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Abstract

In transient simulations of particulate Stokes flow, to accurately capture the inter-
action between the constituent particles and the confining wall, the discretization
of the wall often needs to be locally refined in the region approached by the parti-
cles. Consequently, standard fast direct solvers lose their efficiency since the linear
system changes at each time step. This manuscript presents a new computational
approach that avoids this issue by pre-constructing a fast direct solver for the wall
ahead of time, computing a low-rank factorization to capture the changes due to the
refinement, and solving the problem on the refined discretization via a Woodbury
formula. Numerical results illustrate the efficiency of the solver in accelerating par-
ticulate Stokes simulations.
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1 Introduction

A common computational task that arises in simulations of particulate Stokes
flow is evaluating the hydrodynamic interaction of small moving geometries, such
as drops, bacteria, or biological cells, with large static structures, such as micro-
fluidic chips, vascular walls, or channel walls. Boundary integral equation (BIE)
methods, solved via iterative solvers accelerated by fast summation methods, are
often used in practice for such systems as they avoid meshing the volume includ-
ing the cumbersome task of volume re-meshing in transient simulations. In [1], a
fast direct solver was proposed, which further reduces the cost of simulations by
precomputing the compressed inverse of the BIE operator corresponding to the
large static structures, which can be applied in linear time. This can be extremely
useful in practice since most applications require a large number of time steps to
observe the physics of interest, e.g., alignment of vesicles in a periodic channel
[2], pattern formation in suspensions of active particles [3, 4] and cell sorting [5].

However, when the suspended particles evolve in close proximity to the con-
fining walls, the discretization of the walls must be locally refined to resolve the
hydrodynamic interaction [6]. In this situation direct solvers are less attractive
since the new inverse operator needs to be evaluated continuously. We present a
fast algorithm that avoids building a new inverse operator from scratch for each
time step by precomputing an inverse operator corresponding to a reference mesh
and rapidly updating it whenever the boundary discretization is locally refined (or
coarsened). This work is an extension of Zhang-Gillman [7, 8], where Laplace
BIEs on locally perturbed geometries were considered. The central idea is that
the discretized BIE on the walls can be written as an extended version of the
linear system for the original geometry, and a fast direct solver on the original
geometry can be reused to reduce the computational burden of solving the prob-
lems on the refined discretization.

Related work At a high-level, fast direct solvers exploit the fact that the off-diagonal
blocks of the discretized system are low rank. In the context of integral equations,
some of them include the Hierarchically Block Separable (HBS) [9, 10], the Hierar-
chically Semi-Separable (HSS) [11, 12], the Hierarchical Interpolative Factorization
(HIF) [13] and the 7 or - matrix methods [14]. The techniques developed in [7,
8] for the extended linear system (ELS), designed for problems with locally per-
turbed geometries, can be coupled with any of the above direct solver approaches.
In this work, we employ a particular fast direct solver based on HBS matrix rep-
resentation and inverse presented in [10]. For the rest of the manuscript, when an
HBS representation or inverse is built for a discretized boundary integral equation, it
refers to the particular compression and inverse approximation given in [10]. Other
fast direct solvers for BIEs can be used in place of the HBS solver, and the results
will be comparable.

An alternative to using the ELS is to update the hierarchical representation of the
discretized integral operator directly. Existing techniques in [15, 16] update the HIF
of the system with a cost that is bounded above by the cost of building a HIF of the
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perturbed or refined problem from scratch. For problems that do not require a large
number of discretization points, directly updating HIF is expected to be cheaper than
building a new one from scratch. This idea is first investigated in [15], and a paral-
lel implementation for Stokes BIEs on multiply-connected domains is presented in
[16]. Being direct solvers, these techniques are advantageous when a large number
of solves are required for each new geometry. Generalizing the idea to other stand-
ard fast direct solvers, such as those based on HBS or HSS matrix, requires knowl-
edge of the particular compression techniques used in the chosen fast direct solver
and is non-trivial.

Several previous works employ fast direct solvers as preconditioners for the lin-
ear systems that result from the discretization of integral equations and differential
equations [17-21]. Most of them build a low-accuracy direct solver for the linear
system and apply the forward operator via a fast matrix multiplication technique.
The improvement of the convergence of the iterative solver is directly related to the
accuracy at which the preconditioner was built. Section 4 explores the left precon-
ditioner option and how the accuracy of the direct solver impacts the quality of the
preconditioner. In general, whether a high accuracy preconditioner is worth develop-
ing depends on the cost of the construction and how many solves are desired.

Contributions Motivated by the fluids applications mentioned above, we apply
the solution technique given in [7, 8] to Stokes flow problems defined on complex
geometries, some of which are adapted from real application geometry data. The lin-
ear system associated with the discretization of an integral equation for Stokes flow
has a physical nullspace corresponding to the pressure being unique up to a con-
stant. Fast direct solvers like HBS are sensitive to the existence of such non-trivial
nullspace due to the fact that matrices of smaller sizes are inverted in the hierarchi-
cal structure and the singularity will immediately cause trouble. The nullspace can
be removed via an analytic technique, but the resulting linear system can have a high
condition number due to the physics and/or complexity of the geometry. We observe
from numerical tests that the linear system that needs to be solved for Stokes prob-
lems has a condition number that is at least the square of the linear system for a
Laplace problem on the same geometry. The high condition number of the system
results in the small matrices inverted within the hierarchical structure of a fast direct
solver being ill-conditioned, resulting in loss of accuracy that is not often seen in
Laplace problems. This is even more cumbersome when local refinement is added
to the original discretization. The solution technique given in [7, 8] requires invert-
ing a matrix whose conditioning may be worse than the original discretized BIE.
Since the condition number of the linear system for Stokes problems is often already
relatively high compared to Laplace problems, the compression required in these
solution methods should be done carefully. This manuscript reviews the technique,
particularly the low-rank approximation construction for the update matrix in [7],
and focuses on some important details for applying it to more complicated problems
efficiently and stably. Since the direct solution approach may not be able to achieve
the desired accuracy due to the conditioning for certain problems, we also consider
using the local refinement fast direct solver as a preconditioner for the ELS. When
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coupled with a fast matrix multiplication technique for applying the ELS, the result-
ing solution technique converges in a constant number of iterations independent of
the number of discretization points (as long as the geometric features are sufficiently
resolved).

Limitations This manuscript only considers two-dimensional problems even though
the ideas introduced here generalize to higher dimensions. Additional work is
needed in integrating other computational machinery, e.g., 3D surface quadrature
methods. In dense suspension flows, the particle-wall near interactions happen over
long length- and time-scales. Clearly, the solver developed here is not applicable
to this setting since the wall geometry needs to be globally refined, in which case
the approach prescribed in [1] is better suited. Lastly, when the particles approach
arbitrarily close to the walls, close evaluation schemes (e.g., [6, 22]) are required to
improve the accuracy of interaction force computation. Incorporating these methods
and testing the solver is left to future work.

Outline The manuscript begins by reviewing boundary integral formulations for
Stokes problems and a technique for discretizing the resulting integral equations
in Section 2. Next, the ELS for locally refined discretization and the corresponding
direct solver are presented in Section 3. The proposed preconditioner for the ELS is
presented in Section 4. Next Section 5 illustrates the performance of the presented
solution techniques. Finally, Section 6 closes the manuscript with a summary and
concluding remarks.

2 Boundary integral formulation

This manuscript considers integral equation techniques for solving both interior
and exterior Stokes flow problems. The indirect integral equation formulation is
employed, wherein, the solution can be cast as a convolution over the boundary I" of
a kernel with an unknown boundary charge density. For example, the velocity u can
be represented by

u(x) = / K, y)t(y)dsy, = (Kro)(x),
r
where K denotes a kernel related to the fundamental solution of the Stokes equa-
tions and 7 denotes the unknown charge density. The kernel is chosen based on the
problem under consideration. One option is to represent the solution via the single

layer integral operator denoted by u(x) = (Sp7)(x), where S denotes the Stokes sin-
gle layer kernel (Stokeslet) defined in its tensor components by

S,%.y) = —— ( 5,10 (1>+@ ij=1.2 I
ij 7y - 471_” ij g r }"2 ’ 7,] = 1y 4 ( )
where r = x —y, r = lIrll and §; is the Kronecker delta.
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Another option is to use a double layer integral operator u(x) = (D7) to represent
the velocity. The tensor components of the double layer kernel D are
1 rl-rj r- ny oL
- 7 r2 s l?] - 1’ 2

Dy(x.y) =

where ny is the surface normal vector at the point y €I".

Likewise, the pressure can be represented via an integral operator. It should be cho-
sen to match the representation of the velocity. For example, if the velocity is repre-
sented with the single layer integral operator, then the pressure is given by

px) = / A(x, y)t(y)dsy
r
where
Lr .
. = ——= =1,2
Qxy) =3 J=1
and t is the same boundary charge density as in the definition of the velocity. If the

velocity is represented via the double layer integral operator, then the pressure is
given by

p(x) = / P(x, y)(y)ds,
T

where

_uf My 0 .
Pj(x,y)—;<—7+2gr-ny>, ]—1,2,

n, , denotes the 7™ component of the surface normal vector ny, and 7 is the boundary
charge density as defined in the velocity.

