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Gravitational-wave memory effects arise from nonoscillatory components of gravitational-wave signals,
and they are predictions of general relativity in the nonlinear regime that have close connections to the
asymptotic properties of isolated gravitating systems. There are many types of memory effects that have
been studied in the literature. In this paper we focus on the “displacement” and “spin”memories, which are
expected to be the largest of these effects from sources such as the binary black hole mergers which have
already been detected by LIGO and Virgo. The displacement memory is a change in the relative separation
of two initially comoving observers due to a burst of gravitational waves, whereas the spin memory is a
portion of the change in relative separation of observers with initial relative velocity. As both of these
effects are small, LIGO, Virgo, and KAGRA can only detect memory effects from individual events that are
much louder (and thus rarer) than those that have been detected so far. By combining data from multiple
events, however, these effects could be detected in a population of binary mergers. In this paper, we present
new forecasts for how long current and future detectors will need to operate in order to measure these
effects from populations of binary black hole systems that are consistent with the populations inferred from
the detections from LIGO and Virgo’s first three observing runs. We find that a second-generation detector
network of LIGO, Virgo, and KAGRA operating at the O4 (“design”) sensitivity for 1.5 years and then
operating at the O5 (“plus”) sensitivity for an additional 1.5 years can detect the displacement memory. For
Cosmic Explorer, we find that displacement memory could be detected for individual loud events, and that
the spin memory could be detected in a population after 5 years of observation time.
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I. INTRODUCTION

Since the first detection of gravitational waves from a
binary black hole merger by LIGO [1], gravitational waves
from nearly 100 binaries have now been detected in three
observing runs (O1–O3) [2–4]. These detections enabled
general relativity to be tested through many methods [5–7],
and they provided constraints on the astrophysical pop-
ulations of such binaries [8–10]. The gravitational-wave
tests of general relativity are complementary to the con-
straints Solar-System and pulsar measurements provided
(see, for example, Ref. [11] and references therein),
because the radiation emitted by the merger of black holes
probes into the dynamical and strong-field regime which
was not accessible to these earlier measurements. The
gravitational-wave features that were measured and used in
the tests of general relativity primarily arose from the
dominant, quadrupolar waves. However, some distinctive
strong-field predictions of general relativity appear in
subleading portions of the waveform. It is then natural
to ask what subdominant phenomena can be measured by

current (and future) gravitational-wave detectors, and
when will it be possible?
In this paper, we aim to address these questions for two

nonlinear relativistic phenomena known as the displace-
ment [12] and spin [13] memory effects. These effects can
be determined by sets of observers who measure enduring
changes in their separation before and after a burst of
gravitational waves. The displacement memory arises for
observers who are initially comoving, and the spin memory
(together with the related center-of-mass memory [14])
arises for observers with initial relative velocities [15,16].
For interferometric gravitational-wave detectors (such as
LIGO), which measure gravitational waves over a finite
time with a limited frequency bandwidth, these effects are
encompassed in nonoscillatory parts of the measured
signal. For the displacement memory, there is a distinctive
part of the signal associated with the net change between
early and late times, while the spin memory has an
analogous portion related to the nonzero time integral of
the signal.
Memory effects have close connections to the infrared

properties of gravity and gauge theories, including the
asymptotic field equations, symmetries, and conserved
charges (see, for example, Ref. [17]). In particular, the
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displacement memory is related to the supertranslation
symmetries [18,19], which are a subgroup of the Bondi-
Metzner-Sachs (BMS) group of symmetries for asymp-
totically flat spacetimes [20,21], and they are closely
connected with the conserved charges conjugate to these
symmetries [18,22]. BMS symmetry and memory effects
have implications for the quantization of gravity at null
infinity [18,23,24] which are under active investigation.
In addition, there are proposed extensions to the BMS
group [25,26] which have conjugate charges that are
related to the spin memory effect [13]. The relationship
between the spin memory and the generalized BMS
symmetry is more involved, however [27]. Because the
spin memory effect can be described by and derived from
the asymptotic Einstein equations without the use of these
symmetries and their charges (see, for example, Ref. [16]),
the effect exists independently of the particular proposal
for the extension of the BMS symmetry algebra (and its
measurement would not give evidence for or against a
given proposal).
Memory signals from binary black hole mergers are also

clear and distinctive probes of nonlinearities in Einstein’s
equations that are not as apparent in the oscillatory parts of
the signal. In the linear theory, the displacement memory
effect vanishes for gravitationally bound systems (such as
black hole binaries detected by LIGO), as it arises only for
unbound bodies and fields (for example, in scattering [12]
and in the radiated neutrinos in supernovae [28,29]). There
is, however, a non-negligible contribution in the nonlinear
theory [30]. Thorne [31] interpreted this as the nonlinear
effective stress-energy tensor of the gravitational waves
acting as the “unbound” material producing the memory.
Because it is sourced by the oscillatory waves, the dis-
placement memory effect (and, similarly, the spin memory
effect) probes nonlinearities in the propagation of gravita-
tional waves from an isolated source.
As binary black hole mergers are some of the most

luminous sources in the Universe (with luminosities
approaching the Planck value), these systems enter the
regime in which nonlinearities in the propagation of
gravitational waves are important; they are thus well suited
for producing the nonlinear displacement and spin memory
effects. For the sources observed by LIGO and Virgo to
date, however, the signals were not sufficiently loud for
there to be evidence for the memory effect in any of the
individual detections [32]. This is consistent with earlier
forecasts [33,34]. Even with KAGRA [35] and LIGO
India [36] joining the network, our results show that it is
unlikely that the memory effects will be detected from
individual events even as the detectors reach their design
and their “plus” sensitivities.
The outlook for detecting the memory from individual

events is more promising with the space-based interferom-
eter LISA [37]. It is has been estimated that LISA will
observe the displacement memory arising from mergers of

supermassive black-hole binaries [38]. Pulsar-timing-array
experiments (see, for example, Ref. [39]) have put upper
limits on the amplitude of gravitational-wave bursts with
memory [40], though Ref. [38] also suggested