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When particle dark matter is bound gravitationally around a massive black hole in sufficiently high

densities, the dark matter will affect the rate of inspiral of a secondary compact object that forms a binary

with the massive black hole. In this paper, we revisit previous estimates of the impact of dark-matter

accretion by black-hole secondaries on the emitted gravitational waves. We identify a region of parameter

space of binaries for which estimates of the accretion were too large (specifically, because the dark-matter

distribution was assumed to be unchanging throughout the process, and the secondary black hole accreted

more mass in dark matter than that enclosed within the orbit of the secondary). To restore consistency in

these scenarios, we propose and implement a method to remove dark-matter particles from the distribution

function when they are accreted by the secondary. This new feedback procedure then satisfies mass

conservation, and when evolved with physically reasonable initial data, the mass accreted by the secondary

no longer exceeds the mass enclosed within its orbital radius. Comparing the simulations with accretion

feedback to those without this feedback, including feedback leads to a smaller gravitational-wave

dephasing from binaries in which only the effects of dynamical friction are being modeled. Nevertheless,

the dephasing can be hundreds to almost a thousand gravitational-wave cycles, an amount that should allow

the effects of accretion to be inferred from gravitational-wave measurements of these systems.

DOI: 10.1103/PhysRevD.108.124062

I. INTRODUCTION

Astronomical measurements on galactic and larger scales

have produced compelling evidence for the existence of

dark matter (see, e.g., [1] for a review). The underlying

particle or (quantum) field that gives rise to dark matter has

not yet been identified despite a large experimental and

observational research program with this aim. This has led

some to advocate in favor of searching for a wide range of

possible dark matter models using a broad set of techniques

to increase the chances of gaining new insight into the

nature of the dark matter that pervades throughout the

Universe [2]. Following the discovery of gravitational

waves by the LIGO-Virgo-KAGRA Collaboration [3]

(and more recently by pulsar timing arrays [4–6]), the

idea of using gravitational waves to search for the presence

of dark matter in and around compact objects became more

promising [7]. While the review [7] focuses on a broad

range of dark-matter candidates (spanning 90 orders of

magnitude in mass) and a variety of corresponding

gravitational-wave signatures, this work will focus on

cold, particle dark matter and the modifications to the

gravitational-wave phase induced by the dark matter, which

the Laser Interferometer Space Antenna (LISA) observa-

tory [8] could measure during its operation.

A. Background and context

The possibility of using LISA to probe the dark-matter

environment of a stellar-mass compact object inspiraling

into an intermediate-mass black hole (IMBH)—called an

intermediate-mass-ratio inspiral (IMRI)—was explored

previously by Eda and collaborators [9,10] (and sub-

sequently by others, e.g., [11–20]). For dark matter to

have a significant effect on the orbital dynamics, Eda et al.

found that the dark matter needed to form an overdensity,
1

which they called a dark-matter “minispike” (or “spike” for

short). Working within the context of Newtonian physics,

Eda et al. identified two physical effects, in fact, that could

cause the dark-matter spike to change the orbital dynamics

of the IMRI strongly enough that it would have an
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The fact an overdensity was required was also noted in [21] in

the context of environmental effects in EMRIs.
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observable effect on the emitted gravitational waves. The

first [9] was a (quasi)conservative effect: the dark matter

enclosed within the orbit of the secondary changes the

Keplerian frequency at a given orbital radius from that of

a black hole in vacuum. While this would be challenging, at

a fixed orbital radius, to distinguish from an IMRI with a

slightly more massive primary, the enclosed mass changes

as the system inspirals. This (slow) time dependence of the

enclosed mass leads to a small, but distinctive, change in

the evolution of the frequency from what would be

expected for an IMBH without surrounding dark matter.

This, in turn, produces a dephasing of the inspiral with

respect to an inspiral in vacuum, which could be measured

by LISA [9]. However, it was later noted by Eda et al.

in [10] (see also [22] in a different context), that this

enclosed-mass effect is, in fact, smaller than another effect

that arises from the presence of dark matter known as

dynamical friction [23]. Dynamical friction is produced by

the gravitational scattering of dark-matter particles with the

secondary, which induces an overdensity (a wake) that

gives rise to an effective drag force (which then increases

the rate of inspiral of the IMRI system). Under the

assumption that the distribution of dark matter remained

unchanged throughout the IMRI’s inspiral, some features of

the density of dark matter could be inferred precisely from a

gravitational-wave measurement of the system by the LISA

detector [10].

The assumption that the dark-matter distribution

remained static throughout the inspiral was shown in [14]

to be in tension with energy conservation for a nontrivial

portion of the parameter space of IMRIs and dark-matter

spikes studied in [10].
2
As a result, it was demonstrated

in [14] that it is necessary to jointly evolve the IMRI’s

orbital dynamics with the distribution of dark matter to

determine consistently the effect of the dark matter on the

emitted gravitational waves. We will refer to this evolution

of the dark-matter distribution in response to dynamical

friction as “dynamical-friction (DF) feedback” in the rest of

this paper. A procedure was developed in [14] to evolve

the dark matter on timescales that are long compared to the

IMRI’s orbital timescale, under the assumption that the

dark-matter halo remained spherically symmetric by rap-

idly equilibrating on the orbital timescale. The results of

jointly evolving the IMRI and the dark matter were

pronounced; For example, for certain representative

IMRIs and dark-matter spikes considered in [10], the

number of gravitational-wave cycles of dephasing (from

a similar IMRI in vacuum) for a dynamically evolved dark-

matter distribution could be as much as 100 times smaller

than the equivalent dephasing for a distribution that

remained static [14]. Nevertheless, it was shown in [15]

that despite the much smaller dephasing, the presence of

dark matter around the IMRI was detectable with LISA

(and waveform models with dark matter had significantly

higher Bayes factors over the best-fit waveform models

without dark matter); in addition, the properties of the

initial dark-matter distribution could still be inferred from

the gravitational waves even for events near the threshold of

detection.

Several years after the work of Eda et al., Yue and

Han [11] noted that if the secondary were a black hole,

there would be one additional (relativistic) effect that the

dark matter would have on the rate of inspiral of the binary:

the black hole would accrete dark matter as the dark-matter

particles fell through the event horizon, and the secondary

black hole would increase in mass.
3
To avoid confusion

with accretion of dark matter onto the primary (which we

will not model in this paper), we will sometimes refer to

this accretion onto the secondary during the inspiral as

secondary accretion (SA). Reference [11] considered the

dark-matter distribution to be static as the secondary

inspirals and found that it induced a dephasing with respect

to vacuum systems that was a few to a few tens of a percent

of the amount of the dephasing induced by dynamical

friction.
4
There is then an interesting numerical coincidence

that the dephasing induced by dynamical friction with

feedback onto the distribution function turns out to be

comparable to the dephasing induced by accretion for a

static halo for some binaries. It is then natural to wonder if

the effects of accretion would be comparable if they were

computed in a dark-matter distribution with dynamical-

friction feedback rather than a static distribution.

We give a brief argument here why we expect the

accretion in a halo with DF feedback not to change the

mass accreted significantly. First, it is important to note that

2
More specifically, the gravitational scattering that gives rise to

dynamical friction is a conservative process for the combined
system of the binary and dark matter. This implies that the
decrease in orbital energy of the secondary, as it inspirals because
of dynamical friction, must be balanced by an increase in the
energy of the dark-matter particles. Reference [14] showed that
the energy increase was sufficiently large to unbind the entire
dark-matter spike with significant kinetic energy for a large
region of the IMRI (specifically, mass-ratio) and dark-matter
(specifically, density normalization, and radial power law)
parameter space.

3
References [9,10,14,15] assumed that the secondary was a

neutron star (and that the cross section between dark matter and
nuclear matter in neutron stars was sufficiently small) so that
dark-matter accretion by the neutron star would be negligible.

4
As will be discussed in more detail in Sec. II, given the form

of the accretion term in the IMRI’s equations of motion, it will
produce an effect on the IMRI’s dynamics at one post-Newtonian
(PN) order (an additional power of v2=c2) higher than the term
responsible for dynamical friction. Given that the PN parameter is
of order 10−2 to 10−1 at the initial frequencies for the systems
considered, the size of this effect is then consistent with the order-
of-magnitude expectations from a simple counting of PN orders.
While the counting of PN powers is useful for understanding the
relative importance of different terms in the equations of motion,
the phenomenon of accretion of dark matter by the secondary is a
genuinely relativistic effect that arises because the secondary has
a horizon; it is not a weak-field phenomenon.
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the decreased dephasing from dynamical friction, when

including DF feedback, occurred because the local density

of dark-matter particles moving more slowly than the

orbital speed of the secondary (those particles that con-

tribute to dynamical friction) was significantly decreased

(often by one or more orders of magnitude) [14,15]. These

more slowly moving particles compose roughly half the

total density in these systems, for static dark-matter dis-

tributions governed by a single power-law in radius [14].
5

While the accretion cross section does have a dependence

on velocity, the secondary black hole can accrete particles

with any speeds that come close enough to the secondary’s

event horizon. As a result, this suggests that the calculations

of secondary accretion in [11] for static halos could be

within a factor of a few of the capture that occurs in the

dynamical halos of [14].

This, however, will pose a problem for computing

reasonable estimates of dark-matter accretion onto the

secondary during the inspiral for the following reason:

Because dark-matter accretion occurs most efficiently for

dark-matter particles that are closer to the secondary’s event

horizon, then as the secondary inspirals, the total amount of

dark matter accreted should not be much larger than the

total amount of dark matter enclosed within the initial orbit.

However, as we will show in this paper, the model of dark-

matter accretion used in [11] predicts for static dark-matter

spikes and for less-extreme IMRI mass ratios that the mass

accreted by the secondary can exceed the mass enclosed

within the orbit. From the arguments above, incorporating

DF feedback will reduce the amount of accretion by only

a factor of a few. Thus, it will be necessary develop a

procedure that accounts for the loss of dark-matter particles

from the distribution function as they are accreted by the

secondary to ensure that mass is conserved and to obtain

accurate estimates of the amount of gravitational-wave

dephasing induced by accretion. We introduce such a

procedure in this paper, and it will follow in the same

spirit of the DF feedback of [14] (in particular, in terms of

its assumption of spherical symmetry and fast equilibration

over the orbital timescale). We will call this new feedback

“secondary-accretion (SA) feedback” to distinguish it from

the dynamical-friction feedback of [14].

Secondary accretion and dynamical friction also will

ultimately have different effects on the dark-matter dis-

tribution after the secondary has inspiraled through the

dark matter distribution and merged with the primary. In

Refs. [14,15], while dynamical friction did unbind a small

fraction of the dark matter particles, it primarily redistrib-

uted them to higher-energy bound orbits. Thus, while there

could be a large transient redistribution of the dark-matter

particles during the inspiral, the effect on the distribution of

dark matter afterwards was not particularly large. However,

because secondary accretion simply removes particles from

the distribution function, it has the potential to produce a

larger, lasting change in the dark matter density during and

after the inspiral. This could impact the evolution of other

IMRI systems that might form subsequently.

B. Summary of results and structure of this paper

The structure of this paper, and the main results in each

of the paper’s parts, will now be summarized below.

Section II is primarily a review, in which we introduce

some of the notation and approximations that we use

throughout the paper in Sec. II A. We then give the

evolution equations for the IMRI’s orbital dynamics and

the equation that determines the mass accreted onto

the secondary in Sec. II B. Next, Sec. III gives analytical

expressions for the accreted mass normalized by the

enclosed mass for binaries that evolve in a static halo

under the influence of either gravitational radiation reaction

or both radiation reaction and dynamical friction. We show

that, in both cases, the amount of mass accreted can exceed

the mass enclosed; this gives the first indication that the

dark-matter distribution should be evolved self-consistently

with the accretion onto the secondary.

The next part of the paper, Sec. IV, focuses on reviewing

the DF feedback procedure of [14] (in Sec. IVA), and then

computing new results with and without accretion onto the

secondary. The results without accretion (in Sec. IV B)

evolve the same equations of motion for the dark matter and

IMRI as in [14], but they simulate larger secondary masses

that had not been studied in works with DF feedback

(though they had been studied for static dark-matter

distributions in [11]). While the results are qualitatively

similar to those with a lighter secondary at a fixed mass

ratio, they are quantitatively different, and they also cover

a different range of less extreme mass ratios than those

in [14]. They will then also serve as an important set of

baseline simulations against which we compare the number

of gravitational-wave cycles when accretion effects are

included. The final part of this section (Sec. IV C) then

treats secondary accretion with DF feedback but without

SA feedback. For the less-extreme mass ratios, the amount

of mass accreted can be comparable to the mass enclosed

within the initial orbital radius, even though it did not

exceed this value for the mass ratios that we simulated.

Nevertheless, the fact that they are of the same order

gives the second indication that feedback onto the dark-

matter distribution in response to the mass accreted will be

necessary in several cases to avoid overestimating the

impact of accretion on the gravitational waves emitted

from these systems (and more generally, to conserve mass

during the evolution).

