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Abstract

We consider the model problem of mixing of passive tracers by an incompressible
viscous fluid. Addressing questions of optimal control in realistic geometric settings
or alternatively the design of fluid-confining geometries that successfully effect mix-
ing requires a meaningful norm in which to quantify mixing that is also suitable for
easy and efficient computation (as is needed, e.g., for use in gradient-based opti-
mization methods). We use the physically inspired reasonable surrogate of a nega-
tive index Sobolev norm over the complex fluid mixing domain Q, a task which
could be seen as computationally expensive since it requires the computation of an
eigenbasis for L>(Q) by definition. Instead, we compute a representant of the scalar
concentration field in an appropriate Sobolev space in order to obtain an equivalent
definition of the Sobolev surrogate norm. The representant, in turn, can be com-
puted to high-order accuracy by a Padé approximation to certain fractional pseudo-
differential operators, which naturally leads to a sequence of elliptic problems with
an inhomogeneity related to snapshots of the time-varying concentration field. Fast
and accurate potential theoretic methods are used to efficiently solve these problems,
with rapid per-snapshot mix-norm computation made possible by recent advances
in numerical methods for volume potentials. We couple the methodology to exist-
ing solvers for Stokes and advection equations to obtain a unified framework for
simulating and quantifying mixing in arbitrary fluid domains. We provide numerical
results demonstrating the convergence of the new approach as the approximation
order is increased.
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1 Introduction

This article concerns fluid mixing processes, whereby some spatially varying quan-
tity, hereafter denoted by ¢ and called concentration, is advected by fluid motion. An
important objective, then, is to achieve optimal mixing whereby ¢ becomes spatially
near-uniform after sufficient time under appropriate advection. Pure advection in a
fluid domain Q C R? is modeled by the partial differential equation (PDE) for the
function ¢ = c(x, t)

oc+Veu=0 for (x,1)eQx[0,T], (1)

which for a flow velocity field u = u(x, r) defined on Q X [0, T] and satisfying the
incompressibility condition V - u = 0 expresses that the material derivative of ¢ in
the flow u vanishes or, equivalently, that ¢ is conserved when following the material
motion. For simplicity, we restrict attention here to viscous flows modeled by the
Stokes equations, but the principal objectives and results translate to transport and
mixing by more complex fluids; we also restrict attention in our numerical experi-
ments to two-dimensional flows, d =2, though the methodology applies seam-
lessly to the case d = 3. It is important to quantify the departure of ¢ from a spa-
tially uniform distribution, for instance as a means to design stirring flow motions
that promote even mixing. Once a mixing measure has been established, a variety
of questions concerning optimal mixing, including under constraints on either some
appropriate norm of the flow velocity itself or instead potentially forcing to effect
such a flow (such as, e.g., fixed energy or power), can be considered [1, 2]. While
it appears natural to measure the unevenness of c(f) (i.e., relative to its mean value
¢(?)) in terms of its L2 variance,

Var[c](t) := |lc(-, 1) — c(@)||? with ¢(t) = Q| (c(-, 1), 1)

L2(Q) L2(Q)

where (-, ) 2@ and || - ||;2(q, denote, respectively, the inner product and induced
norm on L%*(Q), the quantity Var[c](¥) unfortunately turns out to be conserved in
time, dVar[c](f)/dt = 0, for the simple situation of pure (diffusionless) advection of
¢ by incompressible flows. !

This has elicited the definition of alternative methods for measuring mixing qual-
ity, notably the concept of mix-norm [3, 4]. The (squared) mix-norm ®(c) of a con-
centration c is defined as a quadratic mean of the concentration averages evaluated
on all balls with centers and radii compatible with the given fluid domain Q. Even-
ness of mixing is then measured in terms of (reducing) the mix-variance ®(c —¢).
The mix-norm ®(c) of ¢ can be formulated analytically (using Fourier series) for
periodic domains (where Q is the periodic cell such that the intersection of balls
with radii of all sizes with centers near dQ2 are well-defined, and where the fluid
velocity u is also Q-periodic). On the other hand, the construction method of the

! Note that even in the presence of diffusion (with diffusion constant, k¥ > 0) it is worthwhile to consider
alternative metrics of mixing, since the limit ¥ — 0 is singular in a way that impacts mixing studies; see,
e.g., [3] for a detailed discussion.
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mix-norm makes its evaluation impractical and inefficient for flows in arbitrary
bounded fluid domains Q.

In light of this difficulty, it is fortunate that the mix-norm ®(c) for periodic mixing
has been shown [4] to be equivalent to the H~Y2(Q) Sobolev norm of ¢. More gen-
erally [1], weighted versions of ®(c) are equivalent to H~"(€) Sobolev norms with
1/2 < r < 1 (the value of r depending on the chosen weight); for example, the mixing
enhancement study [5] uses r = 2/3, wherein a low-order penalization technique was
used to reduce the problem to a periodic setting. As Sobolev norms can a priori be
defined for functions in arbitrary fluid domains, the foregoing norm equivalence results
for periodic flows lead naturally to the idea of using Sobolev norms with appropriate
negative indices as mix-norm surrogates that, unlike the original mix-norm, are appli-
cable for arbitrary flow configurations.

