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Abstract. This paper presents a computational approach for finding the optimal shapes of
peristaltic pumps transporting rigid particles in Stokes flow. In particular, we consider shapes that
minimize the rate of energy dissipation while pumping a prescribed volume of fluid, number of
particles, and/or distance traversed by the particles over a set time period. Our approach relies
on a recently developed fast and accurate boundary integral solver for simulating multiphase flows
through periodic geometries of arbitrary shapes. In order to fully capitalize on the dimensionality
reduction feature of the boundary integral methods, shape sensitivities must ideally involve evaluating
the physical variables on the particle or pump boundaries only. We show that this can indeed be
accomplished owing to the linearity of Stokes flow. The forward problem solves for the particle motion
in a slip-driven pipe flow while the adjoint problems in our construction solve quasi-static Dirichlet
boundary value problems backwards in time, retracing the particle evolution. The shape sensitivities
simply depend on the solution of one forward and one adjoint (for each shape functional) problems.
We validate these analytic shape derivative formulas by comparing against finite-difference based
gradients and present several examples showcasing optimal pump shapes under various constraints.
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1. Introduction. Transporting rigid and deformable particles suspended in a
viscous fluid with precise control is a challenging but crucial task in microfluidics [20].
A classical engineering approach---one that is commonly found in biological systems
(e.g., see [4, 11, 19])---is the use of periodic contraction waves of the enclosing tube to
drive the particulate flows. This mechanism is known as peristalsis. Computationally,
the forward problem of simulating the particle transport for a given peristaltic wave
shape has been considered in a number of works; a few recent ones that consider
various physical scenarios include [1, 6, 21, 25, 26]. However, the inverse problem of
finding the optimal wave shapes (e.g., that minimize the pump's power loss) received
little attention, primarily owing to the computational challenges associated with its
solution---every shape iteration requires a time-dependent solution of a rigid (or de-
formable) particle motion through constrained geometries in Stokes flow. In this work,
we formulate an adjoint-based optimization approach that overcomes several of the
associated computational bottlenecks.

In [3], we considered the shape optimization of peristaltic pumps transporting a
simple Newtonian fluid at low Reynolds numbers, which in turn was inspired by the
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Fig. 1. 2-dimensional (2D) periodic channel with particle-carrying flow in wave frame: geom-
etry and notation.

work of Walker and Shelley [27]. In contrast, the present work considers the case
of pumps transporting large solid particles suspended in the viscous fluid (schematic
in Figure 1). This extension, however, is nontrivial, since a dynamic fluid-structure
interaction problem needs to be solved to simulate the transport for a given peristaltic
wave shape.

The main contributions of this work are twofold. First, to evaluate the shape sen-
sitivities efficiently, we systematically derive adjoint formulations for all the required
shape functionals. The new shape derivative formulas require evaluating physical and
adjoint variables on the domain boundaries only, consistently with the general struc-
ture of shape derivative formulas [16, 18]. Adjoint formulations are very widely used
for the evaluation of shape or material sensitivities in PDE-constrained optimization
[12, 17], even in situations involving time-dependent forward problems, as here. They
have recently been applied to droplet shape control in [13] and are also common-
place in applications such as geophysical full waveform inverse problems [8, 23]. Our
proposed shape sensitivity formulas allow, for each shape functional involved in the
present optimization problem, to evaluate its derivatives with respect to any chosen
set of shape parameters by using a single time-backwards adjoint solution. While
this characteristic is relatively classical nowadays, we faced and solved a significant
and less-common additional difficulty, namely, that the fluid carries particles whose
motion depends on the shape being optimized in an a priori unknown way and gives
rise to design-dependent time-evolving shape parameters. Our adjoint problems are
designed so that the contribution of the latter is accounted for, circumventing the
need of evaluating explicitly the shape sensitivity of the motion of carried particles.

Second, as in [3], we employ boundary integral equation (BIE) techniques to solve
the governing equations. Their usual advantages over classical domain discretization
methods---reduction in dimensionality, high-order accuracy, and availability of fast
solvers---are particularly significant for the shape optimization considered here as
they avoid the need for volume remeshing between optimization iterations and across
the time steps. Specifically, we adapt the BIE method developed in [22] to solve our
forward and the associated adjoint problems. In contrast to classical BIE techniques
that employ periodic Green's functions, it uses free-space Green's functions together
with a set of auxiliary sources and enforces the periodic boundary conditions alge-
braically. The forward and adjoint problems require enforcing a variety of boundary
conditions on the channel and particle boundaries as well as jump conditions across
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B80 M. BONNET, R. LIU, S. VEERAPANENI, AND H. ZHU

the channel---all of which can be accomodated in a straightforward manner using this
BIE formulation.

This paper is organized as follows. In section 2, we introduce the PDE formula-
tion of the peristaltic pumping problem and formally define the shape optimization
problem. The shape sensitivities of the objective function and the constraints are
derived in section 3. The boundary integral method for solving the forward and ad-
joint problems and the numerical optimization procedure are discussed in section 4.
Validation tests and the optimal shapes under various constraints are presented in
section 5, followed by conclusions in section 6.

2. Problem formulation.

2.1. Formulation of the wall motion. Pumping is achieved by the channel
wall shape moving along the positive direction \bfite 1 at a constant velocity c, as a trav-
eling wave of wavelength L (the wave period therefore being Tper := L/c). The
quantities L, c are considered as fixed in the wall shape optimization process. This
apparent shape motion is achieved by a suitable material motion of the wall, whose
material is assumed to be flexible but inextensible. Like in [27], it is convenient to
introduce a wave frame that moves along with the traveling wave, i.e., with velocity
c\bfite 1 relative to the (fixed) lab frame.

Here we consider fluid flows carrying rigid particles, treating in detail the case of
one such particle. The particle motion makes the flow, and the fluid domain, time-
dependent, and we denote by t \in [0, T ] the time interval of interest, the duration
T being arbitrary. Let \Omega (t) denote, in the wave frame, the fluid region enclosed in
one wavelength of the channel (see Figure 1), and let \omega (t) and \gamma (t) be the domain
occupied at time t in the wave frame by the particle and its closed contour. The fluid
domain boundary is \partial \Omega (t) = \Gamma \cup \Gamma p \cup \gamma (t). The wall \Gamma := \Gamma + \cup \Gamma  - , which is fixed
in this frame, has disconnected components \Gamma \pm which are not required to achieve
symmetry with respect to the x1 axis and have respective lengths \ell \pm . The remaining
channel contour \Gamma p := \Gamma 0\cup \Gamma L consists of the periodic planar end sections \Gamma 0 and \Gamma L,
respectively, situated at x1 = 0 and x1 = L; the endpoints of \Gamma L are denoted by \bfitz \pm 

(Figure 1). The orientation conventions of Figure 1 are used throughout.
The fluid flow at any given time is assumed to be spatially periodic in the channel

axis direction. This implies a periodic arrangement of the carried particle(s); for
instance, the single particle considered in what follows is implicitly replicated in each
periodic segment of the channel.

Wall geometry and motion. Both channel walls are described as arcs s \mapsto \rightarrow 
\bfitx \pm (s) with the arclength coordinate s directed ``leftwards"" as depicted in Figure 1,
whereas the unit normal \bfitn to \partial \Omega is everywhere taken as outwards to \Omega . The position
vector \bfitx (s), unit tangent \bfittau (s), unit normal \bfitn (s), and curvature \kappa (s) obey the Frenet
formulas

\partial s\bfitx = \bfittau , \partial s\bfittau = \kappa \bfitn , \partial s\bfitn =  - \kappa \bfittau on \Gamma + and \Gamma  - .(1)

For consistency with our choice of orientation convention (and with the above formu-
las), the curvature is everywhere on \Gamma taken as \kappa = \bfitn \cdot \partial s\bfittau .

In the wave frame, the wall particle velocity must be tangent to \Gamma (wall material
points being constrained to remain on the surface \Gamma ); moreover the wall material
is assumed to be inextensible. In the wave frame, the wall particle velocities \bfitU 
satisfying both requirements must have, on each wall, the form \bfitU (s) = U\bfittau (s), where
U is constant. Moreover, in the wave frame, all wall material points travel over an
entire spatial period during the time interval Tper, which implies U = \ell /L. Finally,
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OPTIMAL SHAPES OF PERISTALTIC PUMPS IN STOKES FLOW B81

the viscous fluid must obey a no-slip condition on the wall, so that the velocity of
fluid particles adjacent to \bfitx (s) is \bfitU (s). Concluding, the pumping motion of the wall
constrains on each wall the fluid motion through

\bfitu (\bfitx ) = \bfitu D(\bfitx ) :=
\ell \pm 

L
\bfittau \pm (\bfitx ), \bfitx \in \Gamma \pm .(2)

In the following, we will drop plus, minus, and \pm symbols referring to upper and lower
channel walls, with the understanding that quantities attached to \Gamma (e.g., \ell ) may take
distinct values on either wall.

Rigid particle motion. The motion of material points \bfitx of a rigid particle \omega ,
or its contour \gamma , has the Lagrangian representation

\omega (t) =
\bigl\{ 
x(\bfitx 0, t), \bfitx 0 \in \omega 0

\bigr\} 
with x(\bfitx 0, t) := \bfitc (t) +\bfitR (t) \cdot \bfitx 0,(3)

where \bfitx 0 is the position of the material point at initial time t = 0 and \omega 0 := \omega (0)
the initial configuration of the particle, while the time-dependent vector \bfitc (t) (with
\bfitc (0) = 0) and the time-dependent unitary matrix \bfitR (t) \in SO(2) (with \bfitR (0) = \bfitI ), re-
spectively, describe the particle translation and rotation relative to the initial particle
configuration \omega 0. The corresponding particle velocity \.\bfitx is, in Eulerian form,

\.\bfitx (t) = \bfitw (t) + \varrho (t) \bfite 3 \times \bfitx = \bfitw (t) + \varrho (t) \bfitr \cdot \bfitx , \bfitx \in \omega (t),(4)

with the constant skew-symmetric tensor \bfitr defined by \bfitr := \bfite 2 \otimes \bfite 1  - \bfite 1 \otimes \bfite 2 and the
angular velocity \varrho and translational velocity \bfitw linked at any time t to \bfitR , \bfitc through
\varrho \bfitr = \.\bfitR \cdot \bfitR T and \bfitw = \.\bfitc  - \varrho \bfite 3 \times \bfitc .

2.2. Forward problem: PDE formulation. The fluid is assumed to be vis-
cous (with dynamic viscosity \mu ) and incompressible, so that the stress tensor is given
by

\bfitsigma [\bfitu , p] =  - p\bfitI + 2\mu \bfitD [\bfitu ],(5)

where \bfitD [\bfitu ] := 1
2 (\bfnabla \bfitu + \bfnabla T\bfitu ) is the strain rate tensor and p is the pressure. We

henceforth use the parameters L, c, \mu to define the nondimensionality of all relevant
variables: coordinates and lengths are scaled by L, velocities by c, angular velocities
by c/L, time by L/c (in particular, Tper = 1 after scaling), and stresses (including
traction vectors and pressures) by \mu c/L. All geometrical or physical variables appear-
ing thereafter are implicitly nondimensional, after scaling according to the foregoing
conventions.

The particle-carrying flow in the wave frame [27] during a time interval t \in [0, T ] is
described at any time instant by the incompressible Stokes equations with periodicity
conditions

 - \Delta \bfitu +\bfnabla p = 0, div\bfitu = 0 in \Omega (t), \bfitu | \Gamma L
= \bfitu | \Gamma 0 .(6a)

The fluid motion results from the prescribed wall velocity

\bfitu = \bfitu D := \ell \bfittau on \Gamma (6b)

(\ell being, after scaling, the ratio of wall and channel lengths). The rigid particle in
turn undergoes a rigid-body motion of the form (3) due to being carried by the fluid
through the no-slip condition at any time:

\bfitu = \.\bfitx on \gamma (t).(6c)
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B82 M. BONNET, R. LIU, S. VEERAPANENI, AND H. ZHU

The fluid region \Omega (t) and the flow solution are time-dependent due to the particle
motion t \mapsto \rightarrow \omega (t). Equations (6a)--(6c) define a well-posed problem for (\bfitu , p) at any
time t if the particle motion (and hence \.\bfitx on \gamma (t)) is known, p being determined up
to an arbitrary (and irrelevant) additive constant.

