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Abstract
We consider the model problem of mixing of passive tracers by an incompressible 
viscous fluid. Addressing questions of optimal control in realistic geometric settings 
or alternatively the design of fluid-confining geometries that successfully effect mix-
ing requires a meaningful norm in which to quantify mixing that is also suitable for 
easy and efficient computation (as is needed, e.g., for use in gradient-based opti-
mization methods). We use the physically inspired reasonable surrogate of a nega-
tive index Sobolev norm over the complex fluid mixing domain Ω , a task which 
could be seen as computationally expensive since it requires the computation of an 
eigenbasis for L2(Ω) by definition. Instead, we compute a representant of the scalar 
concentration field in an appropriate Sobolev space in order to obtain an equivalent 
definition of the Sobolev surrogate norm. The representant, in turn, can be com-
puted to high-order accuracy by a Padé approximation to certain fractional pseudo-
differential operators, which naturally leads to a sequence of elliptic problems with 
an inhomogeneity related to snapshots of the time-varying concentration field. Fast 
and accurate potential theoretic methods are used to efficiently solve these problems, 
with rapid per-snapshot mix-norm computation made possible by recent advances 
in numerical methods for volume potentials. We couple the methodology to exist-
ing solvers for Stokes and advection equations to obtain a unified framework for 
simulating and quantifying mixing in arbitrary fluid domains. We provide numerical 
results demonstrating the convergence of the new approach as the approximation 
order is increased.
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1  Introduction

This article concerns fluid mixing processes, whereby some spatially varying quan-
tity, hereafter denoted by c and called concentration, is advected by fluid motion. An 
important objective, then, is to achieve optimal mixing whereby c becomes spatially 
near-uniform after sufficient time under appropriate advection. Pure advection in a 
fluid domain Ω ⊂ ℝ

d is modeled by the partial differential equation (PDE) for the 
function c = c(x, t)

which for a flow velocity field u = u(x, t) defined on Ω × [0, T] and satisfying the 
incompressibility condition � ⋅ u = 0 expresses that the material derivative of c in 
the flow u vanishes or, equivalently, that c is conserved when following the material 
motion. For simplicity, we restrict attention here to viscous flows modeled by the 
Stokes equations, but the principal objectives and results translate to transport and 
mixing by more complex fluids; we also restrict attention in our numerical experi-
ments to two-dimensional flows, d = 2 , though the methodology applies seam-
lessly to the case d = 3 . It is important to quantify the departure of c from a spa-
tially uniform distribution, for instance as a means to design stirring flow motions 
that promote even mixing. Once a mixing measure has been established, a variety 
of questions concerning optimal mixing, including under constraints on either some 
appropriate norm of the flow velocity itself or instead potentially forcing to effect 
such a flow (such as, e.g., fixed energy or power), can be considered [1, 2]. While 
it appears natural to measure the unevenness of c(t) (i.e., relative to its mean value 
c(t) ) in terms of its L2 variance,

where 
(
⋅, ⋅
)
L2(Ω)

 and ‖ ⋅ ‖L2(Ω) denote, respectively, the inner product and induced 
norm on L2(Ω) , the quantity Var[c](t) unfortunately turns out to be conserved in 
time, dVar[c](t)∕dt = 0 , for the simple situation of pure (diffusionless) advection of 
c by incompressible flows.1

This has elicited the definition of alternative methods for measuring mixing qual-
ity, notably the concept of mix-norm [3, 4]. The (squared) mix-norm Φ(c) of a con-
centration c is defined as a quadratic mean of the concentration averages evaluated 
on all balls with centers and radii compatible with the given fluid domain Ω . Even-
ness of mixing is then measured in terms of (reducing) the mix-variance Φ

(
c − c

)
 . 

The mix-norm Φ(c) of c can be formulated analytically (using Fourier series) for 
periodic domains (where Ω is the periodic cell such that the intersection of balls 
with radii of all sizes with centers near �Ω are well-defined, and where the fluid 
velocity u is also Ω-periodic). On the other hand, the construction method of the 

(1)�tc + �c⋅u = 0 for (x, t) ∈ Ω × [0, T],

Var[c](t) ∶= ‖c(⋅, t) − c(t)‖2
L2(Ω)

with c(t) = �Ω�−1
�
c(⋅, t), 1

�
L2(Ω)

,

1  Note that even in the presence of diffusion (with diffusion constant, 𝜅 > 0 ) it is worthwhile to consider 
alternative metrics of mixing, since the limit � → 0 is singular in a way that impacts mixing studies; see, 
e.g., [3] for a detailed discussion.
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mix-norm makes its evaluation impractical and inefficient for flows in arbitrary 
bounded fluid domains Ω.

In light of this difficulty, it is fortunate that the mix-norm Φ(c) for periodic mixing 
has been shown [4] to be equivalent to the H−1∕2(Ω) Sobolev norm of c. More gen-
erally  [1], weighted versions of Φ(c) are equivalent to H−r(Ω) Sobolev norms with 
1∕2 ≤ r ≤ 1 (the value of r depending on the chosen weight); for example, the mixing 
enhancement study [5] uses r = 2∕3 , wherein a low-order penalization technique was 
used to reduce the problem to a periodic setting. As Sobolev norms can a priori be 
defined for functions in arbitrary fluid domains, the foregoing norm equivalence results 
for periodic flows lead naturally to the idea of using Sobolev norms with appropriate 
negative indices as mix-norm surrogates that, unlike the original mix-norm, are appli-
cable for arbitrary flow configurations.

