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Abstract
In transient simulations of particulate Stokes flow, to accurately capture the inter-
action between the constituent particles and the confining wall, the discretization 
of the wall often needs to be locally refined in the region approached by the parti-
cles. Consequently, standard fast direct solvers lose their efficiency since the linear 
system changes at each time step. This manuscript presents a new computational 
approach that avoids this issue by pre-constructing a fast direct solver for the wall 
ahead of time, computing a low-rank factorization to capture the changes due to the 
refinement, and solving the problem on the refined discretization via a Woodbury 
formula. Numerical results illustrate the efficiency of the solver in accelerating par-
ticulate Stokes simulations.

Keywords  Boundary integral equations · Fast direct solvers · Stokes flow · Locally 
refined discretization · Preconditioner

Communicated by: Michael O’Neil

This article belongs to the Topical Collection: Advances in Computational Integral Equations

Guest Editors: Stephanie Chaillat, Adrianna Gillman, Per-Gunnar Martinsson, Michael O’Neil, 
Mary-Catherine Kropinski, Timo Betcke, Alex Barnett

 *	 Yabin Zhang 
	 yabinz@umich.edu

1	 Department of Mathematics, University of Michigan, Ann Arbor, USA
2	 Department of Applied Mathematics, University of Colorado, Boulder, USA

Advances in Computational Mathematics (2022) 48:63

/ Published online: 27 September 2022

http://orcid.org/0000-0003-2532-9868
http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-022-09974-y&domain=pdf


Y. Zhang et al.

1 3

1 � Introduction

A common computational task that arises in simulations of particulate Stokes 
flow is evaluating the hydrodynamic interaction of small moving geometries, such 
as drops, bacteria, or biological cells, with large static structures, such as micro-
fluidic chips, vascular walls, or channel walls. Boundary integral equation (BIE) 
methods, solved via iterative solvers accelerated by fast summation methods, are 
often used in practice for such systems as they avoid meshing the volume includ-
ing the cumbersome task of volume re-meshing in transient simulations. In [1], a 
fast direct solver was proposed, which further reduces the cost of simulations by 
precomputing the compressed inverse of the BIE operator corresponding to the 
large static structures, which can be applied in linear time. This can be extremely 
useful in practice since most applications require a large number of time steps to 
observe the physics of interest, e.g., alignment of vesicles in a periodic channel 
[2], pattern formation in suspensions of active particles [3, 4] and cell sorting [5].

However, when the suspended particles evolve in close proximity to the con-
fining walls, the discretization of the walls must be locally refined to resolve the 
hydrodynamic interaction [6]. In this situation direct solvers are less attractive 
since the new inverse operator needs to be evaluated continuously. We present a 
fast algorithm that avoids building a new inverse operator from scratch for each 
time step by precomputing an inverse operator corresponding to a reference mesh 
and rapidly updating it whenever the boundary discretization is locally refined (or 
coarsened). This work is an extension of Zhang-Gillman [7, 8], where Laplace 
BIEs on locally perturbed geometries were considered. The central idea is that 
the discretized BIE on the walls can be written as an extended version of the 
linear system for the original geometry, and a fast direct solver on the original 
geometry can be reused to reduce the computational burden of solving the prob-
lems on the refined discretization.

Related work  At a high-level, fast direct solvers exploit the fact that the off-diagonal 
blocks of the discretized system are low rank. In the context of integral equations, 
some of them include the Hierarchically Block Separable (HBS) [9, 10], the Hierar-
chically Semi-Separable (HSS) [11, 12], the Hierarchical Interpolative Factorization 
(HIF) [13] and the H  or H2 - matrix methods [14]. The techniques developed in [7, 
8] for the extended linear system (ELS), designed for problems with locally per-
turbed geometries, can be coupled with any of the above direct solver approaches. 
In this work, we employ a particular fast direct solver based on HBS matrix rep-
resentation and inverse presented in [10]. For the rest of the manuscript, when an 
HBS representation or inverse is built for a discretized boundary integral equation, it 
refers to the particular compression and inverse approximation given in [10]. Other 
fast direct solvers for BIEs can be used in place of the HBS solver, and the results 
will be comparable.

An alternative to using the ELS is to update the hierarchical representation of the 
discretized integral operator directly. Existing techniques in [15, 16] update the HIF 
of the system with a cost that is bounded above by the cost of building a HIF of the 
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perturbed or refined problem from scratch. For problems that do not require a large 
number of discretization points, directly updating HIF is expected to be cheaper than 
building a new one from scratch. This idea is first investigated in [15], and a paral-
lel implementation for Stokes BIEs on multiply-connected domains is presented in 
[16]. Being direct solvers, these techniques are advantageous when a large number 
of solves are required for each new geometry. Generalizing the idea to other stand-
ard fast direct solvers, such as those based on HBS or HSS matrix, requires knowl-
edge of the particular compression techniques used in the chosen fast direct solver 
and is non-trivial.

Several previous works employ fast direct solvers as preconditioners for the lin-
ear systems that result from the discretization of integral equations and differential 
equations [17–21]. Most of them build a low-accuracy direct solver for the linear 
system and apply the forward operator via a fast matrix multiplication technique. 
The improvement of the convergence of the iterative solver is directly related to the 
accuracy at which the preconditioner was built. Section 4 explores the left precon-
ditioner option and how the accuracy of the direct solver impacts the quality of the 
preconditioner. In general, whether a high accuracy preconditioner is worth develop-
ing depends on the cost of the construction and how many solves are desired.

Contributions  Motivated by the fluids applications mentioned above, we apply 
the solution technique given in [7, 8] to Stokes flow problems defined on complex 
geometries, some of which are adapted from real application geometry data. The lin-
ear system associated with the discretization of an integral equation for Stokes flow 
has a physical nullspace corresponding to the pressure being unique up to a con-
stant. Fast direct solvers like HBS are sensitive to the existence of such non-trivial 
nullspace due to the fact that matrices of smaller sizes are inverted in the hierarchi-
cal structure and the singularity will immediately cause trouble. The nullspace can 
be removed via an analytic technique, but the resulting linear system can have a high 
condition number due to the physics and/or complexity of the geometry. We observe 
from numerical tests that the linear system that needs to be solved for Stokes prob-
lems has a condition number that is at least the square of the linear system for a 
Laplace problem on the same geometry. The high condition number of the system 
results in the small matrices inverted within the hierarchical structure of a fast direct 
solver being ill-conditioned, resulting in loss of accuracy that is not often seen in 
Laplace problems. This is even more cumbersome when local refinement is added 
to the original discretization. The solution technique given in [7, 8] requires invert-
ing a matrix whose conditioning may be worse than the original discretized BIE. 
Since the condition number of the linear system for Stokes problems is often already 
relatively high compared to Laplace problems, the compression required in these 
solution methods should be done carefully. This manuscript reviews the technique, 
particularly the low-rank approximation construction for the update matrix in [7], 
and focuses on some important details for applying it to more complicated problems 
efficiently and stably. Since the direct solution approach may not be able to achieve 
the desired accuracy due to the conditioning for certain problems, we also consider 
using the local refinement fast direct solver as a preconditioner for the ELS. When 
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coupled with a fast matrix multiplication technique for applying the ELS, the result-
ing solution technique converges in a constant number of iterations independent of 
the number of discretization points (as long as the geometric features are sufficiently 
resolved).

Limitations  This manuscript only considers two-dimensional problems even though 
the ideas introduced here generalize to higher dimensions. Additional work is 
needed in integrating other computational machinery, e.g., 3D surface quadrature 
methods. In dense suspension flows, the particle-wall near interactions happen over 
long length- and time-scales. Clearly, the solver developed here is not applicable 
to this setting since the wall geometry needs to be globally refined, in which case 
the approach prescribed in [1] is better suited. Lastly, when the particles approach 
arbitrarily close to the walls, close evaluation schemes (e.g., [6, 22]) are required to 
improve the accuracy of interaction force computation. Incorporating these methods 
and testing the solver is left to future work.

Outline  The manuscript begins by reviewing boundary integral formulations for 
Stokes problems and a technique for discretizing the resulting integral equations 
in Section 2. Next, the ELS for locally refined discretization and the corresponding 
direct solver are presented in Section 3. The proposed preconditioner for the ELS is 
presented in Section 4. Next Section 5 illustrates the performance of the presented 
solution techniques. Finally, Section 6 closes the manuscript with a summary and 
concluding remarks.

2 � Boundary integral formulation

This manuscript considers integral equation techniques for solving both interior 
and exterior Stokes flow problems. The indirect integral equation formulation is 
employed, wherein, the solution can be cast as a convolution over the boundary Γ of 
a kernel with an unknown boundary charge density. For example, the velocity u can 
be represented by

 where K denotes a kernel related to the fundamental solution of the Stokes equa-
tions and τ denotes the unknown charge density. The kernel is chosen based on the 
problem under consideration. One option is to represent the solution via the single 
layer integral operator denoted by �(�) = (SΓ�)(�) , where S denotes the Stokes sin-
gle layer kernel (Stokeslet) defined in its tensor components by

where r = x −y, r = ∥r∥ and δij is the Kronecker delta.

