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Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) are a class of analgesics that inhibit the activity of cyclooxygenase isoenzymes,
which drive tissue inflammation pathways. Caution should be exercised when taking these drugs during pregnancy as they
increase the risk of developmental defects. Due to the high rates of NSAID use by individuals, possibilities for in utero exposure
to NSAIDs are high, and it is vital that we define the potential risks these drugs pose during embryonic development. In this
review, we characterize the identified roles of the cyclooxygenase signaling pathway components throughout pregnancy and
discuss the effects of cyclooxygenase pathway perturbation on developmental outcomes.
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INTRODUCTION

Current Food and Drug Administration (FDA) guidelines rec-
ommend against using nonsteroidal anti-inflammatory drugs
(NSAIDs) in the second trimester of pregnancy or later due to
contraindications in fetal health. NSAIDs are a class of drugs
used for a variety of conditions including relief frompain, fever,
and inflammation. A survey of over 20,000 women in the
United States of America found that 22.6% of pregnant women
report taking NSAIDs during their first trimester of pregnancy
(1). Though there is no FDA guidance against NSAID usage dur-
ing the first trimester, the findings discussed later show that
NSAIDs may negatively impact the embryonic processes that
occur during the first 12 weeks of pregnancy. These processes
include implantation, decidualization, neurulation, neural crest
migration and differentiation, cardiogenesis, and nephrogene-
sis. The potential impacts of developmental exposure are espe-
cially concerning as some NSAIDs, including ibuprofen and
naproxen, are available over the counter, though most NSAIDs
require a prescription. NSAIDs inhibit cyclooxygenase (COX)
isoenzymes, thus preventing the synthesis of prostanoids.
Thoughmuch remains unknown, research suggests that prosta-
noids play key roles in early development. In this review, we
describe the localization and mechanism of the NSAID-inhib-
ited COX pathway factors during embryonic stages. Moreover,
we discuss studies investigating the role of the COX pathway
and the effects of NSAID exposure on embryonic development.

NONSTEROIDAL ANTI-INFLAMMATORY
DRUGS

NSAIDs are a class of therapeutic medications used to
reduce pain, fever, and inflammation. These analgesics

mediate their effects by inhibiting COX isoenzymes. All
NSAIDs can cross the placenta, making it important to
understand their impact on early development (2). As dis-
cussed in subsequent sections, there are two categories of
NSAIDs: nonselective NSAIDs and COX-2-specific NSAIDs,
also known as Coxibs.

Nonselective NSAIDs

Nonselective NSAIDs include ibuprofen, indomethacin,
naproxen, and diclofenac. These NSAIDs work by inhibiting
both COX isoenzymes, COX-1 and COX-2. Most NSAIDs com-
pete with arachidonic acid for binding at the active site of
COX enzymes (3). The negative charge of carboxylic acids on
substrates and NSAIDs binds to the positive charge of Arg-
120 in the active site of the COX isoenzymes (4). An excep-
tion is aspirin, which covalently modifies COX enzymes by
acetylating Ser-530 in COX-1 and Ser-516 in COX-2, thus ren-
dering them permanently inactive (3). NSAIDs are bound by
plasma proteins, particularly by albumin (>90%) and their
plasma half-life ranges from 0.25 to >70 h depending on the
specific drug (5). Orally administered NSAIDs are absorbed
primarily by the small intestine in addition to the stomach
(5). Most NSAIDs are then metabolized by the liver and
excreted in urine or bile (5). Selectivity for COX-1 versus
COX-2 varies based on the individual NSAID; we discuss
COX-2-specific NSAIDs next.

COX-2-Specific NSAIDs (Coxibs)

COX-2-specific NSAIDs, also known as Coxibs, include cel-
ecoxib, rofecoxib, etoricoxib, lumiracoxib, and valdecoxib.
Though COX-1 and COX-2 only have �60% overall identity
within a species, the active site identity is higher (�85%),
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limiting the ways the two isoenzymes can differ to create se-
lectivity (4). Coxibs take advantage of the extra space in the
COX-2 active site to increase the selectivity of these drugs.
The active site is 27% larger in COX-2 because a valine resi-
due (Val-523), rather than an isoleucine residue (Ile-523), bor-
ders its side pocket (4). Mutation of Val-523 into isoleucine
in COX-2 confers resistance to COX-2-specific Coxibs (4),
indicating that the extra space in the active site is what
grants Coxibs selectivity for COX-2.