2.1 Interior Stokes problem

Consider the incompressible Stokes equation inside a geometry €, given by

—pAu(x) + Vp(x) = 0, forx € Q
V-uix) =0, forx € Q, )
u(x) = g(x), forx eI' =0Q,,,

where p denotes the viscosity, u denotes the velocity, g(x) is a vector valued func-
tion denoting the boundary data, and p(x) is a scalar valued function denoting the
pressure. Figure 1(a) illustrates a sample geometry. The Dirichlet boundary data
needs to satisfy the following consistency condition:

/rg(X) "Nyds, =0 3)
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(a) (b) (c)

Fig.1 (a) A sample geometry for a purely interior BVP where the domain €, is the interior of the
boundary I' = 0Q;,, (b) a sample geometry for a purely exterior BVP where the domain Q, is the exte-

in>

rior of the boundary I' = 02, and (c) a sample geometry for an interior-exterior BVP where the domain
Q is the interior of the outer boundary I', but exterior of the inner boundary I';

where n, denotes the outward pointing normal vector at x €I".
Representing the velocity via the double layer kernel

u(x) = (Dr,)(x)
results in having to solve the following boundary integral equation

—%r(x) + (DY) = gx) @)

for the unknown density t [23]. Discretization of the BIE (4) via the Nystrom
method results in having to solve a dense linear system of the form

(—%I+D>‘r:g ®)

where D denotes the matrix that results from the discretization of the double layer
integral operator, g denotes a vector with entries given by the evaluation of g(x) at
the quadrature nodes, and the vector = denotes the vector of the unknown density
values at the discretization points.

Remark 2.1 The solution to (2) is unique up to a constant which results in the linear

system (5) having a rank-1 nullspace. This nullspace can be removed by adding the
following integral operator A/

N1)(x) = n, / 7(y) - mydsy (6)
r

to the left-hand side of the integral equation (5). [24] presents a Nystrom technique
for discretizing the integral operator (6). The linear system that results from the dis-
cretization using the double layer representation with the null space correction is

—%r+(D+N)r=g @)
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where N is the matrix that results from the discretization of (6).

2.2 Exterior Stokes problem

Exterior incompressible Stokes problems are also considered in this paper. By an
exterior problem, we mean that the velocity is sought in the domain €, defined as
the plane minus the interior of a curve I" as shown in Fig. 1(b). By using a combined
field representation for the velocity

u(x) = (Dro)(x) + (Sr)(x) = [<DIS=r1](%),
one is left with solving a second kind integral equation

%r + [<DyS=r1] =g (8)

The linear system that results from discretizing this integral equation is full rank.

Remark 2.2 'We also consider interior-exterior problems as shown in Fig. 1(c), where
the boundary I' is composed of an enclosing boundary curve I', and one or more
holes with boundary I'; inside the enclosed region. The domain Q is defined as the
set that is interior to I'y but exterior to I'y; i.e., I' =T, UI'.

3 An extended linear system and direct solver for boundary value
problems with locally refined discretization

The efficient solver presented in this paper utilizes techniques previously developed
in [7, 8], which are originally designed to handle BIEs defined on locally perturbed
geometries. A geometry is said to be locally perturbed if small parts of the bound-
ary are modified from a previous BIE solve while the remainder of the boundary
remains the same. We exploit the fact these techniques can be applied to handle
local refinement of a discretization. For Stokes problems, the original fast solver
techniques needed to be modified in order to handle the higher condition number
associated with these problems. This section reviews the techniques from [7, 8] and
presents the new version needed for Stokes problems. Section 3.1 defines a prob-
lem with locally refined discretization and introduces notation. Section 3.2 then pre-
sents the ELS and the efficient technique of solving that linear system using a solver
built for the original discretization. Section 3.3 introduces compression ideas for the
update matrix that capture changes in discretization.

The fast direct solver presented in this section scales linearly with respect to the
number of points on the original discretization. The solver can also scale linearly
with respect to the number of points that are added in the region of refinement when
a linear scaling inversion scheme is used to invert the discretized boundary inte-
gral operator on the refined part of the boundary. If the number of points added
is not large (i.e., less than one thousand), dense linear algebra is recommended for
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handling the refined region since fast inversion algorithms such as HBS inversion [9,
10] tend to be slower than dense linear algebra for small matrices.

3.1 Model problem with locally refined discretization

Consider the interior BVP defined by equation (2) on the geometry €, illustrated in
Fig. 1(a). As an example, let the boundary originally be discretized with ten 16-point
Gaussian panels. Then one panel I', is chosen to be refined into four panels as illus-
trated in Fig. 2. Figure 2(a) and (b) illustrate the pre- and post-refinement respec-
tively. Let 7, Z,, and Z, (“p” for “plus”) denote the discretization points that are
kept, deleted, and added for the refinement. Thus Z, = 7, U Z_ denotes the collection
of points in the original discretization and Z, = 7, U Z,, denotes the collection of dis-
cretization points on the boundary after refinement.

The linear system that results from the discretization of (7) for the original
and new panel distributions can be ordered utilizing discretization point subscript
notation. Let A denote the discretized integral equation (7) on the boundary; i.e.,
A = =114+ D + N. The discretized integral equation using the original panel distri-
bution (corresponding to /) can be written as follows:

Ay Ao g
w2 (2= (2) ==

Likewise the linear system resulting from the refined discretization of the bound-
ary integral equation can be ordered as follows

T, T,

(a) (b)

Fig.2 (a) The original Gaussian panel discretization of the geometry in Fig. 1(a). The discretization con-
tains ten 16-point Gaussian panels uniformly distributed in parameterization space, and the panel in red
is chosen to be refined. (b) A locally refined discretization which replaced the single red panel in panel
(a) with four blue panels. The part of the boundary curve that is refined is denoted by I', and the rest is
denoted by I',
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A A T g
Annrn=[ o "’”]( ">=< k>=g,, (10)
' Ak Ay, I\ T, g

In equations (9) and (10), the subscript notation refers to the submatrices of A
on the respective geometries corresponding to different boundary interactions. For
example, A, denotes the submatrix of A corresponding to the interaction of the
points in Z, with themselves (A(Z,, Z,) in Matlab notation) and Ak’p denotes the sub-
matrix of A corresponding to the interaction of the points in Z, with the points in Z,,.

Remark 3.1 While the techniques in this section were presented for the interior prob-
lem presented in equation (2), the techniques apply directly to exterior problems as
well.

3.2 The extended linear system and direct solver

As an alternative to casting the problem solely on the “new” discretization, an ELS
that is equivalent to equation (10) can be considered. In this paper, we use the ELS
from [8]. The ELS takes the form

A 0 Ak,p ’gk 8
AextText = Ac,k Ac,c 0 Tcum =0 |= 8ext (1 1)
Ap,k 0 Ap,p T g

where 7; and 7, are the unknown boundary densities evaluated at points in Z, and
d”m isa dummy boundary density at the points in Z, that is not used to evaluate the

solutlon in the domain. This linear system can be written as A, = A + Q where
0 A Ay,
A:[A&”AO ]andQ: 0O 0 0
pp Ay 0 0

The matrix A is full rank and block-diagonal with the first block A, , equal to the
integral equation operator discretized with the original mesh. Thus if the inverse of
A, has been precomputed (directly or via a fast direct solver), the cost of inverting
A 1s the cost of the inverting A, , which is small in the problems under considera-
tion. The update matrix Q is a block sparse matrix consisting of only three non-zero
sub-blocks. Since these non-zero blocks of Q correspond to non-self interactions,
they are low rank; i.e., Q is low rank. Let Q = LR denote the low-rank factorization
of Q.

The advantage of writing the linear system in the extended form (11) and writing
it as the sum of a block diagonal matrix with a low-rank matrix is that the inverse
can be approximated via a Woodbury formula

Text = (A + Q)_lgext = (A + LR)_lgeXt X A_]gext - A_]L(I + RA_]L)_IRA_lgext-
(12)
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This inverse can be applied rapidly to vectors by exploiting the block structure of

the matrices. The only matrix that needs to be inverted in the application of (12) is
(I+RA~'L). This matrix is of size k = ky, + k, + k,; where k. k,,, and k, denote
the e —ranks (as defined below) of the low-rank approximations of A, ., Ay ,, and
A, respectively.
Definition 3.1 Given a tolerance ¢ ans a m X n matrix W (assuming m < n). Let
UZV” = W be the singular value decomposition (SVD) of W. The e — rank k, is
defined to be the smallest positive integer such that the corresponding truncated
SVD approximation U.E, V! where X, contains only the first k. diagonal entries of
2 satisfies

IUZ. VI — W[ < e[| W].