�(�) = ∫ Γ

K(�, �)�(�)ds� = (KΓ�)(�),

(1)Sij(�, �) =
1

4��

(
�ij log

(
1

r

)
+

rirj

r2

)
, i, j = 1, 2,
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Another option is to use a double layer integral operator �(�) = (DΓ�) to represent 
the velocity. The tensor components of the double layer kernel D are

 where ny is the surface normal vector at the point y ∈Γ.
Likewise, the pressure can be represented via an integral operator. It should be cho-

sen to match the representation of the velocity. For example, if the velocity is repre-
sented with the single layer integral operator, then the pressure is given by

 where

 and τ is the same boundary charge density as in the definition of the velocity. If the 
velocity is represented via the double layer integral operator, then the pressure is 
given by

 where

nj,y denotes the jth component of the surface normal vector ny, and τ is the boundary 
charge density as defined in the velocity.

2.1 � Interior Stokes problem

Consider the incompressible Stokes equation inside a geometry Ωin given by

where μ denotes the viscosity, u denotes the velocity, g(x) is a vector valued func-
tion denoting the boundary data, and p(x) is a scalar valued function denoting the 
pressure. Figure  1(a)  illustrates a sample geometry. The Dirichlet boundary data 
needs to satisfy the following consistency condition:

Dij(�, �) =
1

�

rirj

r2

� ⋅ ��

r2
, i, j = 1, 2

p(�) = ∫ Γ

Q(�, �)�(�)ds�

Qj(�, �) =
1

2�

rj

r2
, j = 1, 2

p(�) = ∫ Γ

P(�, �)�(�)ds�

Pj(�, �) =
�

�

(
−
�j,�

r2
+ 2

rj

r4
� ⋅ ��

)
, j = 1, 2,

(2)
−�Δ�(�) + ∇p(�) = �, for � ∈ Ωin

∇ ⋅ �(�) = 0, for � ∈ Ωin

�(�) = �(�), for � ∈ Γ = �Ωin,

(3)∫ Γ

�(�) ⋅ ��ds� = 0
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where nx denotes the outward pointing normal vector at x ∈Γ.
Representing the velocity via the double layer kernel

 results in having to solve the following boundary integral equation

for the unknown density τ [23]. Discretization of the BIE (4) via the Nyström 
method results in having to solve a dense linear system of the form

where D denotes the matrix that results from the discretization of the double layer 
integral operator, g denotes a vector with entries given by the evaluation of g(x) at 
the quadrature nodes, and the vector τ denotes the vector of the unknown density 
values at the discretization points.

Remark 2.1  The solution to (2) is unique up to a constant which results in the linear 
system (5) having a rank-1 nullspace. This nullspace can be removed by adding the 
following integral operator N

to the left-hand side of the integral equation (5). [24] presents a Nyström technique 
for discretizing the integral operator (6). The linear system that results from the dis-
cretization using the double layer representation with the null space correction is

�(�) = (DΓ�)(�)

(4)−
1

2
�(�) + (D�)(�) = �(�)

(5)
(
−
1

2
� + �

)
� = �

(6)(N�)(�) = ��∫ Γ

�(�) ⋅ ��ds�

(7)−
1

2
� + (� + �)� = �

Fig. 1   (a) A sample geometry for a purely interior BVP where the domain Ωin is the interior of the 
boundary Γ = ∂Ωin, (b) a sample geometry for a purely exterior BVP where the domain Ωout is the exte-
rior of the boundary Γ = ∂Ωout, and (c) a sample geometry for an interior-exterior BVP where the domain 
Ω is the interior of the outer boundary Γ0 but exterior of the inner boundary Γ1
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where N is the matrix that results from the discretization of (6).

2.2 � Exterior Stokes problem

Exterior incompressible Stokes problems are also considered in this paper. By an 
exterior problem, we mean that the velocity is sought in the domain Ωout defined as 
the plane minus the interior of a curve Γ as shown in Fig. 1(b). By using a combined 
field representation for the velocity

 one is left with solving a second kind integral equation

The linear system that results from discretizing this integral equation is full rank.

Remark 2.2  We also consider interior-exterior problems as shown in Fig. 1(c), where 
the boundary Γ is composed of an enclosing boundary curve Γ0 and one or more 
holes with boundary Γ1 inside the enclosed region. The domain Ω is defined as the 
set that is interior to Γ0 but exterior to Γ1; i.e., Γ = Γ0 ∪Γ1.

3 � An extended linear system and direct solver for boundary value 
problems with locally refined discretization

The efficient solver presented in this paper utilizes techniques previously developed 
in [7, 8], which are originally designed to handle BIEs defined on locally perturbed 
geometries. A geometry is said to be locally perturbed if small parts of the bound-
ary are modified from a previous BIE solve while the remainder of the boundary 
remains the same. We exploit the fact these techniques can be applied to handle 
local refinement of a discretization. For Stokes problems, the original fast solver 
techniques needed to be modified in order to handle the higher condition number 
associated with these problems. This section reviews the techniques from [7, 8] and 
presents the new version needed for Stokes problems. Section 3.1 defines a prob-
lem with locally refined discretization and introduces notation. Section 3.2 then pre-
sents the ELS and the efficient technique of solving that linear system using a solver 
built for the original discretization. Section 3.3 introduces compression ideas for the 
update matrix that capture changes in discretization.

The fast direct solver presented in this section scales linearly with respect to the 
number of points on the original discretization. The solver can also scale linearly 
with respect to the number of points that are added in the region of refinement when 
a linear scaling inversion scheme is used to invert the discretized boundary inte-
gral operator on the refined part of the boundary. If the number of points added 
is not large (i.e., less than one thousand), dense linear algebra is recommended for 

�(�) = (DΓ�)(�) + (SΓ�)(�) = [⇐D⇓S⇒Γ�](�),

(8)
1

2
� + [⇐D⇓S⇒Γ�] = �.

Page 7 of 36 63



Y. Zhang et al.	

1 3

handling the refined region since fast inversion algorithms such as HBS inversion [9, 
10] tend to be slower than dense linear algebra for small matrices.

3.1 � Model problem with locally refined discretization

Consider the interior BVP defined by equation (2) on the geometry Ωin illustrated in 
Fig. 1(a). As an example, let the boundary originally be discretized with ten 16-point 
Gaussian panels. Then one panel Γr is chosen to be refined into four panels as illus-
trated in Fig. 2. Figure 2(a) and (b) illustrate the pre- and post-refinement respec-
tively. Let Ik , Ic , and Ip (“p” for “plus”) denote the discretization points that are 
kept, deleted, and added for the refinement. Thus Io = Ik ∪ Ic denotes the collection 
of points in the original discretization and In = Ik ∪ Ip denotes the collection of dis-
cretization points on the boundary after refinement.

The linear system that results from the discretization of (7) for the original 
and new panel distributions can be ordered utilizing discretization point subscript 
notation. Let A denote the discretized integral equation (7) on the boundary; i.e., 
� = −

1

2
� + � + � . The discretized integral equation using the original panel distri-

bution (corresponding to Io) can be written as follows:

Likewise the linear system resulting from the refined discretization of the bound-
ary integral equation can be ordered as follows

(9)�o,o�o =

[
�k,k �k,c

�c,k �c,c

](
�k

�c

)
=

(
�k
�c

)
= �o.

Fig. 2   (a) The original Gaussian panel discretization of the geometry in Fig. 1(a). The discretization con-
tains ten 16-point Gaussian panels uniformly distributed in parameterization space, and the panel in red 
is chosen to be refined. (b) A locally refined discretization which replaced the single red panel in panel 
(a) with four blue panels. The part of the boundary curve that is refined is denoted by Γr and the rest is 
denoted by Γk
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In equations (9) and (10), the subscript notation refers to the submatrices of A 
on the respective geometries corresponding to different boundary interactions. For 
example, Ak,k denotes the submatrix of A corresponding to the interaction of the 
points in Ik with themselves ( A(Ik, Ik) in Matlab notation) and Ak,p denotes the sub-
matrix of A corresponding to the interaction of the points in Ik with the points in Ip.

Remark 3.1  While the techniques in this section were presented for the interior prob-
lem presented in equation (2), the techniques apply directly to exterior problems as 
well.

3.2 � The extended linear system and direct solver

As an alternative to casting the problem solely on the “new” discretization, an ELS 
that is equivalent to equation (10) can be considered. In this paper, we use the ELS 
from [8]. The ELS takes the form

where τk and τp are the unknown boundary densities evaluated at points in In and 
�
dum
c

 is a dummy boundary density at the points in Ic that is not used to evaluate the 
solution in the domain. This linear system can be written as �ext = �̃ +� where

 The matrix �̃ is full rank and block-diagonal with the first block Ao,o equal to the 
integral equation operator discretized with the original mesh. Thus if the inverse of 
Ao,o has been precomputed (directly or via a fast direct solver), the cost of inverting 
�̃ is the cost of the inverting Ap,p which is small in the problems under considera-
tion. The update matrix Q is a block sparse matrix consisting of only three non-zero 
sub-blocks. Since these non-zero blocks of Q correspond to non-self interactions, 
they are low rank; i.e., Q is low rank. Let Q = LR denote the low-rank factorization 
of Q.

The advantage of writing the linear system in the extended form (11) and writing 
it as the sum of a block diagonal matrix with a low-rank matrix is that the inverse 
can be approximated via a Woodbury formula

(10)�n,n�n =

[
�k,k �k,p

�p,k �p,p

](
�k

�p

)
=

(
�k
�p

)
= �n

(11)�ext�ext =

⎡⎢⎢⎣

�k,k � �k,p

�c,k �c,c �

�p,k � �p,p

⎤⎥⎥⎦

⎛⎜⎜⎝

�k

�
dum
c

�p

⎞⎟⎟⎠
=

⎛⎜⎜⎝

�k
�

�p

⎞⎟⎟⎠
= �ext

�̃ =

�
�o,o �

� �p,p

�
and � =

⎡⎢⎢⎣

� −�k,c �k,p

� � �

�p,k � �

⎤⎥⎥⎦
.

