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Abstract

One of the significant challenges for robotic
construction with dimensional lumber and other
construction materials is the accumulation of
material imperfections and manufacturing
inaccuracies, resulting in significant deviations
between the as-built structure and its digital twin.
This paper presents and evaluates methods for
addressing these challenges to enable a multi-robot
construction process that adaptively updates future
fabrication steps to accommodate for perceived
inaccuracies, improving build quality. We
demonstrate through a physical stacking case study
experiment that our methods can decrease
fabrication deviations due to setup and calibration
errors by utilizing robot perception and adaptive
processes. Overall, this research advances current
toolpath and task optimization strategies to help
shape a comprehensive system for working with
tolerance-aware robotic construction.
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1 Introduction

Robotic construction with dimensional lumber and
other construction materials imposes significant
challenges for robotic systems due to material
imperfections and fabrication tolerances [1], [2].
Depending on the quality of the lumber (e.g., grade 2 or
3), the cross-sections of elements could deviate from
nominal values. Furthermore, due to the length of the
full-height elements (e.g., 3 m), lumber elements are
usually not completely straight and include considerable
deformations (e.g., twists and bends), contributing to
their positioning errors. Compounding these issues,
wood can shrink and expand due to temperature and
moisture variability. Material imperfections and
manufacturing inaccuracies accumulate during the

assembly process, resulting in a significant deviation
between the as-built structure and its digital twin. Our
previous experiments have shown deviations up to 60
mm while assembling a light timber wall assembly, and
due to these inaccuracies, the automated process often
must be interrupted and errors addressed manually,
decreasing build quality and increasing time taken for
fabrication.

The current challenge in autonomous manufacturing
and assembly of building-scale structures is the high
intrinsic complexity of construction tasks and the lack of
human-robot interfaces designed for the specific
operational needs of construction [3]. This is in part due
to the adoption of robotic systems from other industries
such as the automotive industry, which operates in a
highly structured and repetitive environment. Through
the integration of more intelligent perception, reasoning,
and control algorithms, a streamlined digital design-to-
fabrication workflow can better address potential
unforeseen collisions and part imprecisions, especially
when compounded with the challenge of operating
multiple robots cooperatively. This paper presents and
evaluates methods for addressing the discussed
challenges to enable a multi-robot construction process
that adaptively updates future fabrication steps to
accommodate for perceived inaccuracies due to material
imperfections and  manufacturing  inaccuracies,
improving build quality.

2 Related Work

Multi-robot systems have long been established for
assembly line applications, with well-synchronized
repetitive tasks [4], [S]. Cooperative robotic fabrication
for construction, however, is still being explored, with
applications including foam wire cutting [6], masonry
vault construction [7], spatial metal structure assembly
[8], and timber construction [1], [9]-[15]. In addition to
distributing workload, robotic cooperation can also be
utilized to perform construction tasks that cannot be
achieved by a single robot, as is often the case when
working with spatial assemblies.
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Figure 1. Digital design to fabrication workflow, highlighting the transfer of data between the
computational model and the robot, adapted from previous research [9].

Focusing specifically on light timber assembly, the
tight tolerances required for structural integrity coupled
with the imperfect nature of timber studs make fully
automated assembly challenging. The calibration of the
robots and their tooling becomes a critical factor in
determining as-built tolerances, with the real possibility
of failure due to part collision. An end-effector
positioning system utilizing static and dynamic
correction through external pose tracking can reduce
average positioning error down to 0.10 mm [16];
however, this solution has limited application outside of
a defined workspace and is not suitable for adapting to
material and process deviations.

There has been research to develop methods for
dynamically adapting to these deviations. Gandia et al. [2]
present a tolerance-aware computational design method
for spatial timber structures, demonstrating how an
optimal assembly sequence can be generated to minimize
propagated tolerances. Eversmann et al. [17] use
scanning to calculate the gripping and placement of
differently sized shingles, however there was no
feedback for updating  post-placement tolerances,
presumably due to the flexibility of a shingle system.
Devadass et al. [18] reference a haptic fiducial to
dynamically calibrate the workpiece cutting process for a
mobile robotic setup, although assembly was still assisted
through human robot collaboration. These approaches
focus on minimizing tolerances during material
processing and design computation, and as such there
exists a gap in current literature on how to address
deviations during the fabrication and assembly steps.