Typically, k is small and thus the matrix can be inverted via dense linear alge-
bra for little computational cost. Algorithm 1 summarizes the technique for rap-
idly applying the inverse of A, provided a fast direct solver for A, , has already
been computed. The algorithm is designed so that it can be used with any fast direct
solver including the HBS [10], HSS [11, 12], HIF [13], and %7 or - matrix meth-
ods [14]. Section 3.3 presents fast techniques for creating the low-rank factorizations
of Q and Appendix A reviews some known theoretical results on the stability for
using the Woodbury formula for applying the inverse in (12).

Given a fast direct solver for the original discretization A;}, and the right-hand-side vector

defined for the refined discretization g, = <§k>, this algorithm determines the solution to the
3

refined problem (10) by obtaining the solution to the equivalent ELS via a Woodbury formula

(12).

Pre-computation:
Step 1: Factorize the update matrix Q =~ LR via the method in Section 3.3 and Section A.
Step 2: (invert A )
if N, is small,
Evaluate and invert A 11) via dense linear algebra.
else,
Build an approximate inverse of A, via a fast direct solver such as HBS.
end if
Step 3: Apply the applying scheme for A;! and AL to evaluate X = A-'L.
Step 4: Evaluate and invert the Woodbury operator (I + RX) via dense linear algebra.

Solve:

_ —1( 8k
Step 1: Evaluate A" 'gey = <A""’ ( 0 >> utilizing the fast matrix vector applies provided
—1
A8
by the direct solver(s).
Step 2: Evaluate Tex; via the Woodbury formula (12).

Algorithm 1 Applying the fast direct solver for the locally refined problem
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Remark 3.2 The factorization technique for Q (step 1 in Algorithm 1) to be dis-
cussed in Section 3.3 scales linearly with respect to Ny, N, and N,, the number of
discretization points in Z, Z,, and Ip respectively. Thus, if a fast direct solver is con-
structed for A‘,;, then all steps in pre-computation and solve of Algorithm 1 scale
linearly with respect to N, N, and N,,. Otherwise, Algorithm 1 scales linearly with
respect to N, and N, but cubically with respect to N, due to the dense linear algebra
calculations for A~! Table 1 lists the cost scaling of Algorithm 1 and the fast direct
solver in [7]. More details on the step-by-step cost analysis are given in [7]. The
scaling for the fast direct solver given in [8] is the same as Algorithm 1.

3.3 Efficient construction of the low-rank approximation for Q <LR

The low-rank approximation of Q can be constructed by concatenating the low-rank
factorizations for the non-zero blocks in it;

Ak,c ~ Lk,( Rk,c’ Ak,p ~ Lk,p Rk,p’ and
2N, X 2N, 2Ny X k. k. X 2N, 2Ny X 2N, 2Ny X Ky, ki, X 2N,

A i ~ L, R, ;.

IN,X2N, 2N, Xky kX 2N, (13)

Thus the low-rank factorization of Q can be expressed as

Q ~ L R
2N, X 2N, IN Xk kX2N,, 14)
where
0 -L, Ly, R, 0 0
L=[0 0 0 [R=[0 R, 0|
L, 0 0 0 0 R,

k_kk+kkc+kkpandNeXt_Nk+N +N
The construction of the low-rank factorlzatlon of A, starts with defining a circle
P for ', which divides T, into two parts: the far-field and near-field with respect

Table 1 Cost scaling for the fast direct solver in [7] and the proposed solver in Algorithm 1. The fast
direct solver in [8] has the same scaling as Algorithm 1. Here N;, N, and N, are the number of discretiza-
tion points in Z;, 7, and Z, respectively

Method Pre-computation Solve

[7] with dense linear algebra for A, , O(Nk +N? + N;) O(Nk +N?+ N]f)
[7] with fast direct solver for A, , O(N;+ N2 +N,) O(N, +N?+N,)
Algorithm 1 with dense linear algebra for A, , O(Nk N+ N;) O(Nk +N.+ N,%)

Algorithm 1 with fast direct solver for A , | O(N +N,+ Np) O(N,+N, .+ Np)
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to I',. Figure 3(a) illustrates this separation. Let the superscript notation denote “far”
and “near” parts of I',.The separation corresponds to classifying the rows A, into
two groups; the near- and far-field interactions. We first construct low-rank approxi-
mations to the far-field and near-field interaction separately and then merge them
together for a final low-rank approximation L, R, , ~A, .

For far-field interaction, the potential due to points in Z, evaluated at points on
Ffar can be approximated by a linear combination of basis functlons defined on any
proxy surface that shields I', away from Ffar Let P*® denote the shielding proxy cir-
cle for T',. Here P** is chosen to have a smaller radius as PY" but the same center.
Figure 3(b) illustrates an example of these circles. A low-rank approximation for
A,i“; can be constructed via an interpolative decomposition (ID) approximation (as
defined below) for the matrix Af‘lr , Which captures the interaction between points on
Ff“r and PP, This is similar to the far—ﬁeld compression idea in [1, 10, 25]. The col-
lectlon of skeleton row indices Jf‘lr from the ID for Af“I ; correspond to discretization
points (or degrees of freedom) on I';. Let Pfar denote the interpolation matrix, then a
low-rank approximation to Af“; can be deﬁned as Af“I Li“; R]ffr where Lf“I P
and Riar AfaI (JfaI :). Here Afar (Jfar, ) denotes the submatrix of Afar w1th rows

specified by J,far.

Definition 3.2 Given a tolerance ¢ and a m X n matrix W (assuming m < n), if
there exists a positive integer k, < m and m X k, matrix P and vector J such that

IW —PWU( : k), DIl < e W,

we call PW(J(I : k,),:) an interpolative decomposition (ID) approximation for W
with respect to the tolerance e. Here J is a vector of integers j; such that 1 < j; <
m gives an ordering of the rows in W, and W(J(1 : k_),:) is a submatrix of W with
rows specified by the first k, entries of J. P is a m X k, matrix that contains a k,

(a) (b)

Fig.3 (a) The proxy circle for I', shown in dash blue line divides I'; into far (in green) and near (in red)
with respect to I', (b) The interaction between the far-field part of I';, and points on I', can be captured by
the interaction between points on I“f(‘“ and a smaller proxy circle for I', shown in dash purple
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X k, identity matrix. Namely, P(J(1 : k), :) = Iks. The rows specified by J(1 : k)
is called the skeleton row index, and the matrix P is referred to as the interpola-
tion matrix. We are mostly interested in the case where k, is strictly smaller than
m and for such case the ID approximation is often referred to as a “compression”
for the original matrix W. k_ is called the rank number for the compression. An ID
approximation with rank number k, is considered to be an optimal compression in
rank number if any ID approximations of rank number k < k_ leads to IW —PW(J(1
2kl > ellWIL

Due to the large number of discretization points on '™, it is often too expensive
to build the ID for Af‘;as directly. In practice, we organize the discretization points
on Ff‘r into special structure such as the dyadic partition (see Fig. 4 for an example)
or binary tree (see Fig. 5 for an example). The goal of using the special structure is
to keep the cost of building the low-rank approximation linear with respect to the
number of points on '™,

The choice of structure for creating the low-rank factorization depends on how
localized the refinement is and the position of the portion of the boundary to be
refined I, relative to I',. For example, the channel example given in Section 5.1
considers two kinds of local changes to the channel geometry in Fig. 7(a): a very
localized refinement of the discretization illustrated in Fig. 7(b); and a geometric
perturbation consisting of the addition of three interior circular holes as illustrated
in Fig. 7(c). For the problem in Fig. 7(b), the far-field and near-field separation is
straightforward and a dyadic partition of the far-field points on I'; based on distance
to I', is convenient and efficient. However, for the problem in Fig. 7(c), since the
three holes do not cluster, a circle enclosing all holes would contain a large sec-
tion of the channel boundary if not all of it. This means that many points on I', will
be “near-field” points although they are quite far away from any of the holes. An
efficient way to handle this problem is to introduce three circles each enclosing an
individual hole and define PP to be the union of the three circles. And a binary tree,
which does not have to depend on distance to I',, is a more appropriate choice. Fig-
ure 4 plots an example dyadic partition for the refined channel problem in Fig. 7(b),
and Fig. 5 plots the first three levels of an example binary tree structure for the addi-
tion of holes problem in Fig. 7(c). More details on how to construct the hierarchical
ID given the appropriate special structure can be found in Section 3 of [26] and Sec-
tion 4 and 6 of [10]).

If there are not a large number of points that are near, which is often the case, the
near-field interaction matrix Af[f" can be compressed directly. Otherwise, a dyadic
partition of discretization points on I;*" based on their distance to I', can be
adopted. The ID for AZ;*” can then be constructed in a hierarchical way utilizing the
idea of tree-node wise proxy circles (See Section 3 of [26]).