(12)
�ext =

(
�̃ +�

)−1
�ext ≈

(
�̃ + ��

)−1
�ext ≈ �̃−1�ext − �̃−1�

(
� + ��̃−1�

)−1
��̃−1�ext.
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This inverse can be applied rapidly to vectors by exploiting the block structure of 
the matrices. The only matrix that needs to be inverted in the application of (12) is (
� + ��̃−1�

)
 . This matrix is of size k = kkc + kkp + kpk where kkc, kkp, and kpk denote 

the 𝜖 −ranks (as defined below) of the low-rank approximations of Ak,c, Ak,p, and 
Ap,k respectively.

Definition 3.1  Given a tolerance 𝜖 ans a m × n matrix W (assuming m < n). Let 
UΣVT = W be the singular value decomposition (SVD) of W. The 𝜖 − rank k𝜖 is 
defined to be the smallest positive integer such that the corresponding truncated 
SVD approximation �����

T
�
 where Σ𝜖 contains only the first k𝜖 diagonal entries of 

Σ satisfies

Typically, k is small and thus the matrix can be inverted via dense linear alge-
bra for little computational cost. Algorithm  1 summarizes the technique for rap-
idly applying the inverse of Aext provided a fast direct solver for Ao,o has already 
been computed. The algorithm is designed so that it can be used with any fast direct 
solver including the HBS [10], HSS [11, 12], HIF [13], and H  or H2 - matrix meth-
ods [14]. Section 3.3 presents fast techniques for creating the low-rank factorizations 
of Q and Appendix A reviews some known theoretical results on the stability for 
using the Woodbury formula for applying the inverse in (12).

‖�����
T
�
−�‖ ≤ �‖�‖.

Algorithm 1   Applying the fast direct solver for the locally refined problem

63 Page 10 of 36



A fast direct solver for integral equations on locally refined…

1 3

Remark 3.2  The factorization technique for Q (step 1 in Algorithm  1) to be dis-
cussed in Section 3.3 scales linearly with respect to Nk, Nc and Np, the number of 
discretization points in Ik , Ic , and Ip respectively. Thus, if a fast direct solver is con-
structed for �−1

p,p
 , then all steps in pre-computation and solve of Algorithm 1 scale 

linearly with respect to Nk, Nc and Np. Otherwise, Algorithm 1 scales linearly with 
respect to Nk and Nc but cubically with respect to Np due to the dense linear algebra 
calculations for �−1

p,p
 . Table 1 lists the cost scaling of Algorithm 1 and the fast direct 

solver in [7]. More details on the step-by-step cost analysis are given in [7]. The 
scaling for the fast direct solver given in [8] is the same as Algorithm 1.

3.3 � Efficient construction of the low‑rank approximation for Q ≈LR

 The low-rank approximation of Q can be constructed by concatenating the low-rank 
factorizations for the non-zero blocks in it;

Thus the low-rank factorization of Q can be expressed as

where

k = kpk + kkc + kkp and Next = Nk + Nc + Np.
The construction of the low-rank factorization of Ak,p starts with defining a circle 

Pdiv for Γr which divides Γk into two parts: the far-field and near-field with respect 

�k,c ≈ �k,c �k,c, �k,p ≈ �k,p �k,p, and

2Nk × 2Nc 2Nk × kkc kkc × 2Nc 2Nk × 2Np 2Nk × kkp kkp × 2Np

(13)
�p,k ≈ �p,k �p,k.

2Np × 2Nk 2Np × kpk kpk × 2Nk

(14)
� ≈ � �

2Next × 2Next 2Next × k k × 2Next

� =

⎡⎢⎢⎣

� −�k,c �k,p

� � �

�p,k � �

⎤⎥⎥⎦
,� =

⎡⎢⎢⎣

�p,k � �

� �k,c �

� � �k,p

⎤⎥⎥⎦
,

Table 1   Cost scaling for the fast direct solver in [7] and the proposed solver in Algorithm 1. The fast 
direct solver in [8] has the same scaling as Algorithm 1. Here Nk, Nc and Np are the number of discretiza-
tion points in Ik , Ic , and Ip respectively

Method Pre-computation Solve

[7] with dense linear algebra for Ap,p  O
(
Nk + N3

c
+ N3

p

)
 O
(
Nk + N2

c
+ N2

p

)

[7] with fast direct solver for Ap,p  O
(
Nk + N3

c
+ Np

)
 O
(
Nk + N2

c
+ Np

)
Algorithm 1 with dense linear algebra for Ap,p  O

(
Nk + Nc + N3

p

)
O
(
Nk + Nc + N2

p

)

Algorithm 1 with fast direct solver for Ap,p  O
(
Nk + Nc + Np

)
 O
(
Nk + Nc + Np

)
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to Γr. Figure 3(a) illustrates this separation. Let the superscript notation denote “far” 
and “near” parts of Γk.The separation corresponds to classifying the rows Ak,p into 
two groups; the near- and far-field interactions. We first construct low-rank approxi-
mations to the far-field and near-field interaction separately and then merge them 
together for a final low-rank approximation Lk,pRk,p ≈Ak,p.

For far-field interaction, the potential due to points in Ip evaluated at points on 
Γfar
k

 can be approximated by a linear combination of basis functions defined on any 
proxy surface that shields Γr away from Γfar

k
 . Let Pbas denote the shielding proxy cir-

cle for Γr. Here Pbas is chosen to have a smaller radius as Pdiv but the same center. 
Figure  3(b)  illustrates an example of these circles. A low-rank approximation for 
�far

k,p
 can be constructed via an interpolative decomposition (ID) approximation (as 

defined below) for the matrix �far
k,bas

 which captures the interaction between points on 
Γfar
k

 and Pbas. This is similar to the far-field compression idea in [1, 10, 25]. The col-
lection of skeleton row indices Jfar

k
 from the ID for �far

k,bas
 correspond to discretization 

points (or degrees of freedom) on Γk. Let �far
k

 denote the interpolation matrix, then a 
low-rank approximation to �far

k,p
 can be defined as �far

k,p
≈ �far

k,p
�far

k,p
 where �far

k,p
= �far

k
 

and �far
k

= �far
k,p
(Jfar

k
, ∶) . Here �far

k,p
(Jfar

k
, ∶) denotes the submatrix of �far

k,p
 with rows 

specified by Jfar
k

.

Definition 3.2  Given a tolerance 𝜖 and a m × n matrix W (assuming m < n), if 
there exists a positive integer k𝜖 ≤ m and m × k𝜖 matrix P and vector J such that

 we call PW(J(1 : k𝜖),:) an interpolative decomposition (ID) approximation for W 
with respect to the tolerance 𝜖. Here J is a vector of integers ji such that 1 ≤ ji ≤ 
m gives an ordering of the rows in W, and W(J(1 : k𝜖),:) is a submatrix of W with 
rows specified by the first k𝜖 entries of J. P is a m × k𝜖 matrix that contains a k𝜖 

‖� − ��(J(1 ∶ k�), ∶)‖ ≤ �‖�‖,

Fig. 3   (a) The proxy circle for Γr shown in dash blue line divides Γk into far (in green) and near (in red) 
with respect to Γr (b) The interaction between the far-field part of Γk and points on Γr can be captured by 
the interaction between points on Γfar

k
 and a smaller proxy circle for Γr shown in dash purple
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× k𝜖 identity matrix. Namely, �(J(1 ∶ k�), ∶) = �k� . The rows specified by J(1 : k𝜖) 
is called the skeleton row index, and the matrix P is referred to as the interpola-
tion matrix. We are mostly interested in the case where k𝜖 is strictly smaller than 
m and for such case the ID approximation is often referred to as a “compression” 
for the original matrix W. k𝜖 is called the rank number for the compression. An ID 
approximation with rank number k𝜖 is considered to be an optimal compression in 
rank number if any ID approximations of rank number k < k𝜖 leads to ∥W −PW(J(1 
: k𝜖),:)∥ > 𝜖∥W∥.

Due to the large number of discretization points on Γfar
k

 , it is often too expensive 
to build the ID for �far

k,bas
 directly. In practice, we organize the discretization points 

on Γfar
k

 into special structure such as the dyadic partition (see Fig. 4 for an example) 
or binary tree (see Fig. 5 for an example). The goal of using the special structure is 
to keep the cost of building the low-rank approximation linear with respect to the 
number of points on Γfar

k
.

The choice of structure for creating the low-rank factorization depends on how 
localized the refinement is and the position of the portion of the boundary to be 
refined Γr relative to Γk. For example, the channel example given in Section  5.1 
considers two kinds of local changes to the channel geometry in Fig. 7(a): a very 
localized refinement of the discretization illustrated in Fig.  7(b); and a geometric 
perturbation consisting of the addition of three interior circular holes as illustrated 
in Fig. 7(c). For the problem in Fig. 7(b), the far-field and near-field separation is 
straightforward and a dyadic partition of the far-field points on Γk based on distance 
to Γr is convenient and efficient. However, for the problem in Fig.  7(c), since the 
three holes do not cluster, a circle enclosing all holes would contain a large sec-
tion of the channel boundary if not all of it. This means that many points on Γk will 
be “near-field” points although they are quite far away from any of the holes. An 
efficient way to handle this problem is to introduce three circles each enclosing an 
individual hole and define Pbas to be the union of the three circles. And a binary tree, 
which does not have to depend on distance to Γr, is a more appropriate choice. Fig-
ure 4 plots an example dyadic partition for the refined channel problem in Fig. 7(b), 
and Fig. 5 plots the first three levels of an example binary tree structure for the addi-
tion of holes problem in Fig. 7(c). More details on how to construct the hierarchical 
ID given the appropriate special structure can be found in Section 3 of [26] and Sec-
tion 4 and 6 of [10]).