The particle motion being, in fact, unknown, it is determined from the condition
that the hydrodynamic forces exerted on \gamma (t) have a zero net force and net torque,
i.e., \int 

\gamma (t)

\bfitsigma [\bfitu , p] \cdot \bfitn ds = 0,

\int 
\gamma (t)

\bigl( 
\bfitsigma [\bfitu , p] \cdot \bfitn 

\bigr) 
\cdot (\bfite 3 \times \bfitx ) ds = 0, t \in [0, T ].(6d)

Conditions (6d) allow one to determine the three degrees of freedom \bfitw (t) and \varrho (t) of
the particle velocity \.\bfitx ; see (4). The particle motion is then found by integrating \.\bfitx in
time from a given initial condition

\omega (0) = \omega 0.(6e)

The solution of the forward evolution problem (6a)--(6e), and in particular the particle
motion, is entirely determined by the shape of the wall \Gamma , since the data \bfitu D given
by (6b) are. In a time-discrete explicit setting with time step \Delta t = T/N and time
instants t0 = 0, t1 = \Delta t, . . . , tN = T , (6a)--(6d) are solved at each t = tn and the
particle configuration \gamma n := \gamma (tn) is updated in explicit fashion through

\gamma n+1 = \gamma n + \.\bfitx (\gamma n, tn)\Delta t.(7)

2.3. Forward problem: Weak formulation. In this work, flow computations
rely on a BIE formulation of (6a)--(6d); see section 4.3. It is however convenient, for
the derivation of shape derivative identities and adjoint problems, to recast (6a)--(6d)
of the forward evolution problem in the following mixed weak form (e.g., [5], Chap.
6):

For each t \in [0, T ], find (\bfitu , p, \bfitf ,\bfith , \.\bfitx ) \in \bfscrU \times \scrP \times \bfscrF \times \bfscrH \times \bfscrR ,

\left\{           
(a) a(\bfitu ,\bfitv ) - b(\bfitu , q) - b(\bfitv , p) - 

\bigl\langle 
\bfitf ,\bfitv 

\bigr\rangle 
\Gamma 
 - 
\bigl\langle 
\bfith ,\bfitv 

\bigr\rangle 
\gamma (t)

= 0 \forall (\bfitv , q) \in \bfscrU \times \scrP ,

(b)
\bigl\langle 
\bfitg ,\bfitu D

\bigr\rangle 
\Gamma 
 - 
\bigl\langle 
\bfitg ,\bfitu 

\bigr\rangle 
\Gamma 
= 0 \forall \bfitg \in \bfscrF ,

(c)
\bigl\langle 
\bfitk , \.\bfitx 

\bigr\rangle 
\gamma (t)

 - 
\bigl\langle 
\bfitk ,\bfitu 

\bigr\rangle 
\gamma (t)

= 0 \forall \bfitk \in \bfscrH ,

(d)
\bigl\langle 
\bfith ,\bfitrho 

\bigr\rangle 
\gamma (t)

= 0 \forall \bfitrho \in \bfscrR ,

(8)

where \langle \cdot , \cdot \rangle X stands for the L2(X) duality product, and the bilinear forms a and b are
defined by

a(\bfitu ,\bfitv ) =

\int 
\Omega 

2\bfitD [\bfitu ] :\bfitD [\bfitv ] dV, b(\bfitv , q) =

\int 
\Omega 

q div\bfitv dV.(9)

The function spaces in (8) are as follows: \bfscrU is the space of all periodic vector fields
contained in H1(\Omega ;R2), \scrP is the space of all L2(\Omega ) functions with zero mean (i.e.,
obeying the constraint \langle p, 1\rangle \Omega = 0), \bfscrF = H - 1/2(\Gamma ;R2), and \bfscrH = H - 1/2(\gamma ;R2).
The dependence on time of \bfscrU ,\scrP ,\bfscrF (through the time-dependent regions \Omega (t) and
\omega (t)) is implicitly understood. The chosen definition of \scrP caters for the fact that p
would otherwise be defined only up to an arbitrary additive constant. The Dirichlet
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OPTIMAL SHAPES OF PERISTALTIC PUMPS IN STOKES FLOW B83

boundary conditions (6b) and (6c) are (weakly) enforced through (8b), (8c), rather
than being embedded in the velocity space \bfscrU , as this will make the derivation of shape
derivative identities simpler. The unknown \bfitf , which acts as the Lagrange multiplier
associated with condition (6b), is in fact the force density (i.e., stress vector) \bfitsigma [\bfitu , p]\cdot \bfitn 
on \Gamma ; likewise, \bfith := \bfitsigma [\bfitu , p] \cdot \bfitn is the stress vector arising on \gamma from the kinematic
condition (6c). Condition (6d) is then the weak form of condition (6d), \bfscrR being the
three-dimensional space of rigid-body velocity fields

\bfscrR :=
\bigl\{ 
\bfitrho = \^\bfitrho + \^r\bfite 3 \times \bfitx , (\^\bfitrho , \^r) \in R2 \times R

\bigr\} 
.(10)

Equations (8) govern the flow at each instant t, knowing the current particle position
\omega (t). The complete forward evolution problem in weak form consists of (8) supple-
mented with the initial condition (6e), with the particle motion \omega (t) again to be found
by integrating \.\bfitx in time.

2.4. Objective functionals and optimization problem. We seek channel
wall shapes that optimize the efficiency of peristaltic pumping. This problem involves
two main quantities, namely, the dissipation and the net particle motion, which we
first describe.

Dissipation. The dissipation over a chosen duration T is given [27] by the func-
tional

JW(\Gamma ) :=

\int T

0

\Bigl\{ \bigl\langle 
\bfitf , (\bfitu D + \bfite 1)

\bigr\rangle 
\Gamma 
+
\bigl\langle 
\bfith , (\bfitu + \bfite 1)

\bigr\rangle 
\gamma (t)

\Bigr\} 
dt =

\int T

0

\bigl\langle 
\bfitf , (\bfitu D + \bfite 1)

\bigr\rangle 
\Gamma 
dt

(11)

(up to the scaling factor \mu cL), where (\bfitf ,\bfith ,\bfitu ) are components of the forward solution
at time t and the last equality stems from (6d). Its value being completely determined
by the shape of the wall \Gamma (in a partly implicit way through \bfitf and the \Gamma -dependent
particle evolution \gamma (t)), JW is a shape functional.

Net particle motion. The net motion D(\Gamma ) := xG1 (T ) - xG1 (0) along \bfite 1 of the
particle centroid xG(t) in the wave frame is given by

| \omega | D(\Gamma ) =
\bigl\langle 
x1, 1

\bigr\rangle 
\omega (T )

 - 
\bigl\langle 
x1, 1

\bigr\rangle 
\omega 0
.(12)

Optimization problem. Consider a given particle initial domain \omega 0 and a cho-
sen duration T ; the goal is to find the optimal wall shape \Gamma of the peristaltic pumping
channel that minimizes the dissipation functional JW subject to the volume | \Omega | of the
fluid region being constant and the net particle motion D (in the wave frame) being
given. In the fixed frame, the net particle motion is D+T and the corresponding net
particle velocity is D/T + 1. The constrained optimization problem is then

\Gamma  \star = arg min
\Omega (\Gamma )\in \scrO 

JW(\Gamma ) subject to

\Biggl\{ 
CV(\Gamma ) := | \Omega (\Gamma )|  - V0 = 0,

CD(\Gamma ) := D(\Gamma ) - D0 = 0,
(13)

where \scrO is the set of admissible shapes of \Omega (see section 3.1) and V0, D0 are given
target values.
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B84 M. BONNET, R. LIU, S. VEERAPANENI, AND H. ZHU

Mass flow rate. An additional quantity frequently involved in the optimization
of flows in channels is the average mass flow rate per wavelength Q(\Gamma ), defined in the
wave frame by

Q(\Gamma ) =
1

T

\int T

0

\int 
\Omega (t)

(\bfitu + \bfite 1) \cdot \bfite 1 dV dt = | \Omega | + 1

T

\int T

0

\bigl\langle 
u1, 1

\bigr\rangle 
\Omega (t)

dt,(14)

(up to the scaling factor cL and with u1 = \bfitu \cdot \bfite 1). We next observe that \bfitu is a
rigid-body velocity on \gamma (t), and can thus be continuously extended inside \omega (t) as the
particle rigid-body velocity field \.\bfitx , so that\bigl\langle 

u1, 1
\bigr\rangle 
\Omega (t)

=
\bigl\langle 
u1, 1

\bigr\rangle 
\Omega (t)\cup \omega (t)

 - 
\bigl\langle 
\.\bfitx 1, 1

\bigr\rangle 
\omega (t)

=
\bigl\langle 
u1, 1

\bigr\rangle 
\Omega (t)\cup \omega (t)

 - | \omega | \.\bfitx G
1 (t)(15)

(with u1 in the integral over \Omega (t)\cup \omega (t) understood as the above-introduced extension).
Since \bfitu is divergence-free in \Omega (t)\cup \omega (t), we have u1 = div (x1\bfitu ) - x1div\bfitu = div (x1\bfitu )
and the divergence theorem provides\bigl\langle 

u1, 1
\bigr\rangle 
\Omega (t)\cup \omega (t)

=
\bigl\langle 
x1\bfitu , \bfite 1

\bigr\rangle 
\Gamma L

 - 
\bigl\langle 
x1\bfitu , \bfite 1

\bigr\rangle 
\Gamma 0

=
\bigl\langle 
u1, 1

\bigr\rangle 
\Gamma L

.(16)

The average mass flow rate per wavelength is finally given by

Q(\Gamma ) = | \Omega | + C(\Gamma ) - | \omega | 
T

D(\Gamma ), C(\Gamma ) =
1

T

\int T

0

\bigl\langle 
u1, 1

\bigr\rangle 
\Gamma L

dt,(17)

as a combination of boundary and particle integrals, a format that is well suited to
the present use of BIE solvers. We note that thanks to the above-discussed velocity
field extension, the last integral in (17) involves the whole end section \Gamma L irrespective
of whether the particle crosses it at some particular time.

Even though the mass flow rate is not involved in the examples presented in
section 5, we will derive and provide its shape derivative as a useful additional result;
see section 3.4.

3. Shape sensitivities. This section begins with an overview of available shape
derivative concepts that also serves to set notation (section 3.1). We then derive the
governing problem for the shape derivative of the forward solution (section 3.2) and
use this result to formulate shape derivatives of objective functionals in terms of an
adjoint solution (section 3.3). Specific cases of functionals are finally addressed in
section 3.4.

3.1. Shape sensitivity analysis: An overview. We begin by collecting avail-
able shape derivative concepts that fit our needs, referring to, e.g., [7, Chaps. 8,9]
or [16, Chap. 5] for rigorous expositions of shape sensitivity theory. Let \Omega all \subset R2

denote a fixed domain chosen so that \Omega \Subset \Omega all always holds for the shape optimization
problem of interest. Upon introducing transformation velocity fields, i.e., vector fields
\bfittheta : \Omega all \rightarrow R2 such that \bfittheta = 0 in a neighborhood of \partial \Omega all, shape perturbations of do-
mains \Omega \Subset \Omega all are mathematically described using a pseudotime \eta and a geometrical
transformation of the form

\bfitx \in \Omega all \mapsto \rightarrow \bfitx \eta = \bfitx + \eta \bfittheta (\bfitx ),(18)

which defines a parametrized family of domains \Omega \eta (\bfittheta ) := (\bfitI + \eta \bfittheta )(\Omega ) for any given
``initial"" domain \Omega \Subset \Omega all. The affine format (18) is sufficient for defining the first-
order derivatives at \eta = 0 used in this work.
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OPTIMAL SHAPES OF PERISTALTIC PUMPS IN STOKES FLOW B85

Admissible shapes and their transformations. The set \scrO of admissible
shapes for the fluid region \Omega in a channel period (in the wave frame) is chosen as

\scrO =
\bigl\{ 
\Omega \Subset \Omega all, \Omega is periodic and connected

\bigr\} 
.(19)

Accordingly, let the space \Theta of admissible transformation velocities be defined as

\Theta =
\Bigl\{ 
\bfittheta \in C1,\infty 

0 (\Omega all)
\bigm| \bigm| (i) \bfittheta | \Gamma 0

= \bfittheta | \Gamma L
, (ii) \bfittheta \cdot \bfite 1 = 0 on \Gamma 0, (iii) \bfittheta (\bfitz  - ) = 0

\Bigr\} 
,

(20)

(where C1,\infty 
0 (\Omega all) := W 1,\infty (\Omega all) \cap C1

0 (\Omega all)) ensuring that the shape perturbations
(a) are periodic, (b) prevent any deformation of the end sections \Gamma \pm 

p along the axial
direction, and (c) prevent vertical rigid translations of the channel domain. The
provision \bfittheta \in C1,\infty 

0 (\Omega all) ensures that (a) there exists \eta 0 > 0 such that \Omega \eta (\bfittheta ) \Subset \Omega all

for any \eta \in [0, \eta 0], (b) the weak formulation for the shape derivative of the forward
solution (see (33)) is well-defined in the standard solution spaces, and (c) traces of
\bfittheta and \bfnabla \bfittheta on \partial \Omega \eta are well-defined. Since here shape changes are driven by \Gamma , the
support of \bfittheta may be limited to an arbitrary neighborhood of \Gamma in \Omega .

Lagrangian derivatives. In what follows, all shape derivatives are implicitly
taken at some given configuration \Omega , i.e., at initial ``time"" \eta = 0. The initial La-

grangian derivative
 \star 
\bfita of some (scalar or tensor-valued) field variable \bfita (\bfitx , \eta ) is defined

as

 \star 
\bfita (\bfitx ) = lim

\eta \rightarrow 0

1

\eta 

\bigl[ 
\bfita (\bfitx \eta , \eta ) - \bfita (\bfitx , 0)

\bigr] 
, \bfitx \in \Omega ,(21)

and the Lagrangian derivative of gradients and divergences of tensor fields are given
by

(a) (\bfnabla \bfita ) \star = \bfnabla  \star 
\bfita  - \bfnabla \bfita \cdot \bfnabla \bfittheta , (b) (div\bfita ) \star = div

 \star 
\bfita  - \bfnabla \bfita : (\bfnabla \bfittheta )T.(22)

Likewise, the first-order initial directional derivative J \prime of a shape functional J : \scrO \rightarrow 
R is defined as

J \prime (\Omega ; \bfittheta ) = lim
\eta \rightarrow 0

1

\eta 

\bigl( 
J(\Omega \eta (\bfittheta )) - J(\Omega )

\bigr) 
.(23)

In this work, Lagrangian derivatives with respect to the pseudotime \eta and the physical
time t are distinguished by being, respectively, called ``Lagrangian"" and ``particle""

derivatives, and denoted using a star (e.g.,
 \star 
\bfita ) or a dot (e.g., \.\bfitx ).