This work accordingly rests on the premise that mixing by a flow in an arbitrary fluid 
domain Ω can adequately be measured by means of the variance Φ2

r
(c) ∶= ‖c − c‖2

H−r(Ω)
 

associated with the Sobolev norm ‖ ⋅ ‖2
H−r(Ω)

 with negative index −r . We focus on the 
range 1∕2 ≤ r ≤ 1 of main practical interest, our approach being also valid for 
0 ≤ r < 1∕2 (Remark 5). In this framework, our main objective is to formulate and dem-
onstrate computational methods for the practical evaluation of Φ2

r
(c) . Indeed, as dis-

cussed later in more detail, this task is far from straightforward due to the lack of explicit 
expressions of negative Sobolev norms of a given function c in Ω . One approach, which 
constitutes an extension of the Fourier series formulation for periodic flows, consists in 
expanding c in terms of the Laplace Dirichlet eigenfunctions �n ( n ∈ ℕ ) for Ω and evalu-
ating Φ2

r
(c) as a sum of appropriately weighted squares of expansion coefficients (see 

Section 2.2 for details). This treatment is computationally expensive, since it entails first 
the computation of accurate approximations of �n to sufficiently high order, then expen-
sive numerical quadrature for the precise evaluation of the projections 

(
c,�n

)
 of c on the 

increasingly oscillatory eigenfunctions. In view of this, and taking some inspiration from 
the boundary element literature where approximations of fractional Sobolev norms or 
fractional pseudo-differential operators on surfaces are used for error estimation or pre-
conditioning [6], we propose in this work to use a formulation of Φ2

r
(c) in terms of the 

Riesz representant u[c] of c in Hr(Ω) and compute an approximation of u[c] using a 
Padé approximant of the operator (I − Δ)r , where Δ denotes the Dirichlet Laplacian 
operator on Ω . This results in Φ2

r
(c) being evaluated by combining the solutions of ellip-

tic problems on Ω arising from the Padé approximation process, the number of which 
scaling proportionally with the desired Padé approximation order and being in practice 
moderate. Also, any linear elliptic solver may be used for this purpose, the numerical 
results presented in this work being obtained with boundary integral equation methods. 
The eigenfunction and Padé approaches are in fact linked (see Section 3.2). We finally 
mention that the Dunford-Taylor integral representation of fractional operators leads to 
similar numerical solution strategies for u[c] [7, 8] (also, see Remark 4).

The main advantages of our approach compared to existing eigenfunction 
approaches can be summarized as follows. Firstly, evaluating Dirichlet eigen-
functions on complex domains is a computationally challenging problem: even 
recently proposed methods [9] still carry significant costs for computation for a 
set of high-frequency eigenfunctions—the cost growing polynomially with the 
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size of the desired eigenbasis. Secondly, accurate projection onto these high-
frequency eigenfunctions may require an unnecessarily fine spatial resolution 
in the underlying fluid solver. In contrast, the solution of sign-definite elliptic 
problems is a long-studied problem with well-known optimal complexity accel-
eration algorithms, e.g., multigrid and fast multipole methods (FMMs) [10]; we 
rely on FMMs in conjunction with recently developed volume solvers to solve 
each elliptic problem in linear time.

The organization of this article is as follows. The proposed Riesz-representant 
approach to the evaluation of Φ2

r
(c) is presented in Section 2, together with a con-

cise summary of the underlying Sobolev framework and the eigenfunction-based 
norm evaluation used here for comparison purposes. The proposed Padé approxi-
mation approach to Φ2

r
(c) is then given in Section 3, and assessed in Section 4 on 

numerical experiments involving norm evaluation and mixing by Stokes flows.

2 � Sobolev mix‑norm and its practical computation

Our main objective is to develop practical methods for the evaluation of the surro-
gate mix-variance

defined in terms of the Sobolev norm ‖ ⋅ ‖2
H−r(Ω)

 with negative index −r 
( 1∕2 ≤ r ≤ 1 ), on a given snapshot of the concentration c in the fluid domain Ω . To 
evaluate Φ2

r
(c) as a function of time in an advection process  (1), definition  (2) is 

applied at each time t to c(⋅, t) in Eulerian representation.

2.1 � Sobolev norms with fractional indices: an overview

We begin by collecting known definitions and facts about Sobolev norms with frac-
tional indices; for a concise yet quite informative exposition on Sobolev spaces, see 
[11, Chap. 2]. First considering functions or distributions whose support is ℝd , the 
Sobolev space Hr(ℝd) may be defined, for any index r ∈ ℝ , in terms of the Fourier-
Bessel scalar product and norm:

where v̂ ∶ ℝ
d
→ ℂ is the Fourier transform of v and � ∈ ℝ

d is the generic vector 
in Fourier space. Noting that |�|2 is the Fourier symbol of −Δ , we observe that the 
Hr(ℝd) norm (3) can be expressed , using Plancherel’s theorem, as

in terms of a fractional power (I − Δ)� of the elliptic operator I − Δ on ℝd defined by

(2)Φ2
r
(c) ∶= ‖c − c‖2

H−r(Ω)
,

(3)
(v,w)r,ℝd ∶=

�
� ↦ (���2 + 1)r∕2v̂(�), � ↦ (���2 + 1)r∕2ŵ(�)

�
L2(ℝd)

, ‖v‖2
r,ℝd ∶= (v, v)r,ℝd ,

(4)‖v‖r,ℝd ∶= ��(I − Δ)r∕2v��L2(ℝd)
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Analogous definitions are available for spatially periodic functions, based on Fourier 
series expansions instead of the Fourier transform.

