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While potential theoretic techniques have received significant interest and found broad 
success in the solution of linear partial differential equations (PDEs) in mathematical 
physics, limited adoption is reported in the case of nonlinear and/or inhomogeneous 
problems (i.e. with distributed volumetric sources) owing to outstanding challenges in 
producing a particular solution on complex domains while simultaneously respecting the 
competing ideals of allowing complete geometric flexibility, enabling source adaptivity, 
and achieving optimal computational complexity. This article presents a new high-order 
accurate algorithm for finding a particular solution to the PDE by means of a convolution 
of the volumetric source function with the Green’s function in complex geometries. 
Utilizing volumetric domain decomposition, the integral is computed over a union of 
regular boxes (lending the scheme compatibility with adaptive box codes) and triangular 
regions (which may be potentially curved near boundaries). Singular and near-singular 
quadrature is handled by converting integrals on volumetric regions to line integrals 
bounding a reference volume cell using cell mappings and elements of the Poincaré lemma, 
followed by leveraging existing one-dimensional near-singular and singular quadratures 
appropriate to the singular nature of the kernel. The scheme achieves compatibility 
with fast multipole methods (FMMs) and thereby optimal asymptotic complexity by 
coupling global rules for target-independent quadrature of smooth functions to local target-
dependent singular quadrature corrections, and it relies on orthogonal polynomial systems 
on each cell for well-conditioned, high-order and efficient (with respect to number of 
required volume function evaluations) approximation of arbitrary volumetric sources. Our 
domain discretization scheme is naturally compatible with standard meshing software 
such as Gmsh, which are employed to discretize a narrow region surrounding the domain 
boundaries. We present 8th-order accurate results, demonstrate the success of the method 
with examples showing up to 12-digit accuracy on complex geometries, and, for static 
geometries, our numerical examples show well over 99% of evaluation time of the 
particular solution is spent in the FMM step.
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1. Introduction

This article describes a fast, high-order accurate numerical scheme for evaluating the volume potential, also known as the 
Newton potential, given by

V[ f ] (r0) =
∫
�

G(r, r0) f (r)dA(r), r0 ∈ �, (1.1)

where � is an irregular two-dimensional domain, f is a given source density function and G is typically the free-space 
Green’s function for an underlying linear, constant-coefficient elliptic partial differential equation (PDE) operator, such as for 
the Laplace, Stokes or (modified) Helmholtz equations. Domain convolutions of this form are a key ingredient when solving 
inhomogeneous PDEs via potential theory [1]. Historically, the community has tackled a variety of fundamental challenges 
in the use of potential theoretic methods for addressing such problems.

While integral equation methods offer a reduction in dimensionality in the associated homogeneous problem, they lead 
to dense operators upon discretization, whose efficient application has formed a significant body of work over the recent 
decades (such as the FMM [2]). With regards to discretization, as the kernels which arise in boundary integral formula-
tions for homogeneous PDE boundary value problems are singular, the integral equations that result involve singular and 
nearly-singular integrals. Singular quadrature has formed the basis of significant inquiry with many successful schemes 
proposed; see [3] for a recent review of the situation in two dimensions (note that in three dimensions the landscape is 
more challenging). Furthermore, nearly singular integrals arise from the nature of these kernels in the presence of arbitrary 
target points close to ∂�, as generally occur in complex geometries e.g. when boundary components are close to touching. 
These challenges each have a counterpart in the volume potential problem. Recently, a concerted effort in the field produced 
several robust strategies for high-accuracy evaluation of nearly singular integrals in two dimensions [4–11]. For example, 
the method of [6], which we employ for the homogeneous solver component of this work, achieves spectral accuracy in 
evaluating layer potentials close to smooth boundaries, requiring only a modest number of discretization nodes per do-
main inclusion for full accuracy in double precision. These advances motivate us to revisit the volume potential evaluation 
problem as a prominent remaining task.

Most fundamentally for inhomogeneous problems, the volume discretization needs to be adapted to the irregular do-
main. We first mention that for the case of � a unit box or a hierarchical finite union of scaled and translated boxes, there 
exist fast, adaptive, highly-accurate and computationally scalable algorithms [12–15]. In a similar vein, reference [16] solves 
local elliptic problems on each box using the action of the operator on orthogonal polynomials and obtains high-order 
accuracy with very limited computational expense per degree of freedom. Taken together, these “box code” methods have 
proven highly effective because they inherently exploit the translational invariance of the Green function of the PDE, allow-
ing repeated use of what are essentially lookup tables for singular and near-singular evaluation points within a vicinity of 
a given box. However, achieving the same level of accuracy and efficiency when � is an arbitrary complex geometry has 
been a sustained challenge. Naïvely, for a box code in the presence of complex geometry some boxes inevitably are ‘cut’ 
by the boundary and evaluating the contribution to the volume potential (1.1) from such irregular ‘cut cells’ is the primary 
challenge to be met (such issues arise in other contexts utilizing regular grids in the presence of embedded boundaries 
see e.g. [17]). Attempts have been made to address irregular geometries by using (generally low-order accurate) extrapo-
lation or local extension for the function f over the resulting cut cells in combination with extensive adaptivity near to 
domain boundaries to achieve desired tolerances [18]. As a result, while the resulting methods effectively make use of fast 
algorithms to reduce the computational burden, the required number of degrees of freedom appears to be significant.

In seeking to overcome this issue, most existing works avoid direct evaluation of (1.1) in an irregular domain; instead, 
one class of algorithms employs (local) volumetric PDE solvers—finite difference [19–22] and finite element [23] methods—
in an embedded regular domain and obtains corrected stencils near to the boundary using Taylor expansions and local 
geometric information as well as, in some cases, jump relations of layer potentials. In particular, the embedded boundary 
integral approach of [23] solves the inhomogeneous PDE problem on a rectangular domain that embeds �; local low-
order extrapolation for bulk forces and use of jump relations result in a second-order accurate method, which appears 
quite efficient. The method of reference [22], meanwhile, couples to geometric multigrid solvers for the bulk and is also 
restricted to the Poisson equation; this work in fact includes a timing comparison to the box code method of reference [24]
(discussed in the next paragraph), which shows superior speed per degree of freedom. We note, however, that only first-
order convergence is demonstrated in [22], with no claim made that the accuracy in the comparison example matches that 
of the box code with continuous extension, and we further observe that while the method implicitly requires extension of 
the source density outside the domain, this point is unaddressed (i.e. known source functions are chosen that are continuous 
across the boundary and their values outside used).

Smooth extension or continuation methods for the volumetric source form another broad class of methods, in which 
the irregular domain �, again, is embedded in a box B , the function f is extended onto B \ �, and standard box codes 
are applied on the whole of B (inevitably incurring some performance penalty due to the increased degrees of freedom 
over the enlarged domain). It is essential in these methods that the extended function be smooth for high-order accuracy. 
In [24], a harmonic extension of f is performed using a boundary integral approach and is coupled to an adaptive box code. 
While the approach generalizes beyond the Poisson equation solver described in this work, its use for the construction of 
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higher-order smooth approximations does depend upon higher-order derivatives of the source function f along the domain 
boundary. More significantly, it requires solution of a separate harmonic equation in order to generate the continuously 
extended source function, with higher-order continuity for higher-order convergence requiring solution of progressively 
more complex and costly high-order harmonic equations. Indeed the use of adaptivity in [24] functions at least in part 
as a means to achieve high accuracy in the presence of limited smoothness in the extension, as experienced previously 
in [18].

Other approaches to extension have traded off adaptivity for high-order accuracy and compatibility with FFTs on uniform 
grids; one recently introduced technique is the two-dimensional Fourier continuation method [25] which as well as being 
a general-purpose numerical tool has recently been demonstrated to give accurate smooth periodic extensions suitable for 
use in elliptic solvers, at least in some simple geometrical contexts. In [26], a function extension scheme based on the 
use of radial basis functions (RBFs) is proposed, termed as the partition of unity extension (PUX) method. PUX lays down 
a set of disks along the domain boundary, each covering uniform points both inside and outside the domain, and solves 
overdetermined linear systems on each disk to generate smooth extensions to Cartesian grid points within these disks laying 
outside the domain, which are then smoothly mollified to zero away from the boundary. Although PUX has shown success 
on a variety of examples [27,28], several hurdles remain for a scalable implementation including the number of parameters 
and the heuristic nature by which they are determined (e.g., the partition radius and shape parameters of the RBFs), poor 
conditioning of RBF methods and a reliance on uniform grids.

In this article, we take a more direct approach to solving inhomogeneous linear PDEs, by computing explicitly the volume 
integral (1.1) by means of numerical quadrature over complex geometry (an example is shown in Fig. 1). This mathemat-
ically obvious avenue has in the past been considered computationally impractical, with recent contributions [24,27,28]
noting that such an approach is to be avoided because quadratures for irregular cells are seemingly challenging and less 
amenable to fast algorithms (reference [29] does evaluate (1.1), in a method coupled to the FMM). Indeed, multidimensional 
quadratures over general regions are much less developed (though see [30–32]) though there exist ad-hoc quadratures 
over a variety of specific regions [33–37]; see [38] for an extensive review. This relative lack of development holds espe-
cially so for singular integrands; in this more specialized context, in addition to the older work [36] on triangles we find 
the work [39,40] for locally-corrected quadratures on rectangles and work [41,42] for discretizations of boundary integral 
operators on mapped triangles that form surfaces in three dimensions.

To address the challenges of multi-dimensional quadrature over potentially arbitrary regions, a variety of works have 
converted a volumetric integral of interest with a smooth integrand to integration along domain boundaries (potentially 
after some degree of domain-decomposition), after which numerical quadrature rules are used for various resulting one-
dimensional integrals. Much of this work is focused on cubature for polyhedra, where we note contributions for this 
purpose [43,44] based on theorems of vector calculus. One approach [45] treats volumes bounded by rational paramet-
ric curves using Green’s theorem, while others [46,47] produce volume quadratures over implicitly-defined surfaces and 
volumes by a recursive dimensional-reductional algorithm and ultimately result in one-dimensional integrals that can be 
treated with Gaussian quadrature.

We also note a variety of volumetric-via-surface-integral quadratures that, like ours, use ideas from classical proofs of the 
Poincaré lemma (which, in brief, is applicable to domains which are star-shaped with respect to some interior point—but 
not necessarily to all points—and leads to representations of volume integrals as surface integrals with an iterated integral 
whose associated physical integration points lay on rays from the boundary to the star-point). Recent work of [48] results in 
integral representations similar in some respects to our own but only smooth integrands are considered there. Other works 
such as [49] have focused on addressing the Newton potential problem specifically, but a target-centered coordinate system 
with the star-point as the origin results in quadrature points that lay outside the domain for regions that are non-convex 
(i.e. containing regions, and therefore potential evaluation points, with respect to which the domain is not star-shaped). This 
fact implicitly imposes upon such methods a reliance on function extension in order to obtain values of the source density 
f at non-physical quadrature nodes (or, alternatively, moment matching)—such tasks (which, in view of previous discussion 

Fig. 1. Solution of the inhomogenous Stokes equations [1] on an irregular domain with no-slip boundaries. Left: contour plot of the imposed forcing function, 
f (x, y) = (− sin x cos y, cos x sin y)T . Center: volume mesh employed in our Newton potential (1.1) evaluation scheme comprised of a regular grid in the 
bulk and a narrow triangulated region around the domain boundaries. Right: streamlines of the solution with color indicating the magnitude of the velocity 
field.
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on function extension can be seen to be challenging) were not addressed in those works, instead relying on assumed-known 
analytic expressions outside of the domain. Related efforts to avoid limitations of this kind with schemes designed to rely 
on points only inside the computational domain are described in [50,51] (and include acceleration via FMM), but numerical 
results demonstrate first-order convergence (in the simplest cases) or no convergence at all. The dual reciprocity method 
(see [52] for references to this body of literature and see [53,54] for some related works) is another method popular in 
the engineering literature that employs surface integrals and delivers low to modest accuracy, with similar challenges as 
mentioned above. Our proposed scheme, while still based in spirit on the Poincaré lemma and while it also utilizes surface 
integrals, does not suffer from any of these difficulties (cf. Remark 3): all quadrature nodes lay inside the domain and the 
scheme leads to high-order accuracy.

