale structures [1–3]. Spurred by advances in
design andmanufacturing, the study of self-assemblingmaterials based on Janus parti-
cle suspensions has garnered great interest, showing particular potential in biomedical
applications such as drug delivery, medical imaging and manufacturing of biosensors
and micromotors [4–6].

In the study of dense particulate systems, direct numerical simulation (DNS) can
play a crucial role to gain insight into their complex behavior and make accurate
predictions. DNS of such systems, however, requires overcoming several challenges:
methods must accurately resolve short-ranged interactions (e.g., collisions) as well as
computationally intensive long-ranged, many-body interactions (e.g., hydrodynamic).
Due to slow relaxation times and non-linearity typical of soft matter systems, robust
and scalable solvers are required to tackle the long-term simulations involved.

Furthermore, DNS of Janus particle suspensions epitomizes the demanding nature
of multiphysics systems. The dynamics of Janus particle suspensions result from the
coupling of one or several long-range physicochemical fields with the fluid flow. At
particle surfaces, boundary conditions such as surface traction balance, induced fluid
slip, and electromagnetic field jump conditionsmust be accurately satisfied.Additional
coupling can occur in the bulk, for instance, due to advection of chemical solutes. Since
self-assembly and clustering are the key phenomena of interest, resolving particle
collisions and confinement effects are unavoidable.

In part owing to these challenges, DNS studies of the hydrodynamics of Janus
particle suspensions are rather scarce; fluid dynamics of amoderate number of particles
have been studied in two [7–11] and three spatial dimensions [12], while large-scale
simulation studies have focused on statistical molecular simulation methods such as
Molecular Dynamics, Lattice Boltzmann and Monte Carlo methods [13–15]. In this
work, we seek to bridge this gap and propose an efficient, fast algorithmic framework
for DNS of dense Janus suspensions in three dimensions, building on recent advances
in the state-of-the-art rigid body Stokes solvers.

With regard to DNS of rigid particle suspensions, a number of numerical meth-
ods have been developed in the past few decades; They may be classified according to
how they resolve hydrodynamic particle interactions and near-field lubrication effects.
These include approximation methods such as Rotne-Prager-Yamakawa [16], Stoke-
sian dynamics [17] and multipole methods [18], as well as schemes that directly solve
the underlying partial differential equation (PDE) such as fictitious domain methods,
immersed boundary methods and boundary integral methods [19]. In the context of
numerical PDE solution, boundary integral methods are particularly attractive due to
dimensionality reduction and improved numerical conditioning. The key numerical

123

45   Page 2 of 29



Fast and accurate solvers for simulating Janus...

hurdle for effective implementation of these methods is often the fast and accurate
evaluation of boundary layer potentials. Overcoming this hurdle, recent contributions
in this field have led to the implementation of large-scale simulation platforms for
particulate Stokes flow simulation in three dimensions [20–23].

In particular, a scalable computational framework adaptable to a large class
of the Stokes mobility solvers was proposed in [23] by incorporating a parallel
complementarity-based collision resolution algorithm. In addition, a scalable imple-
mentation of the spectrally accurate boundary integral method developed in [24] was
used to simulate active matter systems of up to O(105) particles. This method com-
bines spectral analysis in spherical harmonics bases to perform fast singular and
near-singular evaluation of Laplace and Stokes potentials, and fast multipole methods
to compute long-range interactions.

Our contributions in this work to the study of Janus particles through boundary
integral simulations are three-fold. First, we extend the method in [24] for efficient
scalar potential evaluation to encompass screened Laplace potentials. Second, we
couple our scalar evaluation with our rigid body Stokes solver [23, 25] to explore
three-dimensional interactions. Finally, we develop well-conditioned boundary inte-
gral formulations for three different types of Janus particles prominent in biomedical
and material science research [4], namely, amphiphilic, bipolar and phoretic particles.
Amphiphilic particles may be employed to model bilipid membranes in cells and to
interact with hydrophobic drug particles. Bipolar and phoretic particles are of interest
because their motion can be manipulated, via electromagnetic fields and chemical
gradients, respectively [26, 27].

This paper is organized as follows. In Section2 we discuss the scalar potentials,
introducing notation and relevant boundary integral operators. In Section3,we develop
fast, spectrally accurate methods for boundary integral operator (BIO) evaluation. We
then discuss the three classes of Janus particles in detail in Sections 4 through 6,
demonstrating how the general set of tools we have developed is adapted to each
specific problem. For each of these Janus particle test cases, we use our rigid body
solver to reproduce well-known collective behavior.

2 Mathematical preliminaries

In this section, we provide the necessary mathematical background for the coupled
system of boundary integral equations formulation of Janus and hydrodynamic par-
ticle interactions. We present our analysis of the spectra and evaluation formulas
for screened Laplace boundary integral operators (BIO)s employed in the evaluation
schemes in Section3.

Notation
In each problem formulation we will consider a system of M rigid spherical Janus

particles. For each particle i we adopt the following notation:
We refer to the union of particle interiors and surfaces as � = ∪M

i=1�i and � =
∪M
i=1�i , respectively. The domain exterior to these particles will be denoted by �∞.

For simulations confined in a spherical shell, we denote the surface of the shell by
�∞. For unbounded simulations, we have that �∞ = ∅.
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particle # interior surface radius
i �i �i ri
net net translational rotational
force torque velocity velocity
Fi Ti vi ωi

2.1 Problem setup

In all cases considered in this work, the Janus interaction potential, which we denote
by φ, is shown to satisfy a screened Laplace equation,

∇2φ(x) − λ2φ(x) = 0 ∀ x ∈ �∞. (1a)

This equation models long-ranged interactions which are damped by the medium. The
strength of the damping is controlled by the parameter λ. The quantity 1

λ
has units of

length and is typically referred to as the Debye length. In models where damping is
negligible (λ = 0), this simplifies to the standard Laplace equation.

The boundary condition at particle surfaces is application-dependent (e.g., Dirich-
let, Neumann). If�∞ is unbounded, the potentialmust also satisfy the decay condition,

lim‖x‖→∞ φ(x) = 0. (1b)

Janus and hydrodynamic interaction coupling
Coupling between Janus and hydrodynamic particle interactions involves force and

torque balance at particle surfaces. Given the Janus interaction potential φ, we can
compute the associated stress tensor T . In electrostatic applications, for instance, T
is the Maxwell stress, with ε0 denoting vacuum permittivity.

T = ε0(∇φ ⊗ ∇φ − 1

2
‖∇φ‖2 I ). (2)

The net force and torque on particle i are then given by

∫
�i

(T · ν)dSy = Fi ,

∫
�i

(x − xci ) × (T · ν)dSy = Ti , (3)

where ν is the outward normal vector to the surface �i . From a computational
standpoint, this requires the accurate evaluation of the Janus force field −∇φ. This
computation is also sufficient in the case of the phoretic model in Section6, in which
a tangential slip velocity induced by chemical activity is involved.