The secondary-accretion-feedback formalism is intro-

duced in Sec. V, and it is applied to compute results with

5
With the more complicated functional form of the distribution

function with feedback, the total local density can deplete by
more than a factor of two; we will return to this point later in this
paper.
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SA feedback in isolation. The modifications to the evolu-

tion equations for the dark-matter distribution are derived in

Sec. VA, where they are also shown to lead to a mass loss

rate from the dark-matter distribution that is equal and

opposite to the rate of mass accreted by the secondary.

The effect of SA feedback on the distribution function is

computed analytically in Sec. V B when the binary

evolves under radiation reaction and dynamical friction

is neglected. This allows the dark-matter density to

be computed efficiently and studied in more detail. For

example, it allows us to determine reasonable initial

conditions corresponding to an inspiral from a larger initial

radius and to determine how large the effects of accretion

could be on the dark-matter distribution after the merger.

The next part (Sec. VI) finally presents the results

of simulations that include both dynamical-friction and

secondary-accretion feedback. The first part (Sec. VI A)

discusses the gravitational-wave dephasing and the

accreted mass normalized by the enclosed mass. The

dephasing induced by dynamical-friction and secondary-

accretion feedback have effective post-Newtonian orders

that differ from the respective static cases because of the

relevant local densities for accretion and dynamical-friction

effects differ when dark-matter dynamics is included. The

normalized accreted mass, with DF and SA feedback, is

now smaller: at most one quarter in the cases we consid-

ered. In Sec. VI B, we show the effect of SA feedback

on the dark-matter distribution when combined with DF

feedback. We find that SA feedback can deplete the dark-

matter density significantly even with DF feedback, though

the amount of depletion is not quite as strong as that with

only SA feedback in Sec. V B. We provide further

discussion and our conclusions in Sec. VII.

II. DARK MATTER IN INTERMEDIATE-MASS-

RATIO INSPIRALS AND THE BINARY’S

EVOLUTION

This section will begin by reviewing some notation that

we use to describe the orbital dynamics of the IMRI and the

dark-matter distribution. We then turn to the equations of

motion that describe the IMRI’s dynamics (including the

effects of dark-matter accretion, as in [11]).

A. Notation and approximations used

As in [14], we will denote the dark-matter density of a

spherically symmetric, power-law profile by

ρDMðrÞ ¼
�

ρspðrsp=rÞγsp rin ≤ r ≤ rsp

0 r < rin
: ð2:1Þ

This density is what was referred to as a “dark-

matter spike” in [10]. For a dark-matter distribution formed

during the adiabatic growth of a smaller seed black hole

into an IMBH, the power law index γsp is in the range

ð9=4; 9=2Þ [24]. As in [14], however, we often will allow

for a wider range of possible values for γsp in case the

formation scenario does not precisely match this adiabatic-

growth prescription (which can be disrupted by a number

of processes [25]). The inner radius is assumed to be

rin ¼ 4Gm1=c
2, where m1 is the mass of the IMBH (the

primary), which is the inner radius at which the density

goes to zero in the relativistic calculations of dark-matter

spikes in [26].
6
The distance rsp was assumed in [10] to be

given by rsp ≈ 0.2rh, where rh is the radius at which the

enclosed dark-matter mass is twice the primary’s mass,

Z

rh

rin

ρDMðrÞd3x ¼ 2m1: ð2:2Þ

Given rsp ≈ 0.2rh, Eq. (2.2) and the form of ρDMðrÞ in

Eq. (2.1), this implies that m1, ρsp, rsp, and γsp are not all

independent. We will then determine rsp from the other

three variables as

rsp ≈

�

0.23−γspð3 − γspÞm1

2πρsp

�

1=3

: ð2:3Þ

For r > rsp, the spike would smoothly transition to the

initial dark-matter halo out of which it was adiabatically

compressed. We will not treat the binary dynamics or

the dark matter at radii of r > rsp, however, which is why

we do not specify the functional form of the dark-matter

distribution when r > rsp in Eq. (2.1).

We will also find it useful to have an expression for the

mass enclosed within a given radius r for a power-law

density. We write the result as in [14] as

mencðrÞ ¼
�

mDMðrÞ −mDMðrinÞ rin ≤ r ≤ rsp

0 r < rin
ð2:4Þ

with

mDMðrÞ ¼
4πρspr

γsp
sp

3 − γsp
r3−γsp : ð2:5Þ

Next, we will discuss our notation for the various masses

that we will use and some common approximate expres-

sions for these quantities. In addition to the mass of the

IMBH, m1, which we have already introduced, we will

denote the mass of the secondary as m2. The mass ratio

will be denoted by q ¼ m2=m1, the total mass by

6
We do not incorporate any of the other relativistic features

found in the density in [26] in the region closest to the black-hole
horizon in our Newtonian analysis. We use the prescription of a
sharp cut at rin, as was done in Refs. [14,15], so as to more easily
compare with the results given there. The density computed
in [26] does not have this feature; it smoothly goes to zero as the
radius approaches rin.
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M ¼ m1 þm2, the reduced mass by μ ¼ m1m2=M, the

symmetric mass ratio by η ¼ μ=M, and the chirp mass by

M ¼ η3=5M. The IMRIs in this paper have q ≪ 1. We will

work to leading order in q throughout this paper, so we will

frequently make approximations such as

M ¼ m1ð1þ qÞ ≈m1; ð2:6aÞ

μ ¼ m2

1þ q
≈m2; ð2:6bÞ

η ¼ q

ð1þ qÞ2 ≈ q; ð2:6cÞ

M ¼ m1q
3=5

ð1þ qÞ1=5 ≈m1q
3=5: ð2:6dÞ

It will also be useful to consider an effective (radius-

dependent) mass ratio which is the ratio of the enclosed

mass Eq. (2.4) to the primary mass, m1,

qencðrÞ ¼ mencðrÞ=m1: ð2:7Þ

Wewill work with dark-matter spikes, binary mass ratios q,
and orbital separations r2, for which qencðr2Þ=q < 1. Thus,

in addition to working to the leading order in q, we consider
effects related to qencðr2Þ to occur at an equivalent order to

those in q [i.e., we effectively will treat q and qencðr2Þ as the
same small parameter].

Because m2 ≈ μ will be a function of time when

accretion occurs, so too will q, η, and M. However, since

the amount of mass accreted will be a small fraction of m2

for the cases we consider, when we refer to q (for example)

throughout this paper, we will typically be referring to the

initial value, which we will sometimes denote as qi to make

this explicit. If we were to consider accretion onto the

primary, m1 would also be time dependent; however, we

will not consider such accretion in this paper.
7

When we treat time-dependent dark-matter densities, we

will denote them by ρDMðr; tÞ. In the dynamical case, we

will continue to assume that the density will be zero within

the inner radius, and we will not evolve them at radii

r > rsp either (and wewill use the same values of rin and rsp
as in the corresponding static density, which is used as

initial data for the evolution of the time-dependent density).

We will similarly denote the mass enclosed by mencðr; tÞ in
the time-dependent case. On occasion, we also use the

notationmsta
encðrÞ for the static case andmdyn

enc ðrÞ for the time-

dependent case to distinguish the two without specifying

the time dependence of the function in the dynamic case.

We could similarly make a time-dependent definition of

qencðr; tÞ, but we do not use it in this paper.

B. IMRI evolution equations

The orbital dynamics of the IMRI are naturally expressed

in terms of the motion of the reduced mass μ ≈m2 in the

Newtonian limit. In vacuum, the dynamics of these systems

[and the closely related extreme mass-ratio inspirals

(EMRIs)] are most precisely modeled using the techniques

associated with the gravitational self-force (see, e.g., [27]

for a review). When dark matter is included, however,

relativistic analyses of such binaries have been more

limited (see [18] for a notable exception for static dark-

matter distributions), and the description of the binary

and dark matter has largely been restricted to the

mostly
8
Newtonian approximation (e.g., [9–13]). This is

especially true of when the dark matter has been allowed

to evolve in response to dynamical-friction feedback

(e.g., [14–17,19,20]), as there have been no such relativistic

studies (to the best of our knowledge). We will thus not

attempt to move beyond this mostly Newtonian approxi-

mation in our calculations in this paper, as we will also be

considering dark-matter dynamics and feedback (both

dynamical-friction and secondary-accretion feedback).

As in [14], only IMRIs in circular orbits will be treated

in this paper. While gravitational radiation [28,29] and

dynamical friction [16] have circularizing effects in IMRIs,

the precise formation scenarios of these binaries could lead

to residual eccentricity (so this assumption should be

revisited in future work). In the absence of dissipative

effects (which includes dynamical friction and dark-matter

accretion, in this discussion), the orbital dynamics for

circular orbits is simple, as it is determined by just the

Keplerian frequency

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G½M þmencðr2Þ�
ða2Þ3

s

≈

ffiffiffiffiffiffiffiffiffiffi

Gm1

ðr2Þ3

s

; ð2:8Þ

where a2 is the semimajor axis of the binary’s reduced

mass, and r2 is the coordinate distance of the secondary

7
Ignoring accretion onto the primary can be argued to be

reasonable for the following reasons. In the absence of the
secondary, accretion of dark matter onto the primary is expected
to be negligible given the weak interactions between dark-matter
particles. In the presence of the secondary, some dark matter will
be scattered onto orbits that can be captured by the primary black
hole. Since this requires reasonably strong scattering, the mass of
the dark-matter particles accreted onto the primary during the
inspiral should be of the order of mencðr2;iÞ, so that the fractional
change in massm1 during the inspiral is of order qencðr2;iÞ, for r2;i
being the initial separation. However, since we will not treat
effects of order qenc in this paper, neglecting accretion onto the
primary should be consistent with this approximation used
throughout this paper.

8
The “mostly” caveat here is that the effects of gravitational

radiation reaction were taken into account using the leading
(Newtonian) quadrupole formula. This is a relativistic effect, but
it is being treated at leading order using Newtonian information
about the binary’s quadrupole moment.
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from the center of mass. The speed of the secondary in

these circular orbits is given by the expression

v2 ¼
ffiffiffiffiffiffiffiffi

GM

r2

s

≈

ffiffiffiffiffiffiffiffiffiffi

Gm1

r2

s

: ð2:9Þ

Because r2 is constant on the orbital timescale, then Ω is

constant as well, and the angular component of Newton’s

second law becomes trivial for circular orbits.

Including dark-matter accretion, dynamical friction, and

gravitational radiation reaction causes the orbits to evolve

on timescales much longer than the orbital timescale, so we

will introduce a (slow) time dependence to r2ðtÞ and ΩðtÞ.
This leads to dissipative dynamics which describe how the

system moves from larger to smaller circular radii. These

dynamics were computed in [14] by postulating that energy

balance holds. In [14], the change in the orbital energy

of the IMRI was equated to the energy radiated from the

system in gravitational waves plus the energy transferred to

the dark-matter distribution through dynamical friction.

However, this approach does not work as straightforwardly

when including dark-matter accretion, because, roughly

speaking, the accretion can be considered an inelastic

scattering process, which conserves momentum but not

necessarily energy.

Here we will work directly with Newton’s equations and

allow the change in momentum of the secondary to have a

term that arises from the increase in inertia of the secondary

as it accretes dark matter (as in [11]). Radiation reaction,

dynamical friction, and accretion introduce effective forces

into the tangential component of Newton’s second law

(in the orbital plane of the binary) that cause Ω to evolve

on a timescale much longer than the orbital one. Using

the expression for this component of the acceleration,

rΩ̇þ 2ṙΩ, and Eq. (2.8), the tangential acceleration term

reduces toΩṙ=2, for circular orbits. This allows us to compute
an equation for the evolution of ṙ. Including gravitational

radiation reaction, dynamical friction, and dark-matter accre-

tion leads to an equation of motion of the form

ṙ2 ¼ −ṙRR2 − ṙDF2 − ṙA2 ; ð2:10aÞ

where

ṙRR2 ≈ q
64

5c5

�

Gm1

r2

�

3

; ð2:10bÞ

ṙDF2 ≈ q8π

ffiffiffiffiffiffi

G

m1

s

r
5=2
2 logΛρDMðr2; t; v < v2Þ; ð2:10cÞ

ṙA2 ≈ 2r2ṁ2=m2: ð2:10dÞ

The expression for ṙA2 can also be understood as the change in

the orbit that occurswhen themass of the secondary increases

while the orbital angular momentum remains an adiabatic

invariant [30]. In the expression for ṙDF2 , we introduced the

notation ρDMðr2; t; v < v2Þ to denote the (in general, time-

dependent) density of dark-matter particles at r2movingmore

slowly than the orbital speed of the secondary, v2, and logΛ
for the Coulomb logarithm. As in [14], we will assume

Λ ¼
ffiffiffiffiffiffiffiffi

1=q
p

, where q here is the initial mass ratio of the

binary.
9
For static dark-matter spikes of the form in Eq. (2.1),

the fraction of dark-matter particles movingmore slowly than

the orbital speed at each radius is proportional to the total

dark-matter density at that radius: namely ρDMðr2; v < v2Þ ¼
ξρDMðr2Þ (see [14]) for all radii r2.10 In this special case, then,
there is a single, constant ξ that determines the fraction of

particles moving more slowly than the local orbital speed

at r2, though for more general densities and distribution

functions, this will not be the case. To solve Eq. (2.10), we

need to determine an evolution equation for ṁ2.