CYCLOOXYGENASE PATHWAY
COMPONENTS IN EARLY DEVELOPMENT

The COX pathway begins with the substrate arachi-
donic acid, a polyunsaturated fatty acid found in the
membrane of most tissues in the body. The COX isoen-
zymes convert arachidonic acid into prostaglandin H2,
and then prostanoid synthases convert prostaglandin H2

into their corresponding prostanoids. Prostanoids, which
include thromboxanes (TXs) and prostaglandins (PGs),
are secreted from cells and bind to G protein-coupled
receptors. Here, we discuss the COX signaling pathway,
from its substrate to the receptors of its metabolites.

Arachidonic Acid

Arachidonic acid is a long-chain polyunsaturated fatty
acid biosynthesized from linoleic acid and a-linoleic acid
and is found in animal products like meat, eggs, and dairy
(6). Arachidonic acid is incorporated into the membranes of
all tissues and is freed frommembrane phospholipids by the
action of phospholipase A2 (7). Once free from phospholi-
pids, arachidonic acid is metabolized by the cyclooxygenase
(COX), lipoxygenase (LOX), or cytochrome P-450 monooxy-
genase pathways (3). Recent studies have identified discrep-
ancies in the concentrations of arachidonic acid in plasma
during pregnancy. One study found a significant increase in
plasma arachidonic acid concentration from the second to
the third trimester of pregnancy (8), while another found an
8% decrease in plasma arachidonic acid from the first to the
third trimester of pregnancy (9). Generally, long-chain poly-
unsaturated fatty acids tend to accumulate in the fetus dur-
ing the third trimester (7). Studies have yet to show de novo
biosynthesis of arachidonic acid in the fetus, but the mother
readily supplies arachidonic acid to the fetus because it
crosses through the placental barrier (7).

Cyclooxygenases

COX proteins are enzymatic hemeproteins that localize to
the membrane of the endoplasmic reticulum lumen (4).
There are two COX isoenzymes: COX-1 and COX-2. This fam-
ily of isoenzymes is responsible for converting arachidonic
acid into prostanoids, a class of lipid signaling molecules
that includes prostaglandins (PGs) and thromboxanes (TXs).
COX isoenzymes oxygenate arachidonic acid to make PGG2,
then reduce PGG2 to make PGH2, the precursor to all other
prostanoids. For this reason, COX isoenzymes are also
referred to as prostaglandin G/H synthases (PTGSs). In situ
hybridization in zebrafish embryos showed that cyclooxygen-
ase-1 (ptgs1) is expressed ubiquitously during gastrulation,
and cyclooxygenase-2 (ptgs2a) is absent during gastrulation

but begins expression in the neuroectoderm at the onset of
neurulation (10). At 96 h post-fertilization, in situ hybrid-
ization of zebrafish larvae identified expression of ptgs1
and ptgs2a transcripts in the carotid artery and pharyngeal
arches, with ptgs1 also expressed in cranial arteries (11). In
humans, analysis of gene and protein expression in the
myometrium of the uterus throughout pregnancy showed
that COX-1 expression was not significantly changed,
whereas COX-2 significantly increased at term before labor
onset (12).

Prostanoid Synthases

PGH2 is metabolized by prostanoid synthases to make all
other prostanoids. Each prostanoid synthase name corre-
sponds to the prostanoids it produces. Therefore, prostaglan-
din D synthase (PGDS) makes PGD2, prostaglandin E synthase
(PGES) makes PGE2, prostaglandin F synthase (PGFS) makes
PGF2a, prostaglandin I synthase (PGIS) makes PGI2/prostacy-
clin, and thromboxane synthase (TXS) makes TXA2 (Fig. 1)
(13). COX-1 preferentially couples with TXS, PGFS, and cyto-
solic PGES (cPGES), while COX-2 preferentially couples with
PGIS and microsomal PGES (mPGES) (Fig. 1) (13). Currently,
most research visualizing prostanoid synthases in embryos
and adult tissues focuses on PGES. In situ hybridization in
zebrafish embryos showed that PGES is expressed ubiqui-
tously during gastrulation (10). In situ hybridization and RT-
PCR in adult mice showed that mPGES is strongly expressed
in the implantation site and in decidual cells from day 6 to
day 8 of pregnancy (19). Primary culture of amnion cells
showed that mPGES colocalized with COX-1 and COX-2 in
perinuclear and reticular distributions, whereas cPGES was
localized to the cytoplasm (20).