Rigid body Stokes problem
In order to evolve our particulate system, we need to find the rigid body velocities

(vi ,ωi )which correspond to inter-particle interactions for a given configuration.Given
net forces and torques (Fi , T i ) on each rigid body, the problem of solving the Stokes
equation to obtain unknown rigid body velocities (vi ,ωi ) is known as the rigid body
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Stokes mobility problem, defined by the system of equations in 4. In this equation, u
denotes the Stokes velocity field and p the corresponding pressure. We employ the
second-kind boundary integral formulation in [24, 25] to solve this problem.

−∇ p + ∇2u = 0 in �∞,

∇ · u = 0 in �∞,

lim‖x‖→∞ u = 0,

u = vk + ωk × (x − ck) on �k, k = 1, . . . , M,∫
�k

F d�k = −Fk and
∫

�k

(x − ck) × F d�k = −T k, k = 1, . . . , M .

(4)

In Sections4 and 5, we input the forces and torques resulting from Janus inter-
actions, as shown in equation (3), into our Stokes mobility problem formulation. We
note that our rigid body Stokes computational framework is not specific to themobility
problem, as it may also be adapted to more general prescriptions at the boundary like
that of the phoretic Janus particle model in Section6.

2.2 Boundary integral formulation

Weuse indirect integral representations of both Janus potentialφ and velocity field u as
combinations of appropriate layer potential boundary integral operators. By design,
these representations satisfy the respective PDE and growth conditions. Imposing
boundary conditions then yields integral equations for unknown integral densities
defined at particle boundaries � and geometry boundary �∞.

Screened Laplace layer potentials
For a set λ, letGλ(x, y) = 1

4π
e−λ‖x− y‖
‖x− y‖ denote the Green’s function for the screened

Laplace equation. The single- and double-layer potential operators are

Sλ[σ ](x) = 1

4π

∫
�

e−λ‖x− y‖

‖x − y‖ σ( y)d�, (5a)

Dλ[μ](x) =
∫

�

e−λ‖x− y‖v y
T (x − y)

4π‖x − y‖
(

λ

‖x − y‖ + 1

‖x − y‖2
)

μ( y)d�( y). (5b)

Formulas for operators S ′
λ and D′

λ are included in Appendix B. It is readily seen
that for any σ ∈ L2(�), Sλ[σ ](x) and Dλ[μ](x) are smooth for x /∈ � and satisfy
equation (1a) and condition (1b). In order to solve a given boundary value problem
for φ, we need only find integral densities matching boundary conditions at �. This
motivates a common technique in boundary integral methods [28], in which a potential
function φ is written as a combination of these layer potentials. For example, consider
the exterior Dirichlet boundary problem

∇2φ(x) − λ2φ(x) = 0 ∀ x ∈ �∞, φ = g on �. (6)
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We propose the ansatz solution φ(x) = (Sλ + Dλ)[μ](x). Taking the limit as
x → � in the normal direction, we then use well-known jump conditions for these
potentials to obtain a boundary integral equation (BIE):

1

2
μ(x) + (Sλ + Dλ)[μ](x) = g(x) ∀ x ∈ �. (7)

This is a Fredholm integral equation of the second kind; one can then establish
via the spectra of these operators or using standard potential theory results that it is
uniquely solvable [29]. This equation is generally well-conditioned, which is highly
advantageous for its efficient numerical solution. A fast and accurate method for
solving a discretized version of this equation is presented in Section3.

Integral operators for Stokes problems
For the Stokes equations, the Stokeslet and Stresslet fundamental solutions are

given by:

G(x, y) = 1

8π

(
I

‖x − y‖ + (x − y) ⊗ (x − y)
‖x‖3

)
, (8a)

T (x, y) = − 3

4π

(
(x − y) ⊗ (x − y) ⊗ (x − y)

‖x − y‖5
)

. (8b)

The Stokes single-layer potential, its associated traction kernel and the Stokes
double-layer potential are given by

S[σ ](x) =
∫

�

G(x, y)σ ( y)d�( y),

K[σ ](x) =
∫

�

T (x, y)ν(x)σ ( y)d�( y),

D[σ ](x) =
∫

�

T (x, y)ν( y)σ ( y)d�( y).

(9)

A number of integral representations have been introduced for rigid body Stokes
problems. In this context, we favor representations leading towell-conditioned integral
equations (Fredholm of the 2nd kind) and prefer to avoid the introduction of additional
unknowns or constraints. We employ the formulation in [25] for the Stokes mobility
problem, which addresses both issues by representing the flow as the sum of two
distinct single-layer potentials enforcing force and torque balance, and rigid body
motion at particle boundaries, respectively. In Section6, we describe a formulation
based on a standard double-layer representation [30] to prescribe a tangential slip
velocity at particle boundaries.

2.3 Spherical harmonic analysis

Working with the BIOs for screened Laplace and Stokes in Section2.2 requires us
to evaluate weakly singular and hyper singular integrals for targets x ∈ �. These
operators are smooth when evaluated away from the surface, but they become near-
singular as a target point x approaches �. Smooth numerical integration techniques
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will degrade in quality unless discretization is greatly refined. In [24], analysis of
integro-differential operators in spherical harmonic bases presented in [31, 32] was
extended to all the Stokes BIOs, and applied to obtain an efficient, spectrally accurate
evaluation scheme for both singular and near-singular cases. We present analysis of
BIO signatures and derive evaluation formulas in solid harmonics for the screened
Laplace operator. This allows us to extend this fast algorithm framework to the simu-
lation of Janus particles in Section3.

Spherical harmonics
The spherical harmonic of degree n and order m, denoted by Ym

n , is given by

Ym
n (θ, φ) =

√
2n + 1

4π

√
(n − |m|)!
(n + |m|)! P

|m|
n (cosθ)eimφ, (10)

where Pm
n is the associated Legendre polynomial. The spherical harmonics are eigen-

functions of the screened Laplace equation on the unit sphere, forming an orthonormal
basis for L2(S2). It follows from a separation of variables argument that any solution
to these equations on the interior or exterior of the unit sphere may be written as an
expansion of solid harmonics

φm
n (r , θ, φ) = fn(r)Y

m
n (θ, φ), (11a)

with

φ(r , θ, φ) =
∞∑
n=0

n∑
m=−n

αm
n φm

n (r , θ, φ). (11b)

Layer potential spectra and evaluation formulas
Using the fact that solutions to the screened Laplace equation can be expanded as

a superposition of solid harmonics φm
n , it can be shown that the spherical harmonics

are eigenvectors of Sλ and Dλ on the sphere. We present here the eigenvalues for
the modified Laplace equation. See Appendix A for a derivation using an argument
analogous to that presented in [32].