Lagrangian differentiation of integrals. Consider, for a given transformation
velocity field \bfittheta \in \Theta , generic domain and contour integrals

(a) IV(\eta ) =

\int 
\Omega \eta (\bfittheta )

F (\cdot , \eta ) dV, (b) IS(\eta ) =

\int 
S\eta (\bfittheta )

F (\cdot , \eta ) ds,(24)

where \Omega \eta (\bfittheta ) = (\bfitI +\eta \bfittheta )(\Omega ) is a variable domain and S\eta (\bfittheta ) := (\bfitI +\eta \bfittheta )(S) a (possibly
open) variable curve. The derivatives of I V(\eta ) and IS(\eta ) are given by

(a)
dIV
d\eta 

\bigm| \bigm| \bigm| 
\eta =0

=

\int 
\Omega 

\bigl[  \star 
F + F (\cdot , 0) div \bfittheta 

\bigr] 
dV,

(b)
dIS
d\eta 

\bigm| \bigm| \bigm| 
\eta =0

=

\int 
S

\bigl[  \star 
F + F (\cdot , 0) divS\bfittheta 

\bigr] 
ds,

(25)
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B86 M. BONNET, R. LIU, S. VEERAPANENI, AND H. ZHU

which are well-known material differentiation formulas of continuum kinematics. In
(25b), divS is the tangential divergence operator, given in the present 2D context by

divS\bfittheta =
\bigl( 
\bfitI  - \bfitn \otimes \bfitn 

\bigr) 
: \bfnabla \bfittheta = \partial s\theta s  - \kappa \theta n,(26)

where \bfittheta on \Gamma is set, using the unit vectors defined in (1), in the form \bfittheta = \theta s\bfittau + \theta n\bfitn 
and the curvature \kappa also follows the conventions of (1).

Finally, the following simple result (proved in Appendix A.2) will prove useful, as
we will consider particle motions, and geometrical transformations of particle-carrying
fluid regions, that preserve the particle shape:

Lemma 1. Let \bfitw \in \bfscrR be a rigid-body vector field on \omega , and let \bfitu \in \bfscrU denote
any extension of \bfitw in \Omega satisfying \bfitu | \gamma = \bfitw . Then divS\bfitu = 0 on \gamma .

Shape functionals and structure theorem. The structure theorem for shape
derivatives (see, e.g., [7, Chap. 8, sect. 3.3]) then states that the derivative of any
shape functional J is a linear functional in the normal transformation velocity \theta n =
\bfitn \cdot \bfittheta | \partial \Omega . For PDE-constrained shape optimization problems involving sufficiently
smooth domains and data, the derivative J \prime (\Omega ; \bfittheta ) has the general form

J \prime (\Omega ; \bfittheta ) =

\int 
\partial \Omega 

g \theta n ds,(27)

where g is the shape gradient of J : Intuitively speaking, the shape of \partial \Omega \eta determines
that of \Omega \eta while the tangential part of \bfittheta leaves \Omega \eta unchanged at leading order O(\eta ).

Example: Derivative of channel volume. The channel volume V (\Omega ) := | \Omega | 
being given by (24a) with F = 1, identity (25a), and Green's theorem readily yield

V \prime (\Omega ; \bfittheta ) =

\int 
\Omega 

div \bfittheta dV =

\int 
\partial \Omega 

\theta n ds =

\int 
\Gamma 

\theta n ds,(28)

the last equality being due to provision (ii) in (20) and the rigid-particle motion.

3.2. Shape derivative of the forward solution. The functionals introduced
in section 2.4 depend on \Gamma implicitly through the forward solution (\bfitu , p,\bfitf ,\bfith ,x). Find-

ing their shape derivatives then involves the forward solution derivative (
 \star 
\bfitu ,

 \star 
p,

 \star 

\bfitf ,
 \star 

\bfith ,
 \star 
\bfitx ).

Unlike in the earlier study [3], here the flow domain evolves in time in a manner that

is not a priori known. Towards setting up the governing problem for (
 \star 
\bfitu ,

 \star 
p,

 \star 

\bfitf ,
 \star 

\bfith ,
 \star 
\bfitx ),

we thus begin by formulating the sensitivity of particle evolution to the shape of the
channel wall.

Perturbations of the wall shape, described through geometrical transformations
of the form (18), induce perturbations of the particle motion through the evolution
problem (6a)--(6e), which can be described by making the rigid-body motion (3) de-
pendent on \eta . Hence, for any material point of \omega \eta (t), we have

x\eta = x(\bfitx 0, t, \eta ) := \bfitc (t, \eta ) +\bfitR (t, \eta ) \cdot \bfitx 0, \bfitx 0 \in \omega 0.(29)

The Lagrangian derivative at \eta = 0 of a point \bfitx \eta of \omega \eta (t) following the shape trans-

formation, being defined by \bfitx \eta = \bfitx + \eta 
 \star 
\bfitx + o(\eta ) whenever such an expansion exists,

is thus given by

 \star 
\bfitx =

 \star 
x(\bfitx 0, t) = \partial \eta \bfitc (t, 0) + \partial \eta \bfitR (t, 0)\bfitx 0, at \bfitx = x(\bfitx 0, t) \in \omega (T ),(30)
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OPTIMAL SHAPES OF PERISTALTIC PUMPS IN STOKES FLOW B87

provided \bfitx , \bfitc depend smoothly enough on \eta , and is moreover readily found to be a
rigid-body velocity (since \bfitx 0 = [\bfitR T \cdot (\bfitx  - \bfitc )](t, 0) and [\partial \eta \bfitR \cdot \bfitR T+\bfitR \cdot \partial \eta \bfitR T](t, 0) = 0).
In addition, the particle motion being assumed for each \eta to start from the same initial
particle \omega 0, we have \bfitc (0, \eta ) = 0, \bfitR (0, \eta ) = \bfitI , and hence

 \star 
x(\cdot , 0) = 0.(31)

Finally, as the no-slip condition (6c) remains true for any small enough \eta (i.e., \bfitu \eta =
\.\bfitx \eta ), we find that

 \star 
\bfitu (\bfitx , t) = (

 \star 
\bfitx 
\bullet 
)(\bfitx , t), \bfitx \in \gamma (t).(32)

Since (again) we have \bfitx \eta = \bfitx + \eta 
 \star 
\bfitx + o(\eta ) in \omega (t),

 \star 
\bfitx is the transformation velocity

for perturbations \omega \eta (t) of the particle \omega (t). Sensitivies of integrals over \Omega or \gamma with
respect to the shape of \gamma are therefore given by (25) with \bfittheta , S replaced by support

of any (arbitrary) extension of
 \star 
\bfitx to \Omega required in (25a) and may be limited to a

neighborhood of \gamma in \Omega . In fact, if the particle motion avoids any contact with
the channel wall, we may assume that supp(\bfittheta ) \cap \omega = \emptyset and supp(\bfittheta ) \cap \omega = \emptyset and

supp(
 \star 
\bfitx \cap \Gamma ) = \emptyset .

We are now ready to formulate the evolution problem for the shape derivative of
the forward solution.

Proposition 2. The shape derivative (
 \star 
\bfitu ,

 \star 
p,

 \star 

\bfitf ,
 \star 

\bfith ,
 \star 
\bfitx ) of the forward solution

(\bfitu , p,\bfitf ,\bfith ,x) satisfies

For each t \in [0, T ], find (
 \star 
\bfitu ,

 \star 
p,

 \star 

\bfitf ,
 \star 

\bfith ,
 \star 
\bfitx ) \in \bfscrU \times \scrP \times \bfscrF \times \bfscrH \times \bfscrR ,\left\{                             

(a) a(
 \star 
\bfitu ,\bfitv ) - b(

 \star 
\bfitu , q) - b(\bfitv ,

 \star 
p) - 

\bigl\langle  \star 
\bfitf ,\bfitv 

\bigr\rangle 
\Gamma 
 - 
\bigl\langle  \star 
\bfith ,\bfitv 

\bigr\rangle 
\gamma (t)

+
\bigl\langle 
\bfitE 
\bigl( 
(\bfitu , p), (\bfitv , q)

\bigr) 
,\bfnabla T  \star 

\bfitx 
\bigr\rangle 
\Omega (t)

=  - 
\bigl\langle 
\bfitE 
\bigl( 
(\bfitu , p), (\bfitv , q)

\bigr) 
,\bfnabla T\bfittheta 

\bigr\rangle 
\Omega (t)

+
\bigl\langle 
\bfitf ,\bfitv divS\bfittheta 

\bigr\rangle 
\Gamma 

\forall (\bfitv , q) \in \bfscrU \times \scrP ,

(b)
\bigl\langle  \star 
\bfitu D, \bfitg 

\bigr\rangle 
\Gamma 
 - 
\bigl\langle  \star 
\bfitu , \bfitg 

\bigr\rangle 
\Gamma 
= 0 \forall \bfitg \in \bfscrF ,

(c)
\bigl\langle 
(
 \star 
\bfitx 
\bullet 
),\bfitk 
\bigr\rangle 
\gamma (t)

 - 
\bigl\langle  \star 
\bfitu ,\bfitk 

\bigr\rangle 
\gamma (t)

= 0 \forall \bfitk \in \bfscrH ,

(d)
\bigl\langle  \star 
\bfith ,\bfitrho 

\bigr\rangle 
\gamma (t)

= 0 \forall \bfitrho \in \bfscrR ,

where the particle motion \gamma (t) = x(\gamma 0, t) is known (from solving the forward problem).

Moreover,
 \star 
\bfitx satisfies the initial condition (31). The (symmetric in ((\bfitu , p), (\bfitv , q)))

tensor-valued function \bfitE is defined by

\bfitE 
\bigl( 
(\bfitu , p), (\bfitv , q)

\bigr) 
= 2(\bfitD [\bfitu ] :\bfitD [\bfitv ])\bfitI  - 2\bfitD [\bfitu ] \cdot \bfnabla \bfitv  - 2\bfitD [\bfitv ] \cdot \bfnabla \bfitu 

+p
\bigl[ 
\bfnabla \bfitv  - (div \bfitv )\bfitI 

\bigr] 
+ q
\bigl[ 
\bfnabla \bfitu  - (div \bfitu )\bfitI 

\bigr] 
,(33)

and the Lagrangian derivative
 \star 
\bfitu D of the Dirichlet data \bfitu D involved in (33b) is given

by

 \star 
\bfitu D =

 \star 

\ell \bfittau + \ell (\partial s\theta n + \kappa \theta s)\bfitn with
 \star 

\ell =  - 
\int \ell 

0

\kappa \theta n ds.(34)
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B88 M. BONNET, R. LIU, S. VEERAPANENI, AND H. ZHU

Proof. The proposition is obtained by applying the material differentiation iden-
tities (25) to the weak formulation (8), assuming that the test functions satisfy

(
 \star 
\bfitv ,

 \star 
q,

 \star 
\bfitg ,

 \star 

\bfitk ,
 \star 
\bfitrho ) = (0, 0,0,0,0), i.e., are convected under the shape perturbation. The

latter provision is made possible by the absence of boundary constraints in the def-
inition of \bfscrU ,\scrP ,\bfscrF ,\bfscrH ,\bfscrR (section 2.3). Moreover, equations (a), (c), (d) use that

divS
 \star 
\bfitx = 0 (Lemma 1), while (c) also exploits (32). The tensor-valued function \bfitE 

arises from rearranging all domain integrals that explicitly involve either \bfittheta or
 \star 
\bfitx .

Finally, the proof of the given expression for
 \star 
\bfitu D is deferred to Appendix A.3.

Remark 3. The provision \bfittheta \in C1,\infty 
0 (\Omega all) in (20) ensures that domain integrals

\langle \bfitE ,\bfnabla T\bfittheta \rangle \Omega appearing in Proposition 2 are well-defined for any (\bfitu , p) \in \bfscrU \times \scrP .

Remark 4. The mean of
 \star 
p is in practice irrelevant; setting it through \langle  \star p, 1\rangle \Omega +

\langle pdiv \bfittheta , 1\rangle \Omega = 0 would preserve the zero-mean constraint on p under shape perturba-
tions.

Remark 5. The tensor-valued function \bfitE given by (33) is the analog for Stokes
flows of the elastic energy-momentum tensor [9], which plays a central role in the
analysis of energy changes induced by crack growth in solids.

3.3. Shape derivative of a generic functional. Consider generic objective
functionals

J(\Gamma ) =

\int 
\omega (T )

G(\bfitx ) dV +

\int T

0

\Bigl\{ \int 
\Gamma 

F (\bfitf ,\Gamma ) ds+

\int 
\Gamma L

H(u1) ds
\Bigr\} 
dt,(35)

where \bfitf , \bfitu , and \omega (T ) (through x(\cdot , T )) are components of the forward solution and
F,G,H are sufficiently regular densities. The dissipation, particle centroid, and mass
flow rate functionals introduced in section 2.4 all have the format (35) (see section
3.4), thanks in particular to the assumed explicit dependence of F on the wall shape.
The chosen notation J(\Gamma ) serves to emphasize the fact that the shape dependency is
driven by \Gamma ; in particular, the particle motion induces a \Gamma -dependent evolution of the
fluid domain \Omega (T ).