If there are not a large number of points that are near, which is often the case, the 
near-field interaction matrix �near

k,p
 can be compressed directly. Otherwise, a dyadic 

partition of discretization points on Γnear
k

 based on their distance to Γr can be 
adopted. The ID for �near

kp
 can then be constructed in a hierarchical way utilizing the 

idea of tree-node wise proxy circles (See Section 3 of [26]).
Once both far and near part of Ak,p are compressed, the low-rank factors can be 

concatenated to form a low-rank approximation of Ak,p. One may want to apply ID 
again to the concatenated factors to further reduce the rank numbers.

Since the removed points Ic and added points Ip discretize the same boundary 
curve segment Γr, the far-field part of the low-rank approximation for Ak,p and Ak,c 
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can be built from the same ID approximation as �far
k,bas

 . This is possible since the 
construction of the approximations does not require explicit evaluation of the matri-
ces Ak,p and Ak,c. Only the submatrices corresponding to the skeleton rows need to 
be evaluated for making the R matrices.

The near-field factorization of Ak,c can be constructed in similar fashion as the 
near-field factorization of Ak,p. For Ap,k, we consider again a far-field and near-field 
separation of the points on Γk based on the distance to Γr, which corresponds to 

Fig. 4   A dyadic partition of Γfar

k
 

based on distance to Γr for a 
refined channel discretization. 
The subintervals corresponding 
to a 10-level dyadic partition are 
plotted
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classifying the columns of the matrix into two groups. The far-field interaction �far
p,k

 
can be obtained by an ID the matrix that captures the interaction between the added 
points discretizing Γr and sample points on the separation circle Pdiv named Ap,div. If 
the number of points added is large, we can relieve the computational burden by 
using a dyadic partition or binary tree in the same manner as was done for building 
the ID for �far

k,bas
 . The construction for �near

p,k
 is similar to the near-field part of the 

approximation for the near-field of Ak,p and Ak,c.

Remark 3.3  When approximating the three blocks in Q, we always use ID to com-
press the rows of the matrices. We also uniformly define the L factor of the low-rank 
approximation to be the interpolation matrix (or product of multiple interpolation 
matrices if special tree structure is used) and the R factor to be the submatrix of the 
discretized BIE specified by the skeleton row indices given by the IDs. This uniform 
format for all three blocks is intentional as it improves the conditioning of apply-
ing the Woodbury formula. More details on this are presented in Appendix A. Note 
the block-wise compression technique given in [7] manages to compress all far-field 
part of the three blocks Ak,p, Ak,c, and Ap,k using one binary tree by doing row-wise 
ID for Ak,p and Ak,c but column-wise ID for Ap,k. Namely, the far-field for all three 
blocks is approximated by the same set of skeleton points on Γk. For Laplace prob-
lems, the technique in [7] is expected to be more efficient than the one presented 
here especially for the case where Γfar

k
 contains lots of points. But for Stokes prob-

lems, the mixed usage of row- and column-wise ID leads to conditioning issues and 
should be avoided.

With the special structure and partitioning, the cost of constructing the low-
rank factorization for Ak,p is O

(
(Nk + Np)kkp

)
 . Similarly, the cost for factorizing 

Ak,c is O
(
(Nk + Nc)kkc

)
 . And the cost of factoring Ap,k is O

(
(Nk + Np)kpk

)
 . With 

the low-rank factors for each block constructed, the final low-rank factorization 
for Q can be formed by simply concatenating the corresponding factors as in 
(13). If a close-to-optimal low-rank factorization (in terms of rank numbers) for 

Fig. 5   Top four levels of a binary tree partition for the channel geometry. The subintervals (or boxes) 
corresponding to each level are plotted
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Q is desired, one can “re-compress” the factorization by building an ID for L and 
define the re-compressed final factorization accordingly.

4 � A preconditioner for BVPs on locally refined discretization

The ELS presented in Section 3.2 is very useful for problems where there is local 
refinement of the discretization. While the fast direct solver for the ELS is efficient, 
it can suffer from a loss in accuracy when the problem has a high condition number. 
This is frequent occurrence for Stokes problems especially in complex geometries. 
An alternative to fast direct solvers is to use an iterative solver coupled with a fast 
matrix-vector multiplier such as the FMM in these instances. The large condition 
number often means that a large number of iterations are required for the iterative 
solver to converge. This section presents an alternative solution technique which is 
essentially the union of a fast direct solver with an iterative solver. Roughly speak-
ing, the technique is to use the direct solver presented in Algorithm 1 as precondi-
tioner for the ELS that is solved via an iterative solver coupled with a fast matrix-
vector multiplier.

Section  4.1 details how the accuracy in which the direct solver is constructed 
impacts its ability to be a preconditioner. Then Section 4.2 details the preconditioner 
developed for the ELS (11).

4.1 � HBS inverse approximation as preconditioner

It is becoming more common to use low-accuracy fast direct solvers as precondi-
tioners for linear systems that arise from discretizations of integral equations and 
differential equations [17–21]. This section explores effectiveness of fast direct solv-
ers as preconditioners for the discretized integral equation associated with an inte-
rior Stokes problem.

Consider the linear system Aσ = g which results from the discretization of equa-
tion (4). Let 𝜖 denote the tolerance for which the fast direct solver was constructed 
and �inv

�
 denote the corresponding approximate inverse of A. Then the left-precondi-

tioned problem is defined as

To investigate the performance of the fast direct solver as a preconditioner 
with different tolerances 𝜖, we consider the fish geometry in Fig. 6 with no local 
refinements. In particular, we place two hundred 16-point Gaussian panels uni-
form in parameterization space on the boundary. The linear system (15) is solved 
via GMRES [27]. The application of A and �inv

�
 is done via the HBS technique 

from [10]. The performance of the solver will be the same for any fast direct 
solver. The tolerance for the compression of the matrix-vector operator, i.e., 
applying A, is fixed at 10− 10. The time for constructing the HBS representation of 
the matrix is 6.81 seconds on a single core 1.6GHz 8GB RAM desktop. Table 2 

(15)
(
�inv

�
�
)
� =

(
�inv

�
�
)
.
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reports the performance of the preconditioned solution technique. For all experi-
ments, the tolerance of the iterative solver is set to 10− 11 and the average rela-
tive error in the solution compared against the exact solution at sampled interior 
locations is roughly 7 × 10− 10. The condition number for the Woodbury system 
for this problem is reported in Table 14 of Appendix A. It shows that the linear 
system Aσ = g is well-conditioned. Thus even without a preconditioner, only 55 
iterations are needed to achieve the desired tolerance. The results indicate that 
low-accuracy approximations (𝜖 > 10− 3) do not improve the performance of the 
iterative solver enough to justify constructing the preconditioner. For 𝜖 < 10− 3, 
the minimum number of repeated solves needed to justify the use of the precon-
ditioner grows as 𝜖 decreases. This experiment illustrates that the use of a low-
accuracy fast direct solver as preconditioner is not fruitful in improving the con-
vergence rate of iterative solvers. For problems where the condition number of 
the discretized linear system is large, a preconditioner may be required for the 

Fig. 6   Illustration of a fish 
geometry where the red portion 
of the boundary is refined

Table 2   Number of iteration niter, time in seconds to build the preconditioner Tpre, time in seconds for 
GMRES to converge Tsol and the minimum number of solves MinSol needed to justify the use of the pre-
conditioner when using an HBS inverse approximation with accuracy 𝜖 as a preconditioner for the inte-
rior BIE on the fish geometry in Fig. 6. The boundary geometry is discretized with two hundred 16-point 
Gaussian panels uniformly distributed in parameterization space. With this discretization, the average 
relative solution error at sample locations on the interior is roughly 7 × 10− 10

𝜖 niter Tpre Tsol MinSol

No preconditioner 55 NA 5.2e-1 NA
1e-10 2 7.66 6.6e-2 17
1e-8 2 4.92 1.0e-1 12
1e-6 4 2.89 1.3e-1 8
1e-5 6 2.23 1.5e-1 7
1e-4 11 1.74 2.2e-1 6
1e-3 36 1.12 5.1e-1 –
1e-2 52 1.11 7.9e-1 –
1e-1 53 0.97 8.1e-1 –
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iterative solver to converge within reasonable number of iterations with the avail-
able computing resources.

4.2 � Preconditioned iterative solver for the locally refined problem

Just like the discretized BIE for a Stokes boundary value problem on a given geom-
etry, the ELS (11) can also suffer from conditioning issues. This section presents a 
preconditioner based on the solver from Section 3 and a fast matrix-vector multiplier 
that can be utilized to accelerate an iterative solver. It is expected that the number of 
iterations needed to converge will be less than if there was no preconditioner at all. 
Additionally, there is no loss of digits associated with inverting poorly conditioned 
matrices.