Lemma 1 (Screened Laplace operator spectra). On the unit sphere, the screened
Laplace single- and double-layer operators diagonalize in the spherical harmonics
basis Ym

n and their spectra are given by

with (in, kn) the modified spherical Bessel functions of first and second kind, respec-
tively. We use Lemma 1 to evaluate the single- and double-layer potentials off the
surface of the spheres, arriving at the following results.
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Theorem 1 (Screened Laplace operator evaluation). The single- and double-layer
potentials for density Ym

n at an arbitrary point off the spherewith spherical coordinates
(r , θ, φ) are:

Given a set of spherical harmonics coefficients μm
n for a given density μ, Theorem

1 allows us to evaluate layer potentials on and off the surface. It can be verified that
the spectra of S ′

λ and D′
λ are the derivatives of the above equations with respect to r .

Formulas are given in Appendix B. The equations of Theorem 1 can easily bemodified
for potentials defined on spheres of different radii. See Appendix C for details.

3 Discretization

As described in the previous section, we rely on representations for φ and u as a
combination of boundary integral operators. Following thework contributed for Stokes
boundary integral operators in [24], we present a spectrally accurate evaluation scheme
for the screened Laplace operators. Our goal is to develop a method of applying
discretized operatorsSλ andDλ efficiently, so that equations like (7)may be efficiently
solved by a Krylov subspace iterative method such as GMRES.

3.1 Janus interaction potential evaluation

Any numerical scheme for the approximate solution of BIEs in equation (7) will
require accurate evaluation of integrals of the form

Fi (x) =
∫

�i

Ki (x, y)σi ( y)dS( y) (12)

for points on and off the surface �i . The operator of interest will then be the sum over
all particles F(x) = ∑M

i=1 Fi (x). The integral kernel Ki contains a singularity when
x ∈ �i . To accurately compute F(x),wemust be able to evaluate Fi in three regimes:
when target points x are far from �i (smooth), when they are on �i (singular) and
when they are close to �i (near-singular).

We split the evaluation of integral densities at each particle into so-called near
and far fields of targets. For targets in the far field, we employ a standard spectrally
convergent smooth quadrature; for large numbers of particles, this computation is
accelerated using the Fast Multipole Method (FMM). In the near field, we use the
expansions in Theorem 1 to evaluate the BIOs of interest.
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Smooth integration
Given a spherical harmonic order p, we sample at points y j,k = y(θ j , φk) on each

sphere with

{θ j = cos−1(t j )}pj=0 ,

{
φk = 2π

2p + 2

}2p+1

k=0
, (13)

with t j the (p + 1) Gauss-Legendre nodes in [−1, 1] [33], for a total of O(p2) dis-
cretization points y j,k per particle, and N = O(Mp2) overall degrees of freedom. To
illustrate, let us consider the single-layer potential from a single source sphere with
surface � and radius r . We have

S[μ](x) =
∫ 2π

0

∫ π

0
G(x, y(θ, φ))μ(θ, φ)r2 sin θdθdφ (14)

for a target point x . If the integrand is smooth, this rule will be spectrally convergent
as p increases. Although this is the case for any integrand with x /∈ �, as x approaches
the surface, our ability to represent this function and integrate it accurately with order
p spherical harmonics degrades. Thus, we only employ this quadrature for targets that
are well-separated from �, that is, such that

dist(x, �) ≥ ηdiam(�) = 2ηr ,

where η is determined by a user-defined target accuracy. We will refer to the set of
well-separated points from � as its far field, and the complementary set as its near
field.

The cost for directly evaluating all far-field interactions between M particles is
(p4M2). Since this operation is a summation of Green’s functions, Fast Multipole
Method (FMM) [34] acceleration can be employed to reduce the cost to O(p2M).
The FMMwas originally developed for computations involving the Laplace kernel; it
has since been extended to many PDEs of interest, including several implementations
of the FMM for the screened Laplace kernel [35], as well as for the Stokes kernels [36].
We are currently employing the StokesLib3D package [37] for Stokes interactions and
the FMMLIB3D package for Laplace interactions [38].

Singular integration
Gauss-Legendre quadraturewill fail entirelywhen target points belong to the source

sphere �i . Such computations are required when calculating particle self-interactions.
Singular integration on particles of spherical topologymay be handled as in [33], using
fast spherical grid rotations and FFT acceleration techniques. For spherical particles,
the fact that BIOs of interest diagonalize in the spherical harmonics basis allows us to
sidestep discretization of singular and hypersingular integrals.

To achieve this, we turn to the spectra of the single- and double-layer operators,
described in Section2.3. Suppose we have a function μ defined on the unit sphere
and we wish to compute Sλ[μ]. We compute the spectra {μ̂m

n } with a fast-forward
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spherical harmonic transform (SHT). Truncating the spherical harmonic expansion at
order p, we obtain the approximate equation

Sλ[μ](θ, φ) ≈
p∑

n=0

n∑
m=0

αm
n μ̂m

n Y
m
n (θ, φ), (15)

where eigenvalues αm
n are given by Theorem 1. We evaluate these at all points of the

spherical grid via an inverse SHT; FFT-accelerated SHT transforms are applied in
O(p3 log p) operations [39]. Fast O(p2 log2 p) SHTs are available; however, break-
even points are typically large.

Near-singular integration
Finally, wemust address the evaluation of a potential such as φ = Sλ[μ] at a nearby

target point x off the unit sphere with spherical coordinates (r , θ, φ). Evaluation
formulas in (1) allow us to represent points off the surface of a sphere in terms of
spherical harmonics, yielding an expression of the form

φ(x) �
p∑

n=0

n∑
m=0

αm
n κm

n (r)Ym
n (θ, φ), (16)

where the vector of coefficients κ may be written as κ(r) = Fλ(r)μ̂. The operator Fλ

is diagonal with entries dependent only on r .
The associated flux ∂φ

∂vx
(the normal derivative of φ) may be evaluated using this

same scheme. However, the linear operator mapping μ̂ to the spherical harmonic
coefficients for ∂φ

∂vx
= Sλ[μ] will be tridiagonal, and its entries will depend on θ and

φ as well as r . The derivation of this result is identical to that for the Laplace equation,
as discussed in [24]. Since νx depends on target x , it may have normal and tangential
components relative to source sphere �. The derivative of each term in (16) is

κ(r)Ym
n (θ, φ)

∂vx
= κ ′(r)(νTx er )Ym

n (θ, φ) + κ(r)
(
νTx ∇�Y

m
n (θ, φ)