Our work generalizes the volume potential scheme developed in the second author’s thesis [55] (also see [56]), wherein, 
Poincaré’s lemma and recursive product integration rules were employed for a few pairs of PDE kernels and approximating 
bases. In a similar vein, prior work in [57] utilizes congruent integral representations that are limited to the Laplace kernel 
and to convex spatial domains—work which, additionally, lists several other interesting methods for the production of par-
ticular solutions. On the other hand, the methods proposed here generate numerical quadratures for regions arising from 
domain decomposition of the integral (1.1), which are tailored to kernel functions with a variety of singular behaviors (i.e. 
not restricted to PDE Green function kernels) and lead to efficient algorithms that are compatible with fast algorithms (such 
as FMMs). An important goal is to retain compatibility with adaptive box codes [12,15] due to their unparalleled speed and 
maturity—which we achieve by triangulating only a small boundary-fitted region—but we also seek high-order convergence 
and speed for repeated application of the volume potential with different source densities f . A secondary objective is the 
use of components (e.g. meshing, choice of basis, quadrature generation schemes) that will generalize naturally to three 
dimensional volume quadratures.

Synopsis. The proposed method proceeds by meshing a thin region near to the boundary using a combination of curvi-
linear (with one side conforming to the boundary represented as parametric curves) and straight triangles—the number 
of triangular regions growing linearly as the mesh is refined with the number of regular boxes growing quadratically (for 
the uniform gridding of the bulk that we consider here). Each cell (or element) is represented as a map from a reference 
element (either of a simplex or a box, with straight triangles corresponding to a simple affine map) and all physical target 
points are characterized by their position in reference space relative to cells for the purposes of singular and near-singular 
quadrature. Singular and near-singular quadrature on these irregular domains (and indeed even over boxes), in turn, is 
performed with high-order accuracy by use of a Poincaré lemma-type idea that re-writes the integrals (in reference space) 
on standard triangles (or boxes) over the boundary of that domain, followed by the use of one-dimensional quadratures 
that are adapted to the singular behavior of the kernel function (typically, the PDE Green function). The method possesses 
optimal asymptotic complexity (costing O(N) to obtain the Newton potential at, say, all N quadrature points in a domain) 
as a result of use of point-FMMs for summation of target-independent quadratures for smooth integrands and via coupling 
to inexpensive local singular corrections that can be represented as a linear map of small size.

Advantages. Our proposed methodology builds naturally on existing and growing bodies of work concerning each of 
i) one-dimensional singular and near-singular quadrature as well as ii) interpolation and quadrature of smooth functions 
over convex polyhedra by means of orthogonal polynomials. It is fully compatible with adaptive schemes for spatially-
concentrated sources. Problem geometry is exactly captured with our approach which incorporates the local boundary 
information and integrates it with existing software for high-quality mesh-generation. High-order accuracy is easy to achieve 
and requires only a one-dimensional quadrature rule adequate for the singularity of the given kernel function and a known 
orthogonal polynomial system with associated smooth quadrature rule on the reference cell. The previous two points (mesh-
ing and orthogonal polynomial systems) provide direct means to generalize this work to three-dimensions. Finally, the 
methods are straightforward to integrate with existing acceleration techniques.

Limitations. At the present moment our solver discretizes regular portions of the domain with uniformly sized boxes, 
which can be inefficient for functions with significant variation. This issue is easily addressed since our scheme is designed 
to be drop-in compatible with adaptive box codes for the bulk region that are highly effective in this context. A more 
serious limitation is the cost of generating local singular corrections; while the regular bulk region does not contribute to 
these costs (so that asymptotically the set-up costs pertain only to thin boundary regions), and we present techniques in 
Section 4 to manage the remaining computational burden, computation of these quantities still forms the majority of the 
up-front cost of the method. Lastly, we restrict our attention in this work to static geometries only.

Outline. This article proceeds in Section 2 with necessary preliminaries that present boundary integral equation for-
mulations for some common linear PDEs, demonstrates the role that volume potentials play in their solution, and then 
presents in Sections 3 and Section 4 the proposed methodology: Section 3 covers volumetric meshing, then the use of 
smooth quadratures and interpolation on the coordinate-mapped triangles that naturally arise, followed by a description of 
novel singular and near-singular quadrature techniques, while Section 4, in turn, focuses on implementation and efficiency 
considerations of the method, both for repeated evaluation of (1.1) and for efficient up-front generation of necessary correc-
tions to the smooth quadratures (as well as some limited discussion of our approach to the routine task of quadratures on 
the bulk region). Various numerical examples are presented in Section 5 demonstrating the properties of the method and a 
brief summary with concluding remarks is given in Section 6.
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2. Potential theory for inhomogeneous PDEs

This article is primarily concerned with methods to obtain solutions u : � → R to the elliptic PDE boundary value 
problem

Lu(r) = f (r), r ∈ �, (2.1a)

u(r) = g(r), r ∈ �, (2.1b)

where � = ∂� denotes the (assumed piecewise-smooth) boundary of a complex geometry � ⊂ R2. Here, it is assumed that 
L is a linear operator with a known translation-invariant Green function G(r, r0) = G(r − r0), as occurs e.g. for the Poisson, 
Helmholtz, modified Helmholtz, and Stokes equations. A standard solution technique for the boundary value problem (2.1)
is to exploit linearity and seek a particular solution uP to the problem

LuP (r) = f (r), r ∈ �, (2.2)

with no care given to boundary conditions for uP on �, and then subsequently solve the augmented boundary value problem

LuH (r) = 0, r ∈ �, (2.3a)

uH (r) = g(r) − uP (r), r ∈ �, (2.3b)

whereby the solution to (2.1) is given by

u(r) = uH (r) + uP (r), r ∈ �. (2.4)

Depending on the operator L and the domain � a variety of boundary integral equation formulations may be appropriate, 
each requiring their own numerical analysis—such questions are not of concern here. It suffices to note that all require 
boundary values of a particular solution uP which can be obtained by evaluation of the volume potential (1.1). This article 
is thus concerned with the efficient and accurate evaluation of this integral for targets r0 ∈ � (to provide boundary values 
of uP as data for Equation (2.3b)) and for r0 ∈ � (for evaluation of the full solution u at desired evaluation points r ∈ �). 
Nevertheless, we briefly outline for definiteness the integral equation formulations used in this article.

2.1. Boundary integral formulation

Consider the Poisson equation, for which L = −�. We utilize standard representation formulas for the solution uH at a 
point r0 in the domain �, expressed in terms of the double-layer potential

uH (r0) = D[ϕ](r0) :=
∫
�

∂G(r, r0)

∂n(r)
ϕ(r)dσ(r) (2.5)

induced by the boundary integral density ϕ , where G(r, r0) denotes the Green function of Equation (2.1), G(r, r0) =
− 1

2π log (|r − r0|). As is well-known, using the representation formula (2.5) and enforcing the boundary conditions (2.3b)
leads via the jump relations of the double layer potential [58] to the integral equation(

±1

2
I + D

)
[ϕ](r) = g − uP , r ∈ �±, (2.6)

for a function ϕ which must be satisfied in order for Equation (2.5) to yield a solution to the boundary value problem (2.3)
for L = −�. Here �+ (resp. �−) denotes that section of the boundary ∂� with respect to which the domain lays exterior 
(interior), and we denote by D the double-layer boundary integral operator

D[ψ](r0) :=
∫
�

∂G(r, r0)

∂n(r)
ψ(r)dσ(r), r0 ∈ ∂�. (2.7)

The above formulation works as written for the modified Helmholtz equation (L = −� +λ2) as well by replacing the Green’s 
function with G(r, r0) := λ2

2π K0 (λ|r − r0|). We do not discuss here subtler points regarding treatment of nullspaces for these 
operators, see [59] for a treatise on this topic.
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3. A volume potential scheme for thin boundary-fitted regions

This section describes the basic elements of the proposed methodology for volume potential evaluation. It describes 
first an automatic method for the construction of a boundary-fitted region consisting of both curvilinear triangles (that 
are fitted to the boundary of inclusions defined by parametric curves) and straight triangles. Then, domain mappings are 
presented that map a reference cell to a triangular region and describe smooth quadrature and interpolation schemes for 
these regions (our approach to the routine task [12] of quadrature for regular source boxes is deferred and only briefly 
mentioned in Section 4.2). Finally, in Section 3.3 we describe our approach to singular and near-singular quadrature based 
on expressing domain integrals over a reference cell in terms of line integrals on its boundary.

3.1. Meshing

This section describes a technique to generate a boundary-fitted mesh for a (possibly multiply-) connected volumetric 
region � with boundary formed by a collection of curves � = ⋃N�

i=0 �i , with the method proceeding in an identical manner 
whether the domain is an unbounded (exterior) or bounded (interior) one. The meshing algorithm we describe depends on 
parametrizations of the boundary curves, and to this end we introduce some useful notation. We assume for each curve �i
(i = 1, . . . , N�) that we have access to a global parametrization γ i : [0, 2π ] → �i , γ i = γ i(t), and denote by ni the associated 
normal vector ni = ni(t) directed into the domain �. We also denote by �i(t) the arclength of the portion of the curve �i
traced out by γ i(τ ) for 0 ≤ τ ≤ t , and, abusing notation slightly, we call �i = �i(2π) the total arclength of curve �i . The 
algorithm fills the bulk of the domain away from the boundary with boxes in a uniform background mesh, assumed to be 
of size h.

The boundary-fitted mesh will be in the form of a tessellation involving Nt triangular regions Tk and Nb regular boxes 
Bk ,

� = ∪K
k=1Ck =

(
∪Nt
k=1Tk

)⋃(
∪Nb
k=1Bk

)
, (3.1)

which together comprise K = Nt + Nb cells, ordered first by triangles so that

Ck =
{
Tk, 1 ≤ k ≤ Nt,

Bk−Nt , Nt + 1 ≤ k ≤ K ,
(3.2)

where the box Bk has center ok .
Corresponding to the curve �i with arclength �i there will be a contribution of approximately �i/h boundary-fitted 

(curved) triangles, reflecting general uniformity in the size of mesh cells that abut the boundary; other strategies incorpo-
rating considerations of local curvature or source adaptivity are also possible but beyond the scope of the present discussion 
(see also Remark 2). For each of the N� curves, the algorithm proceeds in three steps to generate a boundary-fitted mesh: 
(1) Firstly, by identification of boundary ‘knot’ points which segment each curve parametrization into Nγi sections of approx-
imately equal-arclength (�� ≈ h), then (2) Secondly, by generation of boundary-fitted mesh cells conforming to the knot 
points, and (3) Finally, by generation of “buffer” zones that connect the boundary-fitted mesh to the background “bulk” 
mesh.

First, we describe a method for generating a sequence {κ j}Nγi
j=1 of parametric knot points κ j ∈ [0, 2π ]. Starting from t = 0, 

knot points are progressively laid down so that each segment of the curve formed by consecutive knot points contains an 
arclength of approximately �� ≈ h; care is taken that all knot points are reasonably spaced (in particular, that knots κ j do 
not lay close to t = 2π—which may lead to close knot points in view of the periodicity of γ i(t)). Then, from each pair of 
knot points κ j and κ j+1, j = 1, . . . , Nγi − 1, a curvilinear triangle is generated by connecting the two knot points by the 
boundary curve, and then further connecting to a third point in the volume generated by projecting a point a distance h
from the boundary in the normal direction ni((κ j + κ j+1)/2). The three points forming the new triangle thus are γ i(κ j), 
γ i(κ j+1), and γ i(mj) + hni(mj), where mj = (κ j + κ j+1)/2 is the curve-parametric midpoint of the new triangle being 
formed. The curved cells that result from this procedure are shown in Fig. 2, shaded grey.

Since the mesh cells formed in such a manner do not conform in any way to any uniform (or quadtree) background 
mesh, a watertight mesh is generated by means of a global ‘buffer’ zone F that lays flush with these cells and serves to 
separate them from the background mesh. This region is defined by excluding any box from the background mesh laying 
within distance hδ of any boundary-fitting triangles (the selection δ = 0.8 was made for the experiments in this article), the 
process repeating for each of the curves �i , and yielding N� local buffer zones Bi (i = 1, . . . , N�) which satisfy 

⋃
i Bi = F . 

In the simple case that all such regions Bi are pairwise disjoint, it is a routine meshing task to generate N� high-quality 
triangulations for each as each is bounded by two polygons; we use the Gmsh [60] software suite for this task which results 
in a total of Nt (curved and straight) triangular mesh cells.