Once both far and near part of A, , are compressed, the low-rank factors can be
concatenated to form a low-rank approximation of A, ,. One may want to apply ID
again to the concatenated factors to further reduce the rank numbers.

Since the removed points 7, and added points Z, discretize the same boundary
curve segment I',, the far-field part of the low-rank approximation for A, , and A,
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Fig.4 A dyadic partition of F};‘“
based on distance to I', for a
refined channel discretization.
The subintervals corresponding
to a 10-level dyadic partition are -
plotted = ’_
** = -‘ = Ne,
* *
.0
74 "
: L]
n
. »
I' L]
L}
I‘ =
“

can be built from the same ID approximation as Ag{)as. This is possible since the
construction of the approximations does not require explicit evaluation of the matri-
ces Ay, and A; . Only the submatrices corresponding to the skeleton rows need to
be evaluated for making the R matrices.

The near-field factorization of A, . can be constructed in similar fashion as the
near-field factorization of A . For A, ,, we consider again a far-field and near-field
separation of the points on I';, based on the distance to I',, which corresponds to

@ Springer



A fast direct solver for integral equations on locally refined... Page 150f36 63

e ik

Level 1 Level 2 Level 3 Level 4

Fig.5 Top four levels of a binary tree partition for the channel geometry. The subintervals (or boxes)
corresponding to each level are plotted

classifying the columns of the matrix into two groups. The far-field interaction AS‘;

can be obtained by an ID the matrix that captures the interaction between the added
points discretizing I', and sample points on the separation circle PY named A, iy If
the number of points added is large, we can relieve the computational burden by
using a dyadic partition or binary tree in the same manner as was done for building
the ID for AE{)&S. The construction for AZ?;“ is similar to the near-field part of the

approximation for the near-field of A, , and A, .

Remark 3.3 When approximating the three blocks in Q, we always use ID to com-
press the rows of the matrices. We also uniformly define the L factor of the low-rank
approximation to be the interpolation matrix (or product of multiple interpolation
matrices if special tree structure is used) and the R factor to be the submatrix of the
discretized BIE specified by the skeleton row indices given by the IDs. This uniform
format for all three blocks is intentional as it improves the conditioning of apply-
ing the Woodbury formula. More details on this are presented in Appendix A. Note
the block-wise compression technique given in [7] manages to compress all far-field
part of the three blocks A, ,, A, ., and A, using one binary tree by doing row-wise
ID for A, and A, . but column-wise ID for A, ;. Namely, the far-field for all three
blocks is approximated by the same set of skeleton points on I';. For Laplace prob-
lems, the technique in [7] is expected to be more efficient than the one presented
here especially for the case where Ff“ contains lots of points. But for Stokes prob-
lems, the mixed usage of row- and column-wise ID leads to conditioning issues and
should be avoided.

With the special structure and partitioning, the cost of constructing the low-
rank factorization for Ay , is 0((Nk +Np)kkp). Similarly, the cost for factorizing
A is 0((Nk + Nk.). And the cost of factoring A,y is 0((Nk +Np)kpk). With
the low-rank factors for each block constructed, the final low-rank factorization
for Q can be formed by simply concatenating the corresponding factors as in
(13). If a close-to-optimal low-rank factorization (in terms of rank numbers) for
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Q is desired, one can “re-compress” the factorization by building an ID for L and
define the re-compressed final factorization accordingly.

4 A preconditioner for BVPs on locally refined discretization

The ELS presented in Section 3.2 is very useful for problems where there is local
refinement of the discretization. While the fast direct solver for the ELS is efficient,
it can suffer from a loss in accuracy when the problem has a high condition number.
This is frequent occurrence for Stokes problems especially in complex geometries.
An alternative to fast direct solvers is to use an iterative solver coupled with a fast
matrix-vector multiplier such as the FMM in these instances. The large condition
number often means that a large number of iterations are required for the iterative
solver to converge. This section presents an alternative solution technique which is
essentially the union of a fast direct solver with an iterative solver. Roughly speak-
ing, the technique is to use the direct solver presented in Algorithm 1 as precondi-
tioner for the ELS that is solved via an iterative solver coupled with a fast matrix-
vector multiplier.

Section 4.1 details how the accuracy in which the direct solver is constructed
impacts its ability to be a preconditioner. Then Section 4.2 details the preconditioner
developed for the ELS (11).

4.1 HBS inverse approximation as preconditioner

It is becoming more common to use low-accuracy fast direct solvers as precondi-
tioners for linear systems that arise from discretizations of integral equations and
differential equations [17-21]. This section explores effectiveness of fast direct solv-
ers as preconditioners for the discretized integral equation associated with an inte-
rior Stokes problem.

Consider the linear system Ao = g which results from the discretization of equa-
tion (4). Let € denote the tolerance for which the fast direct solver was constructed
and Ai"" denote the corresponding approximate inverse of A. Then the left-precondi-
tioned problem is defined as

(A"A)o = (Al"g). (15)

To investigate the performance of the fast direct solver as a preconditioner
with different tolerances e, we consider the fish geometry in Fig. 6 with no local
refinements. In particular, we place two hundred 16-point Gaussian panels uni-
form in parameterization space on the boundary. The linear system (15) is solved
via GMRES [27]. The application of A and Ai’w is done via the HBS technique
from [10]. The performance of the solver will be the same for any fast direct
solver. The tolerance for the compression of the matrix-vector operator, i.e.,
applying A, is fixed at 107 '°. The time for constructing the HBS representation of
the matrix is 6.81 seconds on a single core 1.6GHz 8GB RAM desktop. Table 2
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Fig. 6 Illustration of a fish
geometry where the red portion
of the boundary is refined

Table 2 Number of iteration 7, time in seconds to build the preconditioner 7., time in seconds for
GMRES to converge T, and the minimum number of solves MinSol needed to justify the use of the pre-
conditioner when using an HBS inverse approximation with accuracy e as a preconditioner for the inte-
rior BIE on the fish geometry in Fig. 6. The boundary geometry is discretized with two hundred 16-point
Gaussian panels uniformly distributed in parameterization space. With this discretization, the average

relative solution error at sample locations on the interior is roughly 7 x 10710

€ Tier Tore Tl MinSol
No preconditioner 55 NA 5.2e-1 NA
le-10 2 7.66 6.6e-2 17
le-8 2 4.92 1.0e-1 12

le-6 4 2.89 1.3e-1 8

le-5 6 223 1.5e-1 7

le-4 11 1.74 2.2e-1 6

le-3 36 1.12 5.1e-1 -

le-2 52 1.11 7.9e-1 -

le-1 53 0.97 8.1e-1 -

reports the performance of the preconditioned solution technique. For all experi-
ments, the tolerance of the iterative solver is set to 107! and the average rela-
tive error in the solution compared against the exact solution at sampled interior
locations is roughly 7 x 107!, The condition number for the Woodbury system
for this problem is reported in Table 14 of Appendix A. It shows that the linear
system Ac = g is well-conditioned. Thus even without a preconditioner, only 55
iterations are needed to achieve the desired tolerance. The results indicate that
low-accuracy approximations (¢ > 1072) do not improve the performance of the
iterative solver enough to justify constructing the preconditioner. For ¢ <1073,
the minimum number of repeated solves needed to justify the use of the precon-
ditioner grows as e decreases. This experiment illustrates that the use of a low-
accuracy fast direct solver as preconditioner is not fruitful in improving the con-
vergence rate of iterative solvers. For problems where the condition number of
the discretized linear system is large, a preconditioner may be required for the
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iterative solver to converge within reasonable number of iterations with the avail-
able computing resources.

4.2 Preconditioned iterative solver for the locally refined problem

Just like the discretized BIE for a Stokes boundary value problem on a given geom-
etry, the ELS (11) can also suffer from conditioning issues. This section presents a
preconditioner based on the solver from Section 3 and a fast matrix-vector multiplier
that can be utilized to accelerate an iterative solver. It is expected that the number of
iterations needed to converge will be less than if there was no preconditioner at all.
Additionally, there is no loss of digits associated with inverting poorly conditioned
matrices.

The idea behind the preconditioner is simple. Let A’”V and A™ denote the approx-
imate (or exact if the matrices are small enough) inverses of Ao o and A respec-
tively. Then

Ainvz Ai)n:; 0 NA_I
0 Atm ~

and

Ale}:(‘; A _ Ava(I + RAva) RAmv ~ Aem
The Woodbury formula can be applied efficiently to any vector via the technique
presented in Algorithm 1.
Instead of solving the true ELS, we propose solving the approximation of the lin-
ear system (11) where A, is approximated by a block diagonal plus low-rank form;
ie,as A & (A + LR). The matrix A can be applied to a vector b block-wise

All_ [Au,u 0 ][bo] [Aoobo]
0 Ap,p b, Ap Py

The evaluation of A, b, can be accelerated via fast matrix-vector multiplication
algorithms, such as the FMM or the approximate forward operator created in the
process of building a fast direct solver, and is constructed for the original discretiza-
tion. Similar to the fast direct solver for the ELS presented in Algorithm 1, if N,
is small, the matrix A,, can be constructed and applied via dense linear algebra
Otherwise, a separate fast matrix-vector multiplication can be constructed for A, ,
Since L and R are block sparse and low rank, they can be applied to any vector
densely with little cost.