In this work, we focus on (negative fractional) Sobolev norms of functions defined 
in a given bounded domain Ω ⊂ ℝ

d , and notations (⋅, ⋅)r or ‖ ⋅ ‖r implicitly refer to that 
domain. For this case, the Fourier-Bessel framework provides

which is not well suited to the practical evaluation of ‖v‖r,Ω . Alternatively, for posi-
tive fractional indices r ∈ (0, 1),

defines a norm for Hr(Ω) ; the double-integral term is known as the Slobodeckij 
semi-norm. Formula  (7) is explicit, but evaluating the semi-norm is potentially 
expensive (due to the 2d-dimensional integral over Ω × Ω ) and requires suitable 
quadrature methods since a (weakly) singular integral is involved. Another possibil-
ity consists in setting again

with fractional operators (I − Δ)� on Ω now defined from the spectral decomposition 
of the Laplacian on Ω (see Section 2.2).

For negative indices, our primary concern, explicit formulas for H−r(Ω) norms are not 
available for arbitrary domains. In fact, elements of H−r(Ω) are, by the definition of that 
space, continuous linear functionals on �Hr(Ω) ∶=

{
v|Ω ∶ v ∈ Hr(ℝd), supp(v) ⊂ Ω

}
 , 

and their norm is therefore defined by duality. By Riesz’s representation theorem, there 
exists a unique function u[c] ∈ H̃r(Ω) such that

(the duality bracket 
⟨
c, v

⟩
 denoting c ∈ H−r(Ω) evaluated at v ∈ H̃r(Ω) , with ⟨

c, v
⟩
= (c, v)0 under the present assumption that c ∈ L2(Ω) ), which for r > 1

2
 can be 

understood as the weak form of the problem

(where �w denotes the boundary trace of w ∈ Hr(Ω) ). Moreover, u[c] satisfies

Then, by (11), we have

(5)F
[
(I − Δ)𝛼v

]
(�) = (1 + |�|2)𝛼 v̂(�).

(6)‖v‖r = min
V∈Hr(ℝd),V�Ω=v

‖V‖r,ℝd ,

(7)‖v‖2
r
∶= ‖v‖2

0
+
∫
Ω
∫
Ω

(v(y) − v(x))2

�y − x�d+2r
dV(x) dV(y)

(8)‖v‖r ∶= ��(I − Δ)r∕2v��0

(9)
(
u[c], v

)
r
=
⟨
c, v

⟩
for all v ∈ H̃r(Ω),

(10)(I − Δ)ru[c] = c, �u[c] = 0

(11)‖c‖−r = ‖u[c]‖r.

(12)‖c‖2
−r

= ‖u[c]‖2
r
=
�
u[c], c

�
=
�
u[c], c

�
0
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(since, again, c ∈ L2(Ω) by assumption). If r ∈ ]
1

2
, 1[ and Ω is a Lipschitz domain, 

we have H̃r(Ω) = Hr
0
(Ω) , and all elements of H̃r(Ω) have a vanishing trace on �Ω . A 

practical method for evaluating ‖c‖−r thus consists in the following steps: (a) com-
pute the Riesz representant u[c] of c for the H−r(Ω) norm by solving problem (9), 
and (b) evaluate ‖c‖−r using (12). In (9), the Hr(Ω) scalar product and norm may be 
defined in terms of (I − Δ)r where Δ is the Dirichlet Laplacian on Ω.

Remark 1  (special case r = 1 ) For r = 1 , the H1 norm is simply given by 
‖v‖2

1
= ‖v‖2

0
+ ‖�v‖2

0
 , and ‖v‖2

H1
0
(Ω)

∶= ‖�v‖2
0
 defines an equivalent norm for H1

0
(Ω) . In 

particular, by contrast with the fractional-index case, those norms are additive with respect 
to partitions of Ω (e.g., finite elements). Problem (9) becomes the weak form of the Pois-
son equation with homogeneous Dirichlet condition and domain source term c, a problem 
easily solvable using a variety of standard numerical methods. Then, 
‖c‖2

−1
=
�
�u[c],�u[c]

�
0
.

Remark 2  (link to Sobolev interpolation) The norm (8) with Δ the Dirichlet Lapla-
cian on Ω is suitable for equipping the interpolation space 

[
H1

0
(Ω), L2(Ω)

]
1−r

 . 
For r ∈ ]

1

2
, 1[ , we have 

[
H1

0
(Ω), L2(Ω)

]
1−r

= Hr
0
(Ω) . For r =

1

2
 , we have [

H1
0
(Ω), L2(Ω)

]
1−r

= Hr
00
(Ω) , with Hr

00
(Ω) strictly contained in Hr

0
(Ω) and having a 

strictly finer topology, see  [12, Chap.  1]. Problem  (9) thus defines the Riesz rep-
resentant of an element of (Hr

0
(Ω))� = H−r(Ω) if r ∈ ]

1

2
, 1[ , and of an element of 

(Hr
00
(Ω))� if r = 1

2

2.2 � Evaluation using a Hilbert basis

This section describes the computation of ‖c‖−r using the spectral decomposition of the 
Dirichlet Laplacian and the associated L2(Ω)-orthonormal Hilbert basis. Let (�n)n≥0 
be a countable set of Laplacian eigenfunctions for Ω , which satisfy −Δ�n = �n�n in 
Ω and ��n = 0 , the eigenvalues �n being strictly positive. Normalizing the �n so that 
‖�n‖0 = 1 , we also have ‖��n‖20 = �n . The set (�n)n≥0 is a Hilbert basis of L2(Ω) , while 
�
−1∕2
n (�n)n≥0 defines a Hilbert basis of H1

0
(Ω).