This work accordingly rests on the premise that mixing by a flow in an arbitrary fluid
domain Q can adequately be measured by means of the variance <I>f(c) =lc— E||12L1,,‘ @

associated with the Sobolev norm || - ||%, with negative index —r. We focus on the

-r(Q
range 1/2 <r <1 of main practical in(te)rest, our approach being also valid for
0 < r < 1/2 (Remark 5). In this framework, our main objective is to formulate and dem-
onstrate computational methods for the practical evaluation of (I)f(c). Indeed, as dis-
cussed later in more detail, this task is far from straightforward due to the lack of explicit
expressions of negative Sobolev norms of a given function ¢ in Q. One approach, which
constitutes an extension of the Fourier series formulation for periodic flows, consists in
expanding c¢ in terms of the Laplace Dirichlet eigenfunctions ¢, (n € N) for Q2 and evalu-
ating d)f(c) as a sum of appropriately weighted squares of expansion coefficients (see
Section 2.2 for details). This treatment is computationally expensive, since it entails first
the computation of accurate approximations of ¢, to sufficiently high order, then expen-
sive numerical quadrature for the precise evaluation of the projections (c, (pn) of ¢ on the
increasingly oscillatory eigenfunctions. In view of this, and taking some inspiration from
the boundary element literature where approximations of fractional Sobolev norms or
fractional pseudo-differential operators on surfaces are used for error estimation or pre-
conditioning [6], we propose in this work to use a formulation of de (¢) in terms of the
Riesz representant u[c] of ¢ in H"(Q2) and compute an approximation of u[c] using a
Padé approximant of the operator (I — A)", where A denotes the Dirichlet Laplacian
operator on . This results in de(c) being evaluated by combining the solutions of ellip-
tic problems on Q arising from the Padé approximation process, the number of which
scaling proportionally with the desired Padé approximation order and being in practice
moderate. Also, any linear elliptic solver may be used for this purpose, the numerical
results presented in this work being obtained with boundary integral equation methods.
The eigenfunction and Padé approaches are in fact linked (see Section 3.2). We finally
mention that the Dunford-Taylor integral representation of fractional operators leads to
similar numerical solution strategies for u[c] [7, 8] (also, see Remark 4).

The main advantages of our approach compared to existing eigenfunction
approaches can be summarized as follows. Firstly, evaluating Dirichlet eigen-
functions on complex domains is a computationally challenging problem: even
recently proposed methods [9] still carry significant costs for computation for a
set of high-frequency eigenfunctions—the cost growing polynomially with the
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size of the desired eigenbasis. Secondly, accurate projection onto these high-
frequency eigenfunctions may require an unnecessarily fine spatial resolution
in the underlying fluid solver. In contrast, the solution of sign-definite elliptic
problems is a long-studied problem with well-known optimal complexity accel-
eration algorithms, e.g., multigrid and fast multipole methods (FMMs) [10]; we
rely on FMMs in conjunction with recently developed volume solvers to solve
each elliptic problem in linear time.

The organization of this article is as follows. The proposed Riesz-representant
approach to the evaluation of (Df(c) is presented in Section 2, together with a con-
cise summary of the underlying Sobolev framework and the eigenfunction-based
norm evaluation used here for comparison purposes. The proposed Padé approxi-
mation approach to <I>f(c) is then given in Section 3, and assessed in Section 4 on
numerical experiments involving norm evaluation and mixing by Stokes flows.

2 Sobolev mix-norm and its practical computation

Our main objective is to develop practical methods for the evaluation of the surro-
gate mix-variance

(I)f(c) i=le _E”i[—r(g)’ 2

defined in terms of the Sobolev norm || - ”?f"(g)

(1/2 < r < 1), on a given snapshot of the concentration c in the fluid domain Q. To
evaluate dDE(c) as a function of time in an advection process (1), definition (2) is
applied at each time ¢ to c(:, t) in Eulerian representation.

with negative index —r

2.1 Sobolev norms with fractional indices: an overview

We begin by collecting known definitions and facts about Sobolev norms with frac-
tional indices; for a concise yet quite informative exposition on Sobolev spaces, see
[11, Chap. 2]. First considering functions or distributions whose support is R, the
Sobolev space H"(RY) may be defined, for any index r € R, in terms of the Fourier-
Bessel scalar product and norm:

VW) ge 1= (& (IE7 + 120(8), & = (1&1° + 1)“@)”(“%, IVIZ g 2= V), s
3)
where ? : RY — C is the Fourier transform of v and & € R is the generic vector
in Fourier space. Noting that |£|? is the Fourier symbol of —A, we observe that the
H'(R?) norm (3) can be expressed , using Plancherel’s theorem, as

Vil g == || = A)r/z"”LZ(W) @)

in terms of a fractional power (I — A)® of the elliptic operator I — A on R? defined by
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FIUT = )] @) = A +1E19(E). 5)

Analogous definitions are available for spatially periodic functions, based on Fourier
series expansions instead of the Fourier transform.