For this evolution equation, we use a similar treatment of

the accretion of dark matter and the evolution of the mass

that was used in [11]. Specifically we compute ṁ2 from

ṁ2 ¼ σðv2ÞρDMðr2; tÞv2; ð2:12Þ

where σðv2Þ is the accretion cross section of a (nonrotating)
black hole, and v2 (the speed of secondary) is used as a

proxy for the relative speed of the particles with respect to

the black hole (as in [11]). Because Ref. [11] assumed a

static dark-matter density, ρDM was a function of only r2,
whereas we allow it to be a function of time, instead. It is

worth noting that, unlike with dynamical friction, the

full density ρDMðr2; tÞ contributes, regardless of the speed
of the dark-matter particles. When we specialize to

static dark-matter distributions for our analytical calcula-

tions, we will find it convenient to use Eq. (2.12) with

ρDMðr2; tÞ→ ζρDMðr2Þ, where ζ will be a phenomenologi-

cal parameter that represents the effect of being able

to accrete only a fraction of the density ρDMðr2Þ. The

cross section σðv2Þ was computed in full general relativity

9
Recall that when there is accretion onto the secondary, the

mass ratio will be time dependent. However, because the mass
accreted during the inspiral will be at most a few percent for the
binaries we consider in this paper, we do not expect that keeping
Λ constant produces any significant errors here. When we
numerically solve for the orbital dynamics in subsequent sections
of this paper, we will not assume that Λ is constant.

10
Eddington inversion relates the spherically symmetric den-

sity in Eq. (2.1) to the distribution function in Eq. (4.2). From
integrating Eq. (4.2) over velocities up to the orbital speed of
circular orbits at r2, it follows that ξ is a constant that depends on
just γsp which is given by

ξ ¼ 1 − I1=2ðγsp − 1=2; 3=2Þ: ð2:11Þ

The function I1=2ðγsp − 1=2; 3=2Þ is the regularized incomplete

beta function. For γsp ¼ 7=3, this gives rise to the value ξ ≈ 0.58

used in Ref. [14].
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in [31]; here we will only use the leading “Newtonian”

expression

σðv2Þ ¼
16πðGm2Þ2

ðcv2Þ2
: ð2:13Þ

Combining Eqs. (2.9), (2.12), and (2.13) gives an

evolution equation for m2 in terms of r2,

ṁ2 ≈ 16πðGm2Þ2ρDMðr2; tÞ
1

c2

ffiffiffiffiffiffiffiffiffiffi

r2

Gm1

r

: ð2:14Þ

Thus, we can write the rate of change of radius due to dark-

matter accretion as

ṙA2 ≈ q
32π

c2
ðGr2Þ3=2

ffiffiffiffiffiffi

m1

p
ρDMðr2; tÞ: ð2:15Þ

For our analytical calculations with static dark-matter

distributions, we replace ρDMðr2; tÞ with ζρDMðr2Þ in

Eq. (2.15). The expression for ṙA2 , like ṙRR2 and ṙDF2 ,

naturally has a factor of q that can be scaled out, which

implies that it is also a small effect in the small mass-

ratio expansion. Finally, note that the ratio of ṙA2 to ṙDF2 is

given by

ṙA2
ṙDF2

¼ 4Gm1

c2r2

ρDMðr2; tÞ
ρDMðr2; t; v < v2Þ logΛ

: ð2:16Þ

The factor of Gm1=ðc2r2Þ [or equivalently ðv2=cÞ2] shows
that accretion causes a change in the orbital separation at

one post-Newtonian order higher than that caused by

dynamical friction. For static dark-matter distributions,

the coefficient multiplying the post-Newtonian (PN)

parameter is 4ζ=ðξ logΛÞ, which will typically be an

order-one quantity. However, for time-dependent dark-

matter densities, the ratio of the total density ρDMðr2; tÞ
to the density of particles moving more slowly than the

local orbital speed ρDMðr2; t; v < v2Þ could be large, in

which case the post-Newtonian suppression of accretion

could be outweighed by the greater density available to

accretion. This scenario will arise in our discussion in

Secs. IV C and VI A.

We conclude this part with a comment about the relative

perturbative orders of the different dissipative effects

(radiation-reaction, dynamical friction, and dark-matter

accretion) in terms of the PN parameter ðv2=cÞ2 ∼ Gm1=r2,
the mass ratio q, and the enclosed mass ratio qencðr2Þ. All
effects enter at order q in the mass ratio relative to the

conservative dynamics associated with the Keplerian

motion. From a simple counting of powers of r2, dynamical

friction (respectively, accretion) would be a negative

11=2 − γsp (respectively, 9=2 − γsp)-order effect relative

to radiation reaction in the dissipative dynamics of the

binary (as noted in [14,15]). Because dynamical friction is a

Newtonian effect, and radiation reaction is a 2.5 PN-order

effect, then it is somewhat more natural to think of it as a

relative, negative 2.5 PN-order effect in the radial motion

for circular binaries (because of its Newtonian nature).

While having, in this sense, a negative PN order, dynamical

friction can be comparable in magnitude to radiation

reaction at a given orbital separation, because dynamical

friction contains an additional factor of qencðr2Þ, which
scales as r

3−γsp
2 (and which accounts for the remaining

negative 3 − γsp orders in the PN-parameter counting in

terms of r2). Thus, it is more natural to think of it as a

negative 2.5 PN-order effect relative to radiation reaction

that is one order higher in qencðr2Þ. A similar line of logic

would also lead to thinking about dark-matter accretion as a

negative 1.5 PN-order effect relative to radiation reaction

that is one order higher in qencðr2Þ. This is consistent with
dark-matter accretion being 1 PN order higher than

dynamical friction in the PN expansion.

III. ENCLOSED DARK-MATTER MASS AND ITS

ACCRETION FOR STATIC DARK-MATTER

DISTRIBUTIONS

We introduce and discuss several different analytical

estimates and calculations of the captured mass in this

section for static dark-matter distributions (as in [11]). We

show that there are binaries for which more dark matter

would be accreted onto the secondary during the inspiral

than there is dark matter enclosed within the secondary’s

initial orbit, when assuming that the dark-matter spike

remains static throughout the inspiral.

When the dark-matter distribution remains static during

the inspiral, the accreted mass onto the secondary can be

computed analytically in terms of elementary or special

functions, respectively, in the cases in which the evolution

of r2 is driven either (i) by gravitational radiation reaction

alone, or (ii) by both radiation reaction and dynamical

friction. In both cases, the equation for the evolution of m2

in Eq. (2.14) can be integrated by using the chain rule

ṁ2 ¼ ṙ2
dm2

dr2
; ð3:1Þ

this allows us to combine Eqs. (2.10) and (2.14) to obtain a

separable ordinary differential equation for dm2=dr2 in

terms of r2. It will be useful to write the result of solving the
differential equation for dm2=dr2 in terms of the ratio of

m2;f ≡m2ðr2;fÞ to m2;i ≡m2ðr2;iÞ. The quantity

macc ≡ Δm2 ¼ m2;f −m2;i; ð3:2Þ

which is the accreted mass, will also prove useful for

interpreting the expressions that we derive.

For the analytical estimates given in this section, we

will use the parameter ζ defined in Sec. II when it takes on
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two different values (primarily for illustrative purposes).

We will consider both when the density is the total density

at r2 (ζ ¼ 1) and when it is the density of particles moving

more quickly than the local orbital speed for a static spike

(ζ ¼ 1 − ξ). The ζ ¼ 1 case acts as an upper limit of the

amount of dark-matter mass accreted. The ζ ¼ 1 − ξ case is

an analytical estimate (for static halos) of the effect of

dynamical-friction feedback taking away all of the avail-

able more slowly moving particles on the accretion process.

As we will show later in Sec. IV, it turns out to be a good

lower limit when DF feedback does not induce a large

(transient) change in the distribution function; however,

when there is significant dynamical-friction feedback, it is

not a lower limit.

A. Gravitational radiation reaction only

Supposing that the term ṙRR2 is the only term on the right-

hand side in Eq. (2.10), then by integrating Eq. (3.1), we

find the ratio m2;f=m2;i is given by

m2;f

m2;i

¼ exp

�

−
5π

4m1

�

c2

Gm1

�

3=2 ζρspr
γsp
sp

9=2−γsp
Δðr9=2−γsp2 Þ

�

: ð3:3Þ

Here Δðr9=2−γsp2 Þ ≡ r
9=2−γsp
2;f − r

9=2−γsp
2;i is negative for

r2;f < r2;i, so that m2;f > m2;i.

To understand some features of Eq. (3.3), we will take

the limit in which the argument of the exponential is small,

so that ex ≈ 1þ x is a good approximation. Working also

under the assumption that r2;i ≫ r2;f ≈ rin as well, we can

write the ratio of the accreted mass to the enclosed dark-

matter mass
11

as

macc

mencðr2;iÞ
≈

5

16
qiζ

�

3 − γsp

9=2 − γsp

��

Gm1

c2r2;i

�

−3=2

; ð3:4Þ

where qi ¼ m2;i=m1 refers to the initial mass ratio. Again

when r2;i ≫ r2;f ≈ rin, it can be shown that at a fixed time

from merger, r2;i scales with m1 and qi as q
1=4
i m

3=4
1

(assuming that leading, Newtonian-order radiation reaction

is driving the inspiral). Thus, because the mass ratio qi
scales as 1=m1 for a given secondary mass m2, then

macc=mencðr2;iÞ scales as m−7=4
1 . Furthermore, it has a weak

dependence on ρsp and γsp, even though both mencðr2;iÞ and
macc depend strongly on ρsp and γsp, as can be seen from the

approximate expression in Eq. (3.4).

Because of this argument, we plot only the dependence

ofmacc=mencðr2;iÞ onm1 in Fig. 1 at fixedm2 ¼ 10M⊙ for a

given value of ρsp ¼ 226M⊙=pc
3 and γsp ¼ 7=3. We

choose r2;i ¼ r2;4y, where we use r2;4y to denote the binary

separation such that the secondary will inspiral to the

innermost stable circular orbit (ISCO) in 4 years for each

value of m1. The period of four years is chosen to be

consistent with the nominal LISA mission lifetime.

Choosing different values for the parameters ρsp and γsp
only makes a very small difference for the case of an

inspiral driven by radiation reaction. We do use the full

expression for m2;f in Eq. (3.3) when computing

macc=mencðr2;4yÞ, rather than the approximate expression

in (3.4).

All three curves in Fig. 1 suggest that the previous

estimates of the effect of dark-matter accretion on the

IMRI’s dynamics (and thus the emitted gravitational

waves) were likely overestimated for smaller primary

masses m1. We focus here on the dashed blue curve in

which only the effects of radiation reaction are included

in the evolution of r2 (the other curves will be discussed in

Sec. III B next). In cases in which macc=mencðr2;4yÞ > 1,

then more dark matter would be accreted during the inspiral

than there is dark matter enclosed within a sphere of the

FIG. 1. The accreted mass macc normalized by the enclosed

massmencðr2;4yÞ. The blue dashed curve corresponds to including
only gravitational radiation reaction with ζ ¼ 1 corresponding to

no additional restriction on the speeds to dark-matter particles

being accreted. The gray dashed-dotted curve with ζ ¼ 1 is the

corresponding one with both radiation reaction and dynamical

friction. Finally, the solid orange curve also includes dynamical

friction and radiation reaction in the dynamics, but assumes

ζ ¼ 1 − ξ, which mimics the effects of only being able to accrete

particles in a static spike that move more quickly than the orbital

speed of the secondary. The secondary mass was chosen to be

m2 ¼ 10M⊙. The dark matter distribution is given by the static

spike in Eq. (2.1) with ρsp ¼ 226M⊙=pc
3 and γsp ¼ 7=3. The

enclosed mass is computed for an initial orbital separation r2;4y
such that the IMRI will merge in four years (a duration which is

consistent with the nominal length of the LISA mission). For all

cases, there is a range of parameter space in which the accreted

mass exceeds the enclosed mass. Further discussion of the

implications of this figure is given in the text of Sec. III.

11
We will normalize by the total enclosed mass in both the

ζ ¼ 1 and ζ ¼ 1 − ξ cases, although one could argue it would be
more reasonable to normalize by the enclosed mass of particles
moving more quickly than the orbital speed in the ζ ¼ 1 − ξ case.
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size of the secondary’s orbital radius. For primary masses

less than a few times 103M⊙, there is likely more dark-

matter accretion than there is nearby dark matter

to accrete. Moreover, even for macc=mencðr2;4yÞ < 1 (but

not ≪ 1), the secondary accretion could significantly alter

the dark-matter distribution in the neighborhood of the

secondary.

However, this estimate of accreted dark matter for a static

halo when the binary evolves due only to radiation reaction

(the dashed blue curve in Fig. 1) is an upper bound on the

amount of accretion that could occur.
12
As we show next,

including the effects of dynamical friction on the binary’s

orbit for a static halo also can lead to a somewhat smaller

estimate.