For c =
∑

n≥0 cn�n in L2(Ω) (so that cn = (c,�n)0 ), we may define the evaluation of 
the operator f (Δ) on c by

whenever the sequence |f (−�n)cn|2 is summable (this criterion defining the 
domain of f (Δ) on L2(Ω) ). In particular, the summability requirement is satisfied 
with f (X) = (1 − X)−r for any r ≥ 0 , and  (13) allows to evaluate (I − Δ)−r for any 
r ∈ (0, 1) [7]. The Riesz representant u[c] of c is then obtained as

and (12) therefore yields

(13)f (Δ)c =
∑

n≥0

f (−�n)cn�n

(14)u[c] = (I − Δ)−rc =
∑

n≥0

(1 + �n)
−rcn�n
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For f (X) = (1 − X)−r , this procedure evaluates u[c] as an element of the interpola-
tion space 

[
H1

0
(Ω), L2(Ω)

]
1−r

 , see Remark 2.

3 � Negative Sobolev norm evaluation using Padé approximants

While the Hilbert basis approach to mix-norm evaluation allows in principle the 
numerical evaluation of ‖c‖−r in general geometries, it is prohibitively expensive 
as it relies on production of an appropriate set of oscillatory eigenfunctions (itself 
a challenging computational problem) onto which the scalar fields must be accu-
rately projected. In this section, we first outline a practical, computationally effi-
cient approach based on Padé approximation [13] and then connect this approach 
back to the Hilbert basis evaluation described in Section 2.2.

3.1 � Practical method

To avoid reliance upon a (truncated) set of eigenfunctions, computable approxima-
tions of the operator (I − Δ)−r (and, more generally, of operators of the form f (Δ) , 
where Δ is the Dirichlet Laplacian) can be set up using Padé approximations [14] of 
the function f (X) = (1 − X)−r.

A Padé approximant of a univariate function f(X) is a rational fraction 
Πm,n[f ](X) ∶= Pm(X)∕Qn(X) (where P and Q are polynomials of respective 
degrees m and n) such that the m + n degree Taylor polynomials of f and Πm,n[f ] 
about X = 0 coincide (i.e., the Taylor expansion of f − Πm,n[f ] is 0 + o(Xm+n) ). 
There is naturally some flexibility in how to choose the degrees m and n; here we 
make the selection m = n − 1 , i.e., we use Padé approximants Πn[f ] ∶= Πn−1,n[f ] 
(see also Remark 3). A classical method for computing the coefficients of the 
polynomials Pn−1,Qn is summarized in Appendix 2. The next step consists in 
recasting Πn[f ] as a partial fraction decomposition: we have

where X1
n
,… ,Xn

n
 are the roots of Qn , which are assumed to be distinct (i.e., of unit 

multiplicity). If each of the roots Xk
n
 is positive (which is for example the case for 

f (X) = (1 − X)−1∕2 , i.e., r = 1

2
 ), then each of the operators Xk

n
− Δ is elliptic; statis-

tics of the roots are presented for the case r = 1

2
 in Table 1. The approximation of 

u[c] = f (Δ)c solving problem (9) provided for a given concentration c by the Padé 
approximant (16) is then

(15)‖c‖2
−r

=
�

n≥0

(1 + �n)
−rc2

n
.

(16)Πn[f ](X) =

n∑

k=1

Ak
n

Xk
n
− X

with Ak
n
= −

Pn−1(X
k
n
)

Q�
n
(Xk

n
)

(17)

u[c] ≈

n∑

k=1

Ak
n
wk where wk solves (X

k
n
− Δ)wk = c in Ω, �w = 0 on �Ω.
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To define the wk uniquely in  (17), boundary conditions must be specified. Indeed, 
notice that for positive r the function (I − Δ)−rv is in some sense an antiderivative 
of v, which is not uniquely defined unless additional conditions (such as boundary 
conditions on wk ) are supplied.

Remark 3  The specific degrees of polynomials used in our Padé approximants 
are somewhat arbitrary; the Padé approximants Πn[f ] = Πn−1,n[f ] used here gen-
erate partial fraction approximations without a constant term, but other choices 
appear equally valid. Variations may also be considered for the choice of frac-
tional operator; for example, replacing the operator (1 − Δ)−r that we treat 
here with (1 − �−1Δ)−r , where � is an estimate of the first (lowest) Dirichlet 
eigenvalue �1(Ω) for the domain Ω , removes length scale effects in that opera-
tor. Such estimates can be obtained, e.g., from the Faber-Krahn inequality that 
provides �1(Ω) ≥ � with � = �z2

0,1
∕|Ω| ( d = 2 , with z0,1 as in Appendix  1) or 

� = (4�4∕3|Ω|)2∕3 ( d = 3).