In this work, we focus on (negative fractional) Sobolev norms of functions defined
in a given bounded domain Q C R, and notations (-, -), or|| - ||, implicitly refer to that
domain. For this case, the Fourier-Bessel framework provides

V||, = min V. ra»
=, min IVl ®)
which is not well suited to the practical evaluation of ||v]|, o. Alternatively, for posi-
tive fractional indices r € (0, 1),

_ 2
e =i+ | SO aves avey @

defines a norm for H"(Q); the double-integral term is known as the Slobodeckij
semi-norm. Formula (7) is explicit, but evaluating the semi-norm is potentially
expensive (due to the 2d-dimensional integral over Q X Q) and requires suitable
quadrature methods since a (weakly) singular integral is involved. Another possibil-
ity consists in setting again

Ivll, == || = A2, ®)

with fractional operators (I — A)* on Q now defined from the spectral decomposition
of the Laplacian on € (see Section 2.2).

For negative indices, our primary concern, explicit formulas for H~"(€2) norms are not
available for arbitrary domains. In fact, Elements of H™"(Q) are, by the definition of that
space, continuous linear functionals on H"(Q2) : = {vl o : vEHRY, supp(v) C Q}
and their norm is therefore defined by duality. By Riesz’s representation theorem, there
exists a unique function u[c] € H"(Q2) such that

(u[c], v) = <c, V> forallv e FI’(Q), 9)

(the duality bracket <c v) denoting ¢ € H™"(Q) evaluated at v € H ’(Q) with
<c v> (¢, v)y under the present assumption that ¢ € L*(Q)), which for r > = can be
understood as the weak form of the problem

I = A)ulc] =c, yulcl1 =0 (10)
(where yw denotes the boundary trace of w € H"(Q)). Moreover, u[c] satisfies
llell -, = llulclll,- (11)
Then, by (11), we have

llell?, = llulclll? = (ulel.c) = (ulcl.c), (12)
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(since, again, ¢ € L*(Q) by assumption). If r € ]%, 1[ and Q is a Lipschitz domain,
we have ﬁ’(Q) = HS(Q), and all elements of ﬁ’(Q) have a vanishing trace on dQ2. A
practical method for evaluating ||c||_, thus consists in the following steps: (a) com-
pute the Riesz representant u[c] of ¢ for the H~"(€2) norm by solving problem (9),
and (b) evaluate ||c||_, using (12). In (9), the H"(L) scalar product and norm may be
defined in terms of (/ — A)” where A is the Dirichlet Laplacian on Q.

Remark 1 (special case r=1) For r=1, the H' norm is simply given by
VI = IIvIIZ + VI3, and||v||2é(g) := ||Vv|I? defines an equivalent norm for H (). In
particular, by contrast with the fractional-index case, those norms are additive with respect
to partitions of Q (e.g., finite elements). Problem (9) becomes the weak form of the Pois-
son equation with homogeneous Dirichlet condition and domain source term ¢, a problem
easily solvable wusing a variety of standard numerical methods. Then,

||c||3l = (Vu[c], Vu[c])o.

Remark 2 (link to Sobolev interpolation) The norm (8) with A the Dirichlet Lapla-
cian on Q is suitable for equipping the interpolation space [HS(Q),LZ(Q)]
For re ]%, 1[, we have [H(l)(Q),L2(Q)] i, =HyQ). For r= %, we have
[Hy(Q). L*(Q)],_, = H} (Q), with H} (Q) strictly contained in H}(Q) and having a
strictly finer topology, see [12, Chap. 1]. Problem (9) thus defines the Riesz rep-
resentant of an element of (H(’)(Q))’ =H7"(Q)if re ]l, 1[, and of an element of
r ’; 1 2
(Hy, () if r = 3

1-r"

2.2 Evaluation using a Hilbert basis

This section describes the computation of ||c||_, using the spectral decomposition of the
Dirichlet Laplacian and the associated L?(Q)-orthonormal Hilbert basis. Let (@50
be a countable set of Laplacian eigenfunctions for Q, which satisfy —A¢, = 4,9, in
Q and y¢, = 0, the eigenvalues 4, being strictly positive. Normalizing the ¢,, so that
||(,oiq)|0 = 1, we also have ||V, ||2 = 4,. The set(¢,,),» is a Hilbert basis of L*(Q), while
A, 2((pn )nso defines a Hilbert basis of Hj ().