In this paper, we assume a forward HBS representation, the HBS inverse, and
matrix-vector multiplication for applying A, , and A;”Z are available. Then the ELS
for the problem defined on the refined geometry ’

(A+ Q)7 » (A+LR)7, =g (16)

@ Springer



A fast direct solver for integral equations on locally refined... Page 190f36 63

Table 3 Number of iterations n;,, time in seconds for computing the preconditioner 7}, and time in sec-
onds for the iterative solver to converge T, when applying the ELS preconditioner to the boundary value
problem on the refined fish geometry in Fig. 6. The red portion of the boundary is refined. Originally
there were N, =128 points on the red portion. In the new problem there are N, = 1024 points on the red
portion of the boundary. The number of points unchanged is N, =3072. We assume an HBS representa-

tion and the inverse for the original problem are available

Method Piter Thre Tl
GMRES with fast mat-vec 55 NA 4.8e-1
GMRES with preconditioner 2 7.2e-1 8.3e-2

L]

L] L]
L] L)

(a) (b) ()

Fig.7 (a) The original channel geometry. (b) The channel geometry with a locally refined segment high-
lighted in red. (¢) The channel geometry with three interior holes added

only requires building the low-rank factorization of the blocks in Q and the opera-
tors associat'ed with the A, , block and can be solved by an iterative solver such as
GMRES. A" can be constructed with the extra cost of carrying out the Woodbury
formula and applied as a preconditioner to (16). For a well-conditioned problem,
where many different choices of local refinements and/or right-sides are considered,
the total cost may be greatly reduced by using the fast direct solver in Section 3 as
a preconditioner. Table 3 reports the performance of the preconditioner when it is
applied to the boundary value problem on the fish geometry in Fig. 6 where the
red region of the boundary is refined. The original discretization has two hundred
16-point Gaussian panels uniformly distributed in parameterization space; 8 panels
discretize the red region and are replaced by 64 panels for the refinement. The num-
ber of discretization points kept was N, =3072, the number of discretization points
cut was N, =128 and the number of discretization points added was N, =1024. The
tolerance for HBS compression and low-rank approximations were set to 10~1°, and
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the tolerance for GMRES was set to 107 !!. The average relative error of the solu-
tion at sampled locations is roughly 7 x 107!° for both tests. Recall, we assume the
HBS representation of A, and its inverse are available. Thus the time needed to
construct these is not included in our results. The results in the first row of Table 3
are for when the fast matrix-vector multiplication for A uses the precomputed HBS
representation of A, . The time for constructing the efficient forward apply of the
ELS (A + LR) is 0.53 second, which includes the construction of A, , and the low-
rank factorization Q ~LR. As expected the number of iterations is the same as in
Table 2. The second row in Table 3 presents the results when the preconditioner is
used. The extra time required to construct the preconditioner Tpre, i.e., for construct-
ing AZY, includes everything else that was not included in constructing the efficient
forward apply of the ELS (A + LR) such as the construction and inversion of the
Woodbury operator. Again the results are comparable to the results in the previous
section. The preconditioner reduces the number of iterations from 55 to 2, resulting
in an 82.7% reduction in solve time. And the extra cost for building the precondi-
tioner is justified for problems involving more than one right-hand side.

If the problem is not well-conditioned, then the preconditioner may be necessary

to obtain an accurate solution with a limited amount of computational resources.

5 Numerical experiments

This section illustrates the performance of the proposed solution techniques for
Stokes problems involving locally refined discretizations. The fast direct solver
scales linearly with respect to the number of points in the original discretization and
is cheaper than building a fast direct solver from scratch for the new discretization.
Section 5.1 illustrates the performance of the fast direct solver when applied to a
locally refined channel. This example is from [16]. Section 5.2 reports on the per-
formance of the fast direct solver as a preconditioner when the geometry is complex.
Finally Section 5.3 illustrates the performance of the fast direct solver as a precon-
ditioner when there are a sequence of local refinements for the same original geom-
etry. Such an example arises in many applications including simulations of microflu-
idic devices.

For all test problems, the right-hand side of the BVPs is generated from a known
flow and the solution error is the average of relative error at chosen target locations
in the domain. All boundaries are discretized via the Nystrom method with 16-point
composite Gaussian quadrature, and generalized Gaussian quadrature corrections
[28] are used to handle the weakly singular kernels. The solver also works with
other quadrature corrections, such as [29-31].

All experiments were run on a dual 2.3 GHz Intel Xeon Processor ES-2695 v3
desktop workstation with 256 GB of RAM. The code is implemented in MATLAB,
apart from the interpolatory decomposition routine, which is in FORTRAN.

To illustrate the performance of the solver, we introduce the following nota-
tions for reporting times and errors. For notation consistency, we use regular
capital letters such as T and E for problems defined on the original discretization
(or geometry) and letters with tilde, such as 7 and E for problems on the locally
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refined discretization (or perturbed geometry). For the problem on the original
discretization (or geometry), we define

® Tygs, comp a0d Typs iny: the time in seconds for building the HBS compression
of the discretized boundary integral operator and that for inverting the com-
pression, i.e., building the HBS inverse, respectively.

® Tygs. pso- the time in seconds for applying the HBS inverse to a given right-
hand side vector. “Dsol” stands for “one direct solve”.

® Tygs. Gsol: the time in seconds for solving for one right-hand side vector using
GMRES with HBS compression accelerated matrix-vector multiplication.
“Gsol” stands for “one GMRES solve”.

® Tygs. pGsor the time in seconds for solving for one right-hand side vector using
a preconditioned GMRES with HBS compression accelerated matrix-vector
multiplication, where the HBS inverse is used as the preconditioner. “PGsol”
stands for “one preconditioned GMRES solve”.

® Eugs. psol» EHBs. Gsol a0d Eyps. pasol: the average relative error at sample domain
locations for the three different solve options respectively.

For the problem on the locally refined discretization (or perturbed geometry),
we define

®  Tugs, comps TuBs, inv> THBs, Dsol» THBs, Gsol» A1 Thps pasol: time in seconds similar
to those categories for the original discretization (or geometry).

*  Eugs pso» Enss, 6sor a1 Eygs pagor: €rror similar to those categories for the
original discretization (or geometry).

o Ty comp: the time in seconds for building A, , and LR ~Q in formulating the
fast ELS approximation. Note we assume a HBS compression for A, , is avail-
able.

®  Tgis iny: the time in seconds for building the operators needed in the Wood-
bury formula for applymg the inverse approximation of the ELS: A 1 , AL,
RA-'L and (I + RA- 1L) . Note we assume a HBS inverse approx1mat10n for
A, , is available.

o TELS Dsol: the time in seconds for applying the approximate ELS inverse
(A + LR)! via the Woodbury formula to a given right-hand side vector.

o ~TELS, Gsolt the time in seconds for solving the approximate ELS
(A + LR)7,,, = g, for one right-hand side vector g, using GMRES.

o TELS pGsol: the time in seconds for solving the approximate ELS
(A +LR)7,, = g, for one right-hand side vector g,,, using GMRES, where
the approximate ELS inverse is used as the preconditioner.

*  Egis peois Eevs, asot a0d Egpg pesor: the average relative error at sample domain
locations for the three different ELS solve options respectively.

The accuracy for HBS compression and low-rank approximation is set to 1071
unless specified otherwise.
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5.1 Asymptotic scaling experiments

This section illustrates the performance of the fast direct solver for the ELS (pre-
sented in Section 3) when applied to a Stokes problem with a confined geom-
etry with two types of modifications: locally refining a part of the boundary and
adding holes. Figure 7(a) illustrates the channel. Figure 7(b) and (c) illustrate
the modification of local refinement (in red) and adding holes, respectively. The
geometry is generated by applying cubic splines with periodic conditions to 121
spline knot locations (with the first and last knots giving the same physical point
on the geometry) and was first seen in [16]. The channel is discretized by using
the same number of Gaussian panels per subinterval in in the cubic spline geome-
try generation. For example, the total number of discretization points on the chan-
nel Nyamer = 1920 corresponds to 120 Gaussian panels in total and 1 panel per
subinterval. If there are two panels per subinterval, the number of discretization
points doubles.

The circular holes are each discretized with 10 panels which means there are
160 quadrature points per circle.

Remark 5.1 The addition of holes is similar to the original examples used in [16]
and fits in the definition of a locally perturbed geometry as defined in [7, 8]. How-
ever, the extended system is slightly different from the one given in Section 2.2 as
we are only adding points for the new boundary and there is no deletion or cutting
of points on the original geometry. The corresponding ESL formulation is given in
Appendix B.