Remark 4  Alternative numerical approximation methods for the evaluation of frac-
tional elliptic operators are developed and justified in [7, 8] on the basis of Dunford-
Taylor integral representations of such operators. In the case of (I − Δ)−r , we have [7]

for any c ∈ L2(Ω) , where (I − t2Δ)−1c = ut[c] solves the variational elliptic problem: 
find ut[c] ∈ H1

0
(Ω) such that (u,w)0 + t2(�u[c],�w)0 = c for all w ∈ H1

0
(Ω) . Upon 

applying a quadrature rule (involving finitely many nodes and weights) to the above 
integral, one has to evaluate a finite linear combination of solutions of elliptic prob-
lems, similarly to the proposed Padé approximation approach.

(18)(I − Δ)−rc =
2 sin(�r)

� ∫

∞

0

t2r−1(I − t2Δ)−1c dt

Table 1   Statistics of the 
Helmholtz parameter � =

√
Xk
n
 

that arise for the Padé 
approximants of the indicated 
order, for r = 1

2
 . For odd n, the 

median � value is always 
� =

√
2 , as indeed in this case 

Xk
n
= 2 is always a root of Qn . 

Put another way, for each n, at 
least half of all required 
modified Helmholtz problems 
are of approximately equal (and 
minimal) cost even as the 
maximum � increases. Similar 
behavior is observed for other 
values of r 

n Avg. � Max. � n Avg. � Max. �

3 2.1 3.9 19 3.3 24.2
4 2.3 5.1 21 3.3 26.7
5 2.4 6.4 23 3.4 29.3
6 2.5 7.7 25 3.5 31.8
7 2.6 8.9 27 3.5 34.4
8 2.7 10.2 31 3.6 39.5
9 2.8 11.5 35 3.7 44.6
11 2.9 14.0 39 3.7 49.7
13 3.0 16.6 43 3.8 54.8
15 3.1 19.1 47 3.9 59.8
17 3.2 21.7 51 3.9 64.9
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Remark 5  Although we focus in this work on the cases 1∕2 ≤ r ≤ 1 , the pro-
posed Padé-based treatment also applies to the cases 0 ≤ r < 1∕2 , for which 
Hr(Ω) = Hr

0
(Ω) = H̃r

0
(Ω) (any element of H̃r

0
(Ω) thus being the limit of some 

sequence of functions with vanishing Dirichlet trace).

3.2 � Link between Padé approximations and eigenfunction expansions

For the purposes of comparison, it is useful to reformulate the Padé approximation 
approach of Section  3 by means of the Hilbert basis of Laplacian eigenfunctions 
introduced in Section 2.2. Letting v =

∑
m≥0 vm�m and wk =

∑
m≥0 w

k
m
�m , the prob-

lem (Xk
n
− Δ)wk = v with homogeneous Dirichlet BCs becomes

The Padé approximation (17) of f (Δ)v , found to be given by

is formula (13) with f (−�m) replaced with its Padé approximation Πn[f ](−�m) . This 
indicates consistency between the eigenfunction-expansion and Padé-approximation 
treatments. It also allows an understanding of the effectiveness of the numerical 
approximation (20) to f (Δ)v via knowledge of the approximating power for the sca-
lar problem for Πn[f ](X).

3.3 � Numerical methods and algorithms

This section describes the mathematical and computational framework used in 
the experiments of the present work. We first briefly outline relevant aspects 
of the conservation law package used for solving (1), then describe the use of 
potential-theoretic techniques to solve the required elliptic problems for the 
Padé approximation to the mix-norm in  (17), and finally describe standard 
boundary-integral solution techniques for the inhomogeneous Stokes equations 
to produce the flow field u.

Concentration field evolution solver  The hyperbolic PDE  (1) with no-outflow 
boundary conditions is solved using the Clawpack v5.8.2 library [15, 16]; we 
refer the reader to reference  [17] for a complete mathematical description of the 
finite volume solvers used in this software but we note that the solver computes solu-
tions in logically rectangular coordinates and provides automatic time-step selec-
tion as dictated by the physics of the system. The Clawpack description of fluid 
domains as a union of rectangular domains with explicitly known domain mappings 

(19)
∑

m≥0

(Xk
n
+ �m)w

k
m
�m =

∑

m≥0

vm�m ⟹ wk
m
=

vm

Xk
n
+ �m

.

(20)

f (Δ)v ≈

n∑

k=1

Ak
n

( ∑

m≥0

vm

Xk
n
+ �m

�m

)
=
∑

m≥0

( n∑

k=1

Ak
n

Xk
n
+ �m

)
vm�m =

∑

m≥0

Πn[f ](−�m)vm�m,
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constrains the complexity of geometry that we consider in this work; additionally, 
the solvers appear to be limited by a choice of low-order accuracy or uniform dis-
cretizations. While for the present purposes Clawpack allows a demonstration of 
the main capabilities of Padé-based approximations of the mix-norm for real-world 
mixing problems, future work will utilize more recently developed high-order and 
adaptive hyperbolic conservation law solvers such as [18].

Elliptic problems for Padé approximants  The inhomogeneous elliptic PDE (17) is of 
modified Helmholtz type,

A homogeneous counterpart to  (21) can be obtained by linearity and the use of a 
particular solution vP produced by the Newton potential

where G denotes the Green function for the elliptic operator in (21). We solve this 
homogeneous elliptic problem, in turn, by introducing a representation of its solu-
tion in terms of the double-layer potential

That is, we set v(x) = vP(x) +D[�](x) . Enforcing the Dirichlet boundary condition 
and using jump relations for the double-layer potential [19] yields the following sec-
ond-kind integral equation for the unknown density function �:

Here, Γ+ (resp. Γ− ) denotes that section of the boundary �Ω with respect to which 
the domain lays interior (exterior), and D denotes the double-layer boundary integral 
operator

We use standard spectral singular quadratures  [19, §12] for discretization of the 
integral (24), spectral near-singular quadratures  [20] for evaluation of the double 
layer potential  (23) for x laying in close proximity to �Ω , and recently introduced 
high-order accurate numerical methods [21] for the evaluation of the volume poten-
tial (22). Importantly in the present context where the spatial field c changes at every 
time-step, the solvers developed in [21] provide exceptionally fast access to the vol-
ume potential over the same domain with new volumetrically distributed sources.