Forc =Y _,¢,@,in L*(Q) (so that ¢, = (c, ¢,),), we may define the evaluation of
the operator f(A) on ¢ by

fB)e =Y f=d)e,e, (13)

n>0

whenever the sequence |f(—4,)c,|*> is summable (this criterion defining the
domain of f(A) on L*(Q)). In particular, the summability requirement is satisfied
with f(X) = (1 — X)™" for any r > 0, and (13) allows to evaluate (/ — A)™" for any
r € (0, 1) [7]. The Riesz representant u[c] of c is then obtained as

ulcl=I-A)"c= Z(l + /ln)_rcn(pn (14)

n>0

and (12) therefore yields
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llel?, = D21+ 4,)7"ck. (15)

n=0

For f(X) = (1 — X)™", this procedure evaluates u[c] as an element of the interpola-
tion space [H(')(Q), Lz(Q)] ,_,» see Remark 2.

3 Negative Sobolev norm evaluation using Padé approximants

While the Hilbert basis approach to mix-norm evaluation allows in principle the
numerical evaluation of ||c||_, in general geometries, it is prohibitively expensive
as it relies on production of an appropriate set of oscillatory eigenfunctions (itself
a challenging computational problem) onto which the scalar fields must be accu-
rately projected. In this section, we first outline a practical, computationally effi-
cient approach based on Padé approximation [13] and then connect this approach
back to the Hilbert basis evaluation described in Section 2.2.

3.1 Practical method

To avoid reliance upon a (truncated) set of eigenfunctions, computable approxima-
tions of the operator (I — A)™" (and, more generally, of operators of the form f(A),
where A is the Dirichlet Laplacian) can be set up using Padé approximations [14] of
the function f(X) = (1 — X)™".

A Padé approximant of a univariate function f(X) is a rational fraction
I0,,[f1X) := P,(X)/Q,(X) (where P and Q are polynomials of respective
degrees m and n) such that the m + n degree Taylor polynomials of fand IT,, ,[f]
about X = 0 coincide (i.e., the Taylor expansion of f —1II, ,[f]is 0+ o(X"*")).
There is naturally some flexibility in how to choose the degrees m and n; here we
make the selection m = n — 1, i.e., we use Padé approximants II,[f] : =11, ,[f]
(see also Remark 3). A classical method for computing the coefficients of the
polynomials P,_;,Q, is summarized in Appendix 2. The next step consists in
recasting IT,[f] as a partial fraction decomposition: we have

o AL 1 (X5
I [f1(X) = L ith A* = P
W10 kz;xg—x with 4, = 5o (16)
where X , ! ., X" are the roots of Q,, which are assumed to be distinct (i.e., of unit

multlphclty) If each of the roots X" is positive (which is for example the case for
fX=>0-X)""2ie,r= —) then each of the operators Xk A is elliptic; statis-
tics of the roots are presented for the case r = 2 in Table 1. The approximation of
ulc] = f(A)c solving problem (9) provided for a given concentration ¢ by the Padé
approximant (16) is then

ulc] ~ ZAﬁwk where w; solves (X]y: — Aw, =cin Q,yw = 0 on 0Q.

a7)
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Table 1 Statistics of the

Helmholtz parameter 4 = 1 /X% n Avg. 4 Max. 4 n Avg. 4 Max. 4
that arise for the Padé 3 2.1 3.9 19 33 242
approximants of the indicated

order, for » = L. For odd n, the 4 23 31 21 33 26.7
median A value is always 5 24 6.4 23 34 293
A= \/5, as indeed in this case 6 2.5 7.7 25 3.5 31.8
X, =2isalwaysarootof 0,. 7 26 8.9 27 35 344
Put another way, for each n, at 3 27 102 31 36 395
least half of all required ’ ’ ’ ’
modified Helmholtz problems 9 28 11.5 35 3.7 44.6
are of approximately equal (and 11 2.9 14.0 39 3.7 49.7
minimal) cost even as the 13 3.0 16.6 43 38 54.8
maximum A increases. Similar

behavior is observed for other 15 31 19.1 47 39 59.8
values of r 17 32 21.7 51 3.9 64.9

To define the w, uniquely in (17), boundary conditions must be specified. Indeed,
notice that for positive r the function (/ — A)™"v is in some sense an antiderivative
of v, which is not uniquely defined unless additional conditions (such as boundary
conditions on w,) are supplied.