)
(17)

where ∇� is the surface gradient. ∇�Ym
n may be written as a combination of

Ym
n , Ym

n−1, Y
m
n+1. The tridiagonal map mentioned above can be obtained by applying

(17) to an expansion in solid harmonics like (16).
We use this scheme to evaluate interactions between a particle and target points

intersecting its near field. Parameters η and p must be chosen carefully to balance
accuracy and cost of near and far evaluation routines. Since the number of particles
neighboring a fixed particle is bounded, the maximum number of near-field target
points per particle is O(p2). Direct evaluation of (16) is thus O(p4) per particle. Effi-
cient O(p3 log p) accelerations based on FFTs or translation operators are proposed
in [24].
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3.2 Computation of scalar influence on fluid flow

To evaluate the coupling between Janus interactions and the fluid, we need to compute
∇φ. We decompose the gradient as

∇φ = ∇�φ + φ

∂v
n, (18)

where∇� is the surface gradient.∇�φ can be expressed in terms of angular derivatives
of the first fundamental forms of the surface. For spherical bodies, these values may be
computed explicitly. Since particle shapes do not change, the surface gradient operator
is fixed and may be precomputed as a matrix. To compute the normal derivative, we
again employ properties of the single- and double-layer operators. For instance, for
the ansatz proposed in Section2.2, we have that

∂φ

∂vx
= (S ′

λ + D′
λ)[μ] (19)

for a target point outside the particle. For points on the surface, we use the appropriate
jump conditions. For instance, as x → � from the outside,

∂φ

∂vx
= (S ′

λ + D′
λ)[μ] − 1

2
μ (20)

These quantities are computed using the same technique described in Section2.3,
with the operator spectra given in Appendix B.∇φ may thus be computed at the cost of
multiplication by a precomputed matrix and one additional layer potential evaluation.

3.3 Particle evolution and collision resolution

As was outlined in Section2, the Janus interaction potential φ is formulated as a
combination of layer potentials; given a configuration of M rigid Janus particles, the
evaluation routines in Section3.1 allow us to efficiently solve the corresponding BIE
via a Krylov subspace method. Given the resulting net forces and torques in (3), we
then employ techniques in [24] to solve the relevant Stokes rigid body problem and
find translational and rotational velocities. Finally, standard explicit time discretiza-
tion schemes are used to evolve rigid particle positions and rotation frames in time.
This sequence is repeated each timestep; the resulting particle evolution algorithm is
illustrated in Fig. 1.

When particles are in close proximity to each other or to the geometry, potential
collisions must be detected and resolved. This must be done carefully to preserve both
cost-efficiency andphysical fidelity. Following the approach in [23],we employ a linear
complementary formulation (LCP) of contact; for each colliding pair of particles, a
normal force must be applied to prevent interpenetration. In this work, we employ
the state-of-the-art Barzilai-Borwein Projected Gradient Descent method (BBPGD)
to find the unknown contact forces, adding them to Janus interaction forces and torques
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Compute Janus

potential ( 3.1)

Collision resolution

& timestepping ( 3.3)

Solve Stokes problem

Corona et al. [2017]

Compute scalar

influence on fluid ( 3.2)potential φ Stokes system boundary data

Stokes velocity uposition & orientation

Fig. 1 Advancing the systemby a single time step requires us to: (i) solve the Janus interaction potential BIE,
(ii) setup and solve the corresponding Stokes rigid body problem, (iii) use the Stokes formulation to resolve
collisions via the LCP, and (iv) given rigid body velocities, advance particle positions and orientations

for particle evolution [40]. We note that each iteration of the PGD involves solving a
Stokes rigid body problem; in our experiments, the number of iterations remains small
(� 10 PGD iterations).

3.4 Validation

We construct a simple boundary value problem to test the accuracy of our near eval-
uation routine. For a system of 3 spheres of different radii, we consider the potential
induced by point charges randomly placed inside each sphere; this potential can be
easily evaluated at targets x as a weighted sum of Green’s functions G(x, xi ) for each
point charge xi . To test our evaluation scheme, we evaluate the potential induced on
each surface, solve the Dirichlet BIE in (7), and use the integral representation to eval-
uate it at shells of target points at distance (10−k)ri from each spherical surface. The
results in Fig. 2 demonstrate spectral accuracy independent of the distance between
the surface and target.

Fig. 2 Evaluation test consisting of three spheres with centers (-1.5,1,0),(-3,0,0),(-1,0 2) and radii 0.5,1,0.7,
respectively (a). We evaluate the potential at spherical target shells located at distance (10−k )ri from each
surface, for k = 1, ..., 4. We plot the relative error distribution, and observe that it does not increase as
target points approach particle surfaces, and it decays spectrally as p increases (b)
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4 Amphiphilic particles

Amphiphilic particles are split into a hydrophilic head and hydrophobic tail. Suspen-
sions of such particles serve as mimetic models for cell membrane dynamics and are
widely used in self-assembling nanomaterials. We first describe an integral formu-
lation for amphiphilic Janus interactions. We then use our simulation framework to
demonstrate spontaneous self-assembly of micelles in three-dimensional systems.

4.1 Formulation

We employ the model developed by Fu et al. [7], which formulates hydrophobic
interaction potentials in integral form. The hydrophobic interaction potential φ is
defined as the smooth minimizer of the hydrophobic energy functional for a given
particle configuration and Dirichlet boundary value f :

E[φ] =
∫

�∞
‖∇φ‖2 + 1

ρ2 φ2dV =
∫

�

φ
∂φ

∂ν
d�. (21)

The equality of the two integrals follows from Green’s identities and equation (22)
below. E is derived from a quadratic expansion of the film tension on a sphere, the
details of which are given in sources such as [41, 42]; it is used to investigate lipid
membrane interactions in [43]. Through variational methods, E can be shown to have
a unique minimum which satisfies the screened Laplace equation

− ρ2∇2φ(x) + φ(x) = 0 x ∈ �∞, φ(x) = f x ∈ �, (22)

where f describes the hydrophobic character of the boundary with 0 < f < 1 and
ρ is a characteristic length of attraction. We recover the screened Laplace equation in
standard form by setting λ = 1

ρ
. In our simulations we take f to be a shifted cosine

function, f (θ) = 1
2 (cos θ + 1), where θ is the co-latitude of a point on the particle

surface. Figure3 shows a cross section of the resulting potential for two values of λ.
Integral equation formulation
As the hydrophobic potential φ satisfies the screened Laplace equation, we make

use of the ansatz proposed in equation (7); the exterior Dirichlet problem in equation
(22) leads to the BIE

f (x) = 1

2
μ(x) + (Sλ + Dλ)[μ](x) x ∈ �. (23)