One possibility that must be addressed, then, is the situation that arises when ‘buffer’ zones from two or more curves 
�i and � j , i 	= j, are overlapping (Bi ∩ B j 	= ∅) as occurs naturally when �i and � j are not sufficiently well-separated. The 
algorithm handles this situation by utilizing a queue-like system that progresses iteratively through all remaining unmeshed 
curves to identify overlapping Bi , merging these, and triangulating the result. Selecting the first remaining curve �i and 
6
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Fig. 2. (a) The volumetric discretization that arises from the present methodology applied to the exterior of two smooth bounded curves. Curved triangles 
that abut the curve are shaded while the buffer zone triangle cells are identified by blue edges. In three of the cells the interpolation nodes are denoted 
with red points. (b) The self-near-far separation rule for a straight triangular cell (with cell boundary plotted in purple and vertices in black) applied 
to uniformly-distributed volumetric targets. The region bounded by the red triangle contains all near-singular targets (marked red), the triangle itself 
bounds all singular targets (marked purple), while the remainder of targets (marked gray) are considered to be far quadrature to be treated with a smooth 
quadrature rule. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

letting Fi = Bi , for any curve � j ( j > i) whose buffer zone B j satisfies Fi ∩ B j 	= ∅ we let Fi = Fi ∪ B j and remove � j

from the queue of remaining curves. This process terminates when j = N� after which the index i is increased to the next 
remaining curve and the process continues until no curves are remaining (i = j = N�). The resulting sets Fi are pairwise 
disjoint and satisfy ∪iFi = F (the union taken over all i for which Fi is defined); each are triangulated individually, again 
with Gmsh. This procedure thus robustly handles the possibility of arbitrarily-many curves that lay close to each other.

A final depiction of the region surrounding one or more curves �i is given in Fig. 2 for well-separated curves (the buffer 
zone cells F are shaded blue), while examples of the buffer-zone merging process described in the previous paragraph 
can be seen in the mesh in Fig. 8. The set of regular cells is defined, finally, by the remaining part of the volume, per 
Equation (3.1); in Fig. 2 these regular cells are colored red (note that regular cells may be enclosed by any given union-of-
buffer-zones region Fi and are still handled by the box code).

A final element of the mesh construction process is a self-near-far separation rule, which classifies a given target r0
as a singular, near-singular, or smooth quadrature point with respect to each mesh cell. A target r0 /∈ Ck is considered a 
near-singular target of Ck if it lays within a polygon, with sides parallel to the physical cell (of course, this prescription 
is extended in an obvious manner to treat curvilinear triangles) and with sides laying a distance Dh (we use D = 4/10
for experiments in this article) from the boundary of Ck . We denote by Cnear

k (r0) the index set of cells whose associated 
separation rules classify r0 as a near-singular target, with Cnear(r0) the union of all cells Ck with index in Cnear

k (r0). We 
denote by Cself(r0) the cell to which r0 lays in, and define further Cfar(r0) = � \ (

Cnear(r0) ∪ Cself(r0)
)
as the remainder of 

� which is well-separated from r0 (see the depiction in Fig. 2). Therefore, the volume potential can be decomposed as

V[ f ](r0) =
⎛⎜⎝ ∫
Cnear(r0)

+
∫

Cself(r0)

+
∫

Cfar(r0)

⎞⎟⎠G(r, r0) f (r)dA(r)

over near-singular, singular, and smooth regions of �, respectively, for each target r0.

Remark 1. It is trivial to define for each triangular cell a boundary parametrization Zk : [0, 2π ] → ∂Tk , which could in 
principle be utilized by the same methodology outlined in Section 3.3 to generate physical-space volumetric quadratures for 
targets located in or near Tk . In practice, however, all quadrature will occur on the standard simplex T̂0 or the unit box B̂0
(see also Remark 3). It should be noted as well that the boundary of every box Bk in fact has the same parametrization, up 
to a translation, with similar implications for generating physical-space quadratures.
7
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Remark 2. The prescription we give here for generating a high-quality volumetric mesh is certainly not the only method to 
obtain a compatible mesh for volume potential evaluation, but was effective for forming meshes for the examples in this 
article. Local curvature could be usefully incorporated into the algorithm described above in a blend of strategies based 
on arclength and changes in curvature, to achieve higher quality meshes. We mention as well the “TriWild” method of 
reference [61] for producing a valid volumetric mesh consisting of straight and curved triangles from a collection of curves 
whose union forms �, which has demonstrated success on a variety of real-world benchmark problems and is fully com-
patible with our curved triangle approach to the boundary-fitted region. (At the present moment implementations of the
TriWild technique will result in only third-order approximations to the true boundary curve, motivating our exact ap-
proach to geometry representation, but it appears that this is not an essential limitation of the general TriWild technique; 
moreover, it appears straightforward to utilize slight perturbations of TriWild meshes and retain full geometric accuracy.)

3.2. Quadratures and interpolation for smooth integrands

In this section we describe first the overall approach to computing the volume potential V[ f ](r0) at arbitrary target 
points r0 via domain decomposition and then discuss quadrature of a potential that contains smooth integrands (as well 
as the related source density interpolation problem) over a domain-decomposed cell Ck . Efficient and accurate evaluation 
follows from a combination of (i) Standard fast summation technologies which, on the one hand allow for efficient compu-
tation of sums arising from target-independent quadratures and which are, on the other hand, necessarily inaccurate in the 
vicinity of a given target point r0 for a singular kernel, as well as (ii) Accurate singular and near-singular target-dependent
quadrature corrections applied locally in the vicinity of the given target point r0. While the focus in this section is on point 
(i), the methodology does rely on a fixed orthogonal basis used to approximate the source function f to high-order ac-
curacy and for this reason we discuss also interpolation of smooth functions. Our approach is similar in spirit to that of 
reference [62].

We first sketch the unifying singular correction and functional approximation strategy. The Newton potential of a function 
ρ at a given target point r0 ∈ � can be written as

V[ρ](r0) =
K∑

k=1

Vk[ρ](r0), where Vk[ρ](r0) =
∫
Ck

G(r, r0)ρ(r)dA(r).

Quadrature will be performed using coordinate mappings Rk from a reference cell Ĉk—either a unit square B̂0 or the 
unit simplex T̂0 (box regions are identical by translational invariance, so the use of mappings in this case is done merely 
for notational consistency). We will denote by

V̂k[ρ](ζ 0) =
∫
Ĉk

G
(
Rk(ζ ), Rk(ζ 0)

)
J k(ζ )ρ(ζ )dA(ζ ), where J k(ζ ) = det

∂Rk

∂ζ
, (3.3)

a volume potential in ζ -reference space, ζ = (ξ,η)T . In a slight abuse of notation we will when convenient use the vector 
notation Rk(ζ ) instead of the notation Rk(ξ, η) for the same function Rk (and similarly for other functions). It is known 
that if Rk is a C1-invertible mapping onto Ck , then letting ζ k

0 = (
Rk

)−1
(r0) denote the location of a physical target r0 ∈ �

in the reference space of the kth mesh cell the identity

Vk[ρ](r0) = V̂k[ρ ◦ Rk](ζ k
0) (3.4)

holds [63, Thm. 5.5 & Add. 5.6] for an integrable function ρ on Ck .
The two sections below outline (i) interpolation by a standard basis on both the straight and curved cells present in the 

volumetric mesh as well as (ii) the specifics of smooth quadratures and their coupling to fast algorithms. (Similar matters 
for the simple case of the reference box B̂0 are addressed in Section 4.2.)

3.2.1. Smooth quadratures and interpolation on triangles
This section is concerned firstly with mappings of the standard simplex into curvilinear mapped triangles and then with 

interpolation and quadrature of arbitrary smooth functions over these regions; methods for singular corrections for target 
points r0 ∈ � near to or contained in Tk are deferred to Sections 3.3 and 4.

Mapped triangles
An arbitrary mapped triangle Tk can be represented (Fig. 3) using a coordinate transformation from the standard 2-

simplex

T̂0 = {(ξ,η) : ξ,η,1 − ξ − η ≥ 0} . (3.5)
8
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α̂(0,0) β̂(1,0)

γ̂ (0,1)

T̂0

Rk

γ (xk3, y
k
3) α(xk1, y

k
1)

β(xk2, y
k
2)

Tk

{
x = λ(ξ)

y = μ(ξ)

α(xk1, y
k
1)

β(xk2, y
k
2)

γ (xk3, y
k
3)

Tk

Rk

Fig. 3. Depiction of reference space and mapped triangles. Left: T̂0 in (ξ, η)-parameter space. Right: Curved (top) and straight (bottom) mapped triangles 
Tk in physical space; note that the map Rk : T̂0 → Tk for a straight-edged triangle Tk takes the particularly simple form of an affine map.

Noting that from (3.2) the cell Ck and transformation Rk correspond to the cell Tk , for k ≤ Nt , the transformation for each 
cell Tk can be written for such k as

Rk(ζ ) = Rk(ξ,η) =
(
xk(ξ,η)

yk(ξ,η)

)
, ζ =

(
ξ

η

)
, (3.6)

where xk(ξ, η) and yk(ξ, η) denote the x- and y-coordinate mappings from T̂0 to Tk . The mappings Rk differ in the case 
that Rk alternatively maps into a straight-edged or a curved triangle, with the mappings xk and yk in the straight-edged 
triangle case given as affine maps defined such that they correctly map the coordinates of the corners of T̂0 to those of 
Tk . The meshing strategy described in Section 2 also introduces curved triangles, which in our context consist specifically 
of curvilinear regions with two straight edges and a single curved edge. For such curved triangles Tk with corners (xk1, y

k
1), 

(xk2, y
k
2), and (xk3, y

k
3) we let, without loss of generality, the curved edge connect (xk1, y

k
1) and (xk2, y

k
2), and introduce the 

transformation{
xk(ξ,η) = (1 − ξ − η)xk1 + ξxk2 + ηxk3 + 1−ξ−η

1−ξ

(
λ(ξ) − (1− ξ)xk1 − ξxk2

)
,

yk(ξ,η) = (1 − ξ − η)yk1 + ξ yk2 + ηyk3 + 1−ξ−η
1−ξ

(
μ(ξ) − (1− ξ)yk1 − ξ yk2

)
,

(3.7)

which can easily be seen is a C1-invertible map of the standard simplex T̂0 onto Tk . Here, λ : [0, 1] →R and μ : [0, 1] →R
are parametrizations of the individual coordinates of the curved edge connecting (xk1, y

k
1) and (xk2, y

k
2) that satisfy λ(0) = xk1, 

λ(1) = xk2, μ(0) = yk1, μ(1) = yk2. This procedure for mapping T̂0 to an arbitrary deformed triangle Tk is known as the 
blending function method [64,65] originally introduced in the finite element literature; see also [66].

The mappings Rk are used in the method to relate integrals over triangular regions Tk to integrals over the standard 
simplex T̂0: since the mapping Rk given by (3.6) is a C1-invertible mapping over T̂0 it is known [63, Thm. 5.5 & Add. 5.6]
that the integral over Tk can be expressed as∫

Tk

ρ(r)dA(r) =
∫
T̂0

ρ(Rk(ξ,η)) J k(ξ,η)dξdη, (3.8)

for an integrable function ρ : Tk → R, where J k denotes the absolute value of the Jacobian determinant of the mapping 
Rk; clearly, Equation (3.8) is equivalent to (3.4) for this class of cell. This elementary change of variables not only enables 
the use of an orthogonal basis for every cell Tk , but it also enables efficient means to generate singular corrections (see 
Section 4.1.1).

Smooth interpolation and quadrature
At the core of the present numerical method for volume potential evaluation are robust and efficient, high-order in-

terpolation and quadrature schemes on each of the cell types. Here we present such a scheme for the simplex using the 
9
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well-known Koornwinder polynomial system. Denoting by P (α,β)
n (ξ) (see [67, §22] for details) the Jacobi polynomial of 

degree n that satisfies the ODE

(1 − x)2 y′′ + (β − α − (α + β + 2)x)y′ + n(n + α + β + 1)y = 0, −1 < x < 1,

we will make extensive use of the Koornwinder polynomials which are defined, up to maximal total degree p, by

Knm = γnmP (0,2m+1)
n−m (1 − 2η)P (0,0)

m

(
2ξ

1− η
− 1

)
(1− η)m; m = 0, . . . ,n, and n = 0, . . . , p,

where the weights γnm are chosen so that∫
T̂0

K 2
nm(ξ,η)dξdη = 1.

As is well-known [68], the p(p + 1)/2 polynomials {Knm : 0 ≤ m ≤ n, 0 ≤ n < p} form an orthogonal basis for the space 
Pp−1 of polynomials of total degree less than p on the simplex T̂0. We will call an element ρ of Pp−1,

ρ(ξ,η) =
p−1∑
n=0

n∑
m=0

anmKnm(ξ,η),

a p-th order Koornwinder expansion in keeping with classical results on the error in interpolation of smooth functions by 
polynomials of degree less than p.