Remark 3 The specific degrees of polynomials used in our Padé approximants
are somewhat arbitrary; the Padé approximants IT,[f] =TI, _, ,[f] used here gen-
erate partial fraction approximations without a constant term, but other choices
appear equally valid. Variations may also be considered for the choice of frac-
tional operator; for example, replacing the operator (1 — A)™" that we treat
here with (1 — y~'A)™", where p is an estimate of the first (lowest) Dirichlet
eigenvalue 4,(Q) for the domain Q, removes length scale effects in that opera-
tor. Such estimates can be obtained, e.g., from the Faber-Krahn inequality that
provides A,(2) > u with u = T[Zél/|9| (d =2, with z;, as in Appendix 1) or
p=@4x*/31QD*° (d = 3). ’

Remark 4 Alternative numerical approximation methods for the evaluation of frac-
tional elliptic operators are developed and justified in [7, 8] on the basis of Dunford-
Taylor integral representations of such operators. In the case of (/ — A)™", we have [7]

(I-A)""c= 2sin(zr) / 2N =AY edr (18)
7 0

for any ¢ € L*(Q), where (I — ?A)~'c = u,[c] solves the variational elliptic problem:
find u,[c] € Hy(Q) such that (u, w), + *(Vulc], Vw), = ¢ for all w € H} (). Upon
applying a quadrature rule (involving finitely many nodes and weights) to the above
integral, one has to evaluate a finite linear combination of solutions of elliptic prob-
lems, similarly to the proposed Padé approximation approach.
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Remark 5 Although we focus in this work on the cases 1/2 <r <1, the pro-
posed Padé-based treatment also applies to the cases 0 <r<1/2, for which
H"(Q) = Hy(2) = Hi(Q) (any element of H((€2) thus being the limit of some
sequence of functions with vanishing Dirichlet trace).

3.2 Link between Padé approximations and eigenfunction expansions

For the purposes of comparison, it is useful to reformulate the Padé approximation
approach of Section 3 by means of the Hilbert basis of Laplacian eigenfunctions
introduced in Section 2.2. Letting v= Y, . v,,@, and w, = ¥, w* @, . the prob-
lem (Xﬁ — A)w, = v with homogeneous Dirichlet BCs becomes

k ko kK _ _ Vn
Z(Xn + AW, @, = Z V@ = W, = = LN (19)

m>0 m>0 n m

The Padé approximation (17) of f(A)v, found to be given by

n n Ak
1%

fawr YA (Y =0, )= Y ( L )00 = 2 LU=V

]; n ’;) X,]; + ﬂ,’n m ’nZZO ]; Xﬁ + A,'n m¥rm ’;) n m m¥rm
(20)
is formula (13) with f(—4,,) replaced with its Padé approximation IT,[f](—4,,). This
indicates consistency between the eigenfunction-expansion and Padé-approximation
treatments. It also allows an understanding of the effectiveness of the numerical

approximation (20) to f(A)v via knowledge of the approximating power for the sca-
lar problem for IT,[f](X).

3.3 Numerical methods and algorithms

This section describes the mathematical and computational framework used in
the experiments of the present work. We first briefly outline relevant aspects
of the conservation law package used for solving (1), then describe the use of
potential-theoretic techniques to solve the required elliptic problems for the
Padé approximation to the mix-norm in (17), and finally describe standard
boundary-integral solution techniques for the inhomogeneous Stokes equations
to produce the flow field u.

Concentration field evolution solver The hyperbolic PDE (1) with no-outflow
boundary conditions is solved using the Clawpack v5.8.2 library [15, 16]; we
refer the reader to reference [17] for a complete mathematical description of the
finite volume solvers used in this software but we note that the solver computes solu-
tions in logically rectangular coordinates and provides automatic time-step selec-
tion as dictated by the physics of the system. The Clawpack description of fluid
domains as a union of rectangular domains with explicitly known domain mappings
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constrains the complexity of geometry that we consider in this work; additionally,
the solvers appear to be limited by a choice of low-order accuracy or uniform dis-
cretizations. While for the present purposes Clawpack allows a demonstration of
the main capabilities of Padé-based approximations of the mix-norm for real-world
mixing problems, future work will utilize more recently developed high-order and
adaptive hyperbolic conservation law solvers such as [18].

Elliptic problems for Padé approximants The inhomogeneous elliptic PDE (17) is of
modified Helmholtz type,
—Av+ Av=f for x€Q,

(21
v=0 for x € 0Q.

A homogeneous counterpart to (21) can be obtained by linearity and the use of a
particular solution v, produced by the Newton potential

vp(x) 1= / G, y)f(y) dv(y), xe€Q, (22)
Q

where G denotes the Green function for the elliptic operator in (21). We solve this
homogeneous elliptic problem, in turn, by introducing a representation of its solu-
tion in terms of the double-layer potential

daG(x,y)
D = Q.
[w](x) /a . “on) y(@) do(y), x€ (23)

That is, we set v(x) = vp(x) + D[y ](x). Enforcing the Dirichlet boundary condition
and using jump relations for the double-layer potential [19] yields the following sec-
ond-kind integral equation for the unknown density function y:

<i%I+D>[W](x) =-vp, X€EI,. 24

Here, I', (resp. I'_) denotes that section of the boundary d€2 with respect to which
the domain lays interior (exterior), and D denotes the double-layer boundary integral
operator