B. Gravitational radiation reaction

and dynamical friction

Suppose now that both ṙRR2 and ṙDF2 contribute to the

evolution of the binary’s separation in Eq. (2.10). The

amount of time elapsed as the binary inspirals between two

orbital radii and the mass captured can be written as

integrals over r2 between these radii, and these integrals

can be expressed in terms of hypergeometric functions. For

the elapsed time, the integral is

Δt ¼ 5c5

64ðGm1Þ3
Z

r2;i

r2;f

ðr2Þ3dr2
1þ r

11=2−γsp
2 =cr

; ð3:5Þ

where the coefficient cr was given in [14] as

cr ¼
8m1ðGm1Þ5=2

5πc5ρspr
γsp
sp ξ logΛ

; ð3:6Þ

up to corrections of order q. The elapsed time then can be

written as

Δt ¼
��

5c5ðr2Þ4
256ðGm1Þ3

�

2F1

�

1; bt; 1þ bt;−
r
11=2−γsp
2

cr

��

r2;i

r2;f

;

ð3:7Þ

where bt ¼ 8=ð11 − 2γspÞ. The hypergeometric function is

bounded between zero and one for positive r2 and cr (and
the values of γsp that we consider), so the expression (3.7)

has the form of the fraction of the time to inspiral to zero

separation at the initial radius minus that of the final.

Because the hypergeometric function is a decreasing

function of radius, this is consistent with the fact that

the system will always inspiral more quickly between two

given radii when dynamical friction is present than absent.

A similar calculation to solve for the accreted mass

shows that

log

�

m2;f

m2;i

�

¼ 5π

4

�

c2

Gm1

�

3=2 ζρspr
γsp
sp

m1

×

Z

r2;i

r2;f

r
7=2−γsp
2 dr2

1þ r
11=2−γsp
2 =cr

: ð3:8Þ

The integral can again be evaluated in terms of a hyper-

geometric function

log

�

m2;f

m2;i

�

¼
�

5π

4m1

�

c2

Gm1

�

3=2 ζρspr
γsp
sp

9=2−γsp
r
9=2−γsp
2

× 2F1

�

1;bm;bmþ1;−
r
11=2−γsp
2

cr

��

r2;i

r2;f

; ð3:9Þ

where bm ¼ ð9 − 2γspÞ=ð11 − 2γspÞ. The function in the

exponent for the accreted mass has a similar form to that

without dynamical friction, but it is rescaled by a hyper-

geometric function. For similar reasons to those described

above for the time to inspiral, the amount of accreted mass

will be decreased.

The accreted mass in this case is depicted by the gray

dotted-dashed (ζ ¼ 1) and orange solid (ζ ¼ 1 − ξ) curves

in Fig. 1. They show that there is a region of binary primary

masses, similar to that of the radiation-reaction only, in

which the accreted mass can exceed the enclosed mass. The

deviation of these curves from a power law inm1 with slope

−7=4 arises from two somewhat competing effects that take

place when dynamical friction is included with gravita-

tional radiation reaction. First, from Eq. (3.7), it follows

that the binary inspirals from a larger radius in a fixed

time interval when dynamical friction is included; this gives

the opportunity to accrete more dark matter over a larger

range of radii. However, dynamical friction speeds up the

time to inspiral inward from a given radius, thereby

decreasing the amount of time spent at a given radius

(and hence the amount of mass accreted at a given radius).

From Eq. (3.9) and Fig. 1, it is possible to deduce that the

latter effect is more significant than the former.

Since it was previously demonstrated in [14] that

neglecting feedback from dynamical friction on the dark-

matter distribution could lead to energy balance being

violated significantly during the inspiral, it is perhaps not

too surprising that there could be an excess in accreted mass

when the halo is assumed to be static. However, since the

dynamical-friction feedback was shown in [14] to produce

a large transient depletion of the dark-matter density in the

vicinity of the secondary (see also [15]), it would not be

surprising if feedback also had an important effect on the

12
The reason it is an upper bound is that neglecting dynamical

friction causes the binary to inspiral more slowly, thereby giving
the secondary more time to accrete dark matter. This will be
shown more quantitatively in the next part, Sec. III B.

SECONDARY ACCRETION OF DARK MATTER IN INTERMEDIATE … PHYS. REV. D 108, 124062 (2023)

124062-9



mass captured. We describe the effects of including feed-

back from dynamical friction in the next section.

IV. EVOLVING DARK MATTER WITH

DYNAMICAL-FRICTION FEEDBACK

We first review the formalism of [14] and the assump-

tions that enter into this formalism. We then present results

in which we ignore the effects of dark-matter accretion as

in [14], but we consider more massive secondary compan-

ions (namely m2 ¼ 10M⊙) than had been studied previ-

ously in [14]. The final part of this section is our treatment

of secondary accretion with dynamical-friction feedback,

but without attempting to include feedback on the dark-

matter distribution from the accretion process. Dynamical-

friction feedback prevents the captured mass from

exceeding the initial enclosed mass (for the binaries that

we consider), but the ratio of the two masses approaches

unity for mass ratios near q ¼ 10−2 (orm1 ¼ 103M⊙). This

suggests that feedback from secondary accretion will be

important in this region of parameter space.

A. Review of dynamical-friction feedback

The dynamical-friction feedback introduced in [14]

made use of the specific relative energy

E ¼ Gm1

r
−
1

2
v2; ð4:1Þ

where bound orbits are E > 0, and where we have

neglected the potential of the dark-matter spike, which is

consistent with our approximation of the Keplerian orbital

frequency in Eq. (2.8).
13

The distribution function (mass

density on phase space) will be assumed to be isotropic in

momentum space and spherically symmetric in position

space, so that it can be written as just fðEÞ when static, and
fðE; tÞ when dynamic. In the absence of the secondary, a

distribution function related through Eddington inversion

to the density ρDMðrÞ in Eq. (2.1) was shown in [13] to be

given by

fðEÞ¼ γspðγsp−1Þ
ð2πÞ3=2

Γðγsp−1Þ
Γðγsp−1=2Þ

�

rspE

Gm1

�

γsp

ρspE
−3=2: ð4:2Þ

When the secondary is present, it will scatter with dark-

matter particles and introduce a time dependence into the

dark-matter distribution.

The formalism in [14] relied upon a few key assump-

tions. There the dark matter was not modeled on the orbital

timescale of the secondary, but only on timescales longer

than the orbital period. During the orbital time, the dark-

matter distribution was assumed to equilibrate quickly after

scattering, and that on timescales longer than the orbital

time the distribution function remains spherically symmet-

ric and isotropic, so that it can be written as a function

of just E and not also angular momentum.
14
On the longer

dissipative timescale, the dark-matter dynamics were mod-

eled by considering the average interactions between the

secondary and the dark-matter distribution over an orbital

period. We will also follow similar assumptions when

modeling the accretion of dark matter by the secondary.
15

Because fðE; tÞ is the phase-space mass density of

particles with a given E per volume in position and velocity

space, it is convenient to introduce the density of states at

each energy, which is given by

gðEÞ ¼
Z

d3r

Z

d3vδ(E − Eðr; vÞ): ð4:3Þ

Using the definition of E in Eq. (4.1), this can be written as

(see, e.g., [14])

gðEÞ ¼
ffiffiffi

2
p

ðπGm1Þ3E−5=2: ð4:4Þ

Note that it has units of phase-space volume per energy, so

that fðEÞgðEÞ has units of mass per energy.

The density of states is used to compute the differential

scattering rate, per energy change ΔE and per orbital

period, of particles with energy E to an energy E − ΔE.

This was given in [14] by

REðΔEÞ ¼
1

T2gðEÞ

Z

d3r

Z

d3vδ(E − Eðr; vÞ)

× δ(ΔEðbÞ − ΔE): ð4:5Þ

In the equation above, b is the impact parameter for a

scattering event with energy change ΔE, and T2 is the

orbital period of the secondary. In a lengthy calculation

outlined in Sec. IV and Appendix D of [14], this integral

over phase space can be reduced to an integral over a torus

13
As a result, we do not introduce the notation

ΨðrÞ ¼ ΦðrÞ −Φ0, which is used in [14].

14
It is noted in Ref. [14] that dynamical friction also provides a

torque that causes the angular momentum of the binary to
decrease. Thus, through angular momentum conservation, the
dark-matter distribution should have some dependence on an-
gular momentum. However, it was argued in [14] that for the
distribution function to develop a strong dependence on angular
momentum, the dark-matter particles would need to undergo a
large number of scatterings that would tend to unbind the
particles from dark-matter spike. Thus, the distribution of bound
dark-matter particles could be approximated reasonably by a
distribution function that depends only on the specific energy E.

15
For accretion onto the secondary, it was noted in [30] that the

change in the orbital radius ṙA2 could be understood as the change
in the orbit that occurs when the angular momentum remains an
adiabatic invariant as the secondary’s mass increases. Thus,
considerations of angular-momentum balance do not require that
angular-momentum dependence of the distribution function
change in response to accretion onto the secondary.
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with minor radius b and major radius r2. In the limit that

b=r2 is small, the leading-order expression for the integral

in this small parameter can be expressed in terms of

incomplete elliptic integrals of the second kind, which

speeds up the computation of this differential scattering

rate. We do not make any changes to the calculation in [14]

aside from the fact that the notation REðΔEÞ for the rate

that we use is related to the scattering probability of [14]

by PEðΔEÞ ¼ T2REðΔEÞ. Thus, we do not reproduce all

the expressions for the impact parameter and scattering

rate here. Finally, it will also be useful to compute the

total scattering rate at a given energy, which we

denote by

RE ¼
Z

dΔEREðΔEÞ: ð4:6Þ

With these quantities defined, we can write the pre-

scription of [14] for evolving the distribution function due

to dynamical-friction feedback. The basic principle is

similar to that of chemical kinetics, where the distribution

function takes the place of the concentrations, and scatter-

ing rates replace the rate constants. Specifically, scattering

takes away particles with a given energy E at the rate RE in

a way that is proportional to the phase-space density of

particles at that energy fðE; tÞ. This leads to an “outflux”

term of the form −REfðE; tÞ. However, scattering also adds
particles at energy E by scattering from other energies

E − ΔE to the energy E. This “influx” term involves an

integral of the form

Z

dΔE

�

E

E − ΔE

�

5=2

RE−ΔEðΔEÞfðE − ΔE; tÞ: ð4:7Þ

The first term in the integrand is the ratio of the densities of

states at energies E − ΔE and E. The net influxes and

outfluxes then give the following prescription for the

evolution of the distribution function:

∂fðE; tÞ
∂t

¼ −REfðE; tÞ

þ
Z

dΔE

�

E

E −ΔE

�

5=2

RE−ΔEðΔEÞfðE −ΔE; tÞ:

ð4:8Þ

There is an implicit dependence on the position of the

secondary r2ðtÞ in the scattering rate REðΔEÞ (and thus

also RE), because the impact parameter depends upon the

radial position of r2. This implies that the integro-partial-

differential equation (4.8)—or IPDE, for short—is coupled

to the ordinary differential equation (ODE) describing the

evolution of r2 in Eq. (2.10). In addition, because the total

mass density in position space is computed via

ρDMðr; tÞ ¼
Z

d3vfðE; tÞ; ð4:9Þ

the dynamical-friction and the secondary-accretion

terms ṙDF2 and ṙA2 are coupled to the IPDE through

ρDMðr2; t; v < v2Þ and ρDMðr2; tÞ, respectively. Thus, the
evolution of ṙ2 and the IPDE must be solved as a coupled

IPDE-ODE system. The HALOFEEDBACK code [32] imple-

ments this procedure to evolve the distribution function and

solve the coupled IPDE-ODE system. We use this code to

produce the results in the next subsection.

B. Results without secondary accretion

As a baseline for our comparisons of the effects of

secondary accretion on IMRIs with dynamical dark-matter

distributions, we evolve a set of five binaries with different

mass ratios for which we do not include the effect of the

secondary accretion in the evolution equation for ṙ2 (so that
the simulations follow the same method as those in [14]).

We do this for two reasons: First, we would like to consider

mass ratios closer to one than were simulated in [14] to

better compare with the cases treated in [11] for static halos.

Second, although we will treat some of the same mass

ratios as in [14], we will use a larger secondary mass m2

that is more appropriate for a black hole (whereas [14] used

a mass appropriate for a neutron star). Unlike vacuum

black-hole binaries, those with dark matter have an addi-

tional mass scale (that of the dark matter), which implies

that the total mass of the two black holes does not scale out

of the problem. As a result, it is not clear that we can rescale

some of the results in [14] to apply to our case with a larger

secondary mass.