(21)
−Δv + �v =f for x ∈ Ω,

v =0 for x ∈ �Ω.

(22)vP(x) ∶=
∫
Ω

G(x, y)f (y) dV(y), x ∈ Ω,

(23)D[�](x) ∶=
∫�Ω

�G(x, y)

�n(y)
�(y) d�(y), x ∈ Ω.

(24)
(
±
1

2
I + D

)
[�](x) = −vP, x ∈ Γ±.

(25)D[�](x) ∶=
∫�Ω

�G(x, y)

�n(y)
�(y) d�(y), x ∈ �Ω.
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Stokes problems for fluid velocity   The Stokes problem refers to the task of finding 
a velocity function u(x) and pressure function p(x) that satisfy the PDE boundary 
value problem

where � is the fluid viscosity. Analogous integral equations to those arising from the 
modified Helmholtz equation follow from use of the representation formula

that yields a solution u induced by the boundary integral density � , where

is the free-space Green’s function for the Stokes equations [22]. The resulting inte-
gral equations are again of Fredholm type of the second kind. As before, spectral 
quadratures are used in the discretization of the resulting integral equation that � 
must solve for u to satisfy the boundary condition in (26).

The overall procedure that we have described in this paper to quantify fluid mix-
ing is as follows. First, the Stokes boundary value problem  (26) is solved using 
boundary integral equations and the velocity function u is accessible throughout 
the fluid domain Ω by means of (27). Using this velocity, a given initial concentra-
tion field c = c(x, t) is advected in accordance with the appropriate transport model 
(here following (1)) by means of the conservation law solver. At a desired snap-
shot in time t, the mix-norm surrogate ‖c‖−r is produced by first obtaining the rep-
resentant u[c(⋅, t)] using (17) and then the norm finally via  (12). The representant 
u[c] is obtained via solution of problems of the form (21) using boundary integral 
equations and volumetric Newton potentials—for a given fixed geometry we note 
that rapid repeated evaluation of the elliptic problems is possible so that mix-norm 
evaluation is inexpensive relative to the advection solver.

4 � Numerical results

This section demonstrates the approximation quality of the Padé approximants 
described in this article, and then demonstrates the use of the mix-norm surro-
gate to characterize mixing in fluid flow simulations.

(26)
−�∇2u + ∇p = 0, x ∈ Ω

∇ ⋅ u = 0, x ∈ Ω,

u = g(x), x ∈ Γ = �Ω.

(27)u(x) = D[�](x) ∶=
∫�Ω

�Gs(x, y)

�n(y)
�(y) d�(y)

Gs(x, y) =
1

4𝜋𝜇

(
− log |x − y|I + (x − y)⊗ (x − y)

|x − y|2

)
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4.1 � Negative Sobolev index norm evaluation using Padé approximation

This validation experiment concerns the computation of the mix-norm ‖⋅‖H−r(Ω) , 
r =

1

2
 , over the disc domain B(0, 1), using the Padé approximation method described 

in Section 3, with results referring to the left-hand panel of Fig. 1 (the “Padé” labels 
refer to computation of this norm via the representation  (12)); comparisons are 
made to the reference evaluation of the same norm using a Hilbert basis for L2(Ω) 
described in Section  2.2. This experiment considers the one-parameter family of 
L2(Ω) functions on Ω defined by

which have an oscillatory character that varies with the parameter � ∈ ℝ . The Hil-
bert basis, which is known analytically for this domain (see Appendix 1), is trun-
cated to n < N and m < M ( N = M = 20 ) and is used for computation both of the 
Fourier-based norm and the solution of the inhomogeneous modified Laplace prob-
lems  (17); sufficient discretization of the fluid domain is used to ensure accurate 
projections onto this set of functions. This approximation suffices to represent both c 
and the associated Riesz representant u[c] with a maximum error of 10−5 in Ω for the 
values of � considered in this experiment.

The right plot in Fig. 1 shows the results of a similar experiment, this time for the 
annular domain Ω = B(0, 1) ⧵ B(0,