The coefficients of a polynomial ρ ∈Pp−1 can be related to its values on a discrete set of interpolation nodes

IT ,p = {(ξp,i, ηp,i) : 1 ≤ i ≤ Np}, Np = p(p + 1)/2. (3.9)

In detail, denoting by a and ρ the vectors with elements (a)nm = anm and (ρ)i = ρ(ξp,i, ηp,i) the coefficients will satisfy

V pa = ρ, (3.10)

where (V p)nm,i = Knm(ξp,i, ηp,i) is the so-called coefficients-to-values map associated with the Koornwinder polynomials 
on the nodal set IT ,p . Provided the nodal set IT ,p is such that V p is nonsingular we denote the values-to-coefficients map 
C p = V −1

p —while in our case V p will always be invertible due to a specific choice of nodal set IT ,p , see also [69] for a 
sufficient condition for a generic nodal set IT ,p to yield an invertible matrix V p .

Recent contributions [30] have developed nodal sets IT ,p leading to favorable conditioning of the maps V p and C p

that we utilize, and, making this selection we henceforth denote by IT ,p the Vioreanu-Rokhlin nodes for interpolation by 
polynomials with total degree less than p. It will also be convenient to introduce the oversampling matrix O p1,p2 which 
maps values at the Vioreanu-Rokhlin nodes IT ,p1 in a Koornwinder expansion of order p1 to that same expansions’ values 
at the Vioreanu-Rokhlin nodes IT ,p2 for an expansion of order p2 ≥ p1. For a generic smooth function ρ : T̂0 → R we have 
the approximation

ρ(ξ,η) ≈ ρp(ξ,η) =
p−1∑
n=0

n∑
m=0

anmKnm(ξ,η), (3.11)

accurate to p-th order. The expansion coefficients anm in a p-th order Koornwinder expansion are determined for generic 
smooth functions and polynomials alike via the solution to the system (3.10).

Having considered interpolation, we turn to quadratures of smooth functions: a target r0-independent high-order quadra-
ture rule is required on the simplex for integrals such as those in Equation (3.8) with ρ smooth. (The r0-independence of 
the rule—that the source nodes are independent of the target—is required for compatibility with fast summation techniques.) 
For this task, we turn to generalized Gaussian quadrature rules, in which context we recall that one-dimensional Gaussian 
quadrature yields a specific set {(ξi, wi); i = 1, 2, . . . , N} of N quadrature nodes and weights results that can integrate ex-
actly all polynomials of degree at most 2N − 1 (the weights wi following from a specific choice of nodal set). In higher 
dimensions, it appears that perfect Gaussian quadratures are unfortunately not available, but generalized Gaussian quadra-
tures have been introduced [31,30] which, for N quadrature nodes in d > 1 dimensions, rather than exactly integrating dN
functions (as would be the case for a perfect Gaussian quadrature rule), instead only integrate some number of functions 
greater than N . Fortunately, the interpolation nodes IT ,p introduced above also have associated with them corresponding 
quadrature weights, thereby furnishing us with a highly-efficient set of quadrature nodes and weights (the efficiency of a 
modified Gaussian quadrature is the ratio of the number of functions integrated exactly to the ideal “Gaussian” number 
dN)—for details see [30], but we caution that this does not yield a quadrature rule of order p [30, §5]. Thus, for a smooth 
function ρ on the domain Tk and in view of (3.8) we use the interpolatory quadrature rule
10
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∫
Tk

ρ(r)dA(r) ≈
Np∑
j=1

ρ
(
Rk(ξ j, η j)

)
J k(ξ j, η j)w j, where (ξ j, η j) ∈ IT ,p, (3.12)

termed so because the quadrature nodes coincide with the set IT ,p of interpolation nodes.

Oversampled smooth quadratures
An ideal smooth quadrature rule for Vk[ f ](r0) delivers accurate approximations with error on the level of interpolation 

of the function f over Tk , but, unfortunately, large gradients in the integrand due to G over cells Tk near to r0 can lead to 
quadrature error that dominates that of interpolation of f at any fixed order p. Oversampled quadratures can address this 
problem, limiting the number of nodal points at which f is required while delivering high accuracy, and we describe next 
their use. Defining the vector of function samples f kp by

( f kp)i = f
(
Rk(ξp,i, ηp,i)

)
, where (ξp,i, ηp,i) ∈ IT ,p for i = 1, . . . ,Np,

so that

f (Rk(ξ,η)) ≈
p−1∑
n=0

n∑
m=0

aknmKnm(ξ,η) with V pa
k = f kp,

interpolated approximate values of the source f are obtained at nodes IT ,q via the oversampling map O p1,p2 with p1 = p
and p2 = q ≥ p (see the previous section on smooth interpolation),

f kq = O p,q f kp,

where the integer q represents the degree of oversampled quadrature. The quadrature rule (3.12) applied to ρ(r) =
G(r, r0) f (r) for each Tk satisfying Tk ⊂ Cfar(r0) is then

Vk[ f ](r0) ≈
Nq∑
j=1

G(Rk(ξ j, η j), r0)( f
k
q) j J

k(ξ j, η j)w j. (3.13)

One detail to note is that while quadrature occurs in reference (ξ, η) space in which context the function is not immediately 
obviously amenable to standard fast algorithms, the sum in (3.13) is nevertheless compatible with FMMs in physical space 
by viewing the quantity J k(ξ j, η j)w j as modified weights for the discrete inner product.

3.3. A singular quadrature scheme for mapped simplices

This section is devoted to a description of a singular quadrature scheme that can evaluate volumetric integrals over 
arbitrary star-shaped regions of the plane. While the singular quadrature methods outlined below are quite generic geo-
metrically (though see Remark 3), for our purposes here singular integral evaluation will be required over one of precisely 
two volumetric regions Ĉ: a box Ĉ = Ĉk = B̂0 and a standard simplex Ĉ = Ĉk = T̂0 (as is suggested by the notation, we 
suppress the dependence on k in this section whenever possible). This section begins by presenting the basic theory of 
converting convolutions of the Green’s function with a source function ρ over certain star-shaped domains to integrals over 
each of those domain’s boundaries (using ideas related to Poincaré’s lemma), then discusses treatment of the singular ker-
nel in Section 3.3.2 and finally addresses some subtler geometric details in Section 3.3.3. In principle the function ρ could 
incorporate directly the actual source function f (with mapped argument) arising from the PDE boundary value problem 
Equation (2.1a) but in practice will be chosen to be related to a member of a given family of orthogonal polynomials, as 
detailed in Section 3.2.

3.3.1. Poincaré’s lemma and volume-to-boundary integral conversion for ̂Vk
It is first useful to recall some terminology. A region S is called star-shaped if there exists some point r∗ ∈ S such that 

every line segment that connects r∗ to any other point r ∈ S lays entirely in S (the region is called star-shaped with respect 
to r∗). On the other hand, a star-shaped region is convex if and only if it is star-shaped with respect to every r∗ ∈ S .

Inspired by elements of the proof of Poincaré’s lemma, which utilizes certain maps involving iterated boundary integrals, 
we make use of an extension of these ideas for integrals involving singular functions, but first state its main holding in 
a simpler lemma limited to smooth functions. A proof is given in the appendix, using the perhaps more familiar tools of 
vector calculus (cf. elements of this lemma using the language of differential forms in [70]).

Lemma 1. Let the closed region S ⊂ R2 be star-shaped with respect to the origin with a piecewise smooth boundary ∂S and assume 
ρ : S → R is continuously differentiable on S . Then the relation
11
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∫
S

ρ(r)dA =
∮
∂S

⎛⎝ 1∫
0

t ρ(tr)dt

⎞⎠ r × τ ds (3.14)

holds, where s denotes the arclength, τ denotes the unit tangent vector of ∂S , and r × τ is understood as a scalar.

The integrals resulting from Lemma 1 have at times been referred to as dilation integrals (with dilation with respect to 
the star point), with e.g. reference [48] relying precisely (up to a fixed geometry-dependent translation) on the relation (3.14)
to generate accurate quadratures of smooth functions. However, in the context of volume potentials with weakly singular 
kernels, such approaches [57,49,53,54,50,51] have previously faced a number of challenges related to star-shapedness, loca-
tion of quadrature points, and presence of singularities (see the discussion in the Introduction); in some cases [57,49] the 
applicability is restricted to Poisson problems.

Remark 3. For a convex reference cell S = Ĉ , which in the proposed method are the only domains over which quadrature 
is performed, Corollary 1 below applies to every point ζ ∗ ∈ Ĉ , while this may unfortunately not hold for a generic star-
shaped region. It is a significant strength of the present mapped-domain approach, in contrast to the possibility of applying 
this lemma in physical space (for which case difficulties may arise when targets lay in certain subsets of nonconvex cells), 
that the Poincaré lemma-related ideas can be successfully applied for every point ζ ∗ . More generally, methods based on 
transformation of volume integrals to surface integrals potentially suffer when integration domains are non-convex as they 
generally result in quadrature points laying outside the integration domain result [57,45,49,46,53,54], a long-recognized 
issue in multidimensional quadrature [38,71]. As a more minor matter, the presence of such quadrature nodes implies the 
existence of negative quadrature weights, which is generally considered unfavorable in view of stability concerns.

The following corollary of Lemma 1 is used in what follows to express the volume potentials in terms of boundary 
integrals; its proof is given in the appendix.

Corollary 1. Let K = K (r) denote a weakly-singular kernel function which is continuously differentiable for r ∈ R2 \ {0}, assume the 
closed region S ⊂ R2 has a piecewise smooth boundary ∂S , and assume the function ρ : S → R is continuously differentiable on S . 
Then for each r∗ ∈ S such that S is star-shaped with respect to r∗ , we have

∫
S

K (r − r∗)ρ(r)dA =
∮
∂S

⎛⎝ 1∫
0

t K (t (r − r∗))ρ(t(r − r∗) + r∗)dt

⎞⎠ ((r − r∗) × τ ) ds. (3.15)

The proposed methodology identifies for every singular and near-singular target r0 ∈ � a point r∗ = r∗(r0) ∈ Ck using 
the rule

ζ ∗ = argmin
ζ∈Ĉk

∣∣∣Rk(ζ ) − r0
∣∣∣ and r∗ = Rk(ζ ∗). (3.16)

Having identified ζ ∗ ∈ Ĉk we now apply Corollary 1 and then describe quadrature rules for evaluating certain resulting 
integrals in the reference domain Ĉ = Ĉk .

Remark 4. A subtle but important point for near-singular targets r0 is that the star point r∗ must be selected as the closest 
point in ∂Ck to r0 despite quadrature occurring over Ĉ , as this point corresponds to the minimum distance d that arises as 
an argument to the singular kernel (cf. Equation (3.24) and Fig. 5). By adapting to this point the quadrature rule is able to 
deliver optimal accuracy.

Writing V̂k[ρ] in the form

V̂k[ρ] =
∫
Ĉ

G
(
Rk(ζ − ζ ∗ + ζ ∗) − Rk(ζ 0)

)
J k(ζ )ρ(ζ )dA

and making the selections of region S = Ĉ , kernel K (τ ) = G 
(
Rk(τ + ζ ∗) − Rk(ζ 0)

)
and smooth source J k(ζ )ρ(ζ ) in Corol-

lary 1, we obtain
12
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V̂k[ρ] (ζ 0
) =

∮
∂Ĉ

⎛⎝ 1∫
0

t G(Rk(ζ ∗ + t
(
ζ − ζ ∗

)
), Rk(ζ 0)) ×

× J k(ζ ∗ + t
(
ζ − ζ ∗

)
)ρ(ζ ∗ + t

(
ζ − ζ ∗

)
)dt

⎞⎠(
(ζ − ζ ∗) × τ

)
ds.

(3.17)

The expression (3.17) for the volume potential V̂k[ρ] can be written in the simplified form

V̂k[ρ] (ζ 0
) =

∮
∂Ĉ

Ik[ρ](ζ , ζ 0)
(
(ζ − ζ ∗) × τ

)
ds, (3.18)

where Ik[ρ](ζ , ζ 0) is defined as the inner integral of the iterated integral:

Ik[ρ](ζ , ζ 0) =
1∫

0

t G(Rk(ζ ∗ + t
(
ζ − ζ ∗

)
), Rk(ζ 0)) J

k(ζ ∗ + t
(
ζ − ζ ∗

)
)ρ(ζ ∗ + t

(
ζ − ζ ∗

)
)dt. (3.19)

The presence of the Green function (near-)singularity at t = 0, for all ζ , ζ 0, in the one-dimensional integral in (3.19) suggests 
that one-dimensional quadrature schemes for the integral Ik[ρ](ζ , ζ 0) may be effective, which we outline in the next 
section. Before discussing these quadrature schemes we first introduce the quadrature scheme for the outer integral in (3.18).