The idea behind the preconditioner is simple. Let �inv
o,o

 and �inv
p,p

 denote the approx-
imate (or exact if the matrices are small enough) inverses of Ao,o and Ap,p, respec-
tively. Then

 and

 The Woodbury formula can be applied efficiently to any vector via the technique 
presented in Algorithm 1.

Instead of solving the true ELS, we propose solving the approximation of the lin-
ear system (11) where Aext is approximated by a block diagonal plus low-rank form; 
i.e., as �ext ≈

(
�̃ + ��

)
 . The matrix �̃ can be applied to a vector b block-wise

 The evaluation of Ao,obo can be accelerated via fast matrix-vector multiplication 
algorithms, such as the FMM or the approximate forward operator created in the 
process of building a fast direct solver, and is constructed for the original discretiza-
tion. Similar to the fast direct solver for the ELS presented in Algorithm 1, if Np 
is small, the matrix Ap,p can be constructed and applied via dense linear algebra. 
Otherwise, a separate fast matrix-vector multiplication can be constructed for Ap,p. 
Since L and R are block sparse and low rank, they can be applied to any vector 
densely with little cost.

In this paper, we assume a forward HBS representation, the HBS inverse, and 
matrix-vector multiplication for applying Ao,o and �inv

o,o
 are available. Then the ELS 

for the problem defined on the refined geometry

�̃inv =

[
�inv

o,o
�

� �inv
p,p

]
≈ �̃−1

�inv
ext

= �̃inv − �̃inv�
(
� + ��̃inv�

)−1
��̃inv ≈ �−1

ext
.

�̃� =

[
�o,o �

� �p,p

][
�o
�p

]
=

[
�o,o�o
�p,p�p

]
.

(16)
(
�̃ +�

)
�ext ≈

(
�̃ + ��

)
�ext = �ext

63 Page 18 of 36



A fast direct solver for integral equations on locally refined…

1 3

only requires building the low-rank factorization of the blocks in Q and the opera-
tors associated with the Ap,p block and can be solved by an iterative solver such as 
GMRES. �inv

ext
 can be constructed with the extra cost of carrying out the Woodbury 

formula and applied as a preconditioner to (16). For a well-conditioned problem, 
where many different choices of local refinements and/or right-sides are considered, 
the total cost may be greatly reduced by using the fast direct solver in Section 3 as 
a preconditioner. Table 3 reports the performance of the preconditioner when it is 
applied to the boundary value problem on the fish geometry in Fig.  6 where the 
red region of the boundary is refined. The original discretization has two hundred 
16-point Gaussian panels uniformly distributed in parameterization space; 8 panels 
discretize the red region and are replaced by 64 panels for the refinement. The num-
ber of discretization points kept was Nk = 3072, the number of discretization points 
cut was Nc = 128 and the number of discretization points added was Np = 1024. The 
tolerance for HBS compression and low-rank approximations were set to 10− 10, and 

Table 3   Number of iterations niter, time in seconds for computing the preconditioner Tpre and time in sec-
onds for the iterative solver to converge Tsol when applying the ELS preconditioner to the boundary value 
problem on the refined fish geometry in Fig. 6. The red portion of the boundary is refined. Originally 
there were Nc = 128 points on the red portion. In the new problem there are Np = 1024 points on the red 
portion of the boundary. The number of points unchanged is Nk = 3072. We assume an HBS representa-
tion and the inverse for the original problem are available

Method niter Tpre Tsol 

GMRES with fast mat-vec 55 NA 4.8e-1
GMRES with preconditioner 2 7.2e-1 8.3e-2

Fig. 7   (a) The original channel geometry. (b) The channel geometry with a locally refined segment high-
lighted in red. (c) The channel geometry with three interior holes added
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the tolerance for GMRES was set to 10− 11. The average relative error of the solu-
tion at sampled locations is roughly 7 × 10− 10 for both tests. Recall, we assume the 
HBS representation of Ao,o and its inverse are available. Thus the time needed to 
construct these is not included in our results. The results in the first row of Table 3 
are for when the fast matrix-vector multiplication for �̃ uses the precomputed HBS 
representation of Ao,o. The time for constructing the efficient forward apply of the 
ELS 

(
�̃ + ��

)
 is 0.53 second, which includes the construction of Ap,p and the low-

rank factorization Q ≈LR. As expected the number of iterations is the same as in 
Table 2. The second row in Table 3 presents the results when the preconditioner is 
used. The extra time required to construct the preconditioner Tpre, i.e., for construct-
ing �inv

ext
 , includes everything else that was not included in constructing the efficient 

forward apply of the ELS 
(
�̃ + ��

)
 such as the construction and inversion of the 

Woodbury operator. Again the results are comparable to the results in the previous 
section. The preconditioner reduces the number of iterations from 55 to 2, resulting 
in an 82.7% reduction in solve time. And the extra cost for building the precondi-
tioner is justified for problems involving more than one right-hand side.

If the problem is not well-conditioned, then the preconditioner may be necessary 
to obtain an accurate solution with a limited amount of computational resources.

5 � Numerical experiments

This section illustrates the performance of the proposed solution techniques for 
Stokes problems involving locally refined discretizations. The fast direct solver 
scales linearly with respect to the number of points in the original discretization and 
is cheaper than building a fast direct solver from scratch for the new discretization. 
Section 5.1 illustrates the performance of the fast direct solver when applied to a 
locally refined channel. This example is from [16]. Section 5.2 reports on the per-
formance of the fast direct solver as a preconditioner when the geometry is complex. 
Finally Section 5.3 illustrates the performance of the fast direct solver as a precon-
ditioner when there are a sequence of local refinements for the same original geom-
etry. Such an example arises in many applications including simulations of microflu-
idic devices.

For all test problems, the right-hand side of the BVPs is generated from a known 
flow and the solution error is the average of relative error at chosen target locations 
in the domain. All boundaries are discretized via the Nyström method with 16-point 
composite Gaussian quadrature, and generalized Gaussian quadrature corrections 
[28] are used to handle the weakly singular kernels. The solver also works with 
other quadrature corrections, such as [29–31].

All experiments were run on a dual 2.3 GHz Intel Xeon Processor E5-2695 v3 
desktop workstation with 256 GB of RAM. The code is implemented in MATLAB, 
apart from the interpolatory decomposition routine, which is in FORTRAN.

To illustrate the performance of the solver, we introduce the following nota-
tions for reporting times and errors. For notation consistency, we use regular 
capital letters such as T and E for problems defined on the original discretization 
(or geometry) and letters with tilde, such as T̃  and Ẽ for problems on the locally 
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refined discretization (or perturbed geometry). For the problem on the original 
discretization (or geometry), we define

•	 THBS, comp and THBS, inv: the time in seconds for building the HBS compression 
of the discretized boundary integral operator and that for inverting the com-
pression, i.e., building the HBS inverse, respectively.

•	 THBS, Dsol: the time in seconds for applying the HBS inverse to a given right-
hand side vector. “Dsol” stands for “one direct solve”.

•	 THBS, Gsol: the time in seconds for solving for one right-hand side vector using 
GMRES with HBS compression accelerated matrix-vector multiplication. 
“Gsol” stands for “one GMRES solve”.

•	 THBS, PGsol: the time in seconds for solving for one right-hand side vector using 
a preconditioned GMRES with HBS compression accelerated matrix-vector 
multiplication, where the HBS inverse is used as the preconditioner. “PGsol” 
stands for “one preconditioned GMRES solve”.

•	 EHBS, Dsol, EHBS, Gsol and EHBS, PGsol: the average relative error at sample domain 
locations for the three different solve options respectively.

For the problem on the locally refined discretization (or perturbed geometry), 
we define

•	  T̃HBS, comp , T̃HBS, inv , T̃HBS, Dsol , T̃HBS, Gsol , and T̃HBS, PGsol : time in seconds similar 
to those categories for the original discretization (or geometry).

•	  ẼHBS, Dsol , ẼHBS, Gsol and ẼHBS, PGsol : error similar to those categories for the 
original discretization (or geometry).

•	  T̃ELS, comp : the time in seconds for building Ap,p and LR ≈Q in formulating the 
fast ELS approximation. Note we assume a HBS compression for Ao,o is avail-
able.

•	  T̃ELS, inv : the time in seconds for building the operators needed in the Wood-
bury formula for applying the inverse approximation of the ELS: �−1

p,p
 , �̃−1� , 

��̃−1� and 
(
� + ��̃−1�

)−1 . Note we assume a HBS inverse approximation for 
Ao,o is available.

•	  T̃ELS, Dsol : the time in seconds for applying the approximate ELS inverse 
(�̃ + ��)−1 via the Woodbury formula to a given right-hand side vector.

•	  T̃ELS, Gsol : the time in seconds for solving the approximate ELS 
(�̃ + ��)�ext = �ext for one right-hand side vector gext using GMRES.

•	  T̃ELS, PGsol : the time in seconds for solving the approximate ELS 
(�̃ + ��)�ext = �ext for one right-hand side vector gext using GMRES, where 
the approximate ELS inverse is used as the preconditioner.

•	  ẼELS, Dsol , ẼELS, Gsol and ẼELS, PGsol : the average relative error at sample domain 
locations for the three different ELS solve options respectively.