The corresponding stress tensor [7] can be shown to be

TJ = η

(
φ2

ρ2 I + 2

(
1

2
‖∇φ‖2 − ∇φ ⊗ ∇φ

))
. (24)

In this expression, all of the units are nondimensionalized and η is the ratio of
the amphiphilic to viscous pressure, η = πa/πv . Expressions for these pressures are
presented in Appendix D.
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Fig. 3 Amphiphilic potential of a particle with λ = 1 (a) and 0.1 (b) with field lines drawn. The comparison
between these figures illustrates the effect of λ on the potential decay due to the conductive properties of
the fluid medium

4.2 Self-assembly

Employing our boundary integral approach, we simulate self-assembly in systems of
amphiphilic particles. In all of these examples we use the average particle radius, r ,
as the characteristic unit length. If we let the particle radius be 1nm, with γ = 1 pN

nm
and μ = 1cPas then the time unit is 10−8s, where nondimensionalized time is given
by the expression t = rμ

γ
. We have chosen �t = 0.1 in these simulations, so that one

timestep corresponds to 1 × 10−9 seconds. Likewise, we report nondimensionalized
energy so that one unit corresponds to γ times unit length squared. In the following
examples this corresponds to 10−21 joules. These parameter values are used in the
following experiments, except where otherwise stated.

Four particle system
To illustrate this phenomenon, we first present a small example involving four

amphiphilic spheres of the same size; these are initializedwith random initial positions
and orientations. In such a situation, the particles are known to form a tetrahedral
configuration. Figure4 shows the initial and final configurations of the spheres as
well as cross-sectional plots of the resulting potential, agreeing with two-dimensional
results in [7, 44]. The particles seek to minimize contact between the fluid and the
hydrophobic tails by shielding them in the center of the configuration.

Micelle formation
We then explore the dynamics of larger systems of amphiphilic particles. In [7]

the authors studied the long-term configurations resulting from two-dimensional
amphiphilic interactions. We recreate their experiment here in three dimensions.
Figure5 shows the final configurations for two instances of the corresponding three-
dimensional experiment; in both, a single-layer structure (micelle) forms as particles
cluster with their hydrophobic ends facing inwards.
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Fig. 4 Systems of four amphiphilic particles form a tetrahedral configuration (a). We plot the hydrophobic
potential on a cross section through a base of the tetrahedron (b), illustrating the higher potential region
between particles. Finally, we plot the hydrophobic energy as the tetrahedron forms (c)

We observe micelles to be the most common long-term configurations; their for-
mation does not appear to depend strongly on initial conditions or the number of
particles. However, the resulting micelles are more tightly packed for certain num-
bers of particles. We observe the formation of other stable structures, such as bilayer
sheets, when the initial configuration is sufficiently close to the final configuration. In
two-dimensional experiments, bilayers are observed to form spontaneously [7]. We
do not notice such spontaneity across our experiments in three dimensions.

5 Bipolar electric particles

Wepresent amodel for bipolar electric Janus particles. These particles display concen-
trations of charge density of opposite signs on their northern and southern hemispheres.
Such particles have been shown to exhibit self-assembly behavior such as the forma-
tion of chains [45], and can be manipulated through careful application of electric and
magnetic fields [46, 47].

Fig. 5 Three-dimensional configurations of particles tend to form micelles, with their hydrophobic ends
pointing inwards. We demonstrate with a 3 × 3 × 3 lattice of particles with random initial orientation
(a) and the resulting structure (b). When three particles are removed from the configuration, the resulting
configuration is less tightly packed (c)
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5.1 Formulation

We assume particle interiors are perfect conductors and their interactions are elec-
trostatic. We wish to follow the model employed in [48] in which a constant electric
field E0 is applied. However, if the fluid is an imperfect conductor (λ > 0), a constant
electric field is not physical. To resolve this, we confine our experiments to the interior
of a rigid spherical shell, �sh = � ∪ �∞ with boundary �∞, allowing a constant
field applied to the shell boundary to permeate into the fluid. In this setting, Maxwell’s
equations reduce to coupled Laplace (particle interiors) and screened Laplace (exte-
rior) equations for φ, the scalar electrostatic potential. Particle interiors are assumed
to have uniform electric permittivity, εi , while the exterior has permittivity ε0. We
normalize the permittivity by dividing through by ε0, so that the exterior permittivity
is 1 and the interior permittivity is ε = εi/ε0.

Mathematical model
Gauss’s Law states that for a charge distribution ρ, the resulting electrostatic force

potential φ must satisfy
∇ · (ε∇φ) = ρ. (25)

In the particle interior, Gauss’s law simplifies to a Poisson equation. The charge
distribution, ρ, is prescribed at the start.We choose ρ to be the charge induced by a pair
of point charges of equal strength and opposite sign in the interior of the particle. In
the exterior, we model the electrostatic potential described by the linearized Poisson-
Boltzmann equation, the derivation of which can be found in [49]. We arrive at the
following system of equations with boundary conditions:

∇2φ = 1

ε
ρ, x ∈ �, ∇2φ − φ = 0, x ∈ �∞ (26)

[[φ]]� = 0

[[
ε(x)

∂φ

∂v

]]
�

= 0. (27)

All physical quantities have been nondimensionalized in the manner described in
Appendix D.

Boundary integral formulation
Wederive a novel boundary integral equation formulation for the electrostatic poten-

tialφ. A similar direct second-kind formulation based onGreen’s theoremswas derived
and analyzed in [50, 51]. This system has mixed boundary conditions and requires the
evaluation of interior potentials. We represent the potential with a pair of unknown
densities,ψ and μ. The potential induced from point charges in the interior is denoted
by Q. The potential from the exterior field, E, is represented as a constant electric
field in the exterior of the shell and as a layer potential in the shell interior:

E(x) = ET
0 x x ∈ �∞, (28)

E(x) = (Sλ + Dλ)[μ∞](x) x ∈ �∞. (29)
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μ∞ is determined by equating the two expressions at the boundary and solving the
resulting integral equation at the beginning of our simulation. We then make the
following ansatz, expressing φ as

φ(x) = S0[ψ](x) + D0[μ](x) + Q(x) x ∈ �,

φ(x) = Sλ[ψ](x) + Dλ[μ](x) + E(x) x ∈ �∞.
(30)

This formulation automatically satisfies the Poisson and Poisson-Boltzmann equa-
tions on the respective domains. Enforcing the jump conditions, we obtain the
following system of equations for x ∈ �:

0 = (Sλ − S0)[ψ](x) + (Dλ − D0)[μ](x) + μ(x) − (E − Q)(x),

0 = (S ′
λ − S ′

0)[ψ](x) + (D′
λ − D′

0)[μ](x) − ψ(x)/2 − εψ(x)/2

−
(

∂E∂v

− ε

(
∂Q

∂v

))
(x). (31)

We may then set the following matrix equation by evaluating Q and ∂Q
∂v

on the
boundary

(
I + Dλ − D0, Sλ − S0

D′
λ − εD′

0 − (1+ε)
2 I + S ′

λ − εS ′
0

) [
μ

ψ

]
=

(
E − Q

ε
(

∂E
∂v

− ∂Q
∂v

)
)

. (32)

This is a coupled, second-kind system of BIEs for densities μ,ψ . Once solved, we
use expressions in equations (30) to find the potential φ at arbitrary points. We use the
Maxwell stress tensor to compute forces and torques. Rigid particle translational and
rotational velocities are then computed by solving the Stokes mobility problem.