Figure 1. The cyclooxygenase (COX) pathway and roles in early develop-
ment. COX isoenzymes (COX-1 and COX-2) convert arachidonic acid into
PGH2, the precursor for all other prostanoids. Nonselective nonsteroidal
anti-inflammatory drugs (NSAIDs) inhibit COX-1 and COX-2, whereas
Coxibs selectively inhibit COX-2. Prostanoid synythases convert PGH2

into their corresponding prostanoids. COX-1 preferentially couples with
thromboxane synthase (TXS) to make TXA2, prostaglandin F synthase
(PGFS) to make PGF2a, and cytosolic prostaglandin E synthase (cPGES) to
make PGE2 (13). Meanwhile, COX-2 preferentially couples with prostaglan-
din I synthase (PGIS) to make PGI2 and microsomal PGES (mPGES) to
make PGE2 (13). Some of these prostanoids play distinct roles in early de-
velopmental processes: PGE2 in ovulation (14), neural crest differentiation
(15), and cardiogenesis (16), PGI2 in implantation and decidualization (17),
and PGD2 in gonadogenesis (18).
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Prostanoids: Prostaglandins and Thromboxanes

Prostaglandins and thromboxanes, collectively called prosta-
noids, are hormone-like lipids that message through G protein-
coupled receptors (GPCRs) (13). Prostaglandins, particularly
PGI2/prostacyclin, are proinflammatory vasodilators, whereas
thromboxanes are vasoconstrictors (21). A recently developed
technique called nanospray desorption electrospray ionization
(nano-DESI) mass spectrometry imaging (MSI) was used for
quantitative visualization of prostaglandins in thin tissue sec-
tions (22). Use of nano-DESI MSI in conjunction with in situ
hybridization of upstream pathway components showed that
prostaglandins might not mirror the localization of the COX
isoenzymes and synthases that produce them (23). This differ-
ence in localization may be attributable to the fact that prosta-
noids can be secreted from cells, either passively or with the
help of transporter proteins, for autocrine and paracrine signal-
ing (24). Each prostanoid has its own G protein-coupled recep-
tor(s) that it activates for downstream signaling transduction
within the cell (13) (Fig. 1). More research using nano-DESI MSI
to visualize prostaglandins and classical techniques like in situ
hybridization and immunohistochemistry to visualize their re-
spective GPCRs is needed to better characterize prostanoid sig-
naling during embryonic development.

CYCLOOXYGENASE PATHWAY SIGNALING
IN EARLY DEVELOPMENTAL PROCESSES

More than 20% of pregnant women reported taking
NSAIDs during their first trimester of pregnancy (1).
Although NSAID use during the first trimester increases
the risk of birth defects, much remains unknown about
how NSAIDs are implicated in the formation of develop-
mental defects (1). In the following subsections, we discuss
studies examining the role of the COX signaling pathway

during vertebrate embryogenesis and propose further ave-
nues for exploration (Fig. 2, Table 1).

Ovulation, Implantation, and Decidualization

Following fertilization,blastocystshatch fromthezonapellu-
cida and penetrate the thickened endometrium of the uterus
(48). Epithelial cells then undergo apoptosis and stromal cells
proliferateanddifferentiate intodecidualcells at thesiteofblas-
tocyst entrance. COX-2 is present in the uterine epithelium and
stroma at sites of implantation in mink and baboons (49, 50).
COX-2 deficiency in mice is linked to impaired ovulation, im-
plantation, and decidualization (34). A possible cause may be
that in COX-2 knockout mice, uterine angiogenesis during im-
plantation was reduced due to defective vascular endothelial
growth factor (VEGF) signaling (35) However, other studies in
mice found that COX-2wasnot required for implantation of the
embryo (51, 52), suggesting that organism-specific processes or
variable genetic backgrounds may lead to differing results.
Further work in mice suggests that COX-2 acts through PGE2