Specifically, we consider a secondary with mass m2 ¼
10M⊙ and five different primary masses m1 ¼ 103M⊙,

3 × 103M⊙, 10
4M⊙, 3 × 104M⊙, and 105M⊙ (i.e., initial

mass ratios of q ¼ 10−2, 3 × 10−3, 10−3, 3 × 10−4, and

10−4). We evolve the system for an initial dark-matter spike

with a power law of γsp ¼ 7=3 and with ρsp ¼ 226M⊙=pc
3

for all mass ratios. We compute the evolution using an

initial separation that is three times the separation at which

the binary would merge in vacuum in four years (3r2;4y),

which is computed assuming an inspiral driven by the

Newtonian-order quadrupole formula. As discussed in

further detail in [14], when the binary starts its inspiral

at this separation, the dark-matter distribution at radii

smaller than r2;4y is largely unaffected even as the dark-

matter distribution reaches a “steady-state” configuration

during the slow, quasicircular inspiral from 3r2;4y. This then

makes the dark-matter distribution when the secondary

reaches r2;4y consistent with a formation history involving

an adiabatic inspiral from much larger radii (something

which is not true of the part of the inspiral much closer to

3r2;4y). We compute the number of gravitational-wave

cycles from the separation of r2;4y. The HALOFEEDBACK
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code solves the ODE-IPDE system with a maximum time

step that is a multiple of the orbital period at a given radius;

for the simulations below, we chose this to be 50 orbital

periods.
16
Since the gravitational waves are quadrupolar in

the leading, Newtonian approximation, this corresponds to

100 gravitational-wave cycles. Thus, we will round our

expressions for the number of cycles and the amount of

dephasing to the nearest 100 cycles here and below.

The number of gravitational-wave cycles and the amount

of dephasing from vacuum signals is presented in Table I.

There are several ways to compute these quantities; in

terms of the separation r2, the number of cycles can be

written as

Ncycles ¼
1

π

Z

rISCO

r2;i

Ωṙ−12 dr2; ð4:10Þ

where Ω is the Keplerian orbital frequency given in

Eq. (2.8). We will also find it useful to consider the number

of cycles as a function of the starting frequency by mapping

the orbital separation to the gravitational-wave frequency

using Kepler’s third law. The difference in the number of

cycles (the dephasing) is given by

ΔN
ð0–1Þ
cycles ¼ N

ð0Þ
cycles − N

ð1Þ
cycles; ð4:11Þ

where N
ð0Þ
cycles is the number of cycles in vacuum and N

ð1Þ
cycles

is the number when dynamical-friction feedback is

included. Because the binary inspirals more quickly with

the additional source of energy loss from the binary via

dynamical friction, the dephasing ΔN
ð0–1Þ
cycles is a positive

quantity.

First, it is useful to compare the results here for mass

ratios of 10−4 and 10−3 with those in [14], which have a

lower total mass (and chirp mass). At a fixed mass ratio and

for a fixed time to reach the ISCO, the total number of

cycles scales like the chirp mass to the −5=8 power (in

the Newtonian approximation) which also just goes like

the primary mass to the same power. Thus, it is not

too surprising that the total number of cycles at these mass

ratios is roughly a factor of 10−5=8 ≈ 0.24 times smaller

than the corresponding results at the same mass ratio

in [14]; with dynamical-friction feedback, the inspiral is

driven primarily by gravitational radiation reaction.

The magnitude of the dephasing ΔN
ð0–1Þ
cycles (which is

computed from a fixed initial frequency between binaries

in vacuum and those with dynamical-friction feedback) is

somewhat more subtle to compare, at fixed mass ratio,

between the results here and in [14]. Dynamical friction

with feedback is determined by an effective density

(discussed in [15]) evaluated at the location of the secon-

dary and the secondary’s mass; this effective density is also

a function of the binary separation, binary masses, and the

initial dark-matter distribution. Thus, at fixed secondary

mass and for similarly parametrized dark-matter densities,

we would need to study the effective density and its scaling

with the primary mass; however, we will leave studies of

this effective density to future work. Instead, we will focus

primarily on the qualitative similarities in the dephasing.

In particular, we note that the dephasing is not a

monotonic function of the mass ratio, but it peaks at a

mass ratio between 10−4 and 10−3 before decreasing. This

was also observed in [14], where the explanation for this

phenomenon was associated with the increased local

depletion of the dark-matter density near the secondary

for less-extreme mass ratios (i.e., a lower effective density).

We observe here that this effect becomes even more

pronounced at less extreme mass ratios; thus, although

the total number of cycles increases, the amount of

dephasing actually decreases, thereby leading to both a

smaller absolute and relative effect. We will next turn to

some of the implications of this when we introduce

accretion onto the secondary in this evolving dark-matter

distribution without incorporating feedback on the distri-

bution from accretion.

C. Secondary accretion with

dynamical-friction feedback

To understand the effect of dynamical-friction feedback

on the accreted mass, we evolve the IMRI with the

accretion term in the IMRI equations of motion, so that

Eq. (2.10) includes all three terms. We also computem2 as a

function of time using its evolution equation (2.12). We

evolve the five cases described in Sec. IV B similarly, with

TABLE I. Number of gravitational-wave cycles with dynami-

cal-friction feedback and dephasing from vacuum binaries. We

use the notation N
ð1Þ
cycles for the number when dynamical-friction

feedback is included and ΔN
ð0–1Þ
cycles for the dephasing from vacuum

systems (difference in number of cycles, from the same starting

frequency, between vacuum binaries and those with dark

matter when DF feedback is included). The secondary mass

is m2 ¼ 10M⊙, and the initial dark-matter distribution has

γsp ¼ 7=3 and ρsp ¼ 226M⊙=pc
3. The number of cycles is

computed four years from merger, where the merger is defined

as when the secondary reaches the ISCO.

m1 ½M⊙� N
ð1Þ
cycles ΔN

ð0–1Þ
cycles

103 2,098,000 700

3 × 103 1,591,500 1,700

104 1,174,000 4,000

3 × 104 886,900 6,200

105 650,300 4,300

16
We performed numerical convergence tests to verify that the

binary separation and phase converged at a rate consistent with
the second-order method used to solve the IPDE-ODE system
using time steps of 50 orbital periods and larger.
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the only difference being the additional term in the

evolution equation for ṙ2. The results are summarized in

Fig. 2 and Table II.

In Fig. 2, the solid orange curve is the same as the solid

orange curve in Fig. 1; namely, the ζ ¼ 1 − ξ case with

both gravitational waves and dynamical friction driving the

evolution of the binary in a static dark-matter distribution.

The five blue circles are the results of the numerical

simulations described above for the accreted mass normal-

ized by the enclosed mass. A power-law least-squares fit to

the five data points is shown as the blue dotted curve in

Fig. 2. A single power law with slope ≈ −1.3 (to two

significant figures) is able to capture the qualitative trend in

the data.

A brief comment regarding the convention we use for the

enclosed mass for the dynamic halo is in order. In the

dynamic case, we normalized by the enclosed mass within

r2;4y when using the initial static dark-matter density to

compute the enclosed mass. For the evolution with

dynamical-friction feedback, however, we start the evolu-

tion at a distance of r2;i ¼ 3r2;4y to produce a dark-matter

distribution once the binary reaches a radius of r2 ¼ r2;4y
that is consistent with inspiral from a radius much larger

than r2;4y. The dark-matter density when the binary is at

r2;4y does differ (significantly in some cases) from the

initial power-law distribution in Eq. (2.1) that is used when

the binary is at 3r2;4y in the dynamic case (or at r2;4y in the

static case). Thus, the mass enclosed using the initial static

density, msta
encðr2;4yÞ is different from m

dyn
enc ðr2;4yÞ, the mass

enclosed for the dynamical dark-matter distribution when

DF feedback is included. We choose to normalize macc

by msta
encðr2;4yÞ in Fig. 2 so that the total accreted mass

can be compared more easily between the static and

dynamic cases depicted there. We will also give the ratio

m
dyn
enc ðr2;4yÞ=msta

encðr2;4yÞ in Table II which indicates the

extent to which dark-matter mass is redistributed once

the binary reaches the radius r2;4y in the dynamic case. It

can also be used to determine how efficient the accretion

process is in terms of the available amount of enclosed

mass that could be accreted.

At the largest primary massm1 ¼ 105M⊙ (or q ¼ 10−4),

the accreted mass in the dynamic case is larger than in the

static case for ζ ¼ 1 − ξ. This suggests that dynamical

friction feedback is not significantly influencing the dark-

matter halo and that both dark-matter particles moving

more quickly and more slowly than the orbital speed can be

accreted by the secondary. For masses m1 r 3 × 104M⊙

(i.e., qs 3 × 10−3), the mass captured in the dynamic case

is less than that in the static case, even though in the static

case the assumption that ζ ¼ 1 − ξ could be understood

as representing that only particles moving faster than the

secondary’s speed are accreted, as compared with dynami-

cal-friction feedback that acts on the more slowly moving

particles. While this may seem surprising, the fact that the

number of more slowly moving particles is simply propor-

tional to the total density times ζ holds for a single-

power-law distribution, as in Eq. (2.1), and not more

generally. Thus, ζρDMðr2Þ can overestimate the amount

of dark matter at the location of the secondary, particularly

when dynamical-friction feedback has a large effect on the

dark-matter distribution.

The approximate power-law slope of ∼ −1.3 in the fit

rather than −7=4 when radiation-reaction is driving the

inspiral of the binary could be understood if the density

FIG. 2. The accreted mass macc normalized by the enclosed

mass msta
encðr2;4yÞ of a static dark-matter distribution. The dark

matter and binary parameters are chosen as in Fig. 1. The solid

orange line is the same ζ ¼ 1 − ξ curve in Fig. 1 with the

secondary’s secular evolution driven by radiation reaction and

dynamical friction. The blue circles are the results of five

numerical simulations performed with the HALOFEEDBACK code,

and the dotted blue line is a fit to these five points using a single

power law. Further discussion of the implications of this figure

are given in the text of Sec. IV C.

TABLE II. Number of cycles of dephasing, as well as the

normalized accreted and enclosed masses for binaries with

dynamical friction and accretion. The configuration of the dark

matter and the binary are the same as in Table I. The second

column of dephasing numbers is the same as in Table I, and is

reproduced here for ease of comparison. The third column of

numbers is the dephasing when dynamical-friction feedback is

included in both cases, but the effect of accretion on ṙ2 is included
in only one case. The fourth column contains the same data as

the blue points in Fig. 2. The final column is the ratio of the

dynamical and static enclosed masses, as described further in the

text of Sec. IV C.

m1 ½M⊙� ΔN
ð0–1Þ
cycles ΔN

ð1–1AÞ
cycles macc=m

sta
enc m

dyn
enc=m

sta
enc

103 700 3,400 0.8640 0.645

3 × 103 1,700 1,400 0.1843 0.674

104 4,000 600 0.0326 0.693

3 × 104 6,200 300 0.0080 0.729

105 4,300 200 0.0018 0.852

SECONDARY ACCRETION OF DARK MATTER IN INTERMEDIATE … PHYS. REV. D 108, 124062 (2023)

124062-13



during the inspiral had a flatter power law than γsp in

Eq. (2.1) (the same calculations in Sec. III apply to any

power law). The density would need to follow a power law

of roughly −1.6 instead of γsp ¼ −7=3 for this to be the

case. The results for the density in Sec. VI B show that the

density has a slope that is less steep than the initial dark-

matter-spike power law at radii larger than the binary

separation, but steeper at smaller radii. Thus, we did not

arrive at a similar, simple explanation for the scaling of the

accreted over the enclosed mass with the primary mass

when dynamical-friction feedback was included.

In Table II, the second column reproduces the

gravitational-wave dephasing between vacuum and with

dynamical-friction feedback only. The third column com-

pares the dephasing between dynamical-friction feedback

only and including the accretion term in the evolution of r2
without feedback. (We do not show the total number of

cycles in the case, which would be denoted by N
ð1AÞ
cycles,

because the dephasing is typically less than one percent of

the total number of cycles.) We then show the difference

ΔN
ð1–1AÞ
cycles between N

ð1AÞ
cycles and the number of cycles N

ð1Þ
cycles

when only dynamical-friction feedback is included (as in

Sec. IVB). The fourth column macc=m
sta
enc contains the same

data that appears in the five points in Fig. 2. The fifth column

shows the ratio of the mass enclosed within r2;4y in the

dynamic versus the static dark-matter distributions [the latter

being known analytically and computed from Eq. (2.4)].

Table II illustrates some clear trends in both the dephasing

and mass accreted. For larger primary masses (above

∼104M⊙), the mass accreted is a small fraction of the total

mass enclosed within the orbit, and the dephasing induced

by accretion is significantly smaller than that due to

dynamical friction with feedback. Nevertheless, the final

column (dynamical over static mass enclosed) shows that

dynamical-friction feedback does have a nontrivial effect

on the distribution of dark matter. For masses m1 below

∼3 × 103M⊙, the dephasing induced by dynamical friction

with feedback and accretion without feedback become

comparable, or even several times larger for accretion. In

addition, the amount of accreted mass approaches the

enclosed mass as the primary mass approaches 103M⊙.

The results of Fig. 2 and Table II suggest that for smaller

m1 (or qs 3 × 10−2), the lack of feedback on the distri-

bution function from dark-matter particles being removed

leads to a larger amount of dephasing and mass captured

than would occur if feedback were included. We thus turn

to introducing a procedure to implement feedback from

secondary accretion on the dark-matter distribution in the

next part, Sec. V.