5.2 Numerical experiments

In Fig. 9 we reproduce as closely as possible a two-dimensional experiment presented
in [48]. Bipolar particles are initially placed in a diagonal arrangement. In this setup

the time nondimensionalization is given by t = q2c μ

ε0‖E0‖2 . In our experiments we use
cC as the base unit of charge and 0.01V /μm as the units of field strength, as well as
taking the viscosityμ to be 1mPas. We take the unit length to the radius of a particle,
which we set to be 1μm. The radius of the confined system, rsh is set to 25 units. The
charge orientation of each particle is initially aligned with the x axis, perpendicular to
the external field, which points in the direction of the negative y axis. In terms of our
nondimensionalized units, we have qc = 50 and ‖E0‖ = 10.

The electric force imbalance on the particles induces clockwise rotation of both
the particles and the line, as the particles form a chain in the direction of the induced
electric field. Figure6 shows the streamlines from the flowfield that result fromparticle
interaction. Initially, rapid local rotations are present in the fluid as the particles rotate.
After this occurs, the flow becomes more globally rotational, and the particles form a
chain aligned in this direction.

123

Page 17 of 29    45



R. Kohl et al.

Fig. 6 We simulate an experiment described in [48], where bipolar electric particles were placed in the
configuration (a). Particles are colored according to surface charge; red and blue represent positive and
negative, respectively. A constant electric field is applied in the positive y direction, causing the particles to
rotate in the direction of the field (b), while the entire line moves to align with the field (c). Fluid streamlines
illustrate the initial rapid rotation of the individual particles and slower rotation of the chain. The maximum
fluid speed of the second and third panels are, 3%, and 0.5% of the maximum initial speed, respectively

We then conducted larger-scale experiments to study spontaneous chain formation
in three dimensions; snapshots of one such experiment are shown in Fig. 7. We place
125 particles with random orientations and with initial positions on a lattice offset
from the direction of the electric field. Initially, a locally rotational flow forms as
particles rotate to align with the electric field, whereupon chain formation is observed.
As chains form, they also begin to repel each other. Throughout this simulation, we
quantify the extent of polarization by plotting the distribution of particle angles relative
to the background field, as is shown also in Fig. 7d.

Across all our three-dimensional experiments, we observe spontaneous chain for-
mation irrespective of initial positions or orientations, closely matching previous
results in two-dimensional studies. This confirms that, by changing the external field,
one can effectively control the orientation of the particles and induce chain formation.

Fig. 7 125 bipolar particles are oriented randomly (a). When an external electric field is applied in the
direction of the x axis, the particles orient themselves in that direction (b) and form chains (c). To quantify
polarization, we plot the distribution of angles that the particles make with the electric field (d)
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6 Phoretic particles

Phoretic particles are a class of Janus particles with interactions driven by fluid slip
on their surface; in this work, we discuss a type of phoretic particle driven by chem-
ical reactions with a solute. Phoretic particle suspensions are useful for modeling
microswimmers, particles that propel themselves by “pushing” or “pulling” the sur-
rounding fluid. Spherical phoretic particles are also of great interest as drug delivery
mechanisms in biological systems.

We employ a standardmathematical formulation for phoretic particles, described in
[9]. This formulation models phoretic particle interactions via diffusion of chemical
concentrations in solution inducing a tangential slip velocity on particle surfaces.
As the main coupling between Janus and hydrodynamic interactions is due to this
tangential slip, the resulting rigid body problem is not a mobility problem; we detail
an integral formulation for the resulting Stokes problem.

6.1 Formulation

In the model we employ, the phoretic character of a particle is determined by two
functions on the particle surface, A(θ) and M(θ). A(θ) governs the flux of chemical
concentration at each particle surface,whileM(θ)models howconcentration gradients
induce tangential slip on the fluid.

Consider M rigid spherical Janus particles suspended in a fluid with viscosity μ

inside a closed domain �∞. Let {�k, �k}Mk=1 denote the domains and boundaries of
the rigid particles respectively. The chemical concentrationC is determined by solving
a Laplace Neumann boundary value problem:

∇2C = 0 in �∞, (33a)

dC

dn
= A∞ on �∞, (33b)

dC

dn
= −Ak(θk) on �k, k = 1, . . . , N . (33c)

Solutionsmust satisfy the compatibility condition that
∫
�∞ A∞ = ∑M

k=1

∫
�k

AkdSk =
0. In an unbounded context, the flux condition on the boundary is replaced with the
far-field condition that lim‖x‖→∞ C(x) = 0. The concentration gradient induces a
tangential slip velocity, given by

uksli p = Mk(θk)(I − nnT )∇C on �k . (34)

The corresponding equations for the fluid velocity are given by:

− ∇ p + ∇2u = 0 in �∞, (35a)

∇ · u = 0 in �∞, (35b)

u = 0 on �∞, (35c)
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u = uksli p + vk + ωk × (xk − ck) on �k, k = 1, . . . , N , (35d)

∫
�k

f d�k = −Fk and
∫

�k

(xk − ck) × f d�k = −T k, k = 1, . . . , N . (35e)

This system closely resembles the formulation of the Stokes mobility problem in
equations (4). However, in this case, the Laplace potential is mainly coupled to the
Stokes equation through an induced slip velocity, rather than through rigid body forces
and torques, Fk and Tk , which are both equal to zero unless particles are in contact
with each other or the domain boundary �∞. We present an integral representation
tailored to this tangential slip problem below.

6.2 Boundary integral formulation

In this case, the scalar potential φ corresponding to Janus particle interactions must
satisfy the Laplace Neumann BVP in (33c); we follow the standard approach for this
problem representing it as a single-layer potential defined on �∪�∞ [29]. The Stokes
potential in this case is more involved. We outline the steps below.