activation of EP2 to mediate ovulation (14) and through PGI2
activation of PPAR-d to mediate implantation and decidualiza-
tion (17), implicatingdistinctdownstreameffectors foreachpro-
cess. Two miRNAs, mmu-miR-101a and mmu-miR-199a, were
expressed simultaneously with COX-2 in themouse uterus dur-
ing implantation and they post-transcriptionally regulated
COX-2 expression in in vitro experiments (53). Future studies
should investigate the role of miRNAs, posttranscriptional
modifiers, and posttranslationalmodifications thatmaymodu-
late the COX signaling pathway in the processes of ovulation,
implantation, anddecidualization.

Neurulation: Central Nervous System Formation

The neural tube is an early embryonic structure that ulti-
mately becomes the brain and spinal cord of the central
nervous system (CNS). It forms during a process called

Figure 2. Gestational timing of develop-
mental processes susceptible to nonsteroi-
dal anti-inflammatory drugs (NSAIDs). A: in
humans, implantation occurs at 8–10 days
postfertilization (PF) (25), neurulation at 3–
4 wk PF (26), cardiogenesis at 3–7 wk PF
(27), gonadogenesis at 4–5 wk PF (28),
neural crest differentiation at 4–7 wk PF
(29, 30), nephrogenesis at 4–36 wk PF (31,
32), and ductus arteriosus closure at 1–2
days postdelivery (33). B: loss or inhibition
of COX isoenzymes during embryonic de-
velopment is linked to congenital defects
in numerous tissues. See Table 1 for num-
bered references. Created with BioRender.
com.
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neurulation, when the flat neural plate folds and fuses to
form a hollow tube. Since the neural tube becomes the CNS,
any issues with its closure can lead to brain and spinal cord
defects such as anencephaly or spina bifida, respectively.
Past work using in vivo pregnant diabetic rats showed that
injecting these rats with arachidonic acid during the organo-
genesis period of their pregnancy significantly reduced the
occurrence of defects in neural tube closure and in neural
crest-derived tissues (54). Arachidonic acid supplementation
also rescued neural tube fusion defects in vitro in hypergly-
cemic mouse embryo cultures (54). An analysis of data from
the National Birth Defects Prevention Study on women who
reported taking aspirin, ibuprofen, or naproxen during their
first trimester found an increased risk of neural tube defects
in NSAID-exposed offspring (1). The adjusted odds ratio
showed an increased risk of spina bifida, anencephaly/cra-
niorachischisis, and encephalocele after aspirin and ibupro-
fen exposure, and less frequently after naproxen exposure
(1). Recent work in avians identified that celecoxib exposure
during embryogenesis caused dose-dependent defects in
brain development (39). Celecoxib exposure also inhibited
pericyte migration and differentiation in vitro, which is im-
portant for blood vessel formation in the CNS (40, 55). These
studies demonstrate that embryonic deficiency of COX-2 or
its substrate arachidonic acid leads to defects in CNS forma-
tion. However, exposing externally cultured whole mouse
embryos to NSAIDs ibuprofen and aspirin did not lead to
defects in neural tube closure (56). As these are nonspecific
NSAIDs, perhaps COX-2 plays a significant, but not solitary

role in mediating neurulation. Further studies should exam-
ine the role of COX-2 in CNS formation.