1

2
) . For � ∈ ℝ , we consider the computation of 

mix-norm of the concentration functions

c(x) = sin(��x1) sin(��x2)(� − 1), � =
(
x2
1
+ x2

2

)1∕2
, x = (x1, x2) ∈ Ω,

c(x) = sin(��x1) sin(��x2)(� −
1

2
)(� − 1), � =

(
x2
1
+ x2

2

)1∕2
x = (x1, x2) ∈ Ω,

Fig. 1   Mix-norm ‖⋅‖−r with r = 1

2
 . “Fourier” denotes the norm result when using the Hilbert basis of 

eigenfunctions, while the “Padé” values correspond to the inner-product of the Riesz representant u[c] 
in (12), and where the n value denotes the order of Padé approximation used in the computation of (17). 
Left: disc domain; center: annular region; right: concentration fields corresponding to � = 1.5 (top) and 
� = 4.0 (bottom) in the annular geometry
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which are defined in Ω and satisfy �c = 0 . For this geometry, it is still possible, 
though even here not completely computationally trivial, to obtain a basis of eigen-
functions (known analytically in terms of numerically computed eigenvalues, see 
Appendix 1). The Hilbert basis is truncated to n < N and m < M ( N = 35,M = 60 ), 
and used to compute both the Fourier-based norm and the solution of the inhomoge-
neous modified Laplace problems in (17). This set of functions suffices to represent 
both c and the associated Riesz representant u[c] with a maximum error of 10−4 in 
Ω for all values of � considered in this experiment. The ground truth for this experi-
ment, labeled “Fourier” in Fig. 1, is again a mix-norm value obtained using a gener-
alized Fourier series.

We draw a few conclusions from these experiments. First, it is evident from both 
experiments that convergence is rapid in Padé order (see also the right panel in 
Fig.  3 for an explicit error-vs-order plot). We also note that as the value of the 
mix-norm decreases (as � increases in this experiment, and the input function c 
becomes more oscillatory) the accuracy of the numerical approximation to the 
norm decreases; that is, the norm approximation quality is not uniform across its 
range. This effect reflects the underlying approximation quality of Padé approxim-
ants to the function (1 − X)−r , which are of highest quality for small values of X 
(corresponding to the first eigenvalues of the operator with less oscillatory associ-
ated eigenfunctions); indeed the accuracy of Padé-approximated mix-norms can be 
estimated via the approximation quality of the scalar problem. Studies with other 
values of the parameter r reveal similar accuracy levels with identical conclusions 
and are omitted.

4.2 � Numerical demonstration of mix‑norm application in incompressible flows

Here we consider mixing by a physically realistic complex flow that arises as 
the solution to the Stokes equation with tangential slip boundary conditions (the 
flow is computationally found as the solution to a boundary integral formula-
tion for the Stokes equations, cf. Section 3.3). The geometry is a Taylor-Cou-
ette device of inner radius �1 = 1∕2 and outer radius �2 = 1 , and is displayed 
in Fig. 2. The initial scalar field consists of two Gaussian bump profiles, with 
opposing signs, namely,

Fig. 2   Mixing in a narrow-channel Taylor-Couette device driven by a velocity field arising from a tan-
gential slip boundary condition. Far-left: vorticity of fluid flow induced by the tangential slip in the fluid 
mixing experiment. Left to right: snapshots of concentration at t = 0 , t = 1.0 , and t = 3.0
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We seek a velocity function u(x) and pressure function p(x) that satisfy the Stokes 
boundary value problem  (26) in this domain, wherein � = us�̂ is a tangential slip 
boundary condition with �̂ the unit tangent vector on the positively oriented bound-
ary Γ . The prescribed slip magnitude us depends on the angular variable � , and is 
given by us(�) = cos(

m�

2�
�) , m = 20 . (Note that us is defined on both of the inner 

and outer circles of the annulus, and for each we take the parameter � to equal the 
perimeter of that circle.) The solution to the Stokes equations is computed to an 
accuracy level of approximately 10−8 as measured by self-convergence of the bound-
ary integral equation solution with respect to the number of collocation nodes, while 
the conservation law solver, in turn, is discretized sufficiently to keep errors smaller 
than those observed in Fig. 3.

To indicate the effectiveness of the proposed Padé approximation approach 
to the production of the mix-norm, we consider the convergence in Padé order 
for the mixing that results from this real flow (as before, the reference value 
of ‖c‖−1∕2 is denoted by the “Fourier” curves in Fig.  3 and is obtained via a 
generalized Fourier series). Specifically, in Fig. 3, we show convergence in the 
number n of Padé approximant terms for the Riesz representant u[c] of c for 
the H−r(Ω) , r = 1

2
 , norm. For each 0 ≤ k ≤ n , we solve the elliptic problem in 

(17)), with absolute errors less than 10−5 , and proceed to compute the mix-norm 
‖⋅‖−r = (u[c], c)0 . The mixing can be seen in Fig.  2, with relative errors at the 
final time t = 2.5 of 1.5% for n = 14 Padé approximant terms.

This experiment demonstrates the success of the mix-norm surrogate (12) as 
a means to quantify fluid mixing in arbitrary geometries. We note that the mix-
ing displayed in the plots in Fig. 2 with associated mix-norm evolution shown in 
the left-panel of Fig. 3 captures even at very low Padé orders and relatively low 

c(x) = e−40(x
2
1
+(x2−3∕4)

2) − e−40((x1−3∕4)
2+x2

2), where x = (x1, x2) ∈ Ω.

Fig. 3   Convergence in Padé order for the computation of the mix-norm in a setting of fluid mixing by a 
time-independent slip velocity
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accuracy the qualitative behavior of the mixing process. Furthermore, if high 
accuracy is desired, the right panel of Fig.  3 demonstrates high-order conver-
gence (in fact, near-exponential convergence with respect to the Padé approxim-
ant order n is apparent) to the true mix-norm surrogate, at the cost of an increas-
ing number of elliptic solves. Similarly to the numerical results presented in the 
previous section, the plots in Fig. 3 show a lack of uniform convergence, indicat-
ing a need for an increase in the Padé order for fixed relative error in the mix-
norm value as mixing progresses, i.e., as the mix-norm is driven to zero.