The derivative of the cost functional (35) is then given, using (25a), (25b), by

J \prime (\Gamma ;\bfittheta ) =

\int 
\omega (T )

\bfnabla G \cdot  \star 
\bfitx dV+

\int T

0

\Bigl\{ \int 
\Gamma 

\bigl[ 
\partial \bfitf F (\bfitf ,\Gamma ) \cdot 

 \star 

\bfitf +F 1(\bfitf ,\Gamma ,\bfittheta )+F (\bfitf ,\Gamma )divS\bfittheta 
\bigr] 
ds

(36)

+

\int 
\Gamma L

\bigl[ 
\partial u1

H(u1)
 \star 
u1 +H(u1)\partial 2\theta 2

\bigr] 
ds
\Bigr\} 
dt,

where F 1 :=
 \star 

F |  \star 
\bfitf =0

and having used that divS\bfittheta = \partial 2\theta 2 on \Gamma L and div
 \star 
\bfitx = 0 in \omega (t).

Adjoint problem. The shape derivative J \prime (\Gamma ) involves the forward solution

derivatives
 \star 
\bfitu ,

 \star 

\bfitf ,
 \star 
\bfitx solving problem (33). Finding the latter therefore seems at first

glance necessary for evaluating J \prime (\Gamma ;\bfittheta ) in a given shape perturbation \bfittheta , but in fact
can be avoided with the help of an adjoint backward evolution problem defined by
the weak formulation,
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OPTIMAL SHAPES OF PERISTALTIC PUMPS IN STOKES FLOW B89

For t \in [0, T ], find (\^\bfitu , \^p, \^\bfitf , \^\bfith , \^\bfitx ) \in \bfscrU \times \scrP \times \bfscrF \times \bfscrH \times \bfscrR ,

\left\{                   

(a) a(\bfitv , \^\bfitu ) - b(\^\bfitu , q) - b(\bfitv , \^p) - 
\bigl\langle 
\bfitv , \^\bfitf 

\bigr\rangle 
\Gamma 
 - 
\bigl\langle 
\bfitv , \^\bfith 

\bigr\rangle 
\gamma (t)

=  - 
\bigl\langle 
\partial u1

H, v1
\bigr\rangle 
\Gamma L

\forall (\bfitv , q) \in \bfscrU \times \scrP ,

(b)
\bigl\langle 
\bfitg , \^\bfitu 

\bigr\rangle 
\Gamma 
=
\bigl\langle 
\partial \bfitf F, \bfitg 

\bigr\rangle 
\Gamma 

\forall \bfitg \in \bfscrF ,

(c)  - 
\bigl\langle 
\bfitk , \^\bfitu 

\bigr\rangle 
\gamma (t)

+
\bigl\langle 
\bfitk , \^\bfitx 

\bigr\rangle 
\gamma (t)

= 0 \forall \bfitk \in \bfscrH ,

(d)  - 
\bigl\langle \bullet 
\^\bfith ,\bfitrho 

\bigr\rangle 
\gamma (t)

+
\bigl\langle 
\bfitE 
\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
,\bfnabla T\bfitrho 

\bigr\rangle 
\Omega (t)

= 0 \forall \bfitrho \in \bfscrR ,

(37)

and the final condition

\bigl\langle 
\^\bfith (\cdot , T ),\bfitrho 

\bigr\rangle 
\gamma (T )

=  - 
\bigl\langle 
\bfnabla G,\bfitrho 

\bigr\rangle 
\omega (T )

at t = T \forall \bfitrho \in \bfscrR ,(38)

where the particle motion \omega (t) is again known from solving the forward problem. The
adjoint state (\^\bfitu , \^p, \^\bfitf , \^\bfith , \^\bfitx ) is thus created by applying a pressure difference \Delta \^p =
\partial u1H between the channel end sections, while prescribing a velocity \^\bfitu = \partial \bfitf G on the
channel walls; moreover, condition (37d) links the evolution of the net hydrodynamic
force and torque on \gamma (t) to the other variables of the adjoint solution. The particle

derivative
\bullet 
\^\bfith of the adjoint traction \^\bfith is taken following the known motion of the

particle \omega (t).
A backward time-stepping treatment using the sequence of discrete times intro-

duced in section 2.3 may be defined by treating the particle derivative
\bullet 
\^\bfith in Euler-

explicit form, setting \^\bfith n := \^\bfith (\bfitx (tn), tn) (i.e., following material points \bfitx n in the

known forward motion of \gamma ) and
\bullet 
\^\bfith n+1 \approx (\^\bfith n+1  - \^\bfith n)/\Delta t. Condition (37d) then

takes the form

\bigl\langle 
\^\bfith n,\bfitrho 

\bigr\rangle 
\gamma n+1

=
\bigl\langle 
\^\bfith n+1,\bfitrho 

\bigr\rangle 
\gamma n+1

 - \Delta t
\bigl\langle 
\bfitn \cdot \bfitE n+1,\bfitrho 

\bigr\rangle 
\gamma n+1

,(39)

where \bfitn \cdot \bfitE n+1 is given by (45) with the forward and adjoint solutions evaluated at
t = tn+1. A natural time-stepping method for the adjoint problem then is

1. Final time (t = tN ): solve (37a)--(37c) and (38) for (\^\bfitu , \^p, \^\bfitf , \^\bfith , \^\bfitx )(tN ).
2. Generic time (t = tn, 0 \leq n < N): solve (37a)--(37d) for (\^\bfitu , \^p, \^\bfitf , \^\bfith , \^\bfitx )(tn),

with condition (37d) in the time-discrete form (39).

Remark 6. Like the forward problem (8), the adjoint problem (37) is evolutive.
The adjoint solution evolves backwards in time, from the final condition (38). The
particle motion in problem (37) is given, whereas it was unknown in problem (8).

Remark 7. The provision \forall \bfitrho \in \bfscrR in (37d) is a notational abuse, as \bfitrho therein is an
extension to C1,\infty (\Omega ) of a rigid-body transformation velocity \bfitrho | \omega (t) \in \bfscrR . Lemma 10
will show that, for given \bfitrho | \omega (t) \in \bfscrR , (37d) does not depend on the choice of extension.

Shape derivative using adjoint solution. Now, combining the derivative
problem (33) and the adjoint problem (37) with appropriate choices of test func-
tions, we obtain an expression of J \prime (\Gamma ;\bfittheta ) that no longer involves the derivative
solution.
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Lemma 8. The shape derivative J \prime (\Gamma ;\bfittheta ) is given by

J \prime (\Gamma ;\bfittheta ) =

\int T

0

\Bigl\{ \bigl\langle 
\bfitE 
\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
,\bfnabla T\bfittheta 

\bigr\rangle 
\Omega (t)

+
\bigl\langle  \star 
\bfitu D, \^\bfitf 

\bigr\rangle 
\Gamma 
+
\bigl\langle 
H(u1), \partial 2\theta 2

\bigr\rangle 
\Gamma L

+

\int 
\Gamma 

\bigl\{ 
F 1(\bfitf ,\Gamma ,\bfittheta ) +

\bigl[ 
F (\bfitf ,\Gamma ) - \partial \bfitf F (\bfitf ,\Gamma ) \cdot \bfitf 

\bigr] 
divS\bfittheta 

\bigr\} 
ds
\Bigr\} 
dt(40)

in terms of the transformation velocity \bfittheta on \Gamma , of (\bfitu , p,\bfitf ) solving the forward problem
(8), and of (\^\bfitu , \^p, \^\bfitf ) solving the adjoint problem (37).

Proof. The test functions (\bfitv , q, \bfitg ,\bfitk ,\bfitrho ) are set to (\^\bfitu , \^p, \^\bfitf , \^\bfith , \^\bfitx ) in the derivative

problem (33) and to (
 \star 
\bfitu ,

 \star 
p,

 \star 

\bfitf ,
 \star 

\bfith ,
 \star 
\bfitx ) in the adjoint problem (37), and the combination

(33a)+(33b)+(33c)+(33d)-(37a)+(37b)-(37c)-(37d) is then evaluated (using \^\bfitu = \partial \bfitf G
on \Gamma , implied by (37b), along the way). This results in\bigl\langle 

\partial \bfitf F,
 \star 

\bfitf 
\bigr\rangle 
\Gamma 
+
\bigl\langle 
\partial u1H,

 \star 
u1

\bigr\rangle 
\Gamma L

=
\bigl\langle 
\bfitE 
\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
,\bfnabla T\bfittheta 

\bigr\rangle 
\Omega (t)

+
\bigl\langle  \star 
\bfitu D, \^\bfitf 

\bigr\rangle 
\Gamma 

 - 
\bigl\langle 
\partial \bfitf F,\bfitf divS\bfittheta 

\bigr\rangle 
\Gamma 
+
\bigl\langle  \star 
\bfitx ,

\bullet 
\^\bfith 
\bigr\rangle 
\gamma (t)

+
\bigl\langle 
(
 \star 
\bfitx 
\bullet 
), \^\bfith 
\bigr\rangle 
\gamma (t)

,(41)

which we then use in expression (36) of J \prime (\Gamma ;\bfittheta ) to obtain

J \prime (\Gamma ;\bfittheta ) =
\bigl\langle 
\bfnabla G,

 \star 
\bfitx 
\bigr\rangle 
\omega (T )

+

\int T

0

\Bigl\{ \bigl\langle 
\bfitE 
\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
,\bfnabla T\bfittheta 

\bigr\rangle 
\Omega (t)

+
\bigl\langle  \star 
\bfitu D, \^\bfitf 

\bigr\rangle 
\Gamma 

(42)

+
\bigl\langle 
H(u1), \partial 2\theta 2

\bigr\rangle 
\Gamma L

+

\int 
\Gamma 

\bigl\{ 
F 1(\bfitf ,\Gamma ,\bfittheta ) +

\bigl[ 
F (\bfitf ,\Gamma ) - \partial \bfitf F \cdot \bfitf 

\bigr] 
divS\bfittheta 

\bigr\} 
ds+

\bigl\langle  \star 
\bfitx ,

\bullet 
\^\bfith 
\bigr\rangle 
\gamma (t)

+
\bigl\langle 
(
 \star 
\bfitx 
\bullet 
), \^\bfith 
\bigr\rangle 
\gamma (t)

\Bigr\} 
dt.

Then, we observe that the last two terms in the above formula combine to an exact
particle time derivative (by virtue of the differentiation identity (25b) wherein \eta and
\bfittheta are replaced with the physical time t and particle velocity \.\bfitx , and recalling that
divS \.\bfitx = 0),

\int T

0

\Bigl\{ \bigl\langle \bigl\langle  \star 
\bfitx ,

\bullet 
\^\bfith 
\bigr\rangle 
\gamma (t)

+(
 \star 
\bfitx 
\bullet 
), \^\bfith 
\bigr\rangle 
\gamma (t)

\Bigr\} 
dt=

\int T

0

d

dt

\bigl\langle  \star 
\bfitx , \^\bfith 

\bigr\rangle 
\gamma (t)

dt=
\bigl\langle  \star 
\bfitx , \^\bfith 

\bigr\rangle 
\gamma 

\bigm| \bigm| \bigm| t=T

t=0
= - 

\bigl\langle 
\bfnabla G,

 \star 
\bfitx 
\bigr\rangle 
\omega (T )

(43)

with the last equality resulting from the initial condition (31) and the final condition
(38). As a result, (42) yields J \prime (\Gamma ;\bfittheta ) as claimed in the lemma.

Remark 9. The evolution equation (37d) and final condition (38) are designed
to achieve complete elimination from J \prime (\Gamma ;\bfittheta ) of the induced transformation velocity
 \star 
\bfitx (featured among the unknowns of the derivative problem (33)); as a result (and
as usual), the adjoint solution evolves backwards in time. We moreover observe that
Lemma 8 crucially exploits the weak forms of the derivative and adjoint problems.

Boundary-only formulation of the shape derivative. Neither the adjoint
problem (37) nor the shape derivative expression provided by Lemma 8 can be directly
used within a BIE framework, in both cases because of the domain integral terms
involving\bfitE . We now show that those terms can be reformulated as boundary integrals
involving only quantities defined on \Gamma and \Gamma L, thanks to the following identity.
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Lemma 10. Let (\bfitu , p) and (\^\bfitu , \^p), respectively, satisfy div\bfitu = 0,  - \Delta \bfitu +\bfnabla p = 0
and div\^\bfitu = 0,  - \Delta \^\bfitu +\bfnabla \^p = 0 in \Omega . Assume that \bfitu , \^\bfitu , and p are periodic, and set
\Delta \^p(x2) := \^p(L, x2)  - \^p(0, x2) (i.e., periodicity is not assumed for \^p). Then, for any
vector field \bfitzeta \in C1,\infty 

0 (\Omega all), the following identity holds:

\bigl\langle 
\bfitE 
\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
,\bfnabla T\bfitzeta 

\bigr\rangle 
\Omega (t)

=

\int 
\Gamma \cup \gamma (t)

\bfitn \cdot \bfitE 
\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
\cdot \bfitzeta ds+

\int 
\Gamma L

\Delta \^p (\partial 2u1)\zeta 2 ds.

(44)

Moreover, if the traces on \gamma of \bfitu , \^\bfitu are rigid-body velocities with respective angular
velocities \varrho , \^\varrho , we have

\bfitn \cdot \bfitE 
\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
=  - 

\bigl( 
\^\varrho \bfith + \varrho \^\bfith 

\bigr) 
\cdot \bfitr  - hs

\^hs \bfitn on \gamma ,(45)

where \bfith = \bfitsigma [\bfitu , p] \cdot \bfitn , \^\bfith = \bfitsigma [\^\bfitu , \^p] \cdot \bfitn , and \bfitr = \bfite 2 \otimes \bfite 1  - \bfite 1 \otimes \bfite 2 = \bfitn \times \bfittau  - \bfittau \times \bfitn 
(see (4)).