Cardiogenesis: Cardiovascular System Formation

The cardiovascular system includes the heart, blood
vessels, and blood that is circulated throughout the body
to deliver oxygen, nutrients, and hormones, among other
substances. As the heart develops, it goes through four
main stages: tube, loop, chamber formation, and complete
septation with coronary circulation (57). At concentrations
of 4.3 mg/L and higher in zebrafish embryos, ibuprofen ex-
posure downregulated blood cell density and upregulated
blood cell velocity, total blood flow, and the transcription
of cardiac-related genes like Natriuretic Peptide A (Nppa)
and NK2 Homeobox 5 (Nkx2.5) (38). Interestingly, expo-
sure to the COX-2-specific NSAID celecoxib showed the op-
posite trend and downregulated Nkx2.5 in Xenopus laevis
(40). However, celecoxib treatment causes consistent mor-
phological defects in cardiovascular development across
multiple species, including zebrafish, frog, and chick (16,
39, 40). Celecoxib exposure in zebrafish embryos caused
abnormal heart looping, an absence of the heart valve, and
atypical expression of heart valve marker genes (16). These
defects were rescued by the addition of the COX-2 metabo-
lite PGE2, but not TXA2, PGF2a, or PGI2, thus implicating
PGE2 as a mediator of COX signaling in cardiovascular sys-
tem development (16). Celecoxib exposure also caused
abnormal heart looping in chick embryos (39). In X. laevis
embryos, celecoxib exposure caused abnormal vasculature

Table 1. Developmental processes affected by NSAID exposure and COX knockdown or knockout

Embryonic Process Adverse Effect Type of NSAID References

Ovulation, implantation,
and decidualization

Impaired ovulation, implantation, and
decidualization

COX-2 knockout (14, 17, 34, 35)

Embryonic hatching Delayed hatching Diclofenac and ibuprofen (36)
Delayed hatching Naproxen (37)
Delayed hatching Diclofenac (38)

Neurulation Anencephaly and spina bifida Ibuprofen, aspirin, naproxen (1)
Abnormal brain development Celecoxib (39)
Inhibited pericyte migration and
differentiation

Celecoxib (40)

Cardiogenesis Increased blood flow Ibuprofen (38)
Abnormal heart looping Celecoxib (39)
Abnormal expression of cardiac
genes and heart malformations

Celecoxib (40)

Abnormal expression of cardiac
genes and heart malformations

Celecoxib (16)

Neural crest migration and
differentiation

Impaired palatal process fusion Indomethacin (15)
Impaired innervation of the bowel Ibuprofen (41)
Reduced migration and lamellipodia
formation of enteric cells

Ibuprofen (41)

Reduced neural crest migration Etoricoxib (42)
Gonadogenesis Blocked male differentiation Indomethacin, aspirin (43)
Nephrogenesis Cell death and lowered differentiat-

ing glomeruli density
Ibuprofen, aspirin (44)

Decreased abundance of nephrons Ibuprofen, indomethacin (32)
Reduced nephrogenic zone width Ibuprofen (45)
Thinning of the subcapsular cortical
mass, reduced kidney growth, and
reduced glomeruli and juxtame-
dullary glomeruli size

SC-236, SC-560, naproxen, diclofe-
nac, celecoxib, rofecoxib, valde-
coxib, etoricoxib, lumiracoxib

(46)

Ductus arteriosus closure Premature ductus arteriosus closure Indomethacin, sulindac, celecoxib,
nimesulide

(47)

COX, cyclooxygenase; NSAIDs, nonsteroidal anti-inflammatory drugs.
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and heart gene expression leading to heart malformations,
hemorrhage, and edema (40). Future studies should define
the role of the pathway downstream of PGE2 in cardiovas-
cular system development.

Neural Crest Migration and Differentiation

The neural crest is a population of migratory stem cells
that give rise to many derivatives, including the peripheral
and enteric nervous systems, craniofacial bone and cartilage,
and melanocytes (58). Though in utero NSAID exposure in
humans is linked to defects in neural crest-derived tissues
such as cleft palate and cleft lip, much remains unknown
about how NSAIDs might affect neural crest development (1,
59). Explants of mouse embryo palatal processes exposed to
indomethacin developed defects in palatal fusion that were
rescued by the addition of PGE2 (15). In addition, injecting
cleft palate-prone rats with arachidonic acid decreased the
incidence of cleft palate (54). Neural crest cells also give rise
to the enteric nervous system, which innervates the gut (41).
In zebrafish embryos, ibuprofen exposure prevented bowel
colonization by enteric nervous system precursors (41).
Furthermore, ibuprofen reduced migration and lamellipodia
formation in vitro inmouse enteric neural crest-derived cells
(41). The NSAID etoricoxib also appeared to reduce cranial
neural crest migration in chick embryos (42). Although it
appears clear that COX signaling is necessary for the forma-
tion of neural crest-derived cell types and tissues, additional
studies are needed to better understand the mechanistic role
of COX-1 and COX-2 in neural crest cell migration and
differentiation.