The accuracy for HBS compression and low-rank approximation is set to 10− 10 
unless specified otherwise.
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5.1 � Asymptotic scaling experiments

This section illustrates the performance of the fast direct solver for the ELS (pre-
sented in Section  3) when applied to a Stokes problem with a confined geom-
etry with two types of modifications: locally refining a part of the boundary and 
adding holes. Figure  7(a)  illustrates the channel. Figure  7(b)  and (c) illustrate 
the modification of local refinement (in red) and adding holes, respectively. The 
geometry is generated by applying cubic splines with periodic conditions to 121 
spline knot locations (with the first and last knots giving the same physical point 
on the geometry) and was first seen in [16]. The channel is discretized by using 
the same number of Gaussian panels per subinterval in in the cubic spline geome-
try generation. For example, the total number of discretization points on the chan-
nel Nchannel = 1920 corresponds to 120 Gaussian panels in total and 1 panel per 
subinterval. If there are two panels per subinterval, the number of discretization 
points doubles.

The circular holes are each discretized with 10 panels which means there are 
160 quadrature points per circle.

Remark 5.1  The addition of holes is similar to the original examples used in [16] 
and fits in the definition of a locally perturbed geometry as defined in [7, 8]. How-
ever, the extended system is slightly different from the one given in Section 2.2 as 
we are only adding points for the new boundary and there is no deletion or cutting 
of points on the original geometry. The corresponding ESL formulation is given in 
Appendix B.

The Dirichlet boundary data for the interior channel BVP (Fig. 7(a) and (b)) is 
generated by 5 exterior Stokeslets outside of the channel geometry. For these two 
problem, the solution is represented with  the double layer kernel (as discussed 
in Section 2.1). The Dirichlet boundary data for the BVP with holes (Fig. 7(c)) 
is generated by the same 5 exterior Stokeslets outside the channel geometry and 
five additional Stokeslets placed inside the added holes (two stokelets per hole for 
the bottom two holes and one stokelet in the top hole). The solution interior to the 
channel and exterior to the holes is represented as a double layer potential on the 
channel plus a combined field potential on the holes.

The observed condition number of the discretized integral operator for all 
the problems in this section is on the order of 105. The condition number of the 
Woodbury operator is on the order of 103 for the problem with the added holes 
and 105 for the problem with the local refinement. The observed rank numbers for 
the low-rank approximation of the update matrix Q, which is also the size of the 
Woodbury system, is roughly 60 for the problem with the local refinement and 
340 for the problem with the added holes.

Let Nchannel denote the number of discretization points on the original chan-
nel. Table 4 reports on the performance of the HBS solver applied to the original 
geometry (and discretization). For the locally refined discretization, let Nc and Np 
denote the number of points removed and added, respectively. For the channel 
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Table 4   The time in seconds and error for using HBS compression and inversion to solve the BIE on the 
channel geometry with the original discretization (illustrated in Fig. 7(a)). The number of discretization 
points on the channel is Nchannel. The size of the linear system is 2Nchannel × 2Nchannel

2Nchannel THBS, comp THBS, inv THBS, sol EHBS, Dsol

30720 65.7 7.0 0.070 1.1e-10
61440 90.7 9.9 0.140 1.4e-10
122880 132.8 15.8 0.264 3.22e-10

Table 5   The time in seconds and error for using the Woodbury formula to solve the ELS for the bound-
ary value problem on the channel with local refinement illustrated in Fig. 7(b). The number of discretiza-
tion points cut and added on the red portion of the boundary are Nc and Np respectively

2Nchannel, 2Nc, 2Np  T̃ELS, comp  T̃ELS, inv  T̃ELS, Dsol  ẼELS, Dsol

30720, 192, 768 1.4 0.8 0.088 2.5e-10
61440, 384, 1536 3.0 1.2 0.113 5.8e-10
122880, 768, 3072 7.1 2.3 0.184 4.8e-10

Table 6   The time in seconds and error for using the Woodbury formula to solve the ELS for the bound-
ary value problem on the channel with three interior holes illustrated in Fig. 7(c). The circular holes in 
Fig. 7(b) are each discretized with 10 panels and 160 quadrature points, resulting a total of Nholes = 480 
points

2Nchannel, 2Nholes  T̃ELS, comp  T̃ELS, inv  T̃ELS, Dsol  ẼELS, Dsol

30720, 960 14.9 2.1 0.059 9.8e-11
61440, 960 28.8 4.3 0.103 2.3e-10
122880, 960 56.4 7.9 0.296 2.1e-10

Fig. 8   Partial Fallopian tube 
based on data extracted from 
the experiments in [32]. A small 
segment highlighted in red is 
chosen to be locally refined. The 
geometry is generated by [33]
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with holes geometry, let Nholes be the total number of discretization points placed 
on the three holes. The results in Tables  5 and  6 report on the performance of 
the proposed ELS formulation based fast direct solver applied to the geometries 
in Fig.  7(b)  and (c). The size of each test case is given by the total degree of 
freedom, which is double the number of discretization points. To show the scal-
ing of the ELS fast direct solver, the values for Nchannel, Nc and Np are all dou-
bled as the test size increases. Both the HBS solver and the proposed fast direct 
solver scale linearly with respect to the number of points on the channel geom-
etry. The cost of using Algorithm 1 is significantly less than building the original 
HBS solver. This means that Algorithm 1 is more computationally efficient than 
building a fast direct solver from scratch for the new discretization. It is worth 
noting that the time required for building the ELS compression for the addition of 
holes example is much higher than that for refining the channel boundary given 
the same Nchannel. For example, when 2Nchannel = 122880, ELS compression for 
adding holes is about 8 times of that for refining a segment, although the points 
added for the holes Nholes is only 1/3 of the points added Np due to the refinement. 
This is due to the fact that the change to the system for adding the three holes 
is “less local” than that for refining a segment of the channel, resulting in much 
higher rank numbers and more expensive compression of the update matrix Q. 
For the same reason, the time required for applying the inverse of the ELS when 
adding holes is also more than that for refining a segment of the channel.

The solution error for all test cases is maintained at 10− 10 since the geometry is 
fully resolved and the tolerance for HBS compression and low-rank approximations 
is set to be 10− 10.

5.2 � Complex geometry with local refinement

This section considers an interior problem on the complex Fallopian tube geom-
etry illustrated in Fig.  8. The geometry is created by extracting data points from 
Fig. 1 of [32] and connecting them smoothly via the technique in [33]. The solution 
to the problem is generated by placing Stokeslets on the exterior of the geometry. 
The boundary data is generated via this known solution. Discretizing the complex 
geometry in Fig. 8 results in an integral equation with a high condition number. An 
iterative solver requires a large number of iterations in order to converge. The exper-
iments in this section discretize the original Fallopian tube boundary (pre-refine-
ment) with 1600 Gaussian panels (25600 points and 51200 degrees of freedom), 
which results in relative error of approximately 4 × 10− 5. To understand the condi-
tioning of the linear system, we consider the smallest matrices that are inverted in 
the hierarchical tree using the HBS solver. These matrices (corresponding to the first 
three levels in the tree) have condition numbers on the order of 108 to 1011.

For the refined discretization problem, the red portion of the boundary high-
lighted in Fig. 8 goes from having 6 panels to 24. Since a 16 point Gaussian quadra-
ture is used, the number of points kept, cut and added are Nk = 25,504, Nc = 96, and 
Np = 384, respectively. The iterative solver stops when the relative residual is on the 
order of 10− 6. For the boundary integral equation on the original discretization, we 
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either build only HBS representation of the discretized boundary integral equation 
and couple it with GMRES or also build the HBS inverse and apply it directly to the 
given right-hand side. For the refined problem, we consider the discretized BIE and 
the equivalent ELS and a fast direct solver and an iterative solver for each. Addition-
ally, we also use the direct solver for the ELS, built as described in Algorithm 1, to 
precondition the GMRES solve.

Table 7 reports the time in seconds required to solve the BIE on the original dis-
cretization, the BIE on the refined discretization, and the approximate ELS on the 
refined discretization using a fast direct solver. The total time for precomputation 
includes two parts: the forward compression indicated by subscript notation “comp” 
and the inversion indicated by the subscript notation “inv”. Table 7(b) and (c) dem-
onstrate that for this geometry the proposed direct solver for the ELS is more effi-
cient than building a HBS solver from scratch for the refined problem. In fact, the 
cost for constructing a forward compression for the ELS for the refined problem is 
only 1.3% of the cost of constructing a HBS from scratch. The cost of constructing 
the inverse operator is only 7.3% of that of HBS inverse.

Table 8 reports the time in seconds for the unpreconditioned GMRES approach 
for the original and refined problems. The precomputation for this approach only 
involves the compression of the forward operator and is lower than that for the direct 
solution approach since an approximate inverse is not constructed. However, due to 
the poor conditioning of the problem, more than 500 GMRES iterations are required 

Table 7   Time in seconds for 
solving (a) the original and (b) 
the refined problem defined on 
the Fallopian tube geometry 
(Fig. 8) via HBS inversion. (c) 
corresponds to the proposed fast 
direct solver for the ELS of the 
refined problem

(a)
THBS, comp THBS, inv THBS, Dsol

4.09e + 2 2.76e + 1 7.87e-2
(b)
 T̃HBS, comp  T̃HBS, inv T̃HBS, Dsol

4.09e + 2 2.76e + 1 7.87e-2
(c)
 T̃ELS, comp  T̃ELS, inv T̃ELS, Dsol

5.33e + 0 2.01e + 0 9.62e-2

Table 8   Time in seconds for 
solving (a) the original and (b) 
the refined problem defined on 
the Fallopian tube geometry 
(Fig. 8) via GMRES with 
HBS compression accelerated 
matrix-vector multiplication. 
(c) corresponds to solving the 
ELS of the refined problem via 
GMRES

 The number of GMRES iterations niter required to converge to toler-
ance 10− 6 is also reported

(a)
THBS, comp THBS, Gsol

4.09e + 2 5.95e + 1 (niter = 519)
(b)
 T̃HBS, comp T̃HBS, Gsol

4.09e + 2 6.59e + 1 (niter = 519)
(c)
 T̃ELS, comp T̃ELS, Gsol

5.33e + 0 7.07e + 1 (niter = 520)
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to reach the desired tolerance of 10− 6. The time required to solve the integral equa-
tion via unpreconditioned GMRES is much higher for each new right-hand side than 
the direct solver. Table 8(b) and (c) show that solving the approximate ELS (16) is 
two orders of magnitude cheaper than building the HBS compression of the BIE 
for the refined problem. Applying the forward operator for the ELS is slightly more 
expensive than applying the HBS forward compression.