._ [ 9Gx.y)
Dly]x) 1= /0 om0y w(y) do(y), x € 0Q. (25)

We use standard spectral singular quadratures [19, §12] for discretization of the
integral (24), spectral near-singular quadratures [20] for evaluation of the double
layer potential (23) for x laying in close proximity to dQ, and recently introduced
high-order accurate numerical methods [21] for the evaluation of the volume poten-
tial (22). Importantly in the present context where the spatial field ¢ changes at every
time-step, the solvers developed in [21] provide exceptionally fast access to the vol-
ume potential over the same domain with new volumetrically distributed sources.
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Stokes problems for fluid velocity The Stokes problem refers to the task of finding
a velocity function u(x) and pressure function p(x) that satisfy the PDE boundary
value problem

—uVu+Vp=0, xeQ
V-u=0, xe€Q, (26)
u=gkx), xel =0dQ.

where y is the fluid viscosity. Analogous integral equations to those arising from the
modified Helmholtz equation follow from use of the representation formula

9G(x,y)
u(x) = Dlp]x) := / . @) do(y) 27)

0 on®y)

that yields a solution u induced by the boundary integral density ¢, where

(x—y)®(x—y)>

1
G(x,y) = m(—log e =yl + Xy

is the free-space Green’s function for the Stokes equations [22]. The resulting inte-
gral equations are again of Fredholm type of the second kind. As before, spectral
quadratures are used in the discretization of the resulting integral equation that ¢
must solve for u to satisfy the boundary condition in (26).

The overall procedure that we have described in this paper to quantify fluid mix-
ing is as follows. First, the Stokes boundary value problem (26) is solved using
boundary integral equations and the velocity function u is accessible throughout
the fluid domain Q by means of (27). Using this velocity, a given initial concentra-
tion field ¢ = c(x, 1) is advected in accordance with the appropriate transport model
(here following (1)) by means of the conservation law solver. At a desired snap-
shot in time ¢, the mix-norm surrogate ||c||_, is produced by first obtaining the rep-
resentant u[c(-,?)] using (17) and then the norm finally via (12). The representant
u[c] is obtained via solution of problems of the form (21) using boundary integral
equations and volumetric Newton potentials—for a given fixed geometry we note
that rapid repeated evaluation of the elliptic problems is possible so that mix-norm
evaluation is inexpensive relative to the advection solver.

4 Numerical results
This section demonstrates the approximation quality of the Padé approximants

described in this article, and then demonstrates the use of the mix-norm surro-
gate to characterize mixing in fluid flow simulations.
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eigenfunctions, while the “Padé” values correspond to the inner-product of the Riesz representant u[c]
in (12), and where the n value denotes the order of Padé approximation used in the computation of (17).
Left: disc domain; center: annular region; right: concentration fields corresponding to « = 1.5 (top) and
a = 4.0 (bottom) in the annular geometry

4.1 Negative Sobolev index norm evaluation using Padé approximation

This validation experiment concerns the computation of the mix-norm ||| y-r(q),
r= 1, over the disc domain B(0, 1), using the Padé approximation method described
in Section 3, with results referring to the left-hand panel of Fig. 1 (the “Padé” labels
refer to computation of this norm via the representation (12)); comparisons are
made to the reference evaluation of the same norm using a Hilbert basis for L32(Q)
described in Section 2.2. This experiment considers the one-parameter family of
L*(Q) functions on Q defined by

2) 1/2

c(x) = sin(axx,) sin(arx)(p— 1), p=(x] +x;

s x =(x,x,) €Q,
which have an oscillatory character that varies with the parameter « € R. The Hil-
bert basis, which is known analytically for this domain (see Appendix 1), is trun-
cated ton < N and m < M (N = M = 20) and is used for computation both of the
Fourier-based norm and the solution of the inhomogeneous modified Laplace prob-
lems (17); sufficient discretization of the fluid domain is used to ensure accurate
projections onto this set of functions. This approximation suffices to represent both ¢
and the associated Riesz representant u[c] with a maximum error of 1073 in Q for the
values of « considered in this experiment.

The right plot in Fig. 1 shows the results of a similar experiment, this time for the

annular domain Q = B(0, 1) \ B(0, %). For @ € R, we consider the computation of
mix-norm of the concentration functions

)1/2

c(x) = sin(azx,) sin(azwx,)(p — %)(p -1, p= (xf +x§ x =(x,x,) € Q,
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which are defined in Q and satisfy yc = 0. For this geometry, it is still possible,
though even here not completely computationally trivial, to obtain a basis of eigen-
functions (known analytically in terms of numerically computed eigenvalues, see
Appendix 1). The Hilbert basis is truncated ton < N and m < M (N = 35, M = 60),
and used to compute both the Fourier-based norm and the solution of the inhomoge-
neous modified Laplace problems in (17). This set of functions suffices to represent
both ¢ and the associated Riesz representant u[c] with a maximum error of 10~ in
Q for all values of « considered in this experiment. The ground truth for this experi-
ment, labeled “Fourier” in Fig. 1, is again a mix-norm value obtained using a gener-
alized Fourier series.