5 � Conclusions

This work proposed and demonstrated the effectiveness of Padé approximants and 
the solution of certain associated elliptic PDEs to compute a mix-norm for tracers 
in incompressible flows that is both efficient in the presence of complex geometry 
and reduces the problem to well-understood problems in computational PDEs (inho-
mogeneous linear PDEs solved via volume potentials). This surrogate norm ‖⋅‖−r is 
equivalent to the Fourier-based one but crucially avoids the need to compute eigen-
functions of the Laplacian over arbitrary domains. One weakness of the proposed 
Padé approximation strategy is the observed lack of uniformity in the error as the 
mix-norm decreases in value, which is the explicit goal of mixing studies; in ongo-
ing work we seek to address this issue by developing alternate means to compute the 
Riesz representant associated with the surrogate mix-norm that both avoid this issue 
entirely and also require only a single inhomogeneous solve. The work could be 
straightforwardly extended to three dimensions, but requires efficient volume solvers 
for evaluation of (22) in that context, which is an area of active research. In contrast 
to the steady-state velocities considered here, time-varying velocities are of course 
not only possible (and expected, in order to achieve optimal mixing rates) to effi-
ciently compute in the present context but will naturally be explored in future work 
in the context of optimal control.

Appendix 1. Eigenfunction expansion in circular or annular domains

Circular domain  Let Ω = B(0, a) = {x(𝜌, 𝜃), 0 ≤ 𝜌 < a, 0 ≤ 𝜃 < 2𝜋} be the disk of 
radius a. The Dirichlet Laplace eigenfunctions for Ω are

where Jn is the Bessel function of first kind and integer order n and znm ( m = 1, 2,… ) 
are the (real, positive) zeros of Jn (the excluded zero z = 0 of Jn ( n ≥ 1 ) not 
producing nonzero eigenfunctions). Setting the normalization constants to 
�0m =

√
�
�
aJ1(z0m)

�−1 and �nm =
√
�∕2

�
aJn+1(znm)

�−1 (n ≥ 1) , the eigenfunc-
tions (28) are L2(Ω)-orthonormal and satisfy

(28)
�0m = �0mJ0(z0m�∕a), �(1)

nm
= �nmJn(znm�∕a) cos n�, �(2)

mn
= �nmJn(znm�∕a) sin n�

455Numerical Algorithms (2023) 93:441–458



1 3

As (Dirichlet) Laplace eigenfunctions, the functions  (28) define a Hilbert basis of 
L2(Ω) , so that any c ∈ L2(Ω) admits the expansion

with c0m =
(
�0m, c

)
L2(Ω)

 and c(1,2)
nm

=
(
�(1,2)
nm

, c
)
L2(Ω)

 . The H−r(Ω) norm of c is there-
fore given by

Annular domain  Let now Ω = B(0, �1) ⧵ B(0, �2) be the annulus of internal radius �2 
and external radius �1 . The (unnormalized) radial Dirichlet eigenfunctions for Ω are 
given by the expression

so that eigenfunctions are given (analogously to the disc case, and before normaliza-

tion) via �(1,2)
nm

(�, �) = fnm(�)

{
cos(n�)

sin(n�)

}
 . While the functional form  (32) of the 

eigenfunctions is clearly known, the corresponding annular eigenvalues �nm = �2
nm

 
are required for the basis to be fully determined. We solve for the eigenvalues using 
a Newton iteration on the eigenvalue equation, with the method bootstrapped using 
an approximate eigenvalue obtained using the chebfun system [23] (whose values, 
at least for larger eigenvalues fail to provide adequate accuracy but are still highly 
useful to start a Newton iteration).

Appendix 2. Derivation of Padé approximations

Let f have the ( 2n − 1)-th order Taylor expansion

about X = 0 . In particular, we have a0 = 1 and ak+1 = ak(2k + r)∕(2k + 2) for 
f (X) = (1 − X)−r∕2 . The coefficients of the polynomials

such that Πn[f ] = Pn−1∕Qn (with the adopted normalization q0 = 1 ensuring unique-
ness of Pn−1, Qn ) are found from the linear relations

(29)
−Δ�0m = �0m�0m and − Δ�(1,2)

nm
= �nm�

(1,2)
nm

, with �nm = z2
nm
∕a2 (n,m ≥ 0).

(30)c(�, �) =
∑

m≥0

{
c0m�0m(�, �) +

∑

n≥1

(
c(1)
nm
�(1)
nm
(�, �) + c(2)

nm
�(2)
nm
(�, �)

)}

(31)‖c‖2
−r

=
�

m≥0

�
(1 + �0m)

−r[c0m]
2 +

�

n≥1

(1 + �nm)
−r
�
[c(1)

nm
]2 + [c(2)

nm
]2
��

.

(32)fnm(�) =
−1

Jn(�nm�1)
Jn(�nm�) +

1

Yn(�nm�1)
Yn(�nm�).

(33)f (X) = a0 + a1X…+ a2n−1X
2n−1 + o(X2n−1)

(34)Pn−1(X) = p0 + p1X…+ pn−1X
n−1, Qn(X) = 1 + q1X…+ qnX

n,
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where q1,… qn solve the n linear equations (a) and p0,… , pn−1 are then given explic-
itly by relations (b). Numerical experiments for f (X) = (1 − X)−1∕2 indicate however 
that the linear system (35a) becomes ill-conditioned for n larger than about 10. We 
therefore solved (35) using symbolic computation.
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