Table  9 reports the time in seconds for the preconditioned GMRES approach 
applied to the approximate ELS. Here Algorithm  1, i.e., the inverse of the ELS 
obtained by the Woodbury formula, is used to precondition the fast representation 
of the ELS. The precomputation time of this approach is equal to that of the direct 
solver approach for the ELS. The number of GMRES iterations required for the 
convergence criterion to be met is reduced from 520 to 6, leading to a significant 
reduction in total cost even for only one right-hand side solve when compared to the 
results in Table 8(c). The cost of solving one additional right-hand side vector via 
the preconditioned GMRES approach for the ELS is about 5.4% of that via unpre-
conditioned GMRES approach.

5.3 � Relocating region of local refinement

This section illustrates the potential of using the fast direct solver presented in 
Algorithm 1 as preconditioner for many Stokes problems involving a body mov-
ing through a collection of star-shaped obstacles shown in Fig. 9. This example 
is representative of applications such as sorting with a microfluidic device. For 
the original discretization, 10 panels are placed on each star with less or equal 
to 5 prongs and 20 panels are placed on stars with more than 5 prongs. With 
the 16-point Gaussian quadrature, this results in a total of 42400 discretization 
points and 84800 degrees of freedom. For demonstration purposes, we do not 
simulate the true physics of any body moving in the domain; instead, we assume 
the body appears at certain locations at some time step, as illustrated in in Fig. 9. 
These can be viewed as snapshots of a body moving through the obstacles. The 
body moving through the obstacles is much smaller in scale than any of the stars. 
Thus the discretization of one or more obstacles will need to be locally refined 
as the body approaches those obstacles. Since the body is moving, the regions of 
local refinement are expected to be different for each snapshot. Previously refined 
regions may be coarsened back into the original discretization as the body moves 
away. In this example, 19 snapshot locations are chosen. In 12 of these snapshots, 
the body is close to an obstacle and local refinement is needed. In the other 7 

Table 9   Time in seconds for solving the ELS of the refined problem defined on the Fallopian tube geom-
etry (Fig. 8) via preconditioned GMRES, where Algorithm 1 is used as the preconditioner. The number 
of GMRES iterations niter required to converge to tolerance 10− 6 is also reported

T̃ELS, comp  T̃ELS, inv  T̃ELS, PGsol
5.33e + 0 2.01e + 0 3.80e + 0 (niter = 6)
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snapshots, no local refinement is needed. We consider 5 different ways of solving 
the linear system for the 19 different boundary value problems. These solution 
techniques are:

(1)	 GMRES-indy: Treat each of the 13 different discretization as independent 
boundary value problems, building a forward HBS representation for each, and 
using this to accelerate the GMRES solve for each snapshot;

(2)	 Direct-indy: Treat each of the 13 different discretization as independent 
boundary value problems and build a HBS solver for each one;

(3)	 GMRES-Local: Build a HBS forward representation for the original discre-
tization and use it to accelerate the GMRES solve for the ELS for each problem 
requiring local refinement;

(4)	 Direct-Local: Build a HBS solver for the original discretization and use it to 
build a fast direct solver for the ELS according to Algorithm 1 for each problem 
needing local refinement;

(5)	 PGMRES-Local: Build a HBS solver for the original discretization and use it 
to precondition the GMRES solve for the ELS for each problem requiring local 
refinement.

The tolerance for GMRES is set to 10− 11. For the boundary value problems 
that do not require local refinement, using the HBS matrix-vector acceleration 
of GMRES results in a relative error on the order of 10− 9. Using the HBS solver 
loses two digits; i.e., the relative error that results from this solver is on the order 
of 10− 7. Thus for the two techniques (2) and (4) where the direct solver is used 
as an actual solver and not a preconditioner, the accuracy is approximately 10− 7. 
When the HBS solver or the ELS fast direct solver in Algorithm 1 is used as the 
preconditioner, the error is approximately 10− 9.

To compare efficiency of the five approaches, we first report the time in sec-
onds for solving the problem on the original discretization and that on one par-
ticular refined discretization, which corresponds to the first snapshot with the 
body located at the very bottom left of Fig.  9(b). The results are presented in 
Tables 10, 11 and 12 in the same format as the corresponding results for the Fal-
lopian tube geometry in the previous section.

Table 10   Time in seconds for 
solving (a) the original and (b) 
the refined problem defined on 
the star-shape obstacle geometry 
in Fig. 9 via HBS inversion. (c) 
corresponds to the proposed fast 
direct solver for the ELS of the 
refined problem

(a)
THBS, comp THBS, inv THBS, Dsol

8.23e + 2 3.38e + 1 2.57e-1
(b)
 T̃HBS, comp  T̃HBS, inv T̃HBS, Dsol

8.07e + 2 3.38e + 1 2.98e-1
(c)
 T̃ELS, comp  T̃ELS, inv T̃ELS, Dsol

8.39e + 0 6.43e + 0 4.18e-1
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Since the direct solver does not achieve the full possible accuracy of the dis-
cretization, using it as preconditioner is reasonable and it greatly decreases the 
number of iterations needed for an iterative solver to converge.

With the step-by-step cost summarized in Tables 10, 11 and 12, we can approx-
imate the total cost for each of the five approaches handling all 19 snapshots by 
simple addition and multiplication, assuming that the cost for solving the ELS for 
each snapshot that requires a refinement is the same.

To get an idea of the speed up for solving problems involving the 19 multiple 
snapshots given in Fig. 9(a), Table 13 collects the time necessary for each part of 
the 5 solution techniques. The different times reported are:

•	 Tstatic: The time in seconds for constructing any of the operators needed for the 
solution technique on the original discretization. For techniques (1) and (3), 
only constructing an approximation of Ao,o via HBS is needed. For the other 
options, the construction of the approximate inverse of Ao,o is also needed. 
This is a “static” computation since it is independent of future time steps and 
potential local refinement.

•	 TOsol: The time in seconds for solving a problem where local refinement is not 
needed. “Osol” stands for “solve for the original discretization”

•	 TRsol: The time in seconds for solving a problem where local refinement is 
needed. “Rsol” stands for “solve for one refined discretization”.

Table 11   Time in seconds for solving (a) the original and (b) the refined problem defined on the star-
shape obstacle geometry in Fig. 9 via GMRES with HBS compression accelerated matrix-vector mul-
tiplication. (c) corresponds to the solving the ELS of the refined problem via GMRES. The number of 
GMRES iterations niter required to converge to tolerance 10− 11 is also reported

(a)
THBS, comp THBS, Gsol

8.23e + 2 3.27e + 1 (niter = 113)
(b)
 T̃HBS, comp  T̃HBS, Gsol
8.07e + 2 3.30e + 1 (niter = 113)
(c)
 T̃ELS, comp  T̃ELS, Gsol
8.39e + 0 3.46e + 1 (niter = 113)

Table 12   Time in seconds for solving the ELS of the refined problem defined on the star-shape obstacle 
geometry in Fig. 9 via preconditioned GMRES, where Algorithm 1 is used as the preconditioner. The 
number of GMRES iterations niter required to converge to tolerance 10− 11 is also reported

T̃ELS, comp T̃ELS, inv T̃ELS, PGsol

8.39e + 0 6.43e + 0 9.50e + 0 (niter = 6)
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Fig. 9   (a) A collection of star-shape obstacles with different snapshots of body locations. (b) Zoomed-in 
in the region near the snapshots of the body locations. The locations are chosen artificially and do not 
represent any physical movement of body in Stokes flow. 19 locations are chosen, out of which 12 are 
close to certain part of the obstacle boundary and incur local refinement of the obstacle discretization
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Approaches (3–5) which utilize the ELS are more efficient than building new 
HBS solver from scratch each time or only when there is local refinement. For these 
experiments Approach (4) is the most efficient but if the fully attainable accuracy is 
desired, Approach (5) should be used as it is both efficient and accurate. The previ-
ous standard solution technique for this type of problem was Approach (1). The pro-
posed direct solver (4) and the proposed preconditioned solver (5) are 127 and 3.5 
times faster than Approach (1) when local refinement is not needed. When refine-
ment is needed, Approaches (4) and (5) are 55 and 34.6 times faster than Approach 
(1), respectively. Since the applications of interest (such as [1]) involve hundreds to 
thousands of solves, it is definitely worth using the ELS. If the user is okay losing 
a couple of digits, the fast direct solver is an ideal choice. If the digits are needed, 
then the preconditioned iterative solver is still going to be significantly faster than 
Approach (1).