Stokes integral formulation
We begin by making the ansatz that the fluid velocity u(x) can be expressed as

u(x) = D∞[μ∞](x) +
M∑
k=1

(Dk + Vk)[μk](x), (36)

where V∞[μ∞] is a rank 1 correction for the Stokes double-layer interior operator
given by

V∞[μ](x) = 1

4π
er(x)

∫
�∞

(μ · er)dS (37a)

on the bounding surface and Vk[μk] is the standard completion flow [30], with

Vk[μ](x) = G(x − ck)
∫

�k

μ(x)dSy+R(x − ck)
∫

�k

( y − ck)×μ( y)dS( y) (37b)

on the surface of each particle, where G(r), R(r) are the Stokeslet and Rotlet, respec-
tively.

By substituting these expressions into equations (36) and taking the limit as x
approaches each component of the boundary in the normal direction, we obtain a
second-kind BIE. The force and torque balance boundary condition remain the same,
with ∫

�k

μdSk = Fk,

∫
�k

μ × (x − ck)dSk = T k . (38)
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Overall, we have a system of BIEs for the Stokes equations of the form:

⎡
⎣− 1

2 I + D∞ + V∞
∑M

k=1(Dk,∞ + Vk,∞) 0
D∞,k ( 12 I + ∑M

k=1(Dk + Vk)) −G
0 H 0

⎤
⎦

⎡
⎣ μ∞

μRB
V RB

⎤
⎦ =

⎡
⎣ 0
U sli p

FRB

⎤
⎦ . (39)

Here, U sli p is a vector of the slip velocities on each particle, V RB is a vector
consisting of v andω for each particle, and FRB is a vector of corresponding rigid body
forces and torques.G is a block-diagonal operator mapping V RB to rigid body motion
velocities at particle boundaries and H is a block-diagonal operator that computes the
two integrals in (38).

The system of equations in (39) is then solved at every timestep with FRB set to
zero. If other forces are present, such as those from contact resolution, (39) is then
solved a second time with nonzero FRB , using the first solution and complementarity
to facilitate this second solve.

6.3 Results

A wide range of phoretic particles can be modeled by the functions A and M . For our
studies, we will focus on simulating systems of so-called Saturn particles [52], which
are defined by prescribing

Ak(θ) = ak(1 − cos2 θ), Mk(θ) = mk cos θ. (40)

A single such particle in free space has speed 4
45akmk in the direction of the particle

head. Even for p as low as four, we find that the velocity of a single particle in the
simulations matches the theory with 15 digits of accuracy. We plot the flow generated
from a single particle in Fig. 8, propelling the particle forward.

Pairwise interactions
We observe patterns of pairwise interactions when two particles are confined in a

shell. In Fig. 8 we plot the trajectory of two particles in a symmetric orbit. We observe
similar pairwise interaction behavior to that discussed in [9], which studied how inter-

Fig. 8 We plot the fluid field of a single phoretic particle oriented in the positive y direction (a). In (b) and
(c), two particles are placed in a shell of radius 10, with starting position denoted with a diamond. The
particles are initially aligned in (b) and anti-aligned in (c). We plot the trajectories of the particle centers in
the xz plane
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Fig. 9 We place a 4 × 4 × 4 grid of phoretic particles in a confining shell of radius 25. (b) The particles
spread out and migrate to the shell, orienting themselves in the direction of the shell normal (c). The plots
in (a) show the average distance between the particles and the shell and the average alignment between the
particles and the shell normal at the point of contact

actions between particle pairs depended on their relative orientations, observing that
anti-aligned particles tend to orbit each other.

Many-body interactions
Understanding the behavior of many-body phoretic suspensions is considerably

more challenging. Previous studies of these systems tend to make a number of gen-
eralizations, such as assuming Ak and Mk to be constant on each hemisphere, or
assuming the domain to be quasi-two dimensional and semi-infinite, as in [9]. In our
case, we set the confining geometry�∞ to be a sphere.We set the flux on the boundary
to be such that the total flux on the system is 0:

dC

dν
= 1

4πR2∞

M∑
k=1

∫
�k

Ak(θk). (41)

With this configuration, we observe that the particles are attracted to the boundary
of the shell, orienting themselves in the direction normal to the shell. This particle
migration occurs rapidly (Fig. 9).

7 Conclusions

We presented a general computational framework for the simulation of dense Janus
particle suspensions in Stokes flow. Our approach features integral representations
of long-range Janus particle interactions; for this purpose, we have contributed effi-
cient and spectrally accurate scalar potential evaluation methods for screened Laplace
potentials. To resolve resulting fluid flow and particle collisions, we leverage recent
developments in fast algorithms for high-fidelity Stokes rigid body problems.

All numerical solvers proposed for this framework are spectrally accurate, effi-
cient and scalable with problem size. Due to the favorable conditioning of the BIEs
involved and our use of efficient evaluation schemes for both near-field and far-field
spherical particle interactions, computational cost scales linearly with the number of
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particles.We note that, provided efficient singular and near-singular integral evaluation
schemes are developed, it can be readily applied to wide classes of particle shapes and
confining geometries. We are currently investigating the extent to which the spectral
analysis techniques we have described can be extended to spheroidal, ellipsoidal and
axisymmetric shapes.

Due to the nature of the physical fields involved in most relevant Janus particle
types, the approach presented in this work has wide applicability. We demonstrate
this through three distinct case studies of Janus particles of great relevance to applica-
tions in biomedicine and materials science: amphiphilic, bipolar electric, and phoretic
particles. We note these examples do not constitute an exhaustive list; a number of
additional Janus particle systems can be modeled by following the process outlined in
this work. For instance, the bipolar formulation presented in this work may be readily
adapted to problems in magnetic Janus particle suspension simulation [11, 47]. More-
over, the techniques presented here may be relevant to a larger class of active matter
systems, for example, in the simulation of chemotactic bacterial suspensions.

In each of these studies, we show how to design integral representations for the
Janus interaction potential, leading to well-conditioned second-kind boundary integral
equations; depending on the coupling between Janus and hydrodynamic interactions,
the corresponding integral equation-based Stokes rigid body solver is deployed. The
ability to accurately simulate these suspensions allows us to recreate spontaneous
self-assembly formoderately large systems of particles in a single processor; our expe-
rience with hybrid HPC implementations such as [23] suggests the methods proposed
here could be readily scaled to enable large-scale simulations on distributed-memory
machines.
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Appendix A. Derivation of the layer spectra

In Theorem 1, formulas for the spectra of S and D were presented. We outline the
derivation of these values below, following [32], where the spectra of the single- and
double-layer potentials for the Laplace operator were derived. Here we derive the layer
operator spectra for a single particle of radius 1.