Gonadogenesis: Gonad Formation

At fertilization, mammalian embryos inherit an X or Y
chromosome from the father (60). The formation of primary
sexual characteristics then begins during gonadogenesis
(60). In mammals, the testis-determining protein, Sex-deter-
mining region Y (SRY), acts dominantly to drive testis differ-
entiation and prevent ovary maturation (60). Previous work
in mice showed that SRY-Box Transcription Factor 9 (SOX9)
protein is both necessary and sufficient for testis develop-
ment, meaning that it is sufficient to rescue male gonado-
genesis in the absence of Sry (61). Work in gonadal explants
from mouse embryos showed that PGD2 activates Sox9 tran-
scription to drive differentiation of the male-specific Sertoli
cell lineage (18). In fact, exogenous PGD2 in female gonadal
explants increased Sox9 above the level found in male con-
trol explants (18). Furthermore, the NSAIDs indomethacin
and aspirin were found to block male differentiation in mice
but could be reversed by arachidonic acid supplementation
(43). Together, these studies demonstrate that the arachi-
donic acid pathway acts through PGD2 signals to drive differ-
entiation ofmale gonads.

Nephrogenesis: Kidney Formation

The formation of the kidney through nephrogenesis starts
at week 4 in human embryos and continues in the fetus
through week 36 (31, 32). During the process of nephrogene-
sis, metanephric mesenchyme and the ureteric bud form glo-
merulus-containing nephrons that make up the kidney (31).
A recent study in ex vivo human fetal kidneys showed that

COX-1, COX-2, and many downstream prostaglandin syn-
thases and receptors are present during nephrogenesis in the
first trimester (44). Exposing human fetal kidney explants
aged 7 to 12 developmental weeks to ibuprofen and aspirin
increased cell death and lowered differentiating glomeruli
density (44). In contrast, a previous study inmouse fetal kid-
ney explants exposed to ibuprofen and indomethacin for 24
h had no effect on the expression of nephrogenesis-promot-
ing genes or ureteric tip development (62). The study in ex
vivo human fetal kidneys exposed the explants to NSAIDs
for 7 days, first noting cell death after 2 days of exposure
(44). Thus, the length and developmental timing of NSAID
exposure appear to influence the incidence of nephrogenic
defects.

Postnatal NSAID exposure also affects kidney develop-
ment after birth (32, 45, 46). In newborn mice, the COX-2-
specific NSAIDs rofecoxib, etoricoxib, and lumiracoxib
induced kidney defects including kidney growth restriction,
reduced glomeruli and juxtamedullary glomeruli size, and
subcapsular cortical mass thinning (46). Similar changes
were caused by exposure to the nonselective NSAIDs diclofe-
nac and naproxen, but interestingly, exposure to celecoxib
and valdecoxib caused only minimal changes in renal mor-
phology (46). These results replicate the kidney defects seen
in COX-2 knockout mice (34, 46, 52). In prematurely deliv-
ered baboon newborns that were exposed to ibuprofen, no
differences in kidney weight or glomerular generation num-
ber were exhibited, but their nephrogenic zone width was
significantly reduced, which may suggest an early termina-
tion of nephrogenesis (45). Premature cessation of nephro-
genesis could decrease the number of nephrons produced,
which was found to be the case in newbornWistar rats where
nephron numbers decreased by 12% in response to ibuprofen
treatment (32). Together, these studies suggest that COX-2
plays a key role in kidney formation, both before birth and
after delivery in the case of preterm newborns.