The Dirichlet boundary data for the interior channel BVP (Fig. 7(a) and (b)) is
generated by 5 exterior Stokeslets outside of the channel geometry. For these two
problem, the solution is represented with the double layer kernel (as discussed
in Section 2.1). The Dirichlet boundary data for the BVP with holes (Fig. 7(c))
is generated by the same 5 exterior Stokeslets outside the channel geometry and
five additional Stokeslets placed inside the added holes (two stokelets per hole for
the bottom two holes and one stokelet in the top hole). The solution interior to the
channel and exterior to the holes is represented as a double layer potential on the
channel plus a combined field potential on the holes.

The observed condition number of the discretized integral operator for all
the problems in this section is on the order of 10°. The condition number of the
Woodbury operator is on the order of 103 for the problem with the added holes
and 10 for the problem with the local refinement. The observed rank numbers for
the low-rank approximation of the update matrix Q, which is also the size of the
Woodbury system, is roughly 60 for the problem with the local refinement and
340 for the problem with the added holes.

Let N nne denote the number of discretization points on the original chan-
nel. Table 4 reports on the performance of the HBS solver applied to the original
geometry (and discretization). For the locally refined discretization, let N. and N,
denote the number of points removed and added, respectively. For the channel
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Table 4 The time in seconds and error for using HBS compression and inversion to solve the BIE on the
channel geometry with the original discretization (illustrated in Fig. 7(a)). The number of discretization

points on the channel is N,,..;- The size of the linear system is 2N ,0ne1 X 2Nchannel

2A’channel THBS, comp THBS, inv THBS, sol EHBS, Dsol
30720 65.7 7.0 0.070 1.1e-10
61440 90.7 9.9 0.140 1.4e-10
122880 132.8 15.8 0.264 3.22e-10

Table 5 The time in seconds and error for using the Woodbury formula to solve the ELS for the bound-
ary value problem on the channel with local refinement illustrated in Fig. 7(b). The number of discretiza-
tion points cut and added on the red portion of the boundary are N, and N, respectively

2Nchannel’ ZNN 2Np TELS, comp TELS, inv TELS, Dsol EELS, Dsol
30720, 192, 768 1.4 0.8 0.088 2.5e-10
61440, 384, 1536 3.0 1.2 0.113 5.8e-10
122880, 768, 3072 7.1 2.3 0.184 4.8e-10

Table 6 The time in seconds and error for using the Woodbury formula to solve the ELS for the bound-
ary value problem on the channel with three interior holes illustrated in Fig. 7(c). The circular holes in
Fig. 7(b) are each discretized with 10 panels and 160 quadrature points, resulting a total of N ., =480
points

ZNChanﬂel’ 2Nh0135 TELSA, comp TELSA, inv TELS, Dsol EELS, Dsol
30720, 960 14.9 2.1 0.059 9.8e-11
61440, 960 28.8 4.3 0.103 2.3e-10
122880, 960 56.4 7.9 0.296 2.1e-10

Fig. 8 Partial Fallopian tube
based on data extracted from
the experiments in [32]. A small
segment highlighted in red is
chosen to be locally refined. The
geometry is generated by [33]
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with holes geometry, let N, ., be the total number of discretization points placed
on the three holes. The results in Tables 5 and 6 report on the performance of
the proposed ELS formulation based fast direct solver applied to the geometries
in Fig. 7(b) and (c). The size of each test case is given by the total degree of
freedom, which is double the number of discretization points. To show the scal-
ing of the ELS fast direct solver, the values for N,nne» N, and N, are all dou-
bled as the test size increases. Both the HBS solver and the proposed fast direct
solver scale linearly with respect to the number of points on the channel geom-
etry. The cost of using Algorithm 1 is significantly less than building the original
HBS solver. This means that Algorithm 1 is more computationally efficient than
building a fast direct solver from scratch for the new discretization. It is worth
noting that the time required for building the ELS compression for the addition of
holes example is much higher than that for refining the channel boundary given
the same N ,...;- For example, when 2N,...; = 122880, ELS compression for
adding holes is about 8§ times of that for refining a segment, although the points
added for the holes Ny, is only 1/3 of the points added N, due to the refinement.
This is due to the fact that the change to the system for adding the three holes
is “less local” than that for refining a segment of the channel, resulting in much
higher rank numbers and more expensive compression of the update matrix Q.
For the same reason, the time required for applying the inverse of the ELS when
adding holes is also more than that for refining a segment of the channel.

The solution error for all test cases is maintained at 107 !° since the geometry is
fully resolved and the tolerance for HBS compression and low-rank approximations
is set to be 107 1°,

5.2 Complex geometry with local refinement

This section considers an interior problem on the complex Fallopian tube geom-
etry illustrated in Fig. 8. The geometry is created by extracting data points from
Fig. 1 of [32] and connecting them smoothly via the technique in [33]. The solution
to the problem is generated by placing Stokeslets on the exterior of the geometry.
The boundary data is generated via this known solution. Discretizing the complex
geometry in Fig. 8 results in an integral equation with a high condition number. An
iterative solver requires a large number of iterations in order to converge. The exper-
iments in this section discretize the original Fallopian tube boundary (pre-refine-
ment) with 1600 Gaussian panels (25600 points and 51200 degrees of freedom),
which results in relative error of approximately 4 X 10~°. To understand the condi-
tioning of the linear system, we consider the smallest matrices that are inverted in
the hierarchical tree using the HBS solver. These matrices (corresponding to the first
three levels in the tree) have condition numbers on the order of 108 to 10!

For the refined discretization problem, the red portion of the boundary high-
lighted in Fig. 8 goes from having 6 panels to 24. Since a 16 point Gaussian quadra-
ture is used, the number of points kept, cut and added are N, =25,504, N. =96, and
N, =384, respectively. The iterative solver stops when the relative residual is on the

P
order of 107°. For the boundary integral equation on the original discretization, we
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Table 7 Time in seconds for
solving (a) the original and (b) @

the refined problem defined on Tgs, comp Thgs, inv Tygs, Dsol
the Fallopian tube geometry 4.09% +2 2.76e + 1 7.87e-2
(Fig. 8) via HBS inversion. (c) )
corresponds to the proposed fast ~ B .
direct solver for the ELS of the Tugs, comp Tugs, inv Tygs, Dsol
refined problem 4.09 + 2 2.76e + 1 7.87e-2
(©
TELS, comp 7~qELS, inv TELS, Dsol
533e+0 2.0le+0 9.62e-2

Table 8 Time in seconds for
solving (a) the original and (b) @

the refined problem defined on Tygs, comp Tygs. Gsol
the Fallopian tube geometry 4.09% +2 5.95¢ + 1 (1, =519)
(Fig. 8) via GMRES with )
HBS compression accelerated . 5
matrix-vector multiplication. Tygs, comp Thgs, Gsol
(c) corresponds to solving the 4.09¢ + 2 6.5% + 1 (n;,, =519)
ELS of the refined problem via ©
GMRES - -
TELS, comp TELS, Gsol
5.33e+0 7.07e + 1 (ny, =520)

The number of GMRES iterations 7, required to converge to toler-
ance 107 is also reported

either build only HBS representation of the discretized boundary integral equation
and couple it with GMRES or also build the HBS inverse and apply it directly to the
given right-hand side. For the refined problem, we consider the discretized BIE and
the equivalent ELS and a fast direct solver and an iterative solver for each. Addition-
ally, we also use the direct solver for the ELS, built as described in Algorithm 1, to
precondition the GMRES solve.

Table 7 reports the time in seconds required to solve the BIE on the original dis-
cretization, the BIE on the refined discretization, and the approximate ELS on the
refined discretization using a fast direct solver. The total time for precomputation
includes two parts: the forward compression indicated by subscript notation “comp”
and the inversion indicated by the subscript notation “inv”. Table 7(b) and (c) dem-
onstrate that for this geometry the proposed direct solver for the ELS is more effi-
cient than building a HBS solver from scratch for the refined problem. In fact, the
cost for constructing a forward compression for the ELS for the refined problem is
only 1.3% of the cost of constructing a HBS from scratch. The cost of constructing
the inverse operator is only 7.3% of that of HBS inverse.

Table 8 reports the time in seconds for the unpreconditioned GMRES approach
for the original and refined problems. The precomputation for this approach only
involves the compression of the forward operator and is lower than that for the direct
solution approach since an approximate inverse is not constructed. However, due to
the poor conditioning of the problem, more than 500 GMRES iterations are required
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to reach the desired tolerance of 107°. The time required to solve the integral equa-
tion via unpreconditioned GMRES is much higher for each new right-hand side than
the direct solver. Table 8(b) and (c) show that solving the approximate ELS (16) is
two orders of magnitude cheaper than building the HBS compression of the BIE
for the refined problem. Applying the forward operator for the ELS is slightly more
expensive than applying the HBS forward compression.