Since ∂Ĉ is piecewise smooth, it follows that Ik[ρ](ζ , ζ 0) is piecewise smooth as a function of ζ ∈ ∂Ĉ , implying that the 
integrand of the circulation integral in (3.18) is likewise piecewise smooth. The quadrature rule we propose for V̂k[ρ](ζ 0) is 
developed by segmenting the boundary ∂Ĉ into M∂Ĉ intervals, and obtaining a composite Gauss-Legendre rule by applica-
tion of a P -point Gauss–Legendre quadrature rule on each interval, with P a fixed integer (we use the selection P = 16 for 
the numerical examples in this article). We thus have the quadrature rule

V̂k[ρ] (ζ 0
) ≈

PM
∂Ĉ∑

j=1

Ik[ρ](ζ j, ζ 0)
(
(ζ j − ζ ∗) × τ j

)
w j, (3.20)

where {ζ j}PM∂Ĉ
j=1 ⊂ ∂Ĉ and {w j}PM∂Ĉ

j=1 are the quadrature nodes and weights. The error arising from use of this quadrature 
can depend in an important manner on the proximity of ζ 0 relative to the boundary ∂Ĉ , and, in particular, we find that a 
uniform distribution of composite Gauss-Legendre intervals is not sufficient to achieve desired accuracies. Further details on 
boundary discretization are given in Section 3.3.3 where an optimal interval distribution is described which may depend on 
the target ζ 0.

3.3.2. Singular and near-singular quadrature rules for Ik[ρ]
While use of Corollary 1 transforms the volume integral over the cell Ĉ to an iterated integral over the boundary of 

the cell ∂Ĉ , the integrand of the inner integral remains potentially non-smooth (indeed, potentially singular depending 
on the strength of the kernel singularity). The one-dimensional quadrature scheme outlined in what follows is tailored to 
the known singular behavior of the kernel: crucially, only the endpoint asymptotic behavior of the integrand is relevant 
to quadrature rule selection, making the proposed scheme applicable to many kernel functions, including, but not limited 
to, those arising in a variety of Green functions of mathematical physics (in particular, the kernel function could be more 
singular than the Green functions typically encountered in elliptic PDEs).

Remark 5. For convenience, we refer to the one-dimensional integrals Ik[ρ] as being singular (for ζ 0 ∈ Ĉk) or near-singular 
(for ζ 0 /∈ Ĉk), even though, in view of the t-factor present in the integrand of Ik[ρ], it is possible that the integrand is not 
truly singular; for example, for the elliptic PDEs we consider in this article, the small-t asymptotic behavior of G in Ik is 
merely logarithmic (s(t) = log t in (3.21) and S(t) = log t in (3.23) below) and the integrand of Ik[ρ] is thus merely non-
smooth. Indeed the t-factor, which could be loosely viewed as an analogue of weights arising in polar changes of variables, 
allows the treatment of highly singular kernels by the proposed methodology. In any case, for the PDE kernels considered 
in the examples of this article, singular and near-singular quadrature rules are still required for high-order accuracy (i.e. the 
t-factor is implicitly treated as part of the smooth component of the integrand (φ(t) in (3.21) and k2(t) in (3.23) below)).

In detail, the primary difficulty in accurate evaluation of the Ik[ρ](ζ , ζ 0) integral is that, in view of the nature of the 
integrand in Ik , the target point ζ 0 will lie precisely at (in the case ζ 0 ∈ Ĉ) or instead near (in the case ζ 0 /∈ Ĉ) one end of 
the line segment connecting ζ ∗ (t = 0) and ζ ∈ ∂Ĉ (t = 1). In the singular case, there is possibly an integrable singularity 
in the integrand at the left (t = 0) endpoint of the integration interval due to the singular nature of the Green function 
G . Problems remain even in the case when there is a positive distance of ζ 0 to Ĉ , since steep gradients, again at t = 0, 
13
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Fig. 4. In reference (left) and physical (right) space for a curvilinear cell, the high-order quadrature nodes (arising from a 5th-order corrected trapezoidal 
rule for the Ik integral and a 10th-order composite Gauss–Legendre rule for the integral over ∂Ĉ) are displayed that result from the proposed quadrature 
scheme applied to a singular target point r0 ∈ C (marked in red).

Fig. 5. In reference (left) and physical (right) space for a straight triangle cell, the high-order quadrature nodes (arising from a 10th-order modified Gaussian 
rule for the Ik integral and a 10th-order composite Gauss–Legendre rule for the integral over ∂Ĉ) are displayed that result from the proposed quadrature 
scheme applied to a near-singular target point r0 /∈ C (marked in red). The dashed line segment connects the target r0 to the nearest physical point r∗ ∈ C
which is selected as the star-point (also marked in red); in reference domain ζ∗ = (R)−1 (r∗) is not the closest point to ζ 0 since the map R is affine (see 
also Remark 4).

can be challenging to accurately resolve with any fixed target-independent quadrature scheme. The high-order accurate 
quadrature scheme described in this article depends on a corresponding high-order accurate quadrature rule for the integral 
Ik , of which a wide variety of suitable schemes for singularity behavior of various types have been developed over many 
years, e.g. [72–74] (see [75] and references therein for discussion of early work in this direction). The integrals Ik , when 
the integrand is non-smooth, are amenable to the use of existing corrected trapezoidal quadrature rules for functions with 
known (singular) endpoint behavior and we utilize in this article the rules of reference [72] for singular quadrature—rules 
for integrating smooth functions multiplied by singular functions of logarithmic and (integrable) inverse-power type; for 
near-singular quadrature we use the rules introduced in reference [74].

We first detail the application of the Alpert [72] quadrature rule to Ik for self-interaction (singular) terms. The Alpert 
rules provide endpoint-corrected trapezoidal quadrature nodes and weights for integrals of functions h(t) : (0, 1] → R of the 
form

h(t) = φ(t)s(t) + ψ(t), (3.21)

where φ(t), ψ(t) ∈ Ck[0, 1] and s(t) ∈ C(0, 1] is an integrable function that is singular at t = 0. Letting the set of pairs 
{(ti, vi), 1 ≤ i ≤mP } denote, for a given integer P (the selection P = 16 is made in all numerical results in this article), the 
nodes and weights of a P -th order convergent Alpert quadrature rule for a given s(t), we obtain from (3.19)

Ik[ρ] (ζ , ζ 0
) ≈

mP∑
i=1

ti G
(
Rk(ζ ∗ + ti

(
ζ − ζ ∗

)
), Rk(ζ 0)

)
J k(ζ ∗ + t

(
ζ − ζ ∗

)
)ρ

(
ζ ∗ + ti

(
ζ − ζ ∗

))
vi, (3.22)

which is a P -th order approximation to Ik[g] and where we used the selection ζ ∗ = ζ 0 that has been made for the case of 
singular target points (ζ 0 ∈ Ĉ).
14
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Fig. 6. Left: Additional error (in evaluation of a logarithmic-kernel volume potential) that arises from a (naïve) uniform distribution of intervals for purposes 
of a boundary discretization in Equation (3.18), for each target point in the interior of Ĉ a unit simplex (demonstrating the need for some special care 
in handling target points laying close to a boundary); the color indicates the base-10 logarithm of the ‘error’, compared to the results of the proposed 
non-uniform boundary interval distribution that is target-adapted. Right: Singular volumetric quadrature nodes (blue) and boundary interval endpoints (red) 
resulting from the proposed target-adapted methodology when the target (magenta) lays close to the boundary of the reference cell Ĉ; the proposed 
boundary interval distribution produces uniformly-accurate volume potential values over the unit simplex to an error level of ≈ 10−14 (see Table 1).

In the near-singular case (ζ 0 /∈ Ĉ) we turn to modified Gaussian quadrature rules for integrands with known singular 
behavior S(t) as t → 0+ . Such methods provide, for a given d which lays in intervals of the form [10−q−1, 10−q] for positive 
integer q, quadrature nodes and weights {(t̃i, ̃vi), 1 ≤ i ≤m′

P } so that the near-singular rule

1∫
0

(k1(t) + k2(t)S(t + d)) dt ≈
m′

p∑
i=1

(
k1(t̃i) + k2(t̃i)S(t̃i + d)

)
ṽ i, (3.23)

holds to high accuracy (to within an accuracy ε of ε ≈ 10−15) for k1 and k2 polynomials of degree at most P (were the 
quadrature rule exact for such polynomials it would be a perfect Gaussian, hence the ‘modified’ moniker). Methods and 
theory are described in [74] for generation of such quadratures for a variety of singular behaviors; for the two-dimensional 
elliptic PDE demonstrations of the present work, we rely on pre-computed rules [3] for the case S(t) = log(t), where for 
the selection P = 10 made everywhere in this article a total of m′

P = 24 nodes are required. These quadrature rules are 
parametrized by the “near-singularity distance” d defined by the expression

d =
∣∣∣Rk(ζ ∗) − Rk(ζ 0)

∣∣∣ , (3.24)

which is the minimum distance that can occur for arguments to the kernel for this integration domain and target r0
(cf. (3.16)). We thus have the quadrature rule for Ik[ρ](ζ , ζ 0),

Ik[ρ](ζ , ζ 0) ≈
m′

P∑
i=1

t̃i G
(
Rk (

ζ ∗ + t̃i
(
ζ − ζ ∗

))
, Rk (

ζ 0
))

J k(ζ ∗ + t
(
ζ − ζ ∗

)
)ρ

(
ζ ∗ + t̃i

(
ζ − ζ ∗

))
ṽ i . (3.25)

3.3.3. Close evaluation
The quadrature rule (3.20) can lead to a highly-accurate quadrature rule for the representation (3.18) of V̂k[ρ](ζ 0), 

provided an appropriate distribution of quadrature nodes ζ j on the boundary ∂Ĉ are selected in the quadrature rule (3.20)
for (3.18). However, simply using a uniform distribution of boundary intervals (e.g. for Ĉ = T̂0 a triangle parametrized by Z =
Z(t), Z : [0, 2π ] → ∂Ĉ , using interval endpoints equi-spaced in t in each of [0, 2π/3], [2π/3, 4π/3], and [4π/3, 2π ]) will 
not always lead to a high-order approximation of the desired volume potential. Possible loss of accuracy can be understood 
by observing, in the test depicted in Fig. 6, that we are building a quadrature rule on Ĉ centered around the target ζ ∗ , with 
the value at each quadrature node ζ j in (3.18) being given by the integral Ik[ρ](ζ , ζ 0) along a ray from ζ ∗ to ζ j . However, 
an equi-arclength interval distribution does not uniformly cover the angular variable in the coordinate system with origin 
ζ ∗ , in which context steep gradients arise in Ik[ρ](ζ , ζ 0) with respect to ζ , and poor accuracy in the quadrature rule (3.20)
can result—a deficiency that we now remedy.

Since potential loss of accuracy in the quadrature rule (3.20) arises due to the described inadequate coverage of the 
angular variable in the coordinate system with origin ζ ∗ , with this effect being most pronounced at the closest point ζ 1 ∈ ∂Ĉ
to ζ ∗ , we refine the boundary discretization in a vicinity of ζ 1 and thus recover volume quadrature nodes that are suitably 
equi-distributed. After first identifying the parametric location t1 of ζ 1 in the parametrization of Ĉ , the method proceeds 
15
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Table 1
Single-cell test of the proposed singular quadrature scheme: evaluation of 
a volume potential over a straight (mapped) triangle � with vertices lo-
cated at (−0.618, −0.312), (−0.825, −0.311), and (−0.802, −0.516). For 
each integer p, ‖e‖�∞ denotes maximum error in the volume potential 
V[Knm ◦ R−1](r0) of the p(p + 1)/2-numbered polynomials Knm ∈ {Knm :
0 ≤ m ≤ n, 0 ≤ n < p}, each over all of the p(p + 1)/2-numbered points 
r0 = R(ζ 0), ζ 0 ∈ IT ,p (see (3.9)). Ground ‘truth’ is a highly-adaptive (and 
highly-expensive) multidimensional quadrature rule unrelated to the meth-
ods of this article, whose associated error is no greater than ≈ 10−14. The 
minimum distance from any point ζ 0 to ∂T̂0 is denoted by ̂dmin.

p ‖e‖�∞ d̂min

4 4.0e−15 7.1e−02
5 5.0e−15 4.8e−02
6 7.0e−15 3.1e−02
7 1.0e−14 2.3e−02
8 1.1e−14 1.9e−02
9 1.1e−14 1.5e−02
10 1.2e−14 1.3e−02

by placing a graded sequence of intervals near to t1. Letting t−1 and t+1 denote the parametric location of the nearest (still 
uniformly-distributed) composite interval endpoints that surround t1, the method introduces additional composite regions 
with endpoints in the set

�(t1) :=
{
t j : t j := t1 ± |t+1 − t−1 |R j, j = 1, . . . ,N

}
; with R = 1

4
, N = 5.