V. SECONDARY-ACCRETION FEEDBACK

In the previous section, we found that with dynamical-

friction feedback the amount of mass accreted remains less

than the enclosed mass in the cases we have simulated (but

the two masses could be nearly equal). In addition, for the

systems in which the largest fraction of the enclosed mass

was accreted, the effect of secondary accretion on the

evolution of the orbital phase exceeded that of dynamical

friction with feedback on the dark matter. This result

seemed surprising given the higher post-Newtonian nature

of the secondary-accretion process, and it suggested that we

need a procedure to remove the accreted dark-matter mass

from the distribution function so as avoid these scenarios

that lead to unreasonably large dark-matter secondary

accretion. To do so, it will then be necessary to evolve

the dark-matter distribution in response to the removal of

dark-matter particles from the distribution function for

particles with orbits that fall within the accretion cross

section of the secondary. We discuss a procedure to

implement this removal process in this section.

A. Formalism for secondary-accretion feedback

In this part, we derive how the accretion of dark matter

modifies the evolution of the distribution function. The

final result is relatively simple: only an additional term of

the form −Racc
E
fðE; tÞ must be added to Eq. (4.8) for the

distribution function. Namely, secondary accretion simply

removes particles from fðE; tÞ at each energy by an energy-
dependent rate Racc

E
; this causes the magnitude of the

distribution function to decrease at all the energies for

which Racc
E

is nonzero. This mass loss must be balanced by

an increase in mass of the secondary; our prescription for

accretion feedback is consistent with the mass accretion

rate in Eq. (2.12).

1. Derivation of secondary-accretion feedback rate

The procedure that we use is qualitatively similar to that

of the dynamical-friction feedback on the dark-matter

spike. We make similar assumptions to those used in

dynamical-friction feedback, in particular with regard to

the quick equilibration on the orbital timescale (which is

used to justify maintaining spherical symmetry on the

longer dissipative timescale). We then will compute the

total rate of dark-matter accreted per orbital period at each

specific relative energy E.

We compute this per-orbit rate of accretion to be

Racc
E

¼ 1

T2gðEÞ

Z

r∈T2

d3r

Z

d3vδ(E − Eðr; vÞ): ð5:1Þ

The domain of the integral over position, denoted by r∈T2,

indicates that it should take place over the interior of a torus

of major radius r2 and of minor radius bacc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σðv2Þ=π
p

.

The integral over v can be evaluated using the properties of

the delta function, but some care must be taken when doing

this. The result of this integration is a square root,

which must be positive for the rate to be real. Because
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we consider only bound orbits, then the rate is restricted to

values of E that satisfy E ∈ ½0; Gm1=r�, for values of r
where there are at least some values that lie in the torus.

However, for simplicity we will make the further

assumption that if E satisfies E > Gm1=r for any value

of r∈ ½r2 − bacc; r2 þ bacc�, then the rate for this energy is

zero. In this approximation, the result of integrating over

velocities is

Racc
E

¼

8

>

>

>

<

>

>

>

:

4π
ffiffiffi

2
p

T2gðEÞ

Z

r∈T2

d3r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gm1

r
− E

r

for E <
Gm1

r2 þ bacc

0 for E ≥
Gm1

r2 þ bacc
:

ð5:2Þ

We now argue that this approximation will have a small

effect on the final expression for the rate. To do so, it is

useful to first note that the ratio of the inner radius to the

outer radius of the torus can be written as

bacc

r2
¼ 4Gm2

cr2v2
¼ 4q

v2

c
; ð5:3Þ

where Gm1=r2 ¼ ðv2Þ2 was used in the second equality.

Thus, even as v2 becomes relativistic, the ratio of the radii is

always a small quantity of order q. This implies that we can

write Gm1=r on the domain of integration of the torus as

Gm1

r
≈
Gm1

r2
½1þOðqÞ� ð5:4Þ

and we can neglect the OðqÞ terms. Similarly, this means

that when we consider the integral in Eq. (5.2) for energies

E < Gm1=ðr2 þ baccÞ, then to good approximation, we can

replace E < Gm1=ðr2 þ baccÞ with E < Gm1=r2. This also
shows that our approximation for the value of the energy at

which the rate vanishes had errors of order q; however, we
have frequently worked to leading order in q throughout

this paper.

With Gm1=r ≈Gm1=r2, the integrand can be treated as

constant on the torus, so the integral in Eq. (5.2) reduces to

the integrand evaluated at r2 times the volume of the torus.

As a result, the secondary-accretion rate for particles of

energy E will be given by

Racc
E

¼

8

>

>

>

<

>

>

>

:

8π2
ffiffiffi

2
p r2σðv2Þ

T2gðEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gm1

r2
−E

s

for E<
Gm1

r2

0 for E≥
Gm1

r2
;

ð5:5Þ

where we still consider only bound orbits with E > 0.

Using the results in [14], one can show that Racc
E
=RE

scales as ðv2=cÞ2, so the secondary-accretion rate is one PN

order higher than the rate of feedback from dynamical

friction. This is similar to the fact that the dissipative effects

in the equations of motion for the IMRI are one PN order

higher for dark-matter accretion than they are for dynamical

friction. However, unlike dynamical friction, which pref-

erentially transfers energy to dark matter particles that are

moving more slowly than the orbital speed v2, dark-matter

accretion affects both the more slowly moving and the more

rapidly moving particles. Consequently, while secondary

accretion will have a weaker effect on the more slowly

moving dark matter particles at a given r, it will have a

leading-order effect on the distribution of dark matter for

the more rapidly moving particles at a given r.

2. Evolution equations with secondary feedback

and mass conservation

Next, we discuss how secondary feedback affects the

coupled IPDE-ODE system that describes the evolution of

the IMRI and the surrounding dark matter. Secondary

accretion adds one new term to the IPDE in Eq. (4.8) of

the form Racc
E
fðE; tÞ, so that the IPDE can be written as

∂fðE; tÞ
∂t

¼ −ðRE þRacc
E
ÞfðE; tÞ

þ
Z

dΔE

�

E

E −ΔE

�

5=2

RE−ΔEðΔEÞfðE −ΔE; tÞ:

ð5:6Þ

A key difference between the dynamical-friction and

secondary-accretion feedback is that secondary-accretion

feedback removes particles from the distribution function

without replacing them (they fall into the secondary black

hole), whereas dynamical-friction feedback redistributes

particles with slower speeds to those with greater speeds.

Thus, dynamical-friction feedback largely conserves mass

in the distribution function (aside from some particles

scattering onto unbound orbits), whereas secondary-

accretion feedback causes the total mass of the dark-matter

distribution to decrease; however, the loss of mass from the

dark-matter distribution should be balanced precisely by an

increase in mass of the secondary.

It is not obvious, a priori, that the formalism for

accretion feedback introduced above will lead to a loss

of mass from the dark-matter distribution that is consistent

with the increase in mass of the secondary given in

Eq. (2.12). We can prove that the two are consistent in a

few lines, however. To do so, we integrate over phase space

[using the density of states gðEÞ] the term −Racc
E
fðE; tÞ

that governs the loss of dark-matter mass from accretion

feedback,

dmDM

dt
¼ −

Z

Racc
E
fðE; tÞgðEÞdE: ð5:7Þ
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This reduces, for Racc
E

in Eq. (5.5), to

dmDM

dt
¼ −4πv2σðv2Þ

Z Gm1
r2

0

dEfðE; tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�

Gm1

r2
− E

�

s

:

ð5:8Þ

The expression (5.8) has the same dependence on v2 and on
the cross section σðv2Þ as the evolution of m2 in Eq. (2.12).

The integral can be shown to be proportional to the density

at r2 by writing the energy at r2 as E ¼ Eðr2; vÞ and using

dE ¼ vdv at fixed r2. The square root in the integrand

reduces to the speed v. Writing f(Eðr2; vÞ; t) ¼ fðr2; v; tÞ,
then the integral reduces to

dmDM

dt
¼ −v2σðv2Þ

Z

vmax

0

fðr2; v; tÞ4πv2dv; ð5:9Þ

where vmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Gm1=r2
p

is the maximum bound velocity

at r2. The integral is written now in a form in which it is

more clearly equal to ρDMðr2; tÞ; this shows that the rate of
mass loss from the distribution function is given by

dmDM

dt
¼ −v2σðv2ÞρDMðr2; tÞ: ð5:10Þ

Thus, the accretion feedback rate is consistent with the

accretion rate onto the secondary, Eq. (2.12). This implies

that secondary-accretion feedback as implemented here

conserves the combined mass of dark matter and the

secondary,

ṁ2 ¼ −
dmDM

dt
: ð5:11Þ

We can then continue to compute the accretion term ṙA2 in

the equation of motion for ṙ2 as before. As a first study of

the secondary-accretion-feedback term, we investigate how

it behaves in isolation (without dynamical-friction and its

feedback) in the next part.

B. Results with secondary-accretion feedback

but without dynamical-friction feedback

To help understand the properties of secondary-accretion

feedback on the dark-matter distribution, we first consider a

simpler test case of how accretion influences the distribu-

tion without dynamical-friction feedback. In this case, the

IPDE for the evolution of the distribution function reduces

to a standard PDE,

∂f

∂t
¼ −Racc

E
fðE; tÞ: ð5:12Þ

Since Racc
E

depends on the position r2, the PDE is coupled

to the ODE for r2 (and vice versa). This coupling makes it

more challenging to find general analytical solutions, but

there are some solutions that can be found when additional

approximations are made. These simpler scenarios can

provide some intuition about the secondary-accretion

process.

First, when the secondary is held at a fixed location, the

secondary-accretion rate Racc
E

is no longer time dependent.

We can then integrate Eq. (5.12) directly to write it in

the form

fðt; EÞ ¼ fðEÞ exp ð−Racc
E
tÞ; ð5:13Þ

where fðEÞ is the initial value of the distribution function at
time t ¼ 0. Accretion then produces an exponential decay

of the distribution function at each specific energy at

the rate Racc
E
, for energies for which the rate is nonzero.

The expression for the rate in Eq. (5.5) has the properties

that it goes to zero at both E ¼ 0 and E ¼ Gm1=r2, and it

peaks at an energy equal to ð5=6ÞðGm1=r2Þ. The distribu-
tion function then gets depleted most strongly around this

value of the energy. The dark-matter density, being an

integral over velocity space of the distribution function, has

a more nontrivial profile as a function of position from the

accretion process (as we will show in more detail below

when we do not keep the secondary’s location fixed).

Second, in the approximation in which the binary’s

separation r2 evolves under the effect of gravitational

radiation reaction only, the distribution function as a

function of E and time t can again be determined analyti-

cally. In this case, it is more convenient to use the chain rule

to write the differential equation as

∂f

∂r2
¼ −

Racc
E

ṙ2
fðE; r2Þ: ð5:14Þ

For the energies for which Racc
E

is nonzero, the product

Racc
E
ðṙ2Þ−1 can be written as

Racc
E

ṙ2
¼ 5qc3r

7=2
2 E5=2

πðGm1Þ9=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gm1

r2
− E

s

: ð5:15Þ

If we then define the “energy radius” by

rE ¼ Gm1

E
ð5:16Þ

and the normalized (dimensionless) radius by

r2=E ¼ r2

rE
ð5:17Þ

then the distribution function has the following reasonably

simple form in terms of the changes in the initial and final

normalized radii r2=E ,
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log
fðr2;f ; EÞ
fðr2;i; EÞ

¼ Δ

�

2qc3

63πE3=2
ð1 − r2=EÞ3=2θ

�

Gm1

r2
− E

�

× θðEÞð35r3
2=E þ 30r2

2=E þ 24r2=E þ 16Þ
�

:

ð5:18Þ

The Δ means that the difference of the expression at the

final and initial radii r2=E should be taken. The two unit step

functions θðxÞ are required to set the argument of the

exponential to zero when the secondary-accretion rate goes

to zero. The expression (5.18) is implicitly a function of an

interval of time, Δt, because when r2 evolves because of

radiation reaction, the final value of r2 is given by

r2;f ¼
�

r42;i −
256qðGm1Þ3

5c5
Δt

�

1=4

: ð5:19Þ

The analytical expression for fðr2; EÞ in Eq. (5.18)

allows one to see that as the secondary inspirals between

an initial radius r2;i and the ISCO radius, rISCO, dark-matter

particles with smaller E are much more efficiently accreted

than those with larger E. This likely occurs because

secondary-accretion feedback occurs only up to the energy

Gm1=r2 but down to an energy of E ¼ 0. When the

secondary evolves as a result of radiation reaction, it

spends a larger number of orbital periods at larger sepa-

rations, which allows it to accrete more dark matter with

specific energies closer to zero during the inspiral. Only late

in the evolution do the particles with larger E become

accessible to accretion feedback.

We also compute the density ρDMðrÞ by numerically

integrating fðr2; EÞ over all velocities. The several different
dark-matter densities at different initial and final radii are

shown in the left and right panels of Fig. 3 for a binary

with masses m1 ¼ 103M⊙ and m2 ¼ 10M⊙. The curves

labeled “initial” correspond to the static, power-law dark-

matter distribution in Eq. (2.1) for ρsp ¼ 226M⊙=pc
3 and

γsp ¼ 7=3. Three different initial conditions for the binary’s

separation r2;4y, 3r2;4y, and 10r2;4y are considered on the

right and just the larger two are treated on the left. As

before, r2;4y is the radius for the binary to inspiral to the

ISCO under the influence of only gravitational radiation

reaction. The solid blue curves show the dark-matter

distribution after the binary evolves from r2;i ¼ 10r2;4y
with fðr2;i; EÞ given by Eq. (4.2) to r2;f ¼ r2;4y (on the left)

and r2;f ¼ rISCO (on the right). The dotted-dashed orange

curves are the analogous densities for r2;i ¼ 3r2;4y. The

dashed gray curve in the right panel shows the density

when r2;i ¼ r2;4y and r2;f ¼ rISCO. One can also interpret

the curves in the right panel as being the result of evolving

the curves with the corresponding line styles in the left

panel from the same initial separation of r2;i ¼ r2;4y
to r2;f ¼ rISCO.