Table 9 reports the time in seconds for the preconditioned GMRES approach
applied to the approximate ELS. Here Algorithm 1, i.e., the inverse of the ELS
obtained by the Woodbury formula, is used to precondition the fast representation
of the ELS. The precomputation time of this approach is equal to that of the direct
solver approach for the ELS. The number of GMRES iterations required for the
convergence criterion to be met is reduced from 520 to 6, leading to a significant
reduction in total cost even for only one right-hand side solve when compared to the
results in Table 8(c). The cost of solving one additional right-hand side vector via
the preconditioned GMRES approach for the ELS is about 5.4% of that via unpre-
conditioned GMRES approach.

5.3 Relocating region of local refinement

This section illustrates the potential of using the fast direct solver presented in
Algorithm 1 as preconditioner for many Stokes problems involving a body mov-
ing through a collection of star-shaped obstacles shown in Fig. 9. This example
is representative of applications such as sorting with a microfluidic device. For
the original discretization, 10 panels are placed on each star with less or equal
to 5 prongs and 20 panels are placed on stars with more than 5 prongs. With
the 16-point Gaussian quadrature, this results in a total of 42400 discretization
points and 84800 degrees of freedom. For demonstration purposes, we do not
simulate the true physics of any body moving in the domain; instead, we assume
the body appears at certain locations at some time step, as illustrated in in Fig. 9.
These can be viewed as snapshots of a body moving through the obstacles. The
body moving through the obstacles is much smaller in scale than any of the stars.
Thus the discretization of one or more obstacles will need to be locally refined
as the body approaches those obstacles. Since the body is moving, the regions of
local refinement are expected to be different for each snapshot. Previously refined
regions may be coarsened back into the original discretization as the body moves
away. In this example, 19 snapshot locations are chosen. In 12 of these snapshots,
the body is close to an obstacle and local refinement is needed. In the other 7

Table 9 Time in seconds for solving the ELS of the refined problem defined on the Fallopian tube geom-
etry (Fig. 8) via preconditioned GMRES, where Algorithm 1 is used as the preconditioner. The number
of GMRES iterations n,,,, required to converge to tolerance 10~ is also reported

TELS, comp TELS, inv TELS, PGsol
533 +0 2.0le +0 3.80€ + 0 (11, =6)
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snapshots, no local refinement is needed. We consider 5 different ways of solving
the linear system for the 19 different boundary value problems. These solution
techniques are:

(1) GMRES-indy: Treat each of the 13 different discretization as independent
boundary value problems, building a forward HBS representation for each, and
using this to accelerate the GMRES solve for each snapshot;

(2) Direct-indy: Treat each of the 13 different discretization as independent
boundary value problems and build a HBS solver for each one;

(3) GMRES-Local: Build a HBS forward representation for the original discre-
tization and use it to accelerate the GMRES solve for the ELS for each problem
requiring local refinement;

(4) Direct-Local: Build a HBS solver for the original discretization and use it to
build a fast direct solver for the ELS according to Algorithm 1 for each problem
needing local refinement;

(5) PGMRES-Local: Build a HBS solver for the original discretization and use it
to precondition the GMRES solve for the ELS for each problem requiring local
refinement.

The tolerance for GMRES is set to 10~!!. For the boundary value problems
that do not require local refinement, using the HBS matrix-vector acceleration
of GMRES results in a relative error on the order of 10~°. Using the HBS solver
loses two digits; i.e., the relative error that results from this solver is on the order
of 1077, Thus for the two techniques (2) and (4) where the direct solver is used
as an actual solver and not a preconditioner, the accuracy is approximately 10",
When the HBS solver or the ELS fast direct solver in Algorithm 1 is used as the
preconditioner, the error is approximately 107°.

To compare efficiency of the five approaches, we first report the time in sec-
onds for solving the problem on the original discretization and that on one par-
ticular refined discretization, which corresponds to the first snapshot with the
body located at the very bottom left of Fig. 9(b). The results are presented in
Tables 10, 11 and 12 in the same format as the corresponding results for the Fal-
lopian tube geometry in the previous section.

Table 10 Time in seconds for
solving (a) the original and (b) @

the refined problem defined on Tugs, comp Tygs, iny Tygs. Dsol
the star-shape obstacle geometry 8§23 4 2 338 + 1 2.57e-1
in Fig. 9 via HBS inversion. (c) (b

corresponds to the proposed fast

direct solver for the ELS of the THBS, comp THBS, inv THBS, Dsol
refined problem 8.07e +2 338e+1 2.98e-1
©
TELS, comp TELS,, inv TELS. Dsol
8.3% + 0 6.43e+0 4.18e-1
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Table 11 Time in seconds for solving (a) the original and (b) the refined problem defined on the star-
shape obstacle geometry in Fig. 9 via GMRES with HBS compression accelerated matrix-vector mul-
tiplication. (c) corresponds to the solving the ELS of the refined problem via GMRES. The number of
GMRES iterations ,,, required to converge to tolerance 10~ !! is also reported

()

THBS, comp THBS, Gsol

8.23¢ +2 3.27¢ + 1 (ny, =113)
(®)

7~-’HBS, comp THBS, Gsol

8.07¢ +2 3.30e + 1 (n, =113)
©

TELS, comp TELS, Gsol

8.3% + 0 3.46¢ + 1 (n, =113)

Table 12 Time in seconds for solving the ELS of the refined problem defined on the star-shape obstacle
geometry in Fig. 9 via preconditioned GMRES, where Algorithm 1 is used as the preconditioner. The
number of GMRES iterations n;,, required to converge to tolerance 10~ !! is also reported

TELS, comp TELS, inv TELS, PGsol
8.39% +0 6.43e +0 9.50e + 0 (1, =6)

Since the direct solver does not achieve the full possible accuracy of the dis-
cretization, using it as preconditioner is reasonable and it greatly decreases the
number of iterations needed for an iterative solver to converge.

With the step-by-step cost summarized in Tables 10, 11 and 12, we can approx-
imate the total cost for each of the five approaches handling all 19 snapshots by
simple addition and multiplication, assuming that the cost for solving the ELS for
each snapshot that requires a refinement is the same.

To get an idea of the speed up for solving problems involving the 19 multiple
snapshots given in Fig. 9(a), Table 13 collects the time necessary for each part of
the 5 solution techniques. The different times reported are:

®  Tiaic The time in seconds for constructing any of the operators needed for the
solution technique on the original discretization. For techniques (1) and (3),
only constructing an approximation of A, , via HBS is needed. For the other
options, the construction of the approximate inverse of A, , is also needed.
This is a “static” computation since it is independent of future time steps and
potential local refinement.

® Ty The time in seconds for solving a problem where local refinement is not
needed. “Osol” stands for “solve for the original discretization”

e Tgre: The time in seconds for solving a problem where local refinement is
needed. “Rsol” stands for “solve for one refined discretization”.
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Fig.9 (a) A collection of star-shape obstacles with different snapshots of body locations. (b) Zoomed-in
in the region near the snapshots of the body locations. The locations are chosen artificially and do not
represent any physical movement of body in Stokes flow. 19 locations are chosen, out of which 12 are
close to certain part of the obstacle boundary and incur local refinement of the obstacle discretization
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Table 13 Time in seconds of the construction of all necessary precomputed operators on the original dis-
cretization T, for solving a problem that does not need local refinement 7, and for solving a prob-
lem that requires local refinement T ;. Here we assume that each of the locally refined discretization is
the same in size and requires the same amount of calculations to solve

Taic Tosol Tgrsol
(1) GMRES-indy 8.23e +2 327e+1 8.40e + 2
(2) Direct-indy 8.56e + 2 2.57e-1 84le+2
(3) GMRES-Local 8.23e +2 327e+ 1 4.29¢ + 1
(4) Direct-Local 8.56e + 2 2.57e-1 1.52e + 1
(5) PGMRES-Local 8.56e + 2 9.40e + 0 243e + 1

Approaches (3-5) which utilize the ELS are more efficient than building new
HBS solver from scratch each time or only when there is local refinement. For these
experiments Approach (4) is the most efficient but if the fully attainable accuracy is
desired, Approach (5) should be used as it is both efficient and accurate. The previ-
ous standard solution technique for this type of problem was Approach (1). The pro-
posed direct solver (4) and the proposed preconditioned solver (5) are 127 and 3.5
times faster than Approach (1) when local refinement is not needed. When refine-
ment is needed, Approaches (4) and (5) are 55 and 34.6 times faster than Approach
(1), respectively. Since the applications of interest (such as [1]) involve hundreds to
thousands of solves, it is definitely worth using the ELS. If the user is okay losing
a couple of digits, the fast direct solver is an ideal choice. If the digits are needed,
then the preconditioned iterative solver is still going to be significantly faster than
Approach (1).