Proof. See Appendix A.4 for proof.

Lemma 10 is first applied, with \bfitzeta = \bfitrho , to the term \langle \bfitE ((\bfitu , p), (\^\bfitu , \^p)),\bfnabla T\bfitrho \rangle \Omega (t) in
the adjoint evolution equation (37d), in which case the velocity fields \bfitu and \^\bfitu both
have rigid-body traces on \gamma (t) while \bfitrho can be safely assumed to verify supp(\bfitrho )\cap \Gamma = \emptyset .
The evolution equation (37d) thus becomes

 - 
\bigl\langle \bullet 
\^\bfith ,\bfitrho 

\bigr\rangle 
\gamma (t)

+
\bigl\langle 
\bfitn \cdot \bfitE 

\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
,\bfitrho 
\bigr\rangle 
\gamma (t)

= 0 \forall \bfitrho \in \bfscrR (46)

with \bfitn \cdot \bfitE given by (45), allowing the adjoint problem (37) to be recast in BIE form.
We then evaluate \langle \bfitE ((\bfitu , p), (\^\bfitu , \^p)),\bfnabla T\bfittheta \rangle \Omega (t) in expression (40) of J \prime (\Gamma ;\bfittheta ) by

means of Lemma 10 applied (with \bfitzeta = \bfitrho ) to the solutions of the forward problem (8)
and the adjoint problem (37) (for which \Delta \^p = \partial u1H). Observing along the way that\int 

\Gamma L

\partial u1H(u1) (\partial 2u1)\theta 2 ds+

\int 
\Gamma L

H(u1) \partial 2\theta 2 ds =

\int 
\Gamma L

\partial 2
\bigl( 
H(u1)\theta 2

\bigr) 
ds,(47)

the shape derivative of J is recast in the following form, without domain integrals:

J \prime (\Gamma ;\bfittheta ) =

\int T

0

\Bigl\{ \int 
\Gamma 

\Bigl( 
\^\bfitf \cdot  \star 
\bfitu D + \bfitn \cdot \bfitE 

\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
\cdot \bfittheta 
\Bigr) 
ds+

\int 
\Gamma L

\partial 2
\bigl( 
H(u1)\theta 2

\bigr) 
ds

+

\int 
\Gamma 

\Bigl( 
F 1(\bfitf ,\Gamma ,\bfittheta ) +

\bigl[ 
F (\bfitf ,\Gamma ) - \partial \bfitf F (\bfitf ,\Gamma ) \cdot \bfitf 

\bigr] 
divS\bfittheta 

\Bigr) 
ds
\Bigr\} 
dt.(48)

Expression (48) is still somewhat inconvenient for use in a BIE framework as it
involves (through \bfitD [\bfitu ] and \bfitD [\^\bfitu ] in \bfitE ) the complete velocity gradient on \Gamma . This
can be alleviated by reformulating the latter in terms of tractions and tangential
derivatives of velocities, eliminating normal derivatives of velocities by means of the
constitutive relation (6a,b). This step is here implemented through the following
explicit auxiliary identity, established (in Appendices A.1 and A.5) using curvilinear
coordinates:

\^\bfitf \cdot  \star 
\bfitu D + \bfitn \cdot \bfitE 

\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
\cdot \bfittheta +

\bigl[ 
F (\bfitf ,\Gamma ) - \partial \bfitf F (\bfitf ,\Gamma ) \cdot \bfitf 

\bigr] 
divS\bfittheta (49)

= ds
\bigl( \bigl[ 
F (\bfitf ,\Gamma ) - \partial \bfitf F (\bfitf ,\Gamma ) \cdot \bfitf 

\bigr] 
\theta s
\bigr) 
+

 \star 

\ell \^fs  - \ell (\partial s\theta n) \^fn + \kappa \ell \^fs\theta n  - 
\bigl( 
\partial sF

\bigr) 
\theta s

+
\Bigl( \bigl[ 

fs\bfitn  - p\bfittau 
\bigr] 
\cdot \partial s\^\bfitu  - fs \^fs  - \kappa 

\bigl[ 
F (\bfitf ,\Gamma ) - \partial \bfitf F (\bfitf ,\Gamma ) \cdot \bfitf 

\bigr] \Bigr) 
\theta n,(50)
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B92 M. BONNET, R. LIU, S. VEERAPANENI, AND H. ZHU

where \partial sF indicates the partial derivative w.r.t. s of F (\bfitf ,\Gamma ) (with \bfitf frozen) while ds
denotes a total derivative w.r.t. s. We now use the above identities into (48). Since
ds([F  - \partial \bfitf F \cdot \bfitf ]\theta s) ds integrates to zero over \Gamma by virtue of the spatial periodicity of
the forward solution and requirement (i) of (20), we obtain the following final result
for J \prime (\Gamma ;\bfittheta ), suitable for direct implementation using the output of a BIE solver:

Proposition 11. The shape derivative of any cost functional J of the form (35)
in a shape perturbation whose transformation velocity field \bfittheta satisfies assumptions
(20) is given (with fs := \bfitf \cdot \bfittau , \^fs := \^\bfitf \cdot \bfittau ) by

J \prime (\Gamma ;\bfittheta ) =

\int T

0

\Bigl\{ \int 
\Gamma 

\Bigl( 
F 1  - 

\bigl( 
\partial sF

\bigr) 
\theta s +

 \star 

\ell \^fs  - \ell (\partial s\theta n)(\^p+ 2\bfittau \cdot \partial s\^\bfitu )
\Bigr) 
ds(51)

+

\int 
\Gamma L

\partial 2
\bigl( 
H(u1)\theta 2

\bigr) 
ds

+

\int 
\Gamma 

\Bigl( 
(fs\bfitn  - p\bfittau ) \cdot \partial s\^\bfitu + \kappa \ell \^fs  - fs \^fs  - \kappa 

\bigl[ 
F  - \partial \bfitf F \cdot \bfitf 

\bigr] \Bigr) 
\theta n ds.

We now apply Proposition 11 to the specific functionals introduced in section 2.4.

3.4. Sensitivity results for functionals involved in pumping problem.
The adjoint state solving the weak formulation (37) satisfies the incompressible Stokes
equations with periodicity conditions

 - \Delta \^\bfitu +\bfnabla \^p = 0, div \^\bfitu = 0 in \Omega (t), \^\bfitu | \Gamma L
= \^\bfitu | \Gamma 0

,(52a)

the fluid domain \Omega (t) and particle configuration \gamma (t) being those determined by the
forward problem. Moreover, the adjoint fluid motion results from the velocity being
prescribed by

\^\bfitu = \^\bfitx on \gamma (t)(52b)

on the particle, and by

\^\bfitu = \partial \bfitf F on \Gamma (52c)

on the wall, as well as the pressure drop being prescribed as

\^p | \Gamma L
 - \^p | \Gamma 0

= \partial u1
H.(52d)

Moreover, \^\bfith and \^\bfitf in the weak adjoint problem (37) are the stress vectors arising from
the enforcement (as equality constraints) of the BCs (52b) and (52c); in particular,
\^\bfith = \bfitsigma [\^\bfitu , \^p] \cdot \bfitn on \gamma (t) and \^\bfitf = \bfitsigma [\^\bfitu , \^p] \cdot \bfitn on \Gamma .

Equations (52a)--(52d) are the strong-form counterparts of (37a)--(37c), and define
a well-posed problem in case \^\bfitx is given. However, like x in the forward problem, \^\bfitx 
is unknown. This is compensated for by the fact that \^\bfith must satisfy additional
requirements, namely, the evolution equation (37d) and the final condition (38). The
strong form of the evolution equation is

\bigl\langle \bullet 
\^\bfith , 1
\bigr\rangle 
\gamma (t)

=  - 
\bigl\langle \bigl( 
\varrho \^\bfith \cdot \bfitr + hs

\^hs \bfitn 
\bigr) 
, 1
\bigr\rangle 
\gamma (t)

,\bigl\langle \bullet 
\^\bfith , \bfite 3 \times \bfitx 

\bigr\rangle 
\gamma (t)

=
\bigl\langle \bigl( 

\^\varrho \bfith + \varrho \^\bfith  - hs
\^hs \bfittau 

\bigr) 
,\bfitx 
\bigr\rangle 
\gamma (t)

t \in [0, T ](52e)
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OPTIMAL SHAPES OF PERISTALTIC PUMPS IN STOKES FLOW B93

(having invoked (45) and used that \bfitr \cdot (\bfite 3 \times \bfitx ) =  - \bfitx , \bfitn \cdot (\bfite 3 \times \bfitx ) = \bfittau \cdot \bfitx , and, by
virtue of (8d), \langle \bfith , 1\rangle \gamma = 0) for the evolution equation, while that of the final condition
reads \bigl\langle 

\^\bfith (\cdot , T ), 1
\bigr\rangle 
\gamma (T )

=  - 
\bigl\langle 
\bfnabla G, 1

\bigr\rangle 
\omega (T )

,\bigl\langle 
\^\bfith (\cdot , T ), \bfite 3 \times \bfitx 

\bigr\rangle 
\gamma (T )

=  - 
\bigl\langle 
\bfnabla G, \bfite 3 \times \bfitx 

\bigr\rangle 
\omega (T )

.
(52f)

Equations (52a)--(52f) together constitute the strong form of the weak adjoint prob-
lem (37). Equations (52b), (52d), and (52f) depend on the objective function being
considered, whereas (52a), (52b), (52e) do not.

Shape derivative of dissipation functional. The dissipation functional JW,
defined by (11), is a particular instance of (35) with F (\bfitf ,\Gamma ) = (\bfitu D + \bfite 1) \cdot \bfitf and
G = H = 0. In particular, we have

\partial sF =
\bigl( 
\partial s\bfitu 

D
\bigr) 
\cdot \bfitf =  - \kappa \ell p, \partial \bfitf F = \bfitu D + \bfite 1,(53)

from which we find \partial s\^\bfitu = (\kappa \ell )\bfitn . We also have F  - \bfitf \cdot \partial \bfitf F = 0. Finally, F depends

on \Gamma through \bfitu D given by (6b), so that F 1 =
 \star 
\bfitu D \cdot \bfitf , which in turn yields

F 1  - \partial sF =
 \star 

\ell fs  - \kappa \ell \partial s\theta n(54)

with the help of (34). The adjoint solution is governed in strong form by (52a) to (52f)
particularized to the case of JW, i.e., the velocity on the particle and the pressure
drop are prescribed as

\^\bfitu = \bfitu D + \bfite 1 on \Gamma , \^p | \Gamma L
 - \^p | \Gamma 0= 0,(55)

while the final conditions (52f) on \^\bfith are (since G = 0) homogeneous:\bigl\langle 
\^\bfith (\cdot , T ), 1

\bigr\rangle 
\gamma (T )

= 0,
\bigl\langle 
\^\bfith (\cdot , T ), \bfite 3 \times \bfitx 

\bigr\rangle 
\gamma (T )

= 0.(56)

Applying Proposition 11 to this case, the shape derivative of JW is therefore obtained

(upon evaluation of
 \star 
\bfitu D \cdot \bfitf with (34)) as

J \prime 
W(\Gamma ;\bfittheta ) =

\int T

0

\int 
\Gamma 

\Bigl\{ \Bigl[ 
\kappa \ell (fs + \^fs) - fs \^fs

\Bigr] 
\theta n +

 \star 

\ell (fs + \^fs) - \ell (\partial s\theta n)(p+ \^p)
\Bigr\} 
ds dt.

(57)

Shape derivative of net particle motion. The net particle motion D(\Gamma ),
defined by (12), is another shape functional of the form (35), with G(\bfitx ) = x1/| \omega | and
F = H = 0. The adjoint problem in strong form still consists of (52a) to (52f), whose
particularization for D(\Gamma ) results in vanishing entails setting to zero the velocity on
the particle and the pressure,

\^\bfitu = 0 on \Gamma , \^p | \Gamma L
 - \^p | \Gamma 0= 0,(58)

while the final conditions (52f) become

(a)
\bigl\langle 
\^\bfith (\cdot , T ), 1

\bigr\rangle 
\gamma (T )

=  - \bfite 1, (b)
\bigl\langle 
\^\bfith (\cdot , T ), \bfite 3 \times \bfitx 

\bigr\rangle 
\gamma (T )

= xG
2 (T ).(59)

We note that conditions (52e) and (59), as well as the definition of \^\bfith as a traction
vector, assume the orientation convention of Figure 1 on \gamma (t) while \bfitx is the absolute
vector position in (59b). The derivative D\prime (\Gamma ;\bfittheta ) of D(\Gamma ) is found from Proposition
11 to be given by the right-hand side of (63) without the contributions of \Gamma L, i.e.,

D\prime (\Gamma ;\bfittheta ) =

\int T

0

\int 
\Gamma 

\Bigl\{ \bigl( 
\ell \kappa \^fs  - fs \^fs

\bigr) 
\theta n +

 \star 

\ell \^fs  - \ell (\partial s\theta n)\^p
\Bigr\} 
ds dt.(60)
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Shape derivative of mass flow rate functional. The shape derivative of the
time-averaged mass flow functional C(\Gamma ) defined by (17) is given by

Q\prime (\Gamma ;\bfittheta ) =  - | \omega | 
\bigl\langle 
D\prime (\Gamma ), \bfittheta 

\bigr\rangle 
+
\bigl\langle 
| \Omega | \prime ,\bfittheta 

\bigr\rangle 
+
\bigl\langle 
C \prime (\Gamma ), \bfittheta 

\bigr\rangle 
(61)

with the first two derivatives, respectively, given by (60) and (28), so that we only
need to focus on the evaluation of C \prime (\Gamma ;\bfittheta ). C(\Gamma ), defined in (17), is a shape functional
of the form (35) with F = G = 0 and H(u1) = u1/T . The adjoint solution associated
with C(\Gamma ) therefore solves problem (52a)--(52f) with the above-specified F,G,H , so
that (52b), (52d) become

\^\bfitu = 0 on \Gamma , \^p | \Gamma L
 - \^p | \Gamma 0= 1/T,(62)

and the homogeneous final conditions (56) again apply. The shape derivative of C(\Gamma )
is finally found from Proposition 11 to be given by

C \prime (\Gamma ;\bfittheta ) =

\int T

0

\int 
\Gamma 

\Bigl\{ \bigl( 
\ell \kappa \^fs  - fs \^fs

\bigr) 
\theta n +

 \star 

\ell \^fs  - \ell (\partial s\theta n)\^p
\Bigr\} 
ds dt

+
1

T

\int T

0

\bigl[ \bigl( 
u1\theta 2

\bigr) 
(\bfitz +, \cdot ) - 

\bigl( 
u1\theta 2

\bigr) 
(\bfitz  - , \cdot )

\bigr] 
dt.(63)

4. Numerical scheme. In this section, we describe our numerical solvers for the
shape optimization problem (13) that employ the shape sensitivity formulas derived
in the previous section.