A depiction of the boundary discretization and associated volumetric quadrature nodes can be seen in Fig. 6.
Table 1 displays results of a test which demonstrates that this refinement strategy for the volume potential yields ac-

curacy of approximately 13 digits for targets close to cell boundaries. The test consists of evaluation of a Laplace volume 
potential, G(r, r0) = − 1

2π log |r − r0|, over a single (mapped) triangle � at specific points corresponding to Koornwinder 
interpolation nodes, with associated map denoted by R : T̂0 → �. This experiment has direct relevance to evaluation of 
the volume potential problem (1.1) since, as detailed in Section 4.1.1 below, values of V[ f ] at these nodes can be used to 
produce high-order accurate interpolation of the volume potential throughout a given cell Tk . The results of the experiment 
summarized in Fig. 8 provide a somewhat more challenging test as it includes some target points that lay up to two orders 
of magnitude closer to the cell boundary.

3.3.4. Final rule for local corrections
Having developed singular and near-singular quadrature rules for the one-dimensional integrals Ik (3.19), we provide the 

full singular and near-singular rules for the volume potential Vk[ρ]. In the singular case (ζ 0 ∈ Ĉ), inserting the quadrature 
rule (3.22) into (3.20) we have

V̂k[ρ] (ζ 0
) ≈

PM∂C∑
j=1

(
mP∑
i=1

ti G
(
Rk(ζ ∗ + ti

(
ζ j − ζ ∗

)
), Rk(ζ 0)

)
×

× J k(ζ ∗ + ti
(
ζ j − ζ ∗

)
)ρ

(
ζ ∗ + ti

(
ζ j − ζ ∗

))
vi

)(
(ζ j − ζ ∗) × τ j

)
w j.

(3.26)

Similarly, for the near-singular case (ζ 0 /∈ Ĉ), inserting the quadrature rule (3.25) into (3.20) we have

V̂k[ρ] (ζ 0
) ≈

PM∂C∑
j=1

⎛⎝m′
P∑

i=1

t̃i G
(
Rk (

ζ ∗ + t̃i
(
ζ j − ζ ∗

))
, Rk (

ζ 0
))×

× J k(ζ ∗ + t̃i
(
ζ j − ζ ∗

)
)ρ

(
ζ ∗ + t̃i

(
ζ j − ζ ∗

))
ṽ i

⎞⎠(
(ζ j − ζ ∗) × τ j

)
w j .

(3.27)

Examples of the resulting quadrature nodes (for the case of the reference domain a unit simplex T̂0) for each of the 
quadrature rules (3.26) and (3.27) are provided in Fig. 4 and Fig. 5, respectively.
16
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4. Efficient generation and application of singular corrections

This section completes the description of a singular quadrature-corrected scheme for the volume potential with an 
emphasis on efficiency that has not as-yet been considered per se: while on the one hand for cells Tk that are well-separated 
from the target point r0 the smooth quadrature scheme described in Section 3.2 that leads to the approximation (3.13) is 
accurate (and amenable to FMM acceleration), and the resulting rules for singular and near-singular quadrature corrections 
(respectively (3.26) and (3.27)) from Section 3.3 accurately evaluate contributions to V[ f ] from nearby cells, on the other 
hand we have still yet to describe an efficient scheme. By ‘efficient’ we really mean simultaneously that

(i) The method is ‘node-efficient’, that is, efficient with respect to the required number of degrees of freedom per cell,
(ii) The required local corrections are cheap to apply (i.e. cheap relative to the FMM call), and
(iii) Any pre-computed local corrections are themselves cheap to generate.

To motivate our approach we note that simply applying the methods of Section 3.2 to the source density f is inefficient
since, while accurate, the associated points where values of the source density f are required, the singular quadrature 
nodes, are both numerous and dependent on the target itself. Our approach, rather, is to apply the singular quadrature 
methods in Section 3.3 to the Koornwinder basis elements (which, recalling Section 3.2.1 provide a high-order basis for 
approximation of arbitrary smooth functions on Tk). The singular corrections are highly efficient for repeated application of 
the Newton potential since they are (a) Local in the sense that the only cells which contribute to a singular or near-singular 
correction at a target r0 are those cells which are a subset of Cself(r0) ∪ Cnear(r0) and are also (b) Data-sparse, as a linear 
map from source function f values at Koornwinder interpolation nodes directly to local correction values.

In more detail, as a consequence of the local correction methods described in this section and the smooth oversampled 
quadratures described in Section 3.2 we conclude that the total degrees of freedom (source function evaluation points) of 
the scheme for (1.1) number

ndofs = p(p + 1)

2
Nt + p2Nb, (4.1)

while the source points for the FMM number

nsrcs = q(q + 1)

2
Nt + q2Nb, q ≥ p, (4.2)

both for the order p scheme over a mesh with Nt triangular regions and Nb boxes. Denoting by �k(r0) : RNs → R the linear 
map from Ns source function values on a cell Ck to scalar correction (i.e. the high-order accurate value of Vk obtained via 
singular quadrature less the inaccurate contribution from the oversampled smooth quadrature described in Section 3.2.1 for 
triangles and Section 4.2 below for boxes) for the volume potential on Ck evaluated at r0, we have either Ns = p(p + 1)/2
(in the case Ĉk = T̂0) or Ns = p2 (in the case Ĉk = B̂0) with, of course, an O(1) number of nontrivial correction maps �k(r0)
per target point due to the O(1) cardinality of Cnear

k (r0) (see Section 3.1). Assembling all nontrivial corrections �k into a 
sparse matrix results in a final singular correction scheme where the overwhelming majority of computational effort is 
spent in the highly-efficient FMM stage, and which requires a conservative number of source evaluation nodes; the overall 
performance of the solver is demonstrated in Table 3.

Remark 6. Numerical experiments show that a fixed, twofold (q = 2p) oversampling allows for smooth quadrature error for 
Vk[ f ] that is, as desired, dominated by interpolation error of f for the smooth (Stokes and Laplace) kernels and for the error 
levels presented in this article (thus, for such kernels the selection q = 2p was made in producing the numerical results), 
though see also [62] for other oversampling schemes. In particular, to achieve higher accuracies than those presented in 
our numerical experiments, an increase in the fixed oversampling rate is sometimes useful—increasing slightly the number 
of FMM source points, but not the overall number of degrees of freedom, per (4.1) and (4.2). Furthermore, oversampling 
and adequate identification of an appropriately-sized near-field region is more critical to obtain high accuracies for more 
sharply-peaked kernels, such as Helmholtz kernels. We leave detailed consideration of these matters to future study.

Point (iii) above relates to a question of perennial concern in potential theoretic methods: the efficient generation of 
corrections for singular and near-singular targets (see reference [62] where adaptive quadrature is performed for each near-
singular target, at significant cost, and see also references [10,11,41,42,76,77]); the cost of generating such corrections can 
be burdensome, even while the resulting per-use costs, say, in an iterative solver seem highly favorable. (In our context 
the cost is due both to the generation of target-adapted quadrature nodes and weights and also to the evaluation of the 
orthogonal polynomial family at these nodes.) We address this issue by showing that as a result of our use of mappings 
from a common reference-space domain, the reference-space quadratures and orthogonal polynomial values can be re-used 
across elements even as the mappings vary, with the favorable implication that the only required per-element computation 
for generating the (near-)singular corrections consist of evaluation of the Green function.
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4.1. Triangles and Koornwinder systems

For a given target r0 and for each nearby cell Tk , i.e. Tk satisfying Tk ⊂ Cself(r0) ∪ Cnear(r0), the method begins by 
approximating the source function f on Tk using the p-th order Koornwinder expansion

f (Rk(ξ,η)) ≈
p−1∑
n=0

n∑
m=0

aknmKnm(ξ,η), (4.3)

where the coefficients ak solve the system

V pa
k = f kp, (4.4)

with ( f kp)i = f (Rk(ξp,i, ηp,i)), i = 1, 2, . . . , Np , the vector of function values at the Koornwinder interpolation nodes of (3.9). 
Substituting this expansion into the volume potential (3.4) we obtain the high-order approximation to Vk[ f ](r0),

Vk[ f ](r0) ≈
∫
T̂0

G(Rk(ξ,η), Rk(ξk
0 , ηk

0))

p−1∑
n=0

n∑
m=0

aknmKnm(ξ,η) J k(ξ,η)dξdη

=
p−1∑
n=0

n∑
m=0

aknm

∫
T̂0

G(Rk(ξ,η), Rk(ξk
0 , ηk

0)Knm(ξ,η) J k(ξ,η)dξdη

=
p−1∑
n=0

n∑
m=0

aknmV̂k[Knm](ζ k
0),

(4.5)

where

ζ k
0 =

(
ξk
0 , ηk

0

)T =
(
Rk

)−1
(r0)

denotes the Tk-reference-space location of the target r0. Writing the volume potential Vk[ f ](r0) in terms of reference-
space potentials V̂k allow for singular and near-singular correction of the smooth quadrature rule (3.13) for cells Tk that 
lay close to r0. The corrections can be pre-computed for each element in the p-th order Koornwinder using the methods of 
Section 3.3—specifically, if r0 ∈ Tk then rule (3.26) is used to compute V̂k[Knm](ζ k

0) while otherwise rule (3.27) is used.
This completes the description of how singular and near-singular corrections can be generically pre-computed; in what 

follows we consider optimizations that can be obtained for the fortunately-typical case of fixed reference-space target 
locations. We describe here the case for prescribed reference-space target points ζ 0 = (ξ0, η0) ∈ IT ,p , where IT ,p are the 
Vioreanu-Rokhlin interpolation nodes (see also Section 3.2.1); this ensures the possibility of high-quality interpolation of 
the resulting function V[ f ] throughout the domain (which is useful, for example, in the context of a non-linear or time-
dependent PDE)—see also the experiment in Section 5 corresponding to Table 3. The ideas are not restricted to a specific set 
of interpolation nodes, and the method proposed in Section 4.1.1 could be used e.g. for fixed reference-space locations on the 
curved boundary component of a curvilinear cell—i.e. for evaluation of V[ f ](r0) with r0 ∈ ∂�. Optimized pre-computation 
of singular corrections are generalized later to near-singular targets.

4.1.1. Efficient pre-computation of singular and near-singular corrections
An observation that leads to substantial efficiency gains for the proposed method is that the quadratures for every cell Tk

occur on the same reference cell T̂0. Since every triangular mesh cell is mapped to the standard simplex T̂0 and the target 
nodes are fixed in reference space, the same (expensive to generate) singular quadratures and Koornwinder polynomial 
values at these nodes can be used for each target point for every cell. To see the implications for computational cost savings, 
observe that from (4.5),

Vk[ f ](r0) ≈
p−1∑
n=0

n∑
m=0

aknmV̂k[Knm](ζ 0),

with

V̂k[Knm](ζ 0) =
∫
T̂0

G(Rk(ζ ), Rk(ζ 0))Knm(ζ ) J k(ζ )dA(ζ ). (4.6)

Clearly, the singular point is ζ = ζ 0 for every cell Tk , meaning that the singular quadrature weights and nodes are also 
identical even as the mapping Rk and associated Jacobian J k change. Applying the singular quadrature rule (3.26) with 
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ρ = Knm Jk and Ĉ = T̂0 results in a set {(χ i, ωi) : i = 1, . . . , NQ }, NQ = PM∂ SmP , of pairs of quadrature nodes χ i = (ξi, ηi)

and weights ωi pairs adequate for discretization of V̂k that are independent of k (here, after appropriately-relabeling the 
index i in (3.26) to �, the weights ωi are given by ωi = t�v�((ζ j − ζ ∗) × τ j)w j for appropriate j and �). Re-writing (3.26)
with this notation we have the singular corrections given by the ω j-weighted inner product of Green function and Jacobian 
values with Koornwinder polynomial values,

V̂k[Knm](ζ 0) ≈
NQ∑
i=1

G(Rk(χ i), R
k(ζ 0)) J

k(χ i)Knm(χ i)ωi, (4.7)

from which it is clear that the only quantities that need to be recomputed for each cell are the mapped Green function 
values G(Rk(χ i), Rk(ζ 0)) J

k(χ i); note, further, that J k is constant for straight triangles. It is essential in the independence 
of the node-weight pairs (χ i, ωi) with respect to the mapping k (and thereby to the cell) that for a given target ζ 0 the 
singular quadrature rule developed in Section 3.3 is determined solely by the small-argument asymptotic behavior of the kernel 
function.