This latter interpretation of the corresponding curves in

the two panels is useful for understanding what are suitable

initial starting radii that lead to a robust evolution of the

FIG. 3. Dark-matter density during and following the inspiral for different initial separations assuming no dynamical-friction feedback

and orbital evolution governed by radiation reaction only. In both panels, the binary began as two black holes with massesm1 ¼ 103M⊙

and m2 ¼ 10M⊙. The curves labeled “initial” are the initial dark-matter density in Eq. (2.1) for ρsp ¼ 226M⊙=pc
3 and γsp ¼ 7=3. The

radius r2;4y is shown with a vertical light-gray dotted line and the radii 3r2;4y and 10r2;4y are the dotted orange and blue vertical lines,

respectively. In the left panel, the two other curves of different colors and line styles (dashed-dotted orange and solid blue) show the

densities when the binary reaches the radius r2;4y, after having inspiraled from different starting radii (3r2;4y and 10r2;4y for orange and

blue, respectively). This illustrates how the density at radii larger than r2;4y depends strongly on the initial conditions, whereas it does not

for radii smaller than r2;4y, when the initial radius is larger than 3r2;4y. The right panel shows the density after the secondary reaches the

ISCO for the three initial separations of r2;4y, 3r2;4y, and 10r2;4y (the dashed gray, dotted-dashed orange, and solid blue curves,

respectively). The figure is discussed further in the text of Sec. V B.
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binary and to what extent the final dark-matter distribution

is influenced by the choice of initial data (similar questions

were considered in [14] when treating dynamical-friction

feedback only). Since for initial radii with ri s 3r2;4y the

dark-matter distribution when the binary reaches r2;4y
is nearly identical at radii with r < r2;4y (and since the

evolution of the mass ṁacc
2 in Eq. (2.12) depends on just

the local density of dark matter), then the calculations of

the accreted massmaccðr2;4yÞ are not too strongly dependent
on the initial radius for ri s 3r2;4y. The same is not true of

the dark-matter distribution after the secondary reaches the

ISCO. Comparing the orange and blue curves, the two

agree in a region of rr r2;4y=2. Thus, there is a smaller

range of radii over which the final dark-matter distribution

is insensitive to the choice of initial conditions. This should

be kept in mind when interpreting Fig. 3.

Nevertheless, in these calculations that neglect dynami-

cal friction, secondary accretion has a very large effect

on the final dark-matter distribution, particularly at larger

radii, where the secondary undergoes more orbits before

inspiraling to smaller radii. The effect on the dark matter

near the ISCO (the left-side of the plots) is much smaller,

because radiation reaction causes the binary to inspiral very

rapidly there. Unlike dynamical friction, which has a larger

transient effect on the particles moving more slowly than

the local orbital speed, accretion by the secondary can

cause a more significant lasting change to the dark-matter

distribution. Moreover, Fig. 3 suggests that to model

accurately the final distribution of dark matter, it is

necessary to know the correct initial conditions of the

binary.
17

The results shown in Fig. 3 should be interpreted with

some caution, however. First, as elaborated on in

Footnote 17, the different curves assume an improbable

formation scenario in which the binary appears at the initial

radius r2;i without having inspiraled or been captured at a

larger radius. Second, the results neglect feedback from

dynamical friction, which we expect to be more efficient,

because of its lower post-Newtonian order in the evolution

equation for r2. In particular, this suggests that the feedback
from dynamical friction could redistribute particles away

from the locations in phase space where they are most

efficiently accreted by the secondary. Thus, the results in

Fig. 3 are likely overestimates of the influence of secondary

accretion on the distribution of dark matter after the merger.

As a result, we do not present results for macc=m
sta
enc in

this subsection, because without dynamical-friction feed-

back, the accreted mass in this case will certainly be greater

than when both types of feedback are included. However,

we will show the results for macc=m
sta
enc in Sec. VI A to help

explain some of the qualitative features of this ratio for

different primary masses.

We now turn to the self-consistent modeling of the

binary and dark matter including both dynamical-friction

and secondary-accretion feedback in the following section.

VI. RESULTS WITH BOTH TYPES OF FEEDBACK

We implement the new secondary-accretion feedback

term written in Eq. (5.6) by adding it to the

HALOFEEDBACK code. This allows us to solve the full

evolution equations in (5.6) with both dynamical-friction

and secondary-accretion feedback, when coupled to the

ODE with all terms in the evolution equation for ṙ2 and to

the evolution for the secondary’s mass, ṁ2. In the sub-

sections below, we focus on the impact of secondary-

accretion feedback in this context: in particular, how it

changes the number of orbital (or similarly, gravitational-

wave) cycles during the merger, influences the accreted

mass onto the secondary, and affects the dark-matter

distribution during (and after) the inspiral.

A. Gravitational-wave dephasing and accreted mass

To help compare with the simulations in Tables I and II,

we again evolve the same five primary and secondary

masses as in these tables, with the same initial dark-matter

density ρsp ¼ 226M⊙=pc
3 and γsp ¼ 7=3. We show the

results in Table III. The second column is the dephasing

between simulations with both DF and SA feedback

[where the number of gravitational-wave cycles with both

types of feedback is N
ð2Þ
cycles] and simulations with only

TABLE III. Two cases of dephasing, as well as normalized

accreted and enclosed masses for binaries including dynamical

friction and accretion effects. The configuration of the dark

matter and the binary are the same as in Table I. The second and

third columns show dephasing in two cases. The second is the

dephasing between simulations with both types of feedback and

with only dynamical friction feedback. The third compares both

types of feedback to a case with accretion without feedback and

dynamical-friction with feedback. The fourth and fifth columns

are the analogs of the same columns in Table II, but now the

accreted and dynamical enclosed masses are computed in

simulations with both types of feedback. The interpretation of

these numbers is given in the text of Sec. VI A.

m1 ½M⊙� ΔN
ð1–2Þ
cycles ΔN

ð2−1AÞ
cycles macc=m

sta
enc m

dyn
enc=m

sta
enc

103 500 2,100 0.2461 0.604

3 × 103 800 700 0.1167 0.641

104 500 100 0.0302 0.686

3 × 104 200 100 0.0079 0.727

105 200 0 0.0018 0.851

17
The case of r2;i ¼ r2;4y, for example, corresponds to a

scenario in which the binary “materialized” at the radius r2;4y
in the initial density profile in Eq. (2.1) precisely four years from
merging without migrating in from some larger separation.
Similar statements hold for the other separations r2;i that are
multiples of r2;4y.
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dynamical-friction feedback. We denote this by ΔN
ð1–2Þ
cycles.

The third column shows the dephasing between calcula-

tions with both types of feedback and DF feedback with

accretion onto the secondary, but without feedback from

accretion (denoted ΔN
ð2−1AÞ
cycles ). The final two columns are

the accreted mass normalized by the enclosed mass in the

initial (static) halo, as well as the ratio of the mass enclosed

in the dynamical halo at a binary separation of r2;4y to the

static enclosed mass (for an initial separation of 3r2;4y, as in

the dynamical-friction feedback only simulations).

A few comments are in order about the results in

Table III, especially with regards to how the numbers here

compare with those in Table II. First, comparing the second

and third columns, it is clear that feedback has a relatively

small effect for primary masses larger than 104M⊙

(q r 10−3). However, for smaller m1, neglecting feedback

can lead to an overestimate of the amount of dephasing by a

multiplicative factor of a few. Another noteworthy feature

of adding feedback is that the amount of dephasing peaks

at a mass ratio of around 3 × 10−3, similarly to how the

simulations with DF feedback only have a maximum

dephasing at a mass ratio about ten times smaller. One

way to understand this behavior relies on an explanation

similar to that given to explain the peak dephasing that

occurs with DF feedback. As m1 decreases, accretion

becomes more efficient and feedback becomes stronger.

At some point, it becomes so strong that there is a

significant depletion of the dark-matter density, which

causes the amount of dephasing to decrease (since the

effects of accretion on ṙ2 depend linearly on the density in

the differential equation). Likely due to the higher post-

Newtonian order of accretion, the peak mass ratio for the

dephasing takes place at a less extreme value than it does

with dynamical friction.

Comparing the values of the accreted and enclosed

masses in Tables II and III, respectively, one can similarly

see that feedback does have a relatively small effect for m1

greater than ∼104M⊙. At larger mass ratios, the total

accreted mass is now well below one, but still a significant

fraction of the total enclosed mass. Thus, feedback plays an

important role in enforcing the conservation of mass and

in producing more reliable estimates of the amount of

gravitational-wave dephasing.

Next, in Fig. 4, we show the accreted mass normalized

by the enclosed (static) mass of the initial dark-matter

distribution for four different cases. First, the dark gray plus

signs are the visualization of the fourth column of Table III.

Second, the blue circles and dotted line are the same results

as in Fig. 2, which corresponds to accretion onto the

secondary with dynamical-friction feedback, but without

feedback from secondary accretion. Third, the dashed light-

gray curve is the case in which secondary accretion and its

feedback are taken into account, but dynamical friction is

neglected (as in Sec. V B). Specifically, the accreted mass

was computed from the density ρDMðr; tÞ, which was

obtained by numerically integrating the analytical expres-

sion for the distribution function in Eq. (5.18) over

velocities. The accreted mass was then computed through

mass conservation. Specifically, the difference in the

enclosed dark-matter masses was computed when the

secondary is at a separation of r2;4y and when it reaches

the ISCO. The enclosed masses were computed by numeri-

cally integrating the density ρDMðr; tÞ from the inner radius

to an outer radius of 30r2;4y; in fact, there was less of a

percent difference when the upper limit of the integral

was 30r2;4y or 10r2;4y. Fourth, the solid orange curve is the

ζ ¼ 1 case with both dynamical friction and radiation

reaction in Fig. 1. It is provided primarily for comparison

with the dashed gray curve.

As suggested in Sec. V B, for larger primary masses,

simulations that include secondary-accretion feedback only

(no dynamical friction) overestimate the amount of accreted

mass, because dynamical-friction feedback makes part of

the dark matter density inaccessible to capture. This is

illustrated in Fig. 4, which shows how the SA only curve

remains above the DF only curve for larger m1, and in fact

approaches the static curve which is a result with no

feedback effects. Given that it agrees with these static

results near m1 ¼ 105M⊙, this also suggests that feedback

from secondary accretion is negligible for these large

FIG. 4. The accreted mass macc normalized by the enclosed

mass msta
encðr2;4yÞ for different types of feedback. The dark matter

and binary parameters are chosen as in Fig. 2, and the enclosed

mass is that of the initial power-law distribution, also as in Fig. 2.

The solid orange curve is the same as the ζ ¼ 1 case in Fig. 1 with

gravitational radiation reaction and dynamical friction. The blue

circles and dotted line are the same as the dynamical-friction

feedback case in Fig. 2. The dashed light-gray curve corresponds

to including feedback from secondary accretion only, and the

dark-gray plus symbols are results of numerical simulations that

include both dynamical-friction and accretion feedback. Further

discussion of the implications of this figure are given in the text

of Sec. VI A.
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primary masses. However, for primary masses close to

103M⊙ (mass ratios close to 10−2), including only accretion

feedback leads to an accreted mass that significantly

deviates from the static case, and even is a factor of two

smaller than that from including only dynamical-friction

feedback. This indicates that modeling only dynamical-

friction feedback for these systems leads to an inaccurate

estimate of the accreted mass.

The combined effects of dynamical-friction and secon-

dary-accretion feedback on the accreted mass are shown by

the dark-gray plus symbols in Fig. 4. For the two larger

primary masses, the results are nearly indistinguishable

from those with only dynamical-friction feedback.

However, for m1 ¼ 104M⊙, a small difference can be seen,

and for m1 ¼ 103M⊙, using only dynamical-friction feed-

back leads to an overestimate of the accreted mass by

roughly a factor of four. Including secondary-accretion

feedback therefore proves important to obtaining accurate

estimates of the mass accreted and the impact of the

secondary’s inspiral on the dark-matter density after the

merger (which will be the subject of the next subsection).