Adaptive fabrication techniques have long been
embedded into the culture of craft, overcoming materials
and environments with uncertain conditions by utilizing

visual and haptic perception to inform decision-making
in real-time [19]. When translated to robotic processes,
computer vision technologies such as three-dimensional
(3D) laser scanning and force/torque sensing form a basis
for robotic perception, which then informs how the robot
reasons with its surroundings to perform its next action
in a feedback loop.

Recent research has demonstrated the application of
adaptive robotic subtractive manufacturing processes for
stone carving [19] and wood [20], where the
visualization and predictive techniques afforded by
adaptive processes enable human-like responsiveness
towards working with the material. Adaptive processes
have also been utilized for the localization and
calibration of a mobile robotic fabrication system for
building-scale mesh welding [21], increasing accuracy
through continuous mapping of the environment and
surveying of the fabrication process.

Overall, the main objective of this research is to
develop and evaluate adaptive assembly techniques that
enable cooperative multi-robot timber assembly by
minimizing positional and process deviations, as well as
handling material imperfections. These adaptive
techniques will be evaluated through a set of physical
stacking experiments to determine their effectiveness

3 Methods

3.1 Fabrication Setup

The fabrication testbed for this research consists of
two KUKA [22] KR 120 R2700 6-axis industrial robot
arms, named ‘North’ and ‘South’, mounted on parallel
linear tracks, which allows full access to a raised
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Figure 2. The scan processing begins with filtering the profile pointcloud (a), isolating the points
scanned from the top face of the element. The filtered profiles are then used to generate a geometric
representation and its central frame (b). The as-built model is updated with the newest element, which
can be used to calculate deviations from the digital model (c).

assembly platform and a custom 3-axis computer
numerical controlled (CNC) table saw. Each robot is
equipped with a pneumatically controlled gripper end
effector, which can be swapped out for an LMI
Technologies Gocator 2350 [23] two-dimensional (2D)
laser profiler for all scanning operations. Control of the
workcell and collection of sensor data is processed
through a programmable logic controller (PLC, Beckhoff
TwinCAT [24]).

3.2 Timber Assembly Process

The basic timber assembly process, as the main case
study process for this research, starts with a human
operator loading a standard 2x4 piece of lumber down the
center of the saw table, with one end roughly aligned with
the edge of the table. The active robot then picks up the
raw stock and performs two cuts on the saw for the
model-specified length and end-plane angles. The
gripping frame is located on the stock such that the first
cut safely minimizes offcut volume, while the second cut
maximizes the remaining material for future cuts, also
making sure to avoid any potential collision between the
saw blade and the gripper. Without regripping, the cut
2x4 element is brought over to the assembly platform and
inserted into its final position within the sub-assembly.
The human operator then fastens the element into place
(e.g., with screws to previously placed elements, or with
clamps if directly attached to the platform) before the
robot releases the element and retracts. This process
repeats until the sub-assembly is complete.

3.3  Digital Design-to-Fabrication Workflow

We have adapted a digital design-to-fabrication
workflow based on previous research [9], which
integrates Rhinoceros 3D [25], its plugin Grasshopper
[26] and Python [27] with Super Matter Tools [28], a
custom computational design tool for offline

programming and simulation (see Figure 1). This
workflow enables a seamless connection between the
digital design of the fabrication module and the robotic
simulation, control, and manufacturing.

The forward loop of the workflow translates each
timber element’s modelled geometry into frames
(consisting of position and orientation) that can be
interpreted by our control algorithm for path planning.
The primary frame for each element is chosen to be
located at the centroid of the element, aligned with its
long axis, ensuring safe and stable gripping while cutting
and placing the element during assembly. Cutting
attributes (such as cutting distance, saw blade angles) are
generated parametrically from the modelled end planes.
The pickup and saw locations are taught, while the path
traversal and gripping states are configured prior to
fabrication. All of these parameters are then
automatically post-processed into Kuka Robot Language
(KRL) to be executed by the robot.

The backward loop of the workflow enables feedback
into the digital design loop, allowing for alterations to the
model based on observed as-built conditions. This loop
is what enables the adaptive adjustment of model
parameters to reduce deviations in the fabricated sub-
assembly.