We draw a few conclusions from these experiments. First, it is evident from both
experiments that convergence is rapid in Padé order (see also the right panel in
Fig. 3 for an explicit error-vs-order plot). We also note that as the value of the
mix-norm decreases (as a increases in this experiment, and the input function ¢
becomes more oscillatory) the accuracy of the numerical approximation to the
norm decreases; that is, the norm approximation quality is not uniform across its
range. This effect reflects the underlying approximation quality of Padé approxim-
ants to the function (1 — X)™", which are of highest quality for small values of X
(corresponding to the first eigenvalues of the operator with less oscillatory associ-
ated eigenfunctions); indeed the accuracy of Padé-approximated mix-norms can be
estimated via the approximation quality of the scalar problem. Studies with other
values of the parameter r reveal similar accuracy levels with identical conclusions
and are omitted.

4.2 Numerical demonstration of mix-norm application in incompressible flows

Here we consider mixing by a physically realistic complex flow that arises as
the solution to the Stokes equation with tangential slip boundary conditions (the
flow is computationally found as the solution to a boundary integral formula-
tion for the Stokes equations, cf. Section 3.3). The geometry is a Taylor-Cou-
ette device of inner radius p, = 1/2 and outer radius p, = 1, and is displayed
in Fig. 2. The initial scalar field consists of two Gaussian bump profiles, with
opposing signs, namely,

Fig.2 Mixing in a narrow-channel Taylor-Couette device driven by a velocity field arising from a tan-
gential slip boundary condition. Far-left: vorticity of fluid flow induced by the tangential slip in the fluid
mixing experiment. Left to right: snapshots of concentration atf = 0,7 = 1.0, and r = 3.0
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—40(xj+(x,=3/47%) _ ,~40((x) —3/4)2+x§)’

cx)y=e where x = (x,x,) € Q.

We seek a velocity function u(x) and pressure function p(x) that satisfy the Stokes
boundary value problem (26) in this domain, wherein g = u_t is a tangential slip
boundary condition with t the unit tangent vector on the positively oriented bound-
ary I'. The prescribed slip magnitude u, depends on the angular variable 0, and is
given by u (0) = cos(';‘—je), m = 20. (Note that u, is defined on both of the inner
and outer circles of the annulus, and for each we take the parameter £ to equal the
perimeter of that circle.) The solution to the Stokes equations is computed to an
accuracy level of approximately 1078 as measured by self-convergence of the bound-
ary integral equation solution with respect to the number of collocation nodes, while
the conservation law solver, in turn, is discretized sufficiently to keep errors smaller
than those observed in Fig. 3.

To indicate the effectiveness of the proposed Padé approximation approach
to the production of the mix-norm, we consider the convergence in Padé order
for the mixing that results from this real flow (as before, the reference value
of [lc|l_;/, is denoted by the “Fourier” curves in Fig. 3 and is obtained via a
generalized Fourier series). Specifically, in Fig. 3, we show convergence in the
number n of Padé approximant terms for the Riesz representant u[c] of ¢ for
the H"(Q), r = l, norm. For each 0 < k <n, we solve the elliptic problem in
(17)), with absolute errors less than 1073, and proceed to compute the mix-norm
I-ll_, = (ulcl, ¢)y. The mixing can be seen in Fig. 2, with relative errors at the
final time ¢ = 2.5 of 1.5% for n = 14 Padé approximant terms.

This experiment demonstrates the success of the mix-norm surrogate (12) as
a means to quantify fluid mixing in arbitrary geometries. We note that the mix-
ing displayed in the plots in Fig. 2 with associated mix-norm evolution shown in
the left-panel of Fig. 3 captures even at very low Padé orders and relatively low

—— Fourier
Pade (n = 7) 10
--- Pade (n = 11)
Pade (n = 15)
---- Pade (n = 19)
--- Pade (n =27)

0.1000

0.0975

0.0950

=
0.0925

=172
Rel. Error

- 1

— 0.0900

0.0875

0.0850

0.0825

Fig.3 Convergence in Padé order for the computation of the mix-norm in a setting of fluid mixing by a
time-independent slip velocity
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accuracy the qualitative behavior of the mixing process. Furthermore, if high
accuracy is desired, the right panel of Fig. 3 demonstrates high-order conver-
gence (in fact, near-exponential convergence with respect to the Padé approxim-
ant order n is apparent) to the true mix-norm surrogate, at the cost of an increas-
ing number of elliptic solves. Similarly to the numerical results presented in the
previous section, the plots in Fig. 3 show a lack of uniform convergence, indicat-
ing a need for an increase in the Padé order for fixed relative error in the mix-
norm value as mixing progresses, i.e., as the mix-norm is driven to zero.