4.1. Optimization method. To avoid second-order derivatives of the cost func-
tional, whose evaluation is somewhat challenging in our case, we solve the shape op-
timization problem (13) using an augmented Lagrangian approach and the Broyden--
Fletcher--Goldfarb--Shanno (BFGS) algorithm. An augmented Lagrangian \scrL A is de-
fined by

\scrL A(\Omega , \lambda ;\sigma ) = JW(\Omega ) - \lambda 1CV(\Omega ) - \lambda 2CD(\Omega ) +
\sigma 

2
[C2

V(\Omega ) + C2
D(\Omega )],(64)

where \sigma is a positive penalty coefficient and \lambda = (\lambda 1, \lambda 2) are Lagrange multipliers. Set-
ting the initial values \sigma 0 and \lambda 0 using heuristics, the augmented Lagrangian method
introduces a sequence (m = 1, 2, . . .) of unconstrained minimization problems,

\Omega m = arg min\Omega \in \scrO \scrL A(\Omega , \lambda 
m;\sigma m)(65)

with explicit Lagrange multiplier estimates \lambda m and increasing penalties \sigma m. We use
the BFGS algorithm [24], a quasi-Newton method, for solving (65). Equations (28),
(57), and (60) are used in this context for gradient evaluations in the line search
method. The overall optimization procedure for problem (13) is summarized in the
following algorithm:

a. Choose initial fluid region \Omega 0

b. Set convergence tolerance \zeta  \star , \lambda 0, \sigma 0, and \zeta 1 = (\sigma 0) - 0.1

c. for m = 1, 2, . . . do

(3-a): Solve unconstrained minimization (65) for \Omega m, go to (3-b)
(3-b): if max(| CV(\Omega m)| , | CD(\Omega m)| ) < \zeta m then go to (3-c), else go to (3-e)
(3-c): if max(| CV(\Omega m)| , | CD(\Omega m)| ) < \zeta  \star then STOP and return \Omega  \star := \Omega m,

else go to (3-d)
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OPTIMAL SHAPES OF PERISTALTIC PUMPS IN STOKES FLOW B95

(3-d): \# update multiplier
\lambda m
1 = \lambda m - 1

1  - \sigma m - 1CV(\Omega m), \lambda m
2 = \lambda m - 1

2  - \sigma m - 1CD(\Omega m),
\sigma m = \sigma m - 1, \zeta m+1 = (\sigma m) - 0.9\zeta m

go to (3-a)
(3-e): \# increase penalty

\sigma m = 10\sigma m - 1

\lambda m
1 = \lambda m - 1

1 , \lambda m
2 = \lambda m - 1

2 , \zeta m+1 = (\sigma m) - 0.1

go to (3-a)

4.2. Finite-dimensional parametrization of wall shapes. We model the
shape of the channel walls using B-splines. For an integer k, the kth cardinal B-spline
basis function of degree n, denoted by Bk,n, is given by the recurrence

\scrB k,0(t) =

\biggl\{ 
1, k \leq t < k + 1,
0, otherwise,

\scrB k,n(t) =
t - k

n
\scrB k,n - 1(t) +

n+ k + 1 - t

n
\scrB k+1,n - 1(t)

(66)

and \scrB k,n(t) has support [k, k+ n+1]. Any \scrC n - 1 function x(t) defined on [0,M ] with
M being a positive integer can be approximated by a linear combination of the form
x(t) =

\sum M - 1
k= - n \xi k\scrB k,n(t) with \xi k \in R and t \in [0,M ]. In this work, we use B-splines of

degree 5, i.e., n = 5 in (66). To parametrize wall shapes \bfitx (t) for t \in [0, 2\pi ], we define
the basis functions Bk(t) = \scrB k,5(

M
2\pi t), where M is a preassigned positive integer of

the discretization. The wall \Gamma \pm \ni \bfitx \pm = \bfitx \pm (t; \bfitxi ) is then written as

x\pm 
1 (t) = x\pm 

1 (t; \bfitxi ) =
L

2\pi 
(2\pi  - t) +

M - 1\sum 
k= - 5

\xi \pm 1,kBk(t),

x\pm 
2 (t) = x\pm 

2 (t; \bfitxi ) =
M - 1\sum 
k= - 5

\xi \pm 2,kBk(t),

\right\}             
t \in [0, 2\pi ],(67)

where \bfitxi is the vector of coefficients for Bk with (4M + 20) components. In the
expression of x\pm 

1 (t), the extra term L
2\pi (2\pi  - t) ensures the periodicity of the linear

combinations of B-splines which is enforced in the computation.
The domain [0, 2\pi ] is divided into M uniform subintervals and the corresponding

endpoints (x\pm 
1 , x

\pm 
2 ) create a discretization grid for shape parametrization. The free

discretization grid points are defined by

\bfitpsi =
\Bigl\{ 
x\pm 
1

\Bigl( 2\pi j

M

\Bigr) 
, x\pm 

2

\Bigl( 2\pi j

M

\Bigr) 
, x\pm 

2 (0)
\Bigr\} 
, j = 1, 2, . . . ,M  - 1,(68)

and constitute the decision variables of our finite-dimensional optimization problem.
The vector \bfitxi is then solved implicitly from (67) (for given \bfitpsi ) together with the
additional conditions

x\pm 
1 (0) = L, x\pm 

1 (2\pi ) = 0, x\pm 
2 (0) = x\pm 

2 (2\pi ), and(69)

dk\bfitx \pm 

dtk
(0) =

dk\bfitx \pm 

dtk
(2\pi ), k = 1, . . . , (n - 1).

The transformation velocities \bfittheta are associated with perturbations of \bfitpsi . Letting \bfitdelta be
a perturbation vector of the same dimension as \bfitpsi (i.e., with (4M  - 2) elements), the
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B96 M. BONNET, R. LIU, S. VEERAPANENI, AND H. ZHU

transformation velocities on both walls in the shape perturbation induced by \bfitdelta are
the limiting values of

\bfittheta \pm (\bfitx \pm (t)) =
1

\eta 

\bigl( 
\bfitx \pm (t; \bfitxi (\bfitpsi + \eta \bfitdelta )) - \bfitx \pm (t; \bfitxi (\bfitpsi ))

\bigr) 
,(70)

as \eta \rightarrow 0. Since the mapping \bfitpsi \mapsto \rightarrow \bfitxi (\bfitpsi ) is linear, it is unnecessary to actually
take the limit in the above formula, and we simply use (70) with \eta = 1 in the
numerical implementation. In section 5.2, the wall shape perturbations are formulated
by perturbing one element in \bfitpsi while keeping the others unchanged, so that \bfitdelta is a
vector with all 0 except one unit entry.

4.3. Boundary integral formulation. The shape sensitivities require obtain-
ing the traction and pressure on \Gamma for the forward and associated adjoint problems.
The fluid velocity and pressure in all these problems satisfy the Stokes equations with
periodic boundary conditions. We follow the periodization scheme developed recently
in [22] that uses the free-space Green's functions and enforces the periodic boundary
conditions via an extended linear system approach. Given a source point \bfity and a
target point \bfitx , the free-space Stokes single-layer and double-layer kernels are given
by

Sij(\bfitx ,\bfity ) =
1

4\pi 

\biggl( 
\delta ij log

1

z
+

zizj
z2

\biggr) 
, Dij(\bfitx ,\bfity ) =

1

\pi 

zizj
z2

\bfitz \cdot \bfitn \bfity 

z2
,(71)

where \bfitz := \bfitx  - \bfity , z := | \bfitz | . The associated pressure kernels are given by

PS
j (\bfitx ,\bfity ) =

1

2\pi 

zj
z2

, PD
j (\bfitx ,\bfity ) =

1

\pi 

\Biggl( 
 - 
n\bfity 
j

z2
+ 2

\bfitz \cdot \bfitn \bfity 

z2
zj
z2

\Biggr) 
,(72)

and the associated traction kernels are given by

TS
ij(\bfitx ,\bfity ) =  - 1

\pi 

zizj
z2

\bfitz \cdot \bfitn \bfitx 

z2
,

TD
ij (\bfitx ,\bfity ) =

1

\pi 

\Biggl[ \biggl( 
\bfitn \bfity \cdot \bfitn \bfitx 

z2
 - 8d\bfitx d\bfity 

\biggr) 
zizj
z2

+ d\bfitx d\bfity \delta ij +
n\bfitx 
i n

\bfity 
j

z2
+ d\bfitx 

zjn
\bfity 
i

z2
+ d\bfity 

zin
\bfitx 
j

z2

\Biggr] 
,

(73)

where for notational convenience we defined the target and source ``dipole functions""
as

d\bfitx = d\bfitx (\bfitx ,\bfity ) := (\bfitz \cdot \bfitn \bfity )/z2, d\bfity = d\bfity (\bfitx ,\bfity ) := (\bfitz \cdot \bfitn \bfitx )/z2.(74)

We employ an indirect integral equation formulation with the following ansatz,

\bfitu = \scrD near
\Gamma \bfittau \Gamma + \scrS near

\gamma \bfittau \gamma +
K\sum 

m=1

\bfitc m\phi m,(75)

where

(\scrD near
\Gamma \bfittau \Gamma ) (\bfitx ) :=

\sum 
| n| \leq 1

\int 
\Gamma 

D(\bfitx ,\bfity + n\bfitd )\bfittau \Gamma (\bfity ) ds\bfity ,

\bigl( 
\scrS near
\gamma \bfittau \gamma 

\bigr) 
(\bfitx ) :=

\sum 
| n| \leq 1

\int 
\gamma 

S(\bfitx ,\bfity + n\bfitd )\bfittau \gamma (\bfity ) ds\bfity 

(76)
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OPTIMAL SHAPES OF PERISTALTIC PUMPS IN STOKES FLOW B97

are sums over free-space kernels living on the walls and particle boundary in the central
unit cell and its two near neighbors, and \bfitd is the the lattice vector, i.e., \bfitd = \bfite 1. The
third term encodes the influence of the ``far"" periodic copies, where \phi m(\bfitx ) = S(\bfitx ,\bfity m)
and the source locations \{ \bfity m\} Km=1 are chosen to be equispaced on a circle enclosing
\Omega [22].

The unknown coefficients \{ \bfitc m\} Km=1 are found by enforcing the periodic inlet and
outlet flow conditions at a set of collocation nodes. The resulting augmented linear
system for the forward problem, for example, can be written in the following form in
terms of the unknown density functions \bfittau \Gamma and \bfittau \gamma and the coefficients \{ \bfitc m\} :\left[  A\Gamma ,\Gamma A\Gamma ,\gamma B\Gamma ,\phi 

A\gamma ,\Gamma A\gamma ,\gamma B\gamma ,\phi 

C\Gamma C\gamma D

\right]  \left[  \bfittau \Gamma 

\bfittau \gamma 

\bfitc 

\right]  =

\left[  \bfitu D

\bfitu \gamma 

0

\right]  .(77)

The first row applies the slip condition on \Gamma by taking the limiting value of \bfitu (\bfitx ),
defined in (75), as \bfitx approaches \Gamma from the interior. The second row uses the no-
slip condition on \gamma : lim\bfitx \rightarrow \gamma \bfitu (\bfitx ) = \bfitu \gamma = \.\bfitx G + \rho \bfitr \cdot \bfitx . Then the centroid velocity
\.\bfitx G and angular velocity \rho can be solved for by applying extra force- and torque-
free conditions. The third row applies the periodic boundary conditions on velocity
and traction. The operators A, B, C, D are correspondingly defined based on the
representation formulas (75) and (76).

The pointwise pressure and hydrodynamic traction for the ansatz (75) are then
given by

p = \scrP D,near
\Gamma \bfittau \Gamma + \scrP S,near

\gamma \bfittau \gamma +
K\sum 

m=1

\bfitc mPS(\bfitx ,\bfity m),(78)

\bfitf = \scrT D,near
\Gamma \bfittau \Gamma + \scrT S,near

\gamma \bfittau \gamma +
K\sum 

m=1

\bfitc mTS(\bfitx ,\bfity m).(79)

The operators in (77) are discretized by splitting \Gamma and \gamma uniformly into M\Gamma and M\gamma 

disjoint panels, respectively. In each panel, a pth order Gauss--Legendre quadrature is
employed to evaluate smooth integrals while a local panelwise close evaluation scheme
of [28] is employed to accurately handle corrections for the singularities of S(\bfitx ,\bfity ),
TD(\bfitx ,\bfity ), and PD(\bfitx ,\bfity ). A forward Euler time-stepping scheme is used to evolve the
particle position and the solution procedure outlined above is repeated at each time
step.