Let potential φ be a solution to the screened Laplace equation with parameter λ.On
the surface of a sphere, φ may be written as a superposition of spherical harmonics,

123

Page 23 of 29    45



R. Kohl et al.

so we make the ansatz that
φ = amn fn(r)Y

m
n (θ, φ)

for all r . Plugging φ into the screened Laplace operator and employing orthogonality
of the Ym

n , we obtain an ODE for fn(r) :

r2 f
′′
n + 2r f

′
n −

[
λ2r2 + n(n + 1)

]
fn = 0. (42)

This equation is known as the spherical Bessel differential equation and has two
sets of admissible solutions, called modified spherical Bessel and Hankel functions
and denoted respectively by in and kn . These functions can be expressed in terms of
modified Bessel functions as:

in(λr) =
√

π

2λr
In+ 1

2
(λr), kn(λr) =

√
π

2λr
Kn+ 1

2
(λr), (43)

where In(r) is the modified Bessel function of the first kind and Kn(r) is the modified
Bessel function of the second kind.

Layer potential
We use our representation of solutions to the screened Laplace equation in conjunc-

tion with properties of layer operators to solve for the spectral values of the single-
and double-layer operators.

Let ϕ = Sλ[Ym
n ]. We have that

ϕ(r , θ, φ) =
{∑∞

n=0
∑n

m=−n a
o
nmkn(λr)Y

m
n (θ, φ) r > 1∑∞

n=0
∑n

m=−n a
i
nmin(λr)Y

m
n (θ, φ) r < 1,

with {aonm}, {ainm} unknown coefficients for the exterior and interior respectively. By
using the continuity of S at the boundary and orthogonality of Ym

n , we obtain an
equation relating the coefficients:

aonmkn(λ) − ainmin(λ) = 0. (44a)

the jump condition [[S′φ]] = −φ yields a second equation for the coefficients:

aonmλk′
n(λ) − ainmλi ′n(λ) = −1. (44b)

Solving the 2 × 2 linear system for each pair of (n,m) gives us that:

ainm = −kn(λ)

λ W (in(λ), kn(λ))
, aonm = −in(λ)

λ W (in(λ), kn(λ))
, (45)

where W is the Wronskian

W (in(λ), kn(λ)) = in(λ)k′
n(λ) − kn(λ)i ′n(λ).
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It can be shown that W (in(λ), kn(λ)) = − π

2λ2
. From this, the values in Theorem

1 follow. A nearly identical analysis yields the double-layer coefficients, with only the
jump conditions on the layer operator changing.

Appendix B. Derivatives of operators

The formulas for the kernels of the normal derivatives of the layer operatorsS andD are
given below. Here νx and ν y are the normal vectors evaluated at x and y respectively.
Also, let ζx denote the dot product ζx = νx

T (x − y), and ζy = ν y
T (x − y).

S ′
λ = ζx

4π

e−λ‖x− y‖

‖x − y‖2
(

1

‖x − y‖ + λ

)
, (46a)

D′
λ = e−λ‖x− y‖

4π

[
1

‖x − y‖3
(

λ2 + 2λ

‖x − y‖ + 2

‖x − y‖2
)

ζxζy

−
(

λ

‖x − y‖ + 1

‖x − y‖2
)(

1

‖x − y‖ (νx
T ν y) − 1

‖x − y‖3 ζxζy

)]
.

(46b)

The spectra of the derivative operators are as follows:

Appendix C. Scaling analysis

Throughout our analysis of the screened Laplace BIOs, we have defined them on the
unit sphere. This is sufficient for calculations involving spheres of any size, as the
following result holds:

Lemma 2 Let Sr
λ and Dr

λ be the single- and double-layer operators for the screened
Laplace equation on the surface of a sphere of radius r centered at the origin. Then,

1. Sr
λ[μ](x) = rSλr [μ](x/r),

2. Dr
λ[μ](x) = Dλr [μ](x/r),

3. Sr ′
λ [μ](x) = S ′

λr [μ](x/r),
4. Dr ′

λ [μ](x) = 1
rD′

λr [μ](x/r).

These properties can easily be verified by a simple change of variables procedure
(e.g., y′ = r y) to the integrals (1a). Given a routine that evaluates the quantities in 1,
the above lemma allows for the same quantities to be evaluated on spheres of any size
by scaling the input and output and changing parameter λ to λr .

Appendix D. Nondimensionalization

We discuss the nondimensionalization of units in physical applications. In Sections 4
and 5, a natural choice of unit length, L is the Debye length, λ−1.
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Amphiphilic Janus particles
In addition to the characteristic length L = λ−1, we define a characteristic value

of the potential, φc. Prior to nondimensionalization, the hydrophobic stress tensor is
given by:

TH =
(
λ2φ2 I + 2(‖∇φ‖2 − ∇φ ⊗ ∇φ)

)
. (47)

We nondimensionalize this expression by substituting φ
φc

into the tensor, which
yields

TH = φ2
c

L2 T
′
H . (48)

φ2
c

L2 has units of pressure. We refer to it as the amphiphilic pressure, πa . We follow the
standard nondimensionalization of the Stokes equation:

TS = μuc
Lc

(−pc I +
(
∇u′ + ∇u′T )

)
= πvT

′
S, (49)

where uc is a characteristic fluid speed and πv = μuc
L is referred to as the viscous

pressure. Equating the two tensors and dividing through by the viscous pressure, we
obtain

TS = ηTH ,

where η = πa/πv is the ratio of amphiphilic pressure to viscous pressure.
Bipolar particles
We again let L equal the Debye length. Since we have normalized the exterior

screened Laplace equation, L = 1. In this case, we use the potential from the electric
field to define φ in terms of ‖E0‖L.. Using these values in the Maxwell stress tensor,
we obtain

TE = (ε0)‖E0‖2
(

∇φ′ × ∇φ′ − ‖∇φ′‖2
2

)
. (50)

ε0‖E0‖2 is two times the electrostatic pressure and may be denoted as πe. Just like in
the amphiphilic case, we can equate this tensor with the Stokes tensor and define η as
the ratio between electrostatic and viscous pressures yielding

TS = ηTE , (51)

where η = πe/πv .
Phoretic particles
We model phoretic particles with the Laplace equation, so we cannot use a Debye

length as the unit length. Rather, we let L be the particle radius.
The concentration is modeled by a diffusion equation:

D∇2C = 0. (52)

We set the unit time to be T = L−1/2 so that D is dimensionless.
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Unlike the amphiphilic and bipolar cases, the key coupling between Janus and
hydrodynamic interactions for phoretic particles occurs through the tangential slip
velocity induced at particle boundaries. After nondimensionalization, we obtain

usli p = D

ucL
Mk(θk)(I − nnT )∇C, (53)

whereCc is the unit concentration. The quantity (D/L)/uc is a ratio between the speed
of diffusion and thefluid speed. For all experiments presented in this section,we choose
uc to be the speed of a single phoretic particle in unbounded flow. This characteristic
speed may be chosen differently if mean particle velocity deviates significantly from
this.
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