Perception of the workpiece occurs both before and
after each pick-cut-place operation to assist in the
adaptive processes, as discussed in the following section.
At this point in the process, the active robot swaps to the
laser profile scanning end effector and performs a series
of profile scans of the placed element to generate a digital
as-built model. Profile scanning was selected over sweep
scanning due to its minimal memory and processing
requirements, while still being able to capture the critical
boundary points to reconstruct the element digitally
within reasonable accuracy. The reconstructed element is
then used to update the as-built model, which can be
compared with the original model to perceive deviations
(see Figure 2).



34 Adaptive Processes

In order to reduce deviations between the digital and
as-built models, we introduce adaptation into the
fabrication workflow. Adaptation is enabled through the
robots’ usage of the laser profile scanner, which defines
a perceptual coordinate space model in relation to the
base world coordinate system for each robot. This
process utilizes the physically placed elements as an
anchor point to align the digital model with the
perceptual spaces of each robot.

Two adaptation steps are added to the fabrication
process — in the first, the active robot scans the previously
placed element to determine the current deviation and
estimate the correction (i.e., changes placement position
and orientation) required to minimize deviations in the
next element. After placing the next element, the active
robot scans the new element to evaluate and update its
estimation model.

The true as-built frame of a placed element in the
world coordinate system is notated as pp"¥, where nn is the
element index. The relation between this true frame and
the scanned frame is as follows:

pREt = Tl PRl + eely €]

Where ppit is the scanned frame relative to the robot
laser’s tool center point (TCP, TTyw is the transformation
between the laser and world spaces, and &% is the
measurement noise due to the scanning process. TT yw s,
in turn, comprised of transformations from the scanner
TCP to the robot flange (77r), robot flange to the robot
root (Trr), and robot root to the world (7zw, see Equation

(2)).
Ty =TTy TTyspr TTamy (2)

Of these transformations, TT};;, is calibrated by the user,
TTy.rr is calculated by the robot controller and assumed to
be accurate, leaving TTmy as the primary source of
deviation between the laser and world spaces. This
deviation is trivial in a single robot workcell with a fixed
root, as the world space can be defined to be the same as
the robot root. However, in a multi-robot workcell, any
deviation in installation or calibration may result in a
mismatch between each robot’s perception of the world
space. As an example, the two robots used in this paper
have world spaces that are offset by approximately 4 mm,
which translates to deviations in fabrication when
operating without adaptation processes. To address this,
one robot is arbitrarily chosen as the primary robot,
setting the world space equal to its root (i.e., TRy = II).
TTrpww can then be estimated for the remaining robots kk >
1 by relating their scanned element frame to the primary
robot’s.
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As the number of elements increases, ﬂ'@f‘fy‘w is refined
through linear least squares approximation. With a model
for the transformation between the robot’s perceptual
space the world space, an estimate of the true as-built
frame can be derived from Equation (4) and applied to
determine the current deviation TTyywwn, between the digital
and as-built models.

PR = i Wi 4)

This transformation is then applied to the modelled
frame of the next element pp/¥¥ alongside an estimated
gripper error ﬁTG(;EE to obtain the gripper target position in
the robot perceptual space ppff; (see Equation (5)),
which is input into the toolpath program generation.

ppf = ([ 1L — W (5)

The gripper error is derived from the second
adaptation step after placing and scanning the new
element. This model is initialized (before the start of a
fabrication task, for example) with a test piece assuming
T = I11. With the post-placement scanned frame pp,,,
the gripper error is updated with linear least squares.

1
Wher =TTrr  Gorem+19 Dhnet + 6)

Where ¢, is the process noise error, which can
result from material deformation, shifting while fastening,
etc., assumed to have a mean of 0. Altogether, there is
now a forward adaptation step for adjusting the position
and orientation of the next element, as well as a backward
adaptation step for evaluating and updating the error
estimation model.

Adaptation can be applied in two ways in a multi-
robot fabrication workflow — in the first, the arbitrarily
designated primary robot does not incorporate any
adaptation steps, and instead, the other robot(s) adapt and
work around the primary robot. In this case, the primary
robot establishes a ground truth throughout the
fabrication process by adhering strictly to the digital
model but is therefore reliant on its initial calibration to
minimize deviations. The second method of adaptation is
for all the robots to incorporate adaptation, which
increases the primary robot’s ability to respond to
deviations at the cost of decreased protection against
cumulative tolerances. To investigate the effectiveness of
these adaptative processes, we conducted an experiment
to compare the average deviation of a fabrication task
with and without adaptation.