5 Conclusions

This work proposed and demonstrated the effectiveness of Padé approximants and
the solution of certain associated elliptic PDEs to compute a mix-norm for tracers
in incompressible flows that is both efficient in the presence of complex geometry
and reduces the problem to well-understood problems in computational PDEs (inho-
mogeneous linear PDEs solved via volume potentials). This surrogate norm ||-||_, is
equivalent to the Fourier-based one but crucially avoids the need to compute eigen-
functions of the Laplacian over arbitrary domains. One weakness of the proposed
Padé approximation strategy is the observed lack of uniformity in the error as the
mix-norm decreases in value, which is the explicit goal of mixing studies; in ongo-
ing work we seek to address this issue by developing alternate means to compute the
Riesz representant associated with the surrogate mix-norm that both avoid this issue
entirely and also require only a single inhomogeneous solve. The work could be
straightforwardly extended to three dimensions, but requires efficient volume solvers
for evaluation of (22) in that context, which is an area of active research. In contrast
to the steady-state velocities considered here, time-varying velocities are of course
not only possible (and expected, in order to achieve optimal mixing rates) to effi-
ciently compute in the present context but will naturally be explored in future work
in the context of optimal control.

Appendix 1. Eigenfunction expansion in circular or annular domains

Circular domain Let Q = B(0,a) = {x(p,0), 0 < p <a, 0 <60 < 2x} be the disk of
radius a. The Dirichlet Laplace eigenfunctions for Q are

Pom = y()m‘]()(z()mp/a)’ (/’;1,,)1 = ynm‘]n(znmp/a) COs }’16, (p}(’,%:l = ynm‘]n(znmp/a) sinnd
(28)
where J,, is the Bessel function of first kind and integer order n and z,,,, (m = 1,2, ...)
are the (real, positive) zeros of J, (the excluded zero z=0 of J, (n > 1) not
producing nonzero eigenfunctions). Setting the normalization constants to

Yom = \/;[aJl(zOm)]_1 and vy, = \/7[/2[a],m(znm)]_1 (n>1), the eigenfunc-
tions (28) are L?(Q)-orthonormal and satisfy
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—A@y, = dou®o, and —A@D =14 @D, with A, =22 /a* (n,m > 0).
(29)
As (Dirichlet) Laplace eigenfunctions, the functions (28) define a Hilbert basis of
L*(Q), so that any ¢ € L*(Q) admits the expansion

0.0)= Y { con00 )+ X, (L0000 +20200.0) | (30)
m>0 n>1
with ¢o,, = (Poms €) o) a0d €7 = (9,7, ¢) 2 - The H7() norm of ¢ is there-
fore given by

lel, = X { (1 + d) leo P + X1+ A" (K0P + (2P b a1

m>0 n>1

Annular domain Let now Q = B(0, p,) \ B(0, p,) be the annulus of internal radius p,
and external radius p;. The (unnormalized) radial Dirichlet eigenfunctions for Q are
given by the expression

-1 1

Jn(Cnmpl) n(Cnmp) + Yn(é'nmpl) n(§n171p) (32)

so that eigenfunctions are given (analogously to the disc case, and before normaliza-

tion) via (p;‘rﬁ(p’ 0) = fnm(p){ Z?rf((zg)) . While the functional form (32) of the

fnl’l’l (p) =

eigenfunctions is clearly known, the corresponding annular eigenvalues 4,,, = Cfm
are required for the basis to be fully determined. We solve for the eigenvalues using
a Newton iteration on the eigenvalue equation, with the method bootstrapped using
an approximate eigenvalue obtained using the chebfun system [23] (whose values,
at least for larger eigenvalues fail to provide adequate accuracy but are still highly
useful to start a Newton iteration).

Appendix 2. Derivation of Padé approximations

Let f'have the (2n — 1)-th order Taylor expansion
f&X) = ag+a; X...+ azn_lXZn—l + O(in_l) (33)

about X =0. In particular, we have a, =1 and a,,, = a,(2k +r)/(2k +2) for
f(X) = (1 = X)~"/2. The coefficients of the polynomials

P (X)=py+pX...+p,_ X"\, 0.X)=1+¢,X...+¢X", (34

such that I, [f] = P,_; /O, (with the adopted normalization g, = 1 ensuring unique-

ness of P,_;, Q,) are found from the linear relations
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@ a,+a, 19 +...+aq,=0 O0<k<n-1),

35
(b) pr = apqr + a1q,_, -.- + a,qy O0O<k<n-1 (35)

where q,, ... g, solve the n linear equations (a) and p,, ..., p,_, are then given explic-
itly by relations (b). Numerical experiments for f(X) = (1 — X)~/2 indicate however
that the linear system (35a) becomes ill-conditioned for n larger than about 10. We
therefore solved (35) using symbolic computation.
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