The additional challenge that unstructured meshes pose for near-singular corrections as opposed to the singular correc-
tions discussed previously is that near-singular target locations r0 = R j(ζ

j
0) (where ζ j

0 = ζ 0 is, say, one of the Koornwinder 
interpolation nodes in cell T̂ j—which are always in fixed locations in the T̂ j-reference space) unfortunately do lay at arbitrary
reference space locations ζ k

0 relative to the source cell Tk (k 	= j) under consideration. For this reason it is no longer possible 
to repeatedly use the same fixed set of reference-space target points to directly generate the corrections as for the j = k
case described previously; fortunately, however, similar ideas are still applicable with essentially the same effect. Despite 
the arbitrary (reference-space) location of near-singular target points, the quadrature rule weights and nodes (and hence 
the required values of the polynomials Knm) are still determined entirely by a combination of the resulting star-point ζ ∗
(which is itself, in turn, determined via the first formula in (3.16)) and the distance d of the target point to the boundary 
given by (3.24)—see Fig. 5 for a depiction of this dependence. As a result, one can re-use the quadratures generated for a 
fixed set of star-points laying along the boundary ∂T̂0, selecting the star-point ζ ∗ that lays closest to the solution of (3.16). 
Utilizing a fixed-size (independent of the number of cells) list of quadrature nodes, weights, and Koornwinder values Knm , 
the quadrature rules for near-singular targets can be efficiently computed by means of a simple lookup table and, again, the 
formula (4.7) (where, of course, the mapped Green function still needs to be re-evaluated, as before). The already-modest 
storage costs of these quadrature rules in such a scheme could be further limited by storing rules corresponding to star 
points on only one side of ∂T̂0.

4.2. Boxes and tensor-product Chebyshev systems: smooth quadratures and singular corrections

In this section, we describe smooth quadrature methods and efficient singular and near-singular corrections of these 
quadratures for source boxes Ck+Nt = Bk , k = 1, . . . , Nb (see Equation (3.2)). Every box Bk is mapped from a single reference 
box B̂0 = [−1, 1]2, with mappings in the uniform grid context of this article taking the simple form

Rk(ζ ) = ok + hζ , where ζ = (
ξ,η

)T
, with ξ,η ∈ [−1,1]. (4.8)

Smooth quadrature and interpolation. As is standard for such regular regions, we represent the local source distribution 
f using the truncated tensor-product Chebyshev series expansion

f (r) = f (Rk(ζ )) ≈
p−1∑
n=0

p−1∑
m=0

f knmTnm(ξ,η), for r = Rk(ζ ) ∈ Bk, (4.9)

where Tnm is defined by the tensor-product Chebyshev polynomial

Tnm(ζ ) = Tnm(ξ,η) = Tn(ξ)Tm(η), (4.10)

with Tn(t) denoting the Chebyshev polynomial of degree n defined for −1 ≤ t ≤ 1. We denote by IB,p the set of interpola-
tion nodes for the truncated series representation (4.9), which are defined as tensor-product Chebyshev nodes, i.e. roots of 
the Chebyshev polynomial T p . It is well-known that for smooth f this is a p-th order accurate expansion with series coef-
ficients f knm decaying rapidly as either of n, m increase, and, further, that the associated Clenshaw-Curtis smooth quadrature 
rule is suitable for targets r0 well-separated from Bk ,∫

Bk

G(r, r0) f (r)dr ≈
p2∑
I=1

G(r I , r0) f (r I )wI ,

and, further, that is compatible with fast summation methods. Mirroring the upsampling procedure described in Sec-
tion 3.2.1 the method uses a smooth quadrature of order q, q ≥ p, for an interpolant (4.9) of order p so that source 
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approximation error is dominant, with the Chebyshev expansion (4.9) with associated interpolation nodes IB,p upsampled 
to the interpolation nodes IB,q .

Singular and near-singular corrections. For singular and near-singular evaluation, similar to the case for triangular re-
gions, we construct a linear map from function values f knm in the truncated expansion (4.9) to corrected quadratures Vk(r0). 
The singular corrections are generated using the same Poincare-based singular integration technique used for triangular 
regions, applied to each element of the smooth basis in (4.9). Similarly to (4.5) we find

Vk[ f ](r0) ≈
p−1∑
n=0

p−1∑
m=0

f knmV̂k[Tnm](ζ k
0), (4.11)

where V̂k[ρ] is defined by Equation (3.3) and where from the mapping (4.8) we have ζ k
0 = (r0 − ok)/h. Crucially, it then 

follows from translational invariance G(r, r0) = G(r − r0) that

V̂k[Tnm](ζ k
0) =

∫
B̂0

G(h(ζ − ζ k
0))Tnm(ζ )h2 dζ , (4.12)

where we emphasize that the expression for V̂k is independent of k.
It follows from (4.12) and the fact that the reference-space interpolation and smooth quadrature nodes IB,p for Bk are 

identical for all boxes, that the singular corrections can be computed once and re-used for all boxes as a lookup table. A 
similar argument leads to lookup tables for near-singular target points that arise at interpolation nodes of nearby boxes: 
since the grid is structured these need only be computed once (this remains true even with adaptivity, merely the size 
of the still-finite look-up table expands). Finally, for near-singular targets laying in triangles that lay in close proximity to 
boxes, corrections can be easily generated with the added efficiency (since, in this context the map for every box is the 
same) that the values of the Newton potential in the near-field can be re-used across boxes and indeed interpolation to 
machine precision of the volume potential is possible for generating near-singular corrections.

5. Numerical results

This section presents demonstrations of the character of the proposed numerical methods, applied to the Poisson and 
modified Helmholtz (Yukawa) equations. Together with the Stokes equations (see Fig. 1 for a solution of this equation with 
the proposed methodology) these equations represent the major classes of constant-coefficient elliptic PDEs to which our 
methods are applicable, even though, as noted in Section 6, our methods possess broader applicability. We first show the 
entirely routine and expected convergence of the associated homogeneous problem, then consider test cases that involve 
use of the volume potential, demonstrating both convergence and the asymptotic costs of the method with the use of the 
FMM.

As a preliminary test, we demonstrate the expected convergence of the numerical solver for the integral equations arising 
in the augmented boundary value problem Equation (2.3). The boundary integral equations are discretized using spectral 
Kress quadratures, the resulting linear systems are solved using GMRES with a relative residual tolerance of 10−15, and, for 
evaluation of the layer potentials spectrally-accurate schemes [6] are used that yield high accuracy in the numerical solution 
arbitrarily close to the boundary. Fig. 7 validates the expected exponential convergence of the numerical solution as the total 
number of quadrature nodes increases. In the remainder of the numerical results, a sufficient number of boundary integral 
quadrature nodes are selected so that the error from the homogeneous component of the solver does not dominate.

Fig. 7. Laplace and modified Helmholtz Dirichlet boundary value problem (BVP) test problems, with solution (and hence Dirichlet boundary values) given 
by point sources (for Helmholtz, λ = 10) at the center of each inclusion. Left (resp. Right): convergence plot of the collocation scheme for the Laplace (resp. 
Helmholtz) BVP with respect to the total number N of collocation points; error plots correspond to N = 832.
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Fig. 8. Poisson problem simulation; solution and errors displayed in the subregion [−4.2, 4.2]2 of a polydisperse domain. The three top subplots (a-c) 
depict, respectively, the contour lines for the associated solution u to Equation (2.1), the particular solution uP arising from Equation (1.1), and the solution 
uH to the boundary value problem (2.3). Subplot (d) is a typical plot of the base-10 logarithm of the error at points in a uniform evaluation grid, here 
corresponding to the solver run with p = 8 and h = 0.13. Subplot (e) displays four computational meshes at various levels of h-refinement. Subplot (f) 
demonstrates the convergence (with respect to gridsize h) of the numerical solution produced by the order p = 2, 4, 6 and 8 versions of the scheme; errors 
are measured on the same 100 × 100 uniform target grid over [−6.5, 6.5]2 in all simulations, and dashed lines depict the expected order of convergence 
of O(hp).

Table 2
Total number of triangular cells Nt and regular boxes Nb at various levels of h-refinement (h = 13/N) for the polydisperse test problem depicted in Fig. 8: 
the interior of a circle of radius 6.5 units and exterior to the elliptical inclusions. The last two rows demonstrate the linear and quadratic growth of Nt and 
Nb , respectively, as h → 0; the ratios D1 and D2 are normalization constants D1 = 0.1857 · 2329 and D2 = 0.18572 · 2476.
N 70 100 130 160 190 220 250 280 310

h 0.1857 0.1300 0.1000 0.0813 0.0684 0.0591 0.0520 0.0464 0.0419
Nt 2329 3293 4230 5205 5698 6643 8049 8531 8965
Nb 2476 5774 10408 16358 23618 32227 42162 53403 65932
hNt/D1 — 0.99 0.98 0.98 0.90 0.90 0.97 0.92 0.87
h2Nb/D2 — 1.14 1.22 1.27 1.29 1.32 1.34 1.35 1.36

Remark 7. Several Poisson examples in this section concern the inhomogeneity (the inhomogeneity being modified in an 
obvious manner for Helmholtz problems) given by

f (x, y) = 6 sin(6x) + 8cos(8(y + 1

10
)) + 4(x2 + y2) sin(4xy) + 3cos(3x) sin(3y) (5.1)

with associated solution

u(x, y) = 1

6
sin(6x) + 1

8
cos(8(y + 1

10
)) + 1

4
sin(4xy) + 1

6
cos(3x) sin(3y). (5.2)

We emphasize that while f (x, y) is defined and is smooth for all (x, y), only function values at interior points (x, y) ∈ �

are used in the solution process.

We consider a Dirichlet problem for the Poisson equation in the presence of a polydisperse system � of inclusions, in the 
interior of a circle of radius 6.5 units. The solution and its numerical components are displayed in the region [−4.2, 4.2]2
in Fig. 8 (the solution in all of x2 + y2 < 6.52 is not displayed, but the error and therefore the convergence plot in panel (f) 
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Fig. 9. Modified Helmholtz (λ2 = 100) example solution with maximum value 0.56 (left) and error with color bar indicating the base-10 logarithm of the 
error (right); solver parameters used were p = 10, h = 2.2/N with N = 90 (resulting in Nb = 3633 and Nt = 1994). The maximum error over approximately 
51000 uniformly-spaced target points is ‖e‖�∞ = 3.9 · 10−12, while the discrete L2 error is ‖e‖�2 = 6.9 · 10−14.

is computed over the entire solution domain). The Poisson solution is tested on a 100 × 100 uniform grid of target points 
that lay inside �; the maximum error is plotted in panel (f) of Fig. 8. This experimental setup can be seen as a somewhat 
more challenging test case for the volume potential scheme since it results in targets that can lay arbitrarily close to cell 
boundaries. Nevertheless we see convergence rates consistent with expectations from approximation theory down to a level 
on the order of 10−12. In Fig. 8 panel (d) we observe that the error grows as x and/or y increase which is expected in view 
of the locations of sharper gradients of f (x, y). Table 2 assembles relevant mesh data for this problem as the discretization 
is refined and demonstrates the expected linear (resp. quadratic) growth of the number Nt (resp. Nb) of boundary fitted 
cells (resp. regular boxes).

It is also of interest to solve the inhomogeneous modified Helmholtz equation (cf. Section 2 with L = −� +λ2), a problem 
with diverse applications, e.g. in wave scattering and elliptic time marching. The Green function of this operator shares the 
same singular kernel behavior as the classical Newton potential, and so the same singular and near-singular quadrature 
rules used there apply. In Fig. 9 we show the error in the proposed method applied to the modified Helmholtz equation 
with manufactured solution given in (5.2) over a region bounded by a circle of radius 1. The method presented is quite 
successful for low to moderate real values of λ with no modifications. However, both the accuracy of smooth quadrature 
rules and efficacy of the FMM are strained as λ is increased; a more complete study of the optimal relation between λ, the 
smooth quadrature rule and associated upsampling rate q, and the near-field selection region will be presented at a later 
date.