Figure 5 shows how the gravitational-wave dephasing

accumulates as a function of frequency for three different

dephasing comparisons and for two different primary

masses; 104M⊙ (left) and 103M⊙ (right). The orange

dot-dashed curve, which depicts the dephasing ΔN
ð0–1Þ
cycles

between simulations with dynamical-friction feedback and

those in vacuum is similar to the curves in [14], though a

larger secondary massm2 ¼ 10M⊙ is used than that in [14]

for the corresponding primary masses m1. The solid blue

curves then show the dephasing ΔN
ð1–2Þ
cycles between simu-

lations with both kinds of feedback and those with only

dynamical-friction feedback. Although ΔN
ð1–2Þ
cycles is smaller

than ΔN
ð0–1Þ
cycles for all frequencies shown in the left panel of

Fig. 5 (and comparable or smaller for separations smaller

than r2;4y in the right panel), the slope as a function of

frequency is steeper than the slope of ΔN
ð0–1Þ
cycles. This

suggests that the effect of accretion with feedback behaves

like a more negative post-Newtonian-order effect than

dynamical friction with feedback.

This last statement is worth commenting on in more

detail, since for static halos, the opposite holds (the

dephasing induced by accretion is a less negative post-

Newtonian effect than that induced by dynamical friction,

which makes the accretion dephasing less steep as a

function of frequency than that of dynamical friction).

The key difference with feedback is that the different

densities that contribute to the evolution of r2 from

dynamical friction (the local density of particles moving

slower than the orbital speed) and from accretion (the local

density without a restriction on speeds) have different

dependencies on radius. Because dynamical-friction feed-

back is more efficient, the local, effective density of more

FIG. 5. Difference in the number of gravitational-wave cycles versus gravitational-wave frequency in three cases for primary masses

of 104M⊙ (left) and 103M⊙ (right). Left: The initial masses of the black holes are m1 ¼ 104M⊙ and m2 ¼ 10M⊙; the initial dark-matter

distribution has ρsp ¼ 226M⊙=pc
3 and γsp ¼ 7=3. We show the number of cycles of dephasing in three different cases as a function of

the initial frequency fGW, which was computed using Eqs. (4.10) and (4.11). The dephasing curves shown are ΔN
ð0–1Þ
cycles (vacuum minus

dynamical-friction feedback) as the dot-dashed orange curve, ΔN
ð1–2Þ
cycles (dynamical-friction with feedback minus both feedback types) as

the solid blue curve, and ΔN
ð2−1AÞ
cycles (dynamical-friction feedback and accretion without feedback minus both types of feedback) as the

dashed light-gray curve. The top axis shows the time it takes for the binary to inspiral to the ISCO in vacuum from the corresponding

frequency on the lower axis (with the vertical, dotted black line highlighting the four-year mark). Right: The same as the left, except

we start with a central black hole of mass m1 ¼ 103M⊙. Further discussion of the implications of this figure are given in the text

of Sec. VI A.
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slowly moving particles becomes a steeper function of

radius than both the initial density and the local density of

all particles (see [15]). Having the density be a steeper

function of radius makes the PN order of the effect less

negative. Even though dynamical friction feedback only

depletes the local density of more slowly moving dark

matter particles, the depletion from accretion feedback

(which depletes the local density of all particles, regardless

of speed) is still smaller. This then makes this effective

density less steep, and the dephasing induced by accretion a

more negative PN-order effect.

This also argues for describing dynamical friction or

accretion not simply in terms of powers of r2 or frequency

f, but in terms of a PN order (the number of factors of 1=c2)
and a second small parameter, the enclosed mass ratio as

a function of radius, as discussed in Sec. II B. In this

classification, the PN orders of these effects are fixed,

but the radial dependence of the enclosed mass ratio of all

particles or of only the more slowly moving particles

changes between the static and dynamic cases. This makes

it more apparent what is producing the difference in the

frequency dependence of the dephasing in these cases.

The dashed light-gray curve shows the amount of

dephasing with dynamical friction with feedback and

accretion without feedback from evolutions with both types

of feedback [i.e., ΔN
ð2−1AÞ
cycles ]. For the 104M⊙ primary (left),

this dephasing is a factor of a few below the dephasing

ΔN
ð1–2Þ
cycles, which suggests that not including feedback

overestimates the amount of dephasing, but not too

significantly. However, for the 103M⊙ primary (right),

the dephasing ΔN
ð2−1AÞ
cycles is significantly larger than

ΔN
ð1–2Þ
cycles, which suggests that feedback is playing an

important role. These gray curves are consistent with the

numbers in Table III, but they give a more detailed picture

of how the dephasing accumulates with frequency.

B. Dark-matter density

In this subsection, we show the combined impact

of dynamical-friction and secondary-accretion feedback on

the dark-matter distribution. The results for dynamical-

friction feedback only were previously illustrated

in [14,15]; those for secondary-accretion feedback only

were shown in Fig. 3. In Fig. 6, we show all three cases (DF

feedback only, SA feedback only, and both DF and SA

feedback) to illustrate their respective impact on the dark

matter density.

Figure 6 shows the density as a function of position for

the three different cases of feedback (the solid blue, dashed

light gray, and dash-dotted orange curves) as well as the

initial density (the thick, black dotted curve) with ρsp ¼
226M⊙=pc

3 and γsp ¼ 7=3, as before. The case illustrated

is a binary with primary mass m1 ¼ 103M⊙ and mass ratio

q ¼ 10−2; of the mass ratios that we considered, feedback

has the most pronounced effect on the dark-matter dis-

tribution for this case. The evolution of the binary begins

at a separation or 3r2;4y in both panels, but the density is

shown at two different times in the binary’s evolution.

FIG. 6. Dark-matter density during (left) and after (right) the inspiral for several different cases of feedback. Left: The binary started

with two black holes with masses m1 ¼ 103M⊙ and m2 ¼ 10M⊙. The black dotted curve is the initial dark matter distribution in

Eq. (2.1) for ρsp ¼ 226M⊙=pc
3 and γsp ¼ 7=3. The three other curves of different colors and line styles (dot-dashed orange, dashed light

gray, and solid blue) show the densities after the binary inspirals from 3r2;4y to r2;4y, under three different scenarios. The three colored

curves (orange, light gray, and blue) correspond to having only dynamical friction with feedback, only secondary accretion with

feedback, and both types of feedback, respectively. In all three cases, the binary evolution includes gravitational radiation reaction. In

addition, for the case labeled “DF only” dynamical friction is also included, for “SA only” accretion is included but not dynamical

friction, and for “DF and SA” all effects are included. The radius r2;4y is shown in the left plot with a vertical black dotted line, that

passes through the black star. Right: The same as the left, except the density is shown after the secondary reaches the ISCO. Further

discussion of the implications of this figure are given in the text of Sec. VI B.
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In the left panel is the density when the secondary has

reached the separation r2;4y (as indicated by the thin, black,

vertical dotted line and black star), and in the right panel is

the density when the secondary reaches the ISCO.

For both final radii, the curves with both types of

feedback are qualitatively more similar to those of secon-

dary accretion only at larger radii and of dynamical friction

only at radii closer to the ISCO (though in the left panel,

all three cases are much more similar to the initial density

at these smaller radii). In the regions where the solid

blue curves are less similar to the other two cases, the

density is at a value that falls somewhere between the

(typically) larger DF-only curve and the smaller SA-only

curve. This behavior of the density can be understood

qualitatively as follows. When the secondary is at a fixed

location, dynamical friction, in isolation, tends to increase

the density at larger radii and decrease it elsewhere.

However, as the secondary inspirals, regions that were

depleted of dark matter become partially replenished.

Secondary accretion, however, only depletes the dark

matter density and does not replenish it. Thus, as the

secondary inspirals, dynamical-friction feedback makes

some dark-matter particles inaccessible to accretion feed-

back, so that both feedback types together generally lead

to a density between that of the two feedback types in

isolation. At larger radii, the inspiral is slower, which leads

to a larger net decrease in the density, whereas at smaller

radii, the more rapid inspiral makes feedback less effective

(and thereby leads to smaller changes in the density).

In both panels, some caution should be taken in

interpreting the density at the larger radii illustrated in

these plots. The region of nearly constant density that is

present for only secondary-accretion feedback is sensitive

to the initial radius (as illustrated in the right panel of

Fig. 3). Thus, that the combined feedback case asymptotes

to the secondary-feedback-only case should happen

independently of the choice of the initial radius of the

secondary, but the specific value to which it asymptotes

will depend on the initial radius. While these figures

then capture the properties of the density qualitatively,

the quantitative features are sensitive to the choice of

initial data.

It is also worth commenting that in the left panel, the fact

that the density differs significantly from the initial density

in all three cases indicates the importance of starting the

evolution at 3r2;4y so as to obtain “reasonable” initial

conditions for the evolution from r2;4y (where gravitational-

wave emission would be strongest) that are more consistent

with an adiabatic inspiral from larger radii.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we investigated the effect of accretion onto

the secondary in intermediate mass-ratio inspirals taking

place within dense distributions of dark matter. We showed

that previous calculations of the effects of the accretion on

the orbital evolution of the binary were overestimates for

some binaries, because they neglected the feedback from

dynamical friction and from accretion. Without any feed-

back, the amount of mass accreted onto the secondary

could exceed the mass enclosed within the secondary’s

orbit. When including feedback from dynamical friction,

the amount of mass accreted still could be of the same order

as the enclosed mass. This suggested that it would be

necessary to develop a method to evolve the dark-matter

distribution in response to the mass removed from the dark-

matter distribution via accretion.

We derived an approach to provide feedback to the dark-

matter distribution from the mass accreted onto the sec-

ondary, and we proved that it satisfies mass conservation.

After implementing this method, we showed that systems

without feedback do indeed overestimate the number of

gravitational-wave cycles of dephasing from systems that

include accretion onto the secondary but ignore feedback

from accretion. The amount of overestimation was largest

for the least extreme mass ratios and became less signifi-

cant at more extreme mass ratios. Once feedback from

accretion was included, the amount of dephasing induced

by accretion (compared to dynamical friction) was smaller

than that induced by dynamical friction (compared to

vacuum), although they were of the same order at the

least extreme mass ratios that we considered. In addition,

for the less extreme mass ratios, the effects of accretion

on the dark-matter density after the merger could

become more significant than those of dynamical friction,

particularly at larger distances from the binary’s initial

separation.

The frequency dependence of the dephasing induced by

accretion differed significantly between static and dynamic

dark-matter distributions. For static densities, dynamical

friction and accretion were negative post-Newtonian order

effects, with dynamical friction being the more strongly

negative. For dynamic densities with feedback, the effects

were still negative in their post-Newtonian order, but much

less so. In addition, accretion became the more negative of

the two effects (a steeper dependence on frequency than

dynamical friction). This relative reversal of roles could be

understood from the different properties of the enclosed

mass as a function of radius of the more slowly moving

particles (for dynamical friction) versus all particles (for

accretion).

There are several clear directions in which the method

outlined here could be extended or applied, some of which

relate to the modeling of the IMRI’s dynamics, others to

the modeling of the gravitational waves emitted by these

systems, and yet others pertaining to how well LISA could

measure the effects of accretion in the emitted gravita-

tional waves.

We begin with the aspects of the binary’s dynamics. First,

the work here specialized to circular orbits, for simplicity.

However, the formation mechanisms of these IMRIs with
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dark matter have not been explored systematically, and the

formation process is important in determining if the IMRIs

form with residual eccentricity or if they would circularize

once they reach the orbital separations for which LISA has

the best chance of detecting their emitted gravitational

waves. Given that EMRIs without dark matter are often

expected to be on eccentric orbits, it seems natural to

generalize the IMRI’s evolution equations to incorporate

nonzero eccentricity. Second, we used the leading

Newtonian-order effects to describe the equations of motion

of the IMRI. It would also be important to formulate a

relativistic description of the binary dynamics and the dark

matter, so as to have a more accurate description of the

binary’s motion. Third, we worked to only leading order in

the mass ratio. For IMRIs, particularly with less extreme

mass ratios, it could be important to include higher-order

terms in themass-ratio expansion. Fourth, the assumption of

spherical symmetry was made in the evolution of the dark

matter; this should also be revisited. Finally, we assumed the

black holes were nonspinning, but it would be of interest to

consider spinning black holes, as well. Each of these five

topics would require significant new calculations, and are

beyond the scope of this current work.

These improvements in computing the orbital dynamics

of the binary would then make it possible to obtain more

accurate predictions of the emitted gravitational waves. In

the Newtonian limit, computing the waves can be done

using the quadrupole approximation to gravitational-wave

emission, and the results could be obtained straight-

forwardly from those presented in this paper (both in the

time domain or frequency domain). Obtaining more accu-

rate, fully relativistic waveforms, however, would be more

nontrivial, as radiation reaction influences the binary’s

orbital dynamics; thus, the waveform generation and binary

evolution equations are coupled and should be solved

simultaneously.

Developing accurate gravitational-wave predictions is a

necessary prerequisite for determining how well LISA

could measure the presence of dark matter in IMRIs

and, in addition, the effects of accretion. The former has

been investigated in [15] using Newtonian waveforms, but

the latter has yet to be studied. An important development

that allowed the detection and measurement prospects of

dark matter in [15] were approximate frequency-domain

waveform models that allowed the waveform to be evalu-

ated rapidly enough to do signal-to-noise calculations over

a wider range of the dark-matter parameter space and to do

parameter estimation. Similar waveform modeling would

need to be performed to do the equivalent calculations with

accretion included. Again, it would be more natural to start

with Newtonian-order calculations before generalizing to

fully relativistic ones.
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