3.5 Experiment

The experiment was tasked with cutting and stacking
ten 1000 mm lengths of standard 2x4 lumber from § ft
(2.4 m) stock, alternating between the two robots of the
experimental workcell, North and South, as the active
robot. Although the model design is architecturally trivial,



the rotational alignment and positional accuracy of both
robots is critical to the success of the task (i.e., forming a
flat vertical wall), demonstrating the effectiveness of
adaptation in a multi-robot fabrication setup. The
effectiveness of the fabrication process was evaluated
based on the average and per-element frame deviations.
The first experimental process was the base case, with
no adaptation on either robot. In the second experimental
process, North was set as the non-adapting primary robot
while South adapted to its placements. In the third
experimental process, both robots utilized adaptation.
One stack of ten timber elements was fabricated for each
of the three processes, generating ten sample points each
(five per robot). Each sample point is a 6-dimensional
vector (X, y, z, roll, pitch, yaw) representing an element’s
deviation (transformation) relative to its original modeled
configuration frame. The results of the second and third
processes are benchmarked with the base case.

. :
Figure 3. The South robot placing the final

element in a timber stacking task (with no
adaptation).

4 Results

Figures 4-6 plot the x and y components of each
sample point across the three experimental processes.
The perception of each robot (colored red for North, blue
for South) is consistently offset for each process,
indicating the base difference between the two robots’
perceptual spaces. Within each perceptual space, the base
case (Figure 4) highlights the calibration error between
North-placed elements (circles) and South-placed
elements (triangles), as the result of no adaptation, with
the offset between the average deviation of each cluster
being 2.5 mm. The average deviation of a cluster is
calculated by averaging the Euclidean distance of each
sample point to their respective reference frame
(modeled element frame). The second process (Figure 5)
shows a marked improvement with South’s adaptation
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Figure 7. Heat maps indicating the deviations between the scanned and reconstructed as-built model and

the digital blueprint model.

aligning its elements with North’s, decreasing the offset
to 0.4 mm and reducing the overall average deviation
from 1.28 mm down to 0.45 mm (as measured by North).
The third experimental process shows the effect of
cumulative deviations — each element in Figure 6 is
labelled for legibility, with the elements having a clear
drift direction, tending to deviate further from the
modelled position as the task progresses. This is likely
due to the fact that the two estimation models for the
robot-world transformation TTQFFWW and gripper error

TT@GGEE are still rough at the beginning of a new task,
especially

with the lack of an established ground truth as present in
the case of the second process. Utilizing a larger initial
dataset (e.g., gathered from previous tasks) could
potentially alleviate most of this drift; however, more
robust control logics are reauired to comnletelv eliminate

Table 1. Element frame deviation translation (mm)

Scanned by North Scanned by South

Process | Average Stdev. | Average Stdev.
1 1.28 1.01 3.00 1.28
2 0.45 0.26 3.53 0.28
3 1.96 1.03 5.66 0.77

Table 2. Element frame deviation rotation (°)

Scanned by North Scanned by South

Process | Average  Stdev. | Average Stdev.
1 0.107 0.255 0.108 0.263

2 0.377 0.053 0.354 0.055

3 0.484 0.086 0.452 0.090

5 Conclusion and Outlook

In this paper, we have introduced an adaptive process
for multiple robots working cooperatively on a
experimental

construction

task.  Initial

results

demonstrate the potential for this adaptive process to
decrease fabrication deviations due to setup and
calibration errors by utilizing robot perception. The
research also highlights future work to further refine the
estimation models and cooperative fabrication workflow.
As next steps, we intend to apply the adaptive
processes to light timber framed wall assembly tasks at
building-scale as well as implement real-time control to
drive the fabrication workflow. Part of this
implementation will include a probabilistic model that
accounts for the currently unaddressed measurement and
process noise error terms. These advances will push the
adaptive process in line with other current toolpath and
task optimization strategies to create a comprehensive
system for working with tolerance-aware robotic
construction.
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