In the case of the associated adjoint problems, the solution procedure remains the
same but the right-hand side of (77) is modified according to the respective boundary
conditions (e.g., (52b)--(52d)). In addition, the particle velocities \.\^\bfitx G, \^\rho need to be
computed by applying the total force and torque conditions, that is, given the traction
vector \^\bfith , the following condition is enforced:\int 

\gamma (t)

\bfitf ds\bfity =

\int 
\gamma (t)

\^\bfith ds\bfity and \bfite 3 \cdot 
\int 
\gamma (t)

\bfity \times \bfitf ds\bfity = \bfite 3 \cdot 
\int 
\gamma (t)

\bfity \times \^\bfith ds\bfity .(80)

5. Numerical results. This section presents first validation tests of our bound-
ary integral solvers and shape sensitivity formulas, then results on the shape opti-
mization. In all numerical experiments, the following parameter values were used:
c = 1,, L = 2\pi , n = 5 (degree of the B-spline basis functions), and M = 7. For
the augmented Lagrangian optimization algorithm, we set \zeta  \star = 0.01, \lambda 0 = (0, 0), and
\sigma 0 = 10.
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B98 M. BONNET, R. LIU, S. VEERAPANENI, AND H. ZHU

(a) (b) (c)

Fig. 2. Validation of the numerical solver. (a) Streamlines of a periodic Stokes flow induced by
prescribed slip on the walls, obtained using our boundary integral solver. (b) Plot of self-convergence
as a function of the spatial resolution N = pM\Gamma used in the forward solver. (c) Temporal validation
using forward Euler. Here \varepsilon \bfitf denotes the error of the total force in the adjoint problem on the
particle at t = 0, and \varepsilon \bfx G denotes the error in the position of the particle centroid for net particle
motion D = 1. Reference values are computed using time step size dt = 2\times 10 - 5.

Fig. 3. (a) The wall shape and the motion of the particle (centroid) in the wave frame. The
dots on the wall display the control points. (b) Comparison of the shape sensitivities of dissipation
(blue) and net motion in the wave frame (red), using analytical and finite-difference approaches for
the example. The wall shape perturbation vector index is the index of the nonzero element in the
perturbation vector \bfitdelta . The absolute difference is | J \prime 

analytic  - J \prime 
FD| and the relative difference is

| J \prime 
analytic  - J \prime 

FD| /| J \prime 
FD| .

5.1. Validation of forward and adjoint PDE solvers. To show the perfor-
mance of the periodic flow solver, we first solve a periodic Stokes flow problem with
prescribed slip velocity, and test the convergence of the velocity field as we increase
the number of quadrature points on \Gamma (Figure 2(b)). We also show temporal con-
vergence on the forward and adjoint problems using forward Euler, where we set the
axial distance D = 1, 192 quadrature points on \Gamma \pm , and 60 quadrature points on \gamma .
Relative errors are shown in Figure 2(c).

5.2. Validation of analytical shape sensitivity formulas. We consider a si-
nusoidal wall shape and a circular particle shape (Figure 3(a)) and compare the shape
sensitivities obtained by the finite-difference approach and the analytical sensitivity
formulas derived in section 3. We use the central difference scheme to approximate
the shape derivative

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/2

2/
23

 to
 2

07
.2

51
.1

02
.1

07
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



OPTIMAL SHAPES OF PERISTALTIC PUMPS IN STOKES FLOW B99

Fig. 4. Optimal channel wall shapes (in the wave frame) for varying net particle velocity.
V0 = 12.26 and T = 1 for all experiments. The particle motions are shown by the initial location
(dashed blue), the final location (solid red), and the trajectory of the centroid. (e) Shows a scenario
that the particle moves at the same speed as the peristalsis pumping wave speed.

J \prime 
FD = J \prime (\bfitx \pm ;\bfittheta \pm ) =

1

2\eta 

\Bigl[ 
J
\bigl( 
\bfitx \pm (t; \bfitxi (\bfitpsi )) + \eta \bfittheta \pm 

\bigr) 
 - J

\bigl( 
\bfitx \pm (t; \bfitxi (\bfitpsi )) - \eta \bfittheta \pm 

\bigr) \Bigr] 
(81)

with step size \eta = 10 - 4. Here, J is either the energy dissipation functional JW or the
net motion D in the wave frame. Substituting (70) into (81), we get the following
simplified expression,

J \prime 
FD = J \prime (\bfitx \pm ;\bfittheta \pm ) =

1

2\eta 

\Bigl[ 
J
\bigl( 
\bfitx \pm (t; \bfitxi (\bfitpsi + \eta \bfitdelta ))

\bigr) 
 - J

\bigl( 
\bfitx \pm (t; \bfitxi (\bfitpsi  - \eta \bfitdelta ))

\bigr) \Bigr] 
,(82)

where \bfitdelta is a standard basis vector. Depending on the index of the nonzero element
in \bfitdelta , there are (4M  - 2) possible shape perturbations. These serve as the basis of
any arbitrarily smooth perturbation of the wall shape. A comparison of the shape
sensitivities evaluated by the two methods is shown in Figure 3(b), which validates the
analytical shape sensitivity formulas using the finitedifference approach as reference.

In Figure 5, we plot the wall shapes as the optimization progresses for the case
of Figure 4(e). They evolve from an arbitrary initial channel wall shape to reach a
configuration achieving the target volume | \Omega | = V0 and net particle motion D = 0
(i.e., a unit net velocity in the fixed frame). The values of the augmented Lagrangian
objective \scrL A, dissipation JW, volume of fluid region V and net particle motion in the
wave frame D are shown in Figure 6.
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B100 M. BONNET, R. LIU, S. VEERAPANENI, AND H. ZHU

Fig. 5. Optimization process of Figure 4(e) starting from an arbitrary shape. The total number
of BFGS iterations is 106 and the total number of evaluations of the problem is 124.

0 17 28 55 91 106
-1

-0.8

-0.6

-0.4

-0.2

0

0 17 28 55 91 106
0

2

4

6

8

10

12

0 17 28 55 91 106

12.1

12.2

12.3

12.4

0 17 28 55 91 106

5

10

15

Fig. 6. Quantities for the optimization process of Figure 4(e). The vertical dashed lines label
the restart of augmented Lagrangian after the local minimum is achieved and the penalty parameters
or the Lagrangian multipliers are therefore updated.

5.3. Optimization experiments. Here, we present results on the numerical
optimization of peristaltic pumps carrying a rigid particle. Figure 4 shows the optimal
wall shapes obtained by our algorithm for different net particle motions with the same
volume of fluid region. As expected, the optimal value of dissipation increases for
faster net particle velocity in the fixed frame. In the extreme case where the net
velocity of the particle is zero in the fixed frame, as expected, the optimal shape is a
flat channel with no dissipation. On the other hand, when the particle moves at the
same speed as the peristaltic wave, the centroid of the particle remains fixed in the
wave frame.
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OPTIMAL SHAPES OF PERISTALTIC PUMPS IN STOKES FLOW B101

particle radius = 0.25, dissipation = 68.09
particle radius = 0.50, dissipation = 76.67
particle radius = 1.00, dissipation = 110.54

x1

x2

(a)
(b)

1

x1

x2

(a)
(b)

1

x1

x2

(a)
(b)

1

x1

x2

(a)
(b)

1

Fig. 7. Optimal wall shapes and particle motions (in the wave frame) for varying particle
configurations. Here we use V0 = 12.26, D0 = 0, T = 6.3 and initial particle centroid at (\pi , 0) for
all cases. (a) For the circle particle, the particle motion in the wave frame is static because in the
fixed frame it is moving at the same speed as the wave speed and no vertical translation is observed.
(b) For the ellipse particle, the initial tilting angle \theta 0 affects the optimal wall shape. The motion of
the ellipse particle is shown by initial position (dashed) to final position (solid) corresponding to the
color for each \theta 0.

Fig. 8. Optimization process of the ellipse particle with \theta 0 = \pi /4 in Figure 7. The total number
of BFGS iterations is 112 and the total number of evaluations of the problem is 153.

Next, to illustrate the particle effect on the optimal wall shapes, we ran exper-
iments on different shapes and sizes of particles and show the results in Figure 7.
Specifically, we consider circular particles of different size and elliptical particles at
different orientations. The initial location of the particle centroid is set to (\pi , 0) in
all cases. A common feature we find across all the shapes and sizes of particles is
that for minimum dissipation, they are carried at the center of the fluid domain in
the wave frame. Figure 8 displays the progression of the optimization starting from
an arbitrary pipe shape, where this phenomenon can be observed clearly.

The results of the numerical experiments show that the optimal pumping wall
shapes form an enclosing bolus around the rigid particle near the center line of the
channel. Particularly, for a fixed-sized circle particle, a larger target net velocity leads
to a bolus of larger size, as seen in Figure 4. For a fixed net velocity, a larger particle
leads to a bigger bolus; see Figure 7. For the case of an elliptical particle, the initial
angle \theta 0 between its major axis and the center line affects the symmetry of the optimal
channel geometry. For example, setting \theta 0 = \pi /4, the converged wall shape forms
an asymmetric bolus with a more-deformed lower wall; see Figure 8. Comparing the
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B102 M. BONNET, R. LIU, S. VEERAPANENI, AND H. ZHU

final wall geometry reached for different initial orientations \theta 0 of the elliptical particle,
shown in Figure 7(b), the bolus is symmetric about x2 = 0 and x1 = \pi for \theta 0 = 0
or \pi /2, with a slightly larger vertical amplitude in the latter case, while the boluses
found for \theta 0 = \pm \pi /4 are slightly asymmetric. The center line of the channel is shifted
upwards for \theta 0 = \pi /4 and downwards for \theta 0 =  - \pi /4. Additionally, for the case
\theta 0 = \pi /4, the lower wall is still nearly horizontally symmetric about x1 = \pi but the
upper wall is not, its largest amplitude shifting to the right. The walls for \theta 0 =  - \pi /4
show the opposite trend: The upper wall is nearly symmetric about x1 = \pi while
the lower wall is not symmetric with its largest amplitude shifted to the right. The
initially tilted elliptical particle (0 < \theta 0 < \pi /2) undergoes body rotation and vertical
translation. For example, the particle motions for \theta 0 = \pm \pi /4 experience opposite
rotations (respectively, clockwise and counterclockwise) and translations (respectively,
upwards and downwards).

6. Conclusions. We presented a gradient-based optimization approach for find-
ing the optimal shapes of peristaltic pumps for transporting rigid particles in Stokes
flow. While we considered the power loss functional and associated constraints, the
procedure for deriving shape sensitivities generalizes to other related objective func-
tions and constraints. An important contribution of this work is an adjoint formula-
tion that, in conjunction with a boundary integral formulation, significantly reduces
the computational burden of evaluating shape derivatives in the case of particulate
flows.

Although we restricted our attention to peristaltic pumps, the computational
framework developed here is applicable to a wide range of design and optimization
problems in interfacial fluid mechanics. For example, we recently applied similar
techniques to optimize the swimming action of axisymmetric microswimmers [14, 15].
Extensions to time-dependent problems such as deformable microswimmers (e.g., cells
driven by membrane deformations [10]) or active flows in complex geometries [2] can
benefit from the adjoint formulation developed here.

Appendix A. Proofs.

A.1. Differential operators on curved boundaries. In preparation for some
of the proofs to follow, we list useful formulas and notations regarding differential
operators evaluated on curved boundaries of a fluid domain. Let points \bfitx in a tubular
neighborhood V of \Gamma be represented as

\bfitx = \bfitx (s) + z\bfitn (s)(83)

in terms of curvilinear coordinates (s, z), and let \bfitv (\bfitx ) = vs(s, z)\bfittau (s) + vn(s, z)\bfitn (s)
denote a generic vector field in V . Then, at any point \bfitx = \bfitx (s) of \Gamma , we have

\bfnabla \bfitv = \partial s\bfitv \otimes \bfittau + \partial nvs\bfittau \otimes \bfitn + \partial nvn\bfitn \otimes \bfitn , div\bfitv = \bfittau \cdot \partial s\bfitv + \partial nvn.(84)

Assuming incompressibility, the condition div \bfitv = 0 can be used to eliminate \partial nvn,
yielding the following expressions of \bfnabla \bfitv and 2\bfitD [\bfitv ] = \bfnabla \bfitv +\bfnabla \bfitv T:

\bfnabla \bfitv = \partial s\bfitv \otimes \bfittau + \partial nvs\bfittau \otimes \bfitn  - 
\bigl( 
\bfittau \cdot \partial s\bfitv 

\bigr) 
\bfitn \otimes \bfitn (85)

=
\bigl( 
\bfittau \cdot \partial s\bfitv 

\bigr) \bigl( 
\bfittau \otimes \bfittau  - \bfitn \otimes \bfitn 

\bigr) 
+
\bigl( 
\bfitn \cdot \partial s\bfitv 

\bigr) 
\bfitn \otimes \bfittau + \partial nvs\bfittau \otimes \bfitn ,(86)

2\bfitD [\bfitv ] = 2
\bigl( 
\bfittau \cdot \partial s\bfitv 

\bigr) \bigl( 
\bfittau \otimes \bfittau  - \bfitn \otimes \bfitn 

\bigr) 
+
\bigl( 
\bfitn \cdot \partial s\bfitv + \partial nvs

\bigr) \bigl( 
\bfitn \otimes \bfittau + \bfittau \otimes \bfitn 

\bigr) 
.(87)
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Next, we evaluate the stress vector \bfitf =  - p\bfitn + 2\bfitD [\bfitv ] \cdot \bfitn , to obtain

\bfitf = fs\bfittau + fn\bfitn with fs = \bfitn \cdot \partial s\bfitv + \partial nvs, fn =  - p - 2(\bfittau \cdot \partial s\bfitv ).(88)

In particular, we therefore have \partial nvs = fs  - \bfitn \cdot \partial s\bfitv , allowing one (by eliminating the
remaining normal derivative therein) to express \bfnabla \bfitv and \bfitD [\bfitv ] in terms of quantities
defined on the boundary:

\bfnabla \bfitv =
\bigl( 
\bfittau \cdot \partial s\bfitv 

\bigr) \bigl( 
\bfittau \otimes \bfittau  - \bfitn \otimes \bfitn 

\bigr) 
+
\bigl( 
\bfitn \cdot \partial s\bfitv 

\bigr) \bigl( 
\bfitn \otimes \bfittau  - \bfittau \otimes \bfitn 

\bigr) 
+ fs\bfittau \otimes \bfitn ,

2\bfitD [\bfitv ] = 2
\bigl( 
\bfittau \cdot \partial s\bfitv 

\bigr) \bigl( 
\bfittau \otimes \bfittau  - \bfitn \otimes \bfitn 

\bigr) 
+ fs

\bigl( 
\bfitn \otimes \bfittau + \bfittau \otimes \bfitn 

\bigr) 
.