Remark 5.2 The dominate cost Ty, for the ELS solution techniques is the cost of
creating the low-rank factorization of Q. In most applications, several snapshots can
use the same refinement and thus the same factorization of Q. The reuse of the fac-
torization will decrease Ty, significantly. For example, in the experiments corre-
sponding to the two body locations on the left bottom of Fig. 9, two different regions
of the same five-prong star are refined in these two consecutive time steps. In prac-
tice it might be more efficient to group the two regions together and treat them as
one locally refined region, thus leading to one refined discretization for the first two
time steps.

6 Conclusions

This manuscript presented a fast direct solver for Stokes BIEs on locally refined dis-
cretizations. The technique makes use of an extended linear system that allows for
precomputed fast direct solvers on the unrefined geometry to be utilized. The numer-
ical results illustrate the new solver’s performance on particulate flow simulations.
For general Stokes problems, two solution approaches are explored. Which solu-
tion technique should be used depends on the conditioning of the problem and how
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many digits are desired. For well-conditioned problems, the proposed fast direct
solver works extremely well. When the problem has poor conditioning, the fast
direct solver may lose a couple of digits (relative to the compression accuracy).
These digits can be recovered by using the second solution technique presented here,
which is to utilize an iterative solver where the fast direct solver for the linear sys-
tem serves as a preconditioner and the compressed representation of the ELS pro-
vides the fast matrix-vector multiply. Both solution techniques scale linearly with
the size of the unrefined discretization. Linear scaling with respect to the number of
unknowns added in the local refinement can also be achieved but is not necessary
for the considered applications since a relatively low number of points are added.
Numerical examples demonstrated significant speedups; in one test case, the pro-
posed direct solver is roughly 55 times faster than the standard approach. For prob-
lems with large condition number, more accurate solution may be obtained by using
the proposed preconditioner as compared to the direct solver. In another test exam-
ple, the preconditioned GMRES solve for the ELS reduced the number of iterations
by a factor of 19 (and total solve time by 3.6X). Our immediate future directions
include incorporating close evaluation schemes and extension to three-dimensional
problems.

Appendix : A. Stability of using the Woodbury formula

Woodbury formulas such as (12) are well-known in the linear algebra literature [34]
and have been the cornerstone of recently developed fast direct solvers for applica-
tions including periodic Stokes flow [1] and quasi-periodic scattering problems [25,
26]. While the Woodbury formulas have been used in these applications, it was done
so without any concern for the stability of the approach. This section will review the
stability analysis of the Woodbury formula given in [35] and provides some empiri-
cal results in the case of Stokes problems.

The main concern in the stability of the Woodbury formula lies in the sta-
ble inversion of the matrix W = I+ RA~'L. We will refer to the matrix W as the
Woodbury operator. [35] states that in order to stably solve a linear system via the
Sherman-Morrison-Woodbury formula, the following two conditions must be satis-
fied by the linear system:

e All the relevant matrix-matrix and matrix-vector multiplications in (12) involv-
ing A~! are numerically stable.
e The Woodbury operator is well-conditioned.

For Stokes problems, the first condition is satisfied thanks to the choice of bound-
ary integral formulation (in Section 2) and the use of a stable fast direct solver. Since
Stokes problems tend to have a large condition number, we choose to modify the
second condition to: (ii) The Woodbury operator is as “well-conditioned” as the full
linear system A + LR.

The following lemma, which is a modified version of Lemma 1 in [35], pro-
vides an upper bound on the condition number of the Woodbury operator and
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formally defines what we mean by the Woodbury operator being as “well-condi-
tioned” as the full linear system. The lemma is stated in the context of discretized
boundary integral operators and the ELS. Specifically it provides conditions on
the low-rank approximation of the update matrix Q ~LR which must be satis-
fied (along with both the linear systems for the original and refined discretization
being well-conditioned) for the Woodbury operator to be “well-conditioned.”

Lemma A.1 (Upper bound on the condition number of the Woodbury opera-
tor) Assume the operator A, , and A, , as defined in (9 ) and (10) are all invertible.

Additionally, Aext =A +LR = A, is also invertible. If the k columns in the low-

rank factor L and the k rows in R are linearly independent, then the condition num-
ber of the Woodbury operator is bounded above as follows:

x(I+RA™'L) < min {&(LY, I%(R)z}K<Aexl>K(A), a7
where
#(L) = L7l and &(R) = [RY|IR]
with
L' = (L'L)"'L” and R = R"(RR") "'
defined as the pseudo-inverse for L and R in the standard sense.

Proof The matrix A is invertible since it is block diagonal with each block invertible
by our assumption. Let the pseudo-inverses of L and R be defined as above.

It is easy to verify that L¥L. = RR* = I with dimension k X k. By right-multiply-
ing both sides of A, , = A + LR by A~'L, we get

ext

A, A'L=(A+LR)A"'L=L+LRA™'L=L(I+RA'L).

Now the left-multiplication on both sides of the previous equality by L* results in
the following:

L'A, A”'L=L'L(I+RA™'L) =I+RA'L.

ext

Simplifying utilizing the basic properties of pseudo-inverse gives the following
expression:
L'AJ'AL = (1+RA'L) ™.

Therefore, the condition number for the Woodbury operator is bounded above by
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c(I+RA7'L) = |1+ RA-'L|||[(1+RA-'L) |
= |L'A AL LA AL
< LA | Aee 1A AL

L PPk (A ) (A).
A similar argument using R¥ gives
k(I+RA'L) < ||R"‘||2||R||2K<Aex,)K(A).
Combining the two bounds above gives equation (17). O

The lemma implies that if we construct Q ~LR so that A, = A + LR is inverti-
ble, L and R are full rank, and additionally let *> = min {&(L)?, &(R)*}, then

x(I+RA'L) < a%([&m)x([&). When the original problem and new problem
have similar condition numbers, i.e., K(Aext> ~ K(A) ~ K, the lemma and the low-

rank  approximation  construction above together give the bound
x(I+RA™'L) < a2 The upper bound given by the lemma can be improved by
building L. and R so that at least one of &(L) and &(R) stay small. When the rank
number of the low-rank factorization of Q ia large, a “re-compression” via con-
structing an ID or SVD for the concatenated L factor may be able to reduce the rank
number and thus save some computations for the later steps. Take the refined fish
test in Section 4.2 as an example, Table 14 reports the rank number of the concate-
nated low-rank factorization k and the one after re-compression ki, as well as the
corresponding condition number of the Woodbury system. The tolerance for the ID
is set to 107'” and the condition numbers reported in the table are calculated via
Matlab’s cond () function.

For the problems considered in this manuscript, the upper bound in Lemma A.1
is overly pessimistic. In fact, the observed condition number is much smaller than
a*¢®. In practice, when the low-rank approximation of Q is constructed with care as

Table 14 The observed rank (same as the size of the Woodbury system) and condition number for an
interior BIE on the fish geometry illustrated in Fig. 14. k and « are the size and condition number for the
Woodbury operator defined for the concatenated factorization Q ~LR. k,.com, and Kiecom, are the size and
condition number for the Woodbury operator defined for the factorization with an extra SVD applied to
L as a re-compression step. The condition numbers are all calculated by Matlab’s cond () function. The

condition number of the block-diagonal matrix A and the ELS A, are also reported. Finally the upper

bound given by Lemma A.1 corresponding t0 Q ~LecompRyecomp is also provided

Nk’Nc’Np kblock Kplock koptimal Kaplimal K (Aexl) K (A) Upper bound
752,48, 384 175 1630.0 141 98.5 378.0 371.0 4.le+25
1520, 80, 640 158 407.3 124 71.3 376.7 371.0 1.2e +25
3072, 128, 1024 143 523.5 113 71.0 375.0 371.0 1.6e + 25

@ Springer



63 Page340f36 Y. Zhang et al.

described in Section 3.3, the observed condition number of the Woodbury system
is comparable to the condition number of the original linear system. For example,
Table 14 also reports the upper bound on the condition number given by Lemma
A.1 for the Woodbury system. With or without the re-compression step, the condi-
tion numbers are well below the upper bound provided by the lemma.

Appendix : B. Extended system for the channel with added holes
problem

Let I'; be the original channel boundary given in Fig. 7(a) and I, be the union of the
holes added in Fig. 7(b). Following this subscript notation, the discretized BIE on
the “channel-with-holes” geometry can be reordered into the same format as in (10).
Since no points are deleted, (10) itself serves as an ELS for this problem, and it can
be written as

A A A 0
A,m=Ax=[ e k”’]=[ 5 ]+Q (18)
' e Ai Ay 04,
where the update matrix Q can be approximated by a low-rank factorization

0 A
Q= [ ko ] ~IR
A 0

If a fast direct solver is already constructed for the original channel geometry,

i.e., an approximation to A,:,lC is available, then the solution to (18) can be quickly

obtained by a Woodbury formula as described in Section 2.2. The construction of
the low-rank approximation for the update matrix is also simpler for this particular
problem, since only two sub-blocks need to be handled.
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