Remark 5.2  The dominate cost TRsol for the ELS solution techniques is the cost of 
creating the low-rank factorization of Q. In most applications, several snapshots can 
use the same refinement and thus the same factorization of Q. The reuse of the fac-
torization will decrease TRsol significantly. For example, in the experiments corre-
sponding to the two body locations on the left bottom of Fig. 9, two different regions 
of the same five-prong star are refined in these two consecutive time steps. In prac-
tice it might be more efficient to group the two regions together and treat them as 
one locally refined region, thus leading to one refined discretization for the first two 
time steps.

6 � Conclusions

This manuscript presented a fast direct solver for Stokes BIEs on locally refined dis-
cretizations. The technique makes use of an extended linear system that allows for 
precomputed fast direct solvers on the unrefined geometry to be utilized. The numer-
ical results illustrate the new solver’s performance on particulate flow simulations.

For general Stokes problems, two solution approaches are explored. Which solu-
tion technique should be used depends on the conditioning of the problem and how 

Table 13   Time in seconds of the construction of all necessary precomputed operators on the original dis-
cretization Tstatic, for solving a problem that does not need local refinement TOsol and for solving a prob-
lem that requires local refinement TRsol. Here we assume that each of the locally refined discretization is 
the same in size and requires the same amount of calculations to solve

Tstatic TOsol TRsol

(1) GMRES-indy 8.23e + 2 3.27e + 1 8.40e + 2
(2) Direct-indy 8.56e + 2 2.57e-1 8.41e + 2
(3) GMRES-Local 8.23e + 2 3.27e + 1 4.29e + 1
(4) Direct-Local 8.56e + 2 2.57e-1 1.52e + 1
(5) PGMRES-Local 8.56e + 2 9.40e + 0 2.43e + 1
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many digits are desired. For well-conditioned problems, the proposed fast direct 
solver works extremely well. When the problem has poor conditioning, the fast 
direct solver may lose a couple of digits (relative to the compression accuracy). 
These digits can be recovered by using the second solution technique presented here, 
which is to utilize an iterative solver where the fast direct solver for the linear sys-
tem serves as a preconditioner and the compressed representation of the ELS pro-
vides the fast matrix-vector multiply. Both solution techniques scale linearly with 
the size of the unrefined discretization. Linear scaling with respect to the number of 
unknowns added in the local refinement can also be achieved but is not necessary 
for the considered applications since a relatively low number of points are added. 
Numerical examples demonstrated significant speedups; in one test case, the pro-
posed direct solver is roughly 55 times faster than the standard approach. For prob-
lems with large condition number, more accurate solution may be obtained by using 
the proposed preconditioner as compared to the direct solver. In another test exam-
ple, the preconditioned GMRES solve for the ELS reduced the number of iterations 
by a factor of 19 (and total solve time by 3.6X). Our immediate future directions 
include incorporating close evaluation schemes and extension to three-dimensional 
problems.

Appendix : A. Stability of using the Woodbury formula

Woodbury formulas such as (12) are well-known in the linear algebra literature [34] 
and have been the cornerstone of recently developed fast direct solvers for applica-
tions including periodic Stokes flow [1] and quasi-periodic scattering problems [25, 
26]. While the Woodbury formulas have been used in these applications, it was done 
so without any concern for the stability of the approach. This section will review the 
stability analysis of the Woodbury formula given in [35] and provides some empiri-
cal results in the case of Stokes problems.

The main concern in the stability of the Woodbury formula lies in the sta-
ble inversion of the matrix � = � + ��̃−1� . We will refer to the matrix W as the 
Woodbury operator. [35] states that in order to stably solve a linear system via the 
Sherman-Morrison-Woodbury formula, the following two conditions must be satis-
fied by the linear system:

•	 All the relevant matrix-matrix and matrix-vector multiplications in (12) involv-
ing �̃−1 are numerically stable.

•	 The Woodbury operator is well-conditioned.

For Stokes problems, the first condition is satisfied thanks to the choice of bound-
ary integral formulation (in Section 2) and the use of a stable fast direct solver. Since 
Stokes problems tend to have a large condition number, we choose to modify the 
second condition to: (ii) The Woodbury operator is as “well-conditioned” as the full 
linear system �̃ + ��.

The following lemma, which is a modified version of Lemma 1 in [35], pro-
vides an upper bound on the condition number of the Woodbury operator and 
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formally defines what we mean by the Woodbury operator being as “well-condi-
tioned” as the full linear system. The lemma is stated in the context of discretized 
boundary integral operators and the ELS. Specifically it provides conditions on 
the low-rank approximation of the update matrix Q ≈LR which must be satis-
fied (along with both the linear systems for the original and refined discretization 
being well-conditioned) for the Woodbury operator to be “well-conditioned.”

Lemma A.1 (Upper bound on the condition number of the Woodbury opera-
tor)  Assume the operator Ao,o and Ap,p as defined in (9 ) and (10) are all invertible. 
Additionally, �̂ext = �̃ + �� ≈ �ext is also invertible. If the k columns in the low-
rank factor L and the k rows in R are linearly independent, then the condition num-
ber of the Woodbury operator is bounded above as follows:

where

 with

 defined as the pseudo-inverse for L and R in the standard sense.

Proof  The matrix �̃ is invertible since it is block diagonal with each block invertible 
by our assumption. Let the pseudo-inverses of L and R be defined as above.

It is easy to verify that L‡L = RR‡ = I with dimension k × k. By right-multiply-
ing both sides of �̂ext = �̃ + �� by �̃−1� , we get

 Now the left-multiplication on both sides of the previous equality by L‡ results in 
the following:

 Simplifying utilizing the basic properties of pseudo-inverse gives the following 
expression:

 Therefore, the condition number for the Woodbury operator is bounded above by

(17)𝜅
(
� + ��̃−1�
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A similar argument using R‡ gives

 Combining the two bounds above gives equation (17). □

The lemma implies that if we construct Q ≈LR so that �̂ext = �̃ + �� is inverti-
ble, L and R are full rank, and additionally let a2 = min

{
𝜅̂(�)2, 𝜅̂(�)2

}
 , then 

𝜅
(
� + ��̃−1�

) ≤ a2𝜅
(
�̂ext

)
𝜅
(
�̃
)
 . When the original problem and new problem 

have similar condition numbers, i.e., 𝜅
(
�̂ext

)
≈ 𝜅

(
�̃
)
≈ 𝜅 , the lemma and the low-

rank approximation construction above together give the bound 
𝜅
(
� + ��̃−1�

) ≤ a2𝜅2 . The upper bound given by the lemma can be improved by 
building L and R so that at least one of 𝜅̂(�) and 𝜅̂(�) stay small. When the rank 
number of the low-rank factorization of Q ia large, a “re-compression” via con-
structing an ID or SVD for the concatenated L factor may be able to reduce the rank 
number and thus save some computations for the later steps. Take the refined fish 
test in Section 4.2 as an example, Table 14 reports the rank number of the concate-
nated low-rank factorization k and the one after re-compression krecomp as well as the 
corresponding condition number of the Woodbury system. The tolerance for the ID 
is set to 10− 10 and the condition numbers reported in the table are calculated via 
Matlab’s cond() function.

For the problems considered in this manuscript, the upper bound in Lemma A.1 
is overly pessimistic. In fact, the observed condition number is much smaller than 
a2κ2. In practice, when the low-rank approximation of Q is constructed with care as 
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Table 14   The observed rank (same as the size of the Woodbury system) and condition number for an 
interior BIE on the fish geometry illustrated in Fig. 14. k and κ are the size and condition number for the 
Woodbury operator defined for the concatenated factorization Q ≈LR. krecomp and κrecomp are the size and 
condition number for the Woodbury operator defined for the factorization with an extra SVD applied to 
L as a re-compression step. The condition numbers are all calculated by Matlab’s cond() function. The 
condition number of the block-diagonal matrix �̃ and the ELS Aext are also reported. Finally the upper 
bound given by Lemma A.1 corresponding to Q ≈LrecompRrecomp is also provided

Nk,Nc,Np kblock κblock koptimal κoptimal 𝜅

(
�̂ext

)
  𝜅

(
�̃
)

Upper bound

752, 48, 384 175 1630.0 141 98.5 378.0 371.0 4.1e + 25
1520, 80, 640 158 407.3 124 77.3 376.7 371.0 1.2e + 25
3072, 128, 1024 143 523.5 113 77.0 375.0 371.0 1.6e + 25
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described in Section 3.3, the observed condition number of the Woodbury system 
is comparable to the condition number of the original linear system. For example, 
Table 14 also reports the upper bound on the condition number given by Lemma 
A.1 for the Woodbury system. With or without the re-compression step, the condi-
tion numbers are well below the upper bound provided by the lemma.

Appendix : B. Extended system for the channel with added holes 
problem

Let Γk be the original channel boundary given in Fig. 7(a) and Γp be the union of the 
holes added in Fig. 7(b). Following this subscript notation, the discretized BIE on 
the “channel-with-holes” geometry can be reordered into the same format as in (10). 
Since no points are deleted, (10) itself serves as an ELS for this problem, and it can 
be written as

where the update matrix Q can be approximated by a low-rank factorization

 If a fast direct solver is already constructed for the original channel geometry, 
i.e., an approximation to �−1

k,k
 is available, then the solution to (18) can be quickly 

obtained by a Woodbury formula as described in Section 2.2. The construction of 
the low-rank approximation for the update matrix is also simpler for this particular 
problem, since only two sub-blocks need to be handled.
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