(89)

Velocity with rigid-body boundary traces. In this case, we consider vector
fields \bfitu satisfying \bfitu = \bfitu 0 + \varrho \bfitr \cdot \bfitx on the particle boundary \gamma ; see (4). This implies

\partial s\bfitu = \varrho \bfitr \cdot \partial s\bfitx = \varrho \bfitr \cdot \bfittau = \varrho \bfitn on \gamma (90)

(since \bfitr = \bfite 2 \otimes \bfite 1  - \bfite 1 \otimes \bfite 2 = \bfitn \otimes \bfittau  - \bfittau \otimes \bfitn with the orientation convention of
Figure 1), so that (86) implies

\bfnabla \bfitu = \varrho \bfitn \otimes \bfittau + \partial n\bfitu s\bfittau \otimes \bfitn , 2\bfitD [\bfitu ] =
\bigl( 
\partial n\bfitu s + \varrho 

\bigr) \bigl( 
\bfitn \otimes \bfittau + \bfittau \otimes \bfitn 

\bigr) 
, divS\bfitu = 0

(91)

on \gamma . We now evaluate the stress vector \bfith := \bfitsigma [\bfitu , p] \cdot \bfitn =  - p\bfitn +2\bfitD [\bfitu ] \cdot \bfitn , to obtain

\bfith =  - p\bfitn +
\bigl( 
\partial n\bfitu s + \varrho 

\bigr) 
\bfittau =  - p\bfitn + hs\bfittau and hence \partial n\bfitu s = hs  - \varrho .(92)

Using the above formula for \partial n\bfitv s in (91), we finally obtain

(a) \bfnabla \bfitu = \varrho \bfitr + hs\bfittau \otimes \bfitn , (b) 2\bfitD [\bfitu ] = hs

\bigl( 
\bfitn \otimes \bfittau + \bfittau \otimes \bfitn 

\bigr) 
.(93)

A.2. Proof of Lemma 1. The lemma follows directly from using (93a) in (26).

A.3. Proof of formula (34). We use the Frenet formulas (1) and associated

conventions. To evaluate
 \star 
\bfitu D, we let \Gamma depend on the fictitious time \eta , setting

\Gamma \eta \ni \bfitx \eta (s) = \bfitx (s) + \eta \bfittheta (s) (0 \leq s \leq \ell ),(94)

(where \Gamma stands for \Gamma + or \Gamma  - , and likewise for \ell ) and seek the relevant derivatives
w.r.t. \eta at \eta = 0. Note that for \eta \not = 0, s is no longer the arc length coordinate along
\Gamma \eta , and \partial s\bfitx \eta is no longer of unit norm; moreover, the length of \Gamma \eta depends on \eta . The
wall velocity \bfitU = \ell \bfittau for varying \eta is then given by

\bfitU \eta (s) = (\ell \eta /g\eta ) \partial s\bfitx \eta (0 \leq s \leq \ell ),(95)

having set g\eta = | \partial s\bfitx \eta | (note that g0 = 1). Our task is to evaluate d/d\eta \bfitU \eta (s) at
\eta = 0. We begin by observing that the derivative of g is (since \partial s\bfitx \eta = \bfittau and g = 1
for \eta = 0)

\partial \eta g = (\partial s\bfitx \eta \cdot \partial \eta s\bfitx \eta )/g = \bfittau \cdot \partial s\bfittheta = \partial s\theta s  - \kappa \theta n(96)
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and the length \ell \eta of \Gamma \eta and its derivative
 \star 

\ell are given (noting that s spans the fixed
interval [0, \ell ] for all curves \Gamma \eta ) by

(i) \ell \eta =

\int \ell 

0

g\eta ds, (ii)
 \star 

\ell =

\int \ell 

0

(\partial s\theta s  - \kappa \theta n) ds =  - 
\int \ell 

0

\kappa \theta n ds.(97)

The last equality in (ii), which results from the assumed periodicity of \bfittheta , is item (b)
of (34). Then, using the above formulas in (95) establishes item (a) of (34), as we find

 \star 
\bfitu D = \partial \eta \bfitU \eta (s)

\bigm| \bigm| 
\eta =0

=
\bigl[  \star 
\ell  - \ell (\partial s\theta s  - \kappa \theta n)

\bigr] 
\bfittau + \ell \partial s\bfittheta =

 \star 

\ell \bfittau + \ell (\partial s\theta n + \kappa \theta s)\bfitn .(98)

A.4. Proof of Lemma 10. First, it is straightforward (e.g., using component
notation) to show that div\bfitE T((\bfitu , p), (\bfitu , p)) = 0, i.e., \partial jEji = 0 (i = 1, 2) holds
for any (\bfitu , p) satisfying div\bfitu = 0 and  - \Delta \bfitu + \bfnabla p = 0. For any vector field \bfitzeta \in 
C1,\infty 

0 (\Omega all), we consequently have

\bfitE 
\bigl( 
(\bfitu , p), (\bfitu , p)

\bigr) 
: \bfnabla T\bfitzeta = div

\bigl[ 
\bfitE 
\bigl( 
(\bfitu , p), (\bfitu , p)

\bigr) 
\cdot \bfitzeta 
\bigr] 
 - 
\bigl[ 
div\bfitE T

\bigl( 
(\bfitu , p), (\bfitu , p)

\bigr) \bigr] 
\cdot \bfitzeta 

(99)

= div
\bigl[ 
\bfitE 
\bigl( 
(\bfitu , p), (\bfitu , p)

\bigr) 
\cdot \bfitzeta 
\bigr] 
.(100)

Then, observing that ((\bfitu , p), (\bfitv , q)) \mapsto \rightarrow \bfitE ((\bfitu , p), (\bfitv , q)) defines a symmetric bilinear
form, we invoke the polarization identity and obtain

\bfitE 
\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
: \bfnabla T\bfitzeta = 1

4

\bigl[ 
\bfitE 
\bigl( 
(\bfitu + \^\bfitu , p+ \^p), (\bfitu + \^\bfitu , p+ \^p)

\bigr) 
(101)

+\bfitE 
\bigl( 
(\bfitu  - \^\bfitu , p - \^p), (\bfitu  - \^\bfitu , p - \^p)

\bigr) \bigr] 
: \bfnabla \bfitzeta 

= 1
4div

\bigl[ 
\bfitE 
\bigl( 
(\bfitu + \^\bfitu , p+ \^p), (\bfitu + \^\bfitu , p+ \^p)

\bigr) 
\cdot \bfitzeta +\bfitE 

\bigl( 
(\bfitu  - \^\bfitu , p - \^p), (\bfitu  - \^\bfitu , p - \^p)

\bigr) 
\cdot \bfitzeta 
\bigr] (102)

= div
\bigl( 
\bfitE 
\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
\cdot \bfitzeta 
\bigr) 
.(103)

Hence, applying the first Green identity (divergence theorem) yields\bigl\langle 
\bfitE 
\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
,\bfnabla T\bfitzeta 

\bigr\rangle 
\Omega 
=

\int 
\Gamma \cup \gamma \cup \Gamma 0\cup \Gamma L

\bfitn \cdot \bfitE 
\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
\cdot \bfitzeta ds.(104)

Finally, condition (ii) in (20) and the assumed periodicity conditions at the end sec-
tions for the velocity fields (which imply the same periodicity for \bfnabla \bfitu and \bfnabla \^\bfitu by the
known interior regularity of \bfitu , \^\bfitu in the whole channel), for p (but not necessarily for
\^p) as well as for \bfitzeta give\int 

\Gamma 0\cup \Gamma L

\bfitn \cdot \bfitE 
\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
\cdot \bfitzeta ds =

\int 
\Gamma L

\Delta \^p(\partial 2u1)\zeta 2 ds,(105)

which completes the proof of the claimed integral identity.
Then, if \bfitu and \^\bfitu are rigid-body velocity fields on \gamma , (93) provides 2\bfitD [\bfitu ] :\bfitD [\^\bfitu ] =

hs
\^hs, \bfith \cdot \bfnabla \^\bfitu = \^\varrho \bfith \cdot \bfitr +hs

\^hs\bfitn , and \^\bfith \cdot \bfnabla \bfitu = \varrho \^\bfith \cdot \bfitr +hs
\^hs\bfitn , from which formula (45)

readily follows.
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A.5. Proof of equation (49). When applied to the solution of the forward
problem (8), which satisfies \bfitu = (c\ell /L)\bfittau on \Gamma , formulas (89) yield

\bfnabla \bfitu = \kappa \ell 
\bigl( 
\bfitn \otimes \bfittau  - \bfittau \otimes \bfitn 

\bigr) 
+fs\bfittau \otimes \bfitn , 2\bfitD [\bfitu ] = fs

\bigl( 
\bfitn \otimes \bfittau +\bfittau \otimes \bfitn 

\bigr) 
, fn= - p on \Gamma 

(106)

(in particular, the viscous part of \bfitf is tangential to \Gamma ). Moreover, we also readily
obtain

2\bfitD [\bfitu ] :\bfitD [\^\bfitu ] = fs \^fs, \bfitf \cdot \bfnabla \^\bfitu \cdot \bfittheta =
\bigl( 
\bfitf \cdot \partial s\^\bfitu 

\bigr) 
\theta s +

\Bigl( \bigl( 
p\bfittau  - fs\bfitn 

\bigr) 
\cdot \partial s\^\bfitu + fs \^fs

\Bigr) 
\theta n,

(107)

and using the above results and (34) provide

\^\bfitf \cdot  \star 
\bfitu D + \bfitn \cdot \bfitE 

\bigl( 
(\bfitu , p), (\^\bfitu , \^p)

\bigr) 
\cdot \bfittheta 

(108)

=
 \star 

\ell \^fs - \ell (\partial s\theta n)(\^pn+2\bfittau \cdot \partial s\^\bfitu ) - 
\bigl( 
\bfitf \cdot \partial s\^\bfitu 

\bigr) 
\theta s+

\Bigl( \bigl( 
fs\bfitn  - p\bfittau 

\bigr) 
\cdot \partial s\^\bfitu +\kappa \ell \^fs  - fs \^fs

\Bigr) 
\theta n.

We next observe that, for given \Gamma , F = F (\bfitf , s) (the explicit dependence in s stemming
from the dependence in \Gamma of F ) and derive\bigl[ 

F  - \partial \bfitf F \cdot \bfitf 
\bigr] 
divS\bfittheta =

\bigl[ 
F  - \partial \bfitf F \cdot \bfitf 

\bigr] 
\partial s\theta s  - \kappa 

\bigl[ 
F  - \partial \bfitf F \cdot \bfitf 

\bigr] 
\theta n

= ds
\bigl( \bigl[ 
F  - \partial \bfitf F \cdot \bfitf 

\bigr] 
\theta s
\bigr) 
 - 
\bigl( 
\partial \bfitf F \cdot \partial s\bfitf + \partial sF

\bigr) 
\theta s(109)

+
\bigl( 
\partial \bfitf F \cdot \partial s\bfitf 

\bigr) 
\theta s + \bfitf \cdot \partial s

\bigl( 
\partial \bfitf F

\bigr) 
\theta s  - \kappa 

\bigl[ 
F  - \partial \bfitf F \cdot \bfitf 

\bigr] 
\theta n(110)

= ds
\bigl( \bigl[ 
F  - \partial \bfitf F \cdot \bfitf 

\bigr] 
\theta s
\bigr) 
 - (\partial sF )\theta s +

\bigl( 
\bfitf \cdot \partial s\^\bfitu 

\bigr) 
\theta s  - \kappa 

\bigl[ 
F  - \partial \bfitf F \cdot \bfitf 

\bigr] 
\theta n(111)

having recalled that \^\bfitu = \partial \bfitf F on \Gamma , used formula (1) for divS\bfittheta , and noticed that
\partial sF = \partial \bfitf F \cdot \partial s\bfitf and dsF = \partial \bfitf F \cdot \partial s\bfitf +\partial sF . Finally, summing the last two equalities
and rearranging terms yields (49).
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