Ductus Arteriosus Closure

Before birth, the ductus arteriosus connects the pulmo-
nary artery to the descending aorta (33). Typically, the duc-
tus arteriosus closes 24 to 48 h after delivery, but it often
fails to close in preterm newborns (33). Indomethacin and
ibuprofen are commonly used in preterm or low birth weight
infants for the treatment of patent ductus arteriosus (33, 63–
65). However, there is concern that NSAID use before deliv-
ery could lead to premature closure of the ductus arteriosus.
A meta-analysis of short-term NSAID use during the third
trimester of pregnancy found that it significantly increased
the risk of premature ductal closure (47). Furthermore, 35%
of COX-2-deficient mice die with patent ductus arteriosus
within 48 h of birth, whereas COX-1 deficiency in mice had
no effect on ductus arteriosus closure (52). Together, these
studies suggest that NSAIDs likely drive closure of the ductus
arteriosus through COX-2 inhibition, which can cause
defects if exposed too early, or could be leveraged for treat-
ment in premature newborns.

Embryonic Hatching in Aquatic Organisms

NSAIDs are an emerging contaminant in the environment
and drinking water due to their widespread use and lack of
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effective clearance from wastewater (66, 67). This contami-
nation poses a risk not only to organisms living in aquatic
ecosystems but also to the humans who consume contami-
nated water and food from these water sources. NSAID expo-
sure has been studied in the context of embryonic hatching
rate in multiple fish species. These studies mainly focus on
the ecotoxic and teratogenic effects of NSAIDs as water pol-
lutants in developing fish. In zebrafish embryos, exposure to
naproxen, ibuprofen, and diclofenac significantly decreased
hatching rate, while celecoxib showed no significant effect
on hatching (36–38, 68). Similarly, environmentally relevant
concentrations of ibuprofen delayed hatching in Eurasian
carp embryos (69). However, these results are not always
consistent as another study in zebrafish showed that ibupro-
fen had no effect on hatching rate (38). Notably, this study
used ibuprofen at concentrations between 0 and 22 mg/L,
while the study showing hatching delays used concentra-
tions between 0 and 500 mg/L (36, 38). Despite two studies in
zebrafish demonstrating delayed hatching after diclofenac
exposure (36, 38), diclofenac exposure at similar concentra-
tions showed no effect on hatching rate in brown trout
embryos (70). Together, these studies demonstrate that
NSAID pollutants may pose a risk to embryonic fish develop-
ment, however, these risks may be species- and dose-de-
pendent. This work may also have implications in nonfish
organisms, though direct comparison between embryonic
hatching and live birth is not possible. Nonetheless, delayed
hatching indicates a decline in the developmental rate and
overall health of the embryo. Further work characterizing
the role of COX signaling pathways during early develop-
ment across species would provide a better understanding of
how and why inhibiting those pathways may alter develop-
mental processes.

CONCLUSIONS

Current FDA guidelines recommend against NSAID use
starting at 20 wk of pregnancy. However, studies discussed
in this review show that NSAID exposure in the first trimes-
ter can lead to birth defects in organs and tissues including
the brain, heart, kidney, gonads, and enteric nervous system.
Continued studies characterizing the mechanistic links
between the COX pathway and more established develop-
mental pathways are needed to better understand how
NSAID exposure during embryogenesis may cause birth
defects. Studies in bone and cancer cells show that COX-2
interacts with common developmental pathways such as the
Wingless/Int (Wnt) (71, 72), bone morphogenetic protein
(BMP) (73, 74), and fibroblast growth factor (FGF) pathways
(75, 76). Interactions between these well-known develop-
mental pathways and COX signaling pathways should be
investigated during early development. New discoveries
may not only identify novel developmental pathways but
also provide new insight into COX signaling in cancer and
regeneration since developmental pathways are often re-
used in these contexts. In comparing studies on exposure
with NSAIDs, care should be taken to note the length of
NSAID exposure, the dose and type of NSAID, and the de-
velopmental timing of NSAID exposure, as each of these
factors could influence whether there is an effect on em-
bryonic development. NSAIDs differ in their affinity for

COX isoenzymes, their mechanism of action, and their rec-
ommended dose, which means they act differently on a
cellular level in embryos. Defining COX pathway interac-
tions will allow us to construct more accurate gene regula-
tory networks of key developmental processes during
embryogenesis. Moreover, knowing the precise doses and
developmental time points at which NSAID exposure can
lead to birth defects will allow physicians to better advise
patients who are pregnant or plan to become pregnant.
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