We turn next to performance demonstrations of the proposed method, which are summarized in Table 3. This experi-
ment tests the solution of the Dirichlet Poisson problem in the region depicted in Fig. 7 (which features an enclosing circle 
of radius 3.5 units), with source function and associated solution given by Equation (5.1) and for volume target points at all 
volume interpolation nodes (i.e. for each cell Ck the appropriate (mapped) points in either of IT ,p and IB,p), and it allows 
us to make several observations and conclusions about the character of the solver. These experiments serve first to demon-
strate that the costs associated with the sparse correction step of the method are, as desired, negligible in comparison to the 
FMM step of the method, which can be verified with the data in columns marked “%fmm”. The timings clearly confirm the 
expected linear scaling of the method. The experiments also serve to demonstrate the costs and error quantities associated 
with producing the solution at all interpolation nodes in the domain decomposition scheme; the values of the solution at 
such points suffice to efficiently and accurately produce volume potential values at arbitrary targets r0 ∈ �, but more cru-
cially they can be easily seen as the values required for the solution of various nonlinear and time-dependent PDEs, by e.g. 
iteration or time-stepping. The error ‖e1‖�∞ in the second-to-last column of Table 3 is the maximum error in the solution 
u of the problem (2.1) evaluated across all ndof volume quadrature points and is consistent with the expected 5-th order 
convergence for the p = 5 scheme. Finally, the experiment demonstrates the expected linear (resp. quadratic) dependence 
of the number Nt (resp. Nb) of triangular regions (resp. boxes) on the mesh gridsize h, which for this experiment is given 
by h = 9/N . Results are similar for the scheme with other orders, and results are not included for the sake of brevity. All 
timings were produced using a Python implementation on a single core (i.e. with multithreading explicitly disabled) of an 
Exherbo Linux workstation with an AMD Ryzen-5 5600X CPU. A detailed presentation of performant generation of singular 
and near-singular corrections as detailed in Section 4.1.1 will be reported at a later date.

It is also of interest to obtain the solution at arbitrary points in the domain via interpolation, a straightforward task 
when (as in the context of the test of the previous paragraph) evaluation points are precisely the interpolation nodes IT ,p
and IB,p . The error ‖e2‖�2 in the solution thus obtained by Koornwinder and Chebyshev interpolation is listed in the last 
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Table 3
Timings (in seconds) for an experiment with p = 5, grid size h = 9/N; the number of degrees of freedom and smooth quadrature sources can be determined 
(using q = 2p) from Equations (4.1) and (4.2), respectively, using the columns labeled Nt and Nb . The quantities T fmm

� and T corr
� relate to evaluation of V[ f ]

on � at boundary integral collocation nodes (cf. (2.3b)) while T fmm
� and T corr

� relate to evaluation of u at all ndofs source function nodes in the domain; 
‘fmm’ superscripts refer to the application of the smooth quadrature rule and ‘corr’ superscripts refer to the application of the sparse correction map. The 
time T bie

� associated with solution of the boundary integral equations using GMRES, evaluation of the solution at all volumetric targets, and application of 
close corrections to the layer potential evaluations consistently required T bie

� = 1.4. The %fmm figures are determined by the ratios of T fmm
� to T corr

� and of 
T fmm

� to T corr
� , and a percentage of 99.9 is displayed for any percentage above 99.9.

N Nt Nb T fmm
� T corr

� %fmm T fmm
� T corr

� %fmm ‖e1‖�∞ ‖e2‖�2

40 828 286 1.79e-01 1.1e-04 99.9 4.30e-01 2.44e-03 99.4 8.2e-05 1.3e-03
60 1147 946 3.05e-01 1.1e-04 99.9 9.54e-01 5.07e-03 99.5 1.1e-05 7.1e-05
80 1440 1922 6.44e-01 1.4e-04 99.9 1.53e+00 7.61e-03 99.5 2.6e-06 1.3e-05
100 1858 3227 8.25e-01 1.1e-04 99.9 2.76e+00 1.11e-02 99.6 5.8e-07 3.4e-06
120 2394 4851 1.11e+00 1.2e-04 99.9 3.65e+00 1.57e-02 99.6 1.6e-07 6.5e-07
140 2653 6843 1.72e+00 1.2e-04 99.9 4.57e+00 2.25e-02 99.5 5.3e-08 1.9e-07

column of Table 3, where ‖e‖�2 =
(∑

j h
2(e)2j

)1/2
denotes the discrete L2 norm of the error e, and where h = 0.045 is the 

gridsize of the uniform evaluation grid (with ≈ 17, 000 points in �) onto which solution values are interpolated.

6. Conclusions & future directions

We have presented a volume quadrature scheme that is used to solve inhomogeneous PDEs (either exterior or interior 
problems) on irregular (either simply- or multiply-connected) domains, and which is to our knowledge the first scheme for 
complex geometry that is of optimal asymptotic complexity in addition to being high-order accurate (including near to the 
boundary), and which, further, is capable of producing solutions to a wide variety of inhomogeneous elliptic PDEs, is efficient 
with respect to the number of degrees of freedom, is amenable to rapid generation of high-order accurate quadrature rules 
for singular and near-singular corrections, and is readily generalizable to non-PDE kernels and to three dimensional domains. 
It is worth mentioning that the present work solves inhomogeneous PDEs by direct evaluation of the true volume potential 
over �, in contrast to the extension-based methods that constitute most prior work. In certain circumstances this distinction 
is relevant because the true volume potential is desired in and of itself and extension-based methods are no longer helpful; 
we mention for example ongoing work in volume potentials that arise in fractional PDEs and in the physical problem of 
quantifying fluid mixing, as well as the potential-theoretic solution, via the Lippmann-Schwinger equation, of the problem 
of wave scattering by media with a spatially-variable (and potentially discontinuous) index of refractivity.

A few direct extensions are currently being pursued, among them adaptivity in the bulk region and coupling to meshing 
technologies such as TriWild which could enable further adaptivity in the region near to the boundary. Use of the method-
ology with non-PDE kernels is currently being investigated, as is application to nonlinear PDEs. In the context of PDEs with 
moving geometries, a principal concern is the rapid generation of new quadratures for cells of the irregular section of the 
grid which naturally changes; the approach to efficient pre-computation of singular corrections we described should amelio-
rate this cost in that context. Finally, this work presents a clear path to tackling the 3D volume potential problem since all 
elements of the proposed methodology generalize immediately to that setting, with quadratures and orthogonal polynomial 
systems on (mapped curvilinear) triangles translating to (mapped curvilinear) tetrahedrons.
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Appendix A. Proofs of supporting lemmas

Proof of Lemma 1. Because S is star-shaped with respect to the origin the function ρ(tr) is defined for all r ∈ ∂S and for 
all t ∈ [0, 1], and as a consequence the right-hand integral in (3.14) is well-defined. Denoting r = (x, y) and, for r ∈ ∂S , 
τ = (dx/ds, dy/ds) (which is well-defined at almost every r ∈ ∂S since ∂S is piecewise smooth), we first have∮ ⎛⎝ 1∫

t ρ(tr)dt

⎞⎠ r × τ ds =
∮ ⎛⎝ 1∫

t ρ(tr)dt

⎞⎠ (xdy − y dx) .
∂S 0 ∂S 0
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But then, since S is a region with a piecewise-smooth boundary and the function 
∫ 1
0 tρ(tr) dt is continuously differentiable 

with respect to each of the variables x and y, we can apply Green’s theorem [78, Thm. 10–43] to the vector field in the 
circulation integral to obtain∮

∂S

⎛⎝ 1∫
0

t ρ(tr)dt

⎞⎠ r × τ ds =
∫
S

⎛⎝ ∂

∂x

⎛⎝x

1∫
0

t ρ(tr)dt

⎞⎠ + ∂

∂ y

⎛⎝y

1∫
0

t ρ(tr)dt

⎞⎠⎞⎠ dA.

It is then a straightforward computation to verify that∮
∂S

⎛⎝ 1∫
0

t ρ(tr)dt

⎞⎠ r × τ ds =
∫
S

⎛⎝ 1∫
0

(
d

dt
t2 ρ(tr)

)
dt

⎞⎠ dA =
∫
S

ρ(r)dA,

which completes the proof. �
Proof of Corollary 1. The proof proceeds by isolating a ball containing the location of the singularity, showing the contribu-
tion due to this region is negligible, and applying Lemma 1 on a region excluding this ball. In order to proceed and utilize 
Lemma 1 we first change to a coordinate system centered at r∗ via the map r �→ r + r∗ , and write∫

S

K (r − r∗)ρ(r)dA =
∫
S∗

K (r)ρ(r + r∗)dA, (A.1)

where S∗ is an r∗-translate of S and, in particular, is star-shaped with respect to the origin.
It is useful to introduce a smooth cut-off function χ : [0, ∞) → [0, 1], χ non-increasing and satisfying both χ(v) = 1 in 

a neighborhood of v = 0 and χ(v) = 0 for v ≥ 1. In view of (A.1), using this function we have the identity, for every ε > 0,∫
S

K (r − r∗)ρ(r)dA =
∫
S∗

K (r) (1− χ(|r|/ε))ρ(r + r∗)dA

+
∫
S∗

K (r)χ(|r|/ε)ρ(r + r∗)dA.

(A.2)

It is easy to see that since for sufficiently small ε > 0 the quantity (1− χ(|r|/ε)) vanishes for r in an ε-dependent neigh-
borhood of the origin, the integrand of the first integral on the right-hand side of (A.2) is a smooth function of r , and so by 
applying Lemma 1 to that integral we have∫

S∗

K (r)ρ(r + r∗)dA =
∮

∂S∗

⎛⎝ 1∫
0

t K (tr) (1− χ(t|r|/ε))ρ(tr + r∗)dt

⎞⎠ r × τ ds

+
∫
S∗

K (r)χ(|r|/ε)ρ(r + r∗)dA.

(A.3)

Denoting by Iε(r) the integrand of the outer integral above,

Iε(r) = (r × τ )

1∫
0

tK (tr) (1− χ(t|r|/ε))ρ(tr + r∗)dt,

defining r̂ via r = |r|r̂, and estimating using the triangle inequality and the fact that 0 ≤ χ(v) ≤ 1 we find that the bound

|Iε(r)| ≤ |r||r̂ × τ |
1∫

0

t |K (tr)|ρ(tr + r∗)dt ≤ C |r|
1∫

0

t |K (tr)| dt

holds for every ε > 0 and for all r ∈ S∗ , where C = C(S∗, ρ) > 0 is a constant. Since K is weakly-singular, we further have 
that there exists a constant C̃ = C̃(S∗, ρ, K ) > 0 such that, for all r ∈ S∗ ,

|Iε(r)| ≤ C̃ |r|1−α

1∫
t1−α dt, (A.4)
0
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for some α < 2, from which we conclude that Iε(r) is integrable over S∗ . Now, since firstly the upper bound for Iε(r)
is integrable and since the integrand Iε(r) converges pointwise, and secondly the inner integral in Iε(r) also converges 
pointwise and is bounded above a function that is also integrable over the interval [0, 1] (namely, by the integrand in the 
upper bound (A.4)), by two applications of the dominated convergence theorem in the ε → 0 limit for the first integrand in 
the right-hand side of (A.3) we find

lim
ε→0

∫
S∗

K (r) (1− χ(|r|/ε))ρ(r + r∗)dA =
∮

∂S∗

⎛⎝ 1∫
0

t K (tr)ρ(tr + r∗))dt

⎞⎠ (r × τ ) ds. (A.5)

But since K is a weakly-singular kernel function, i.e. it satisfies for some constant D > 0 the bound |K (r)| ≤ D|r|−α , α < 2, 
we have that

lim
ε→0

∫
Bε(0)

|K (r)|dA = 0, (A.6)

so that by taking the limit as ε → 0 in the right-hand side of (A.2) and using both (A.5) and (A.6), we have∫
S

K (r − r∗)ρ(r)dA =
∮

∂S∗

⎛⎝ 1∫
0

t K (tr)ρ(tr + r∗)dt

⎞⎠ r × τ ds. (A.7)

The desired result follows by a change of coordinates r �→ r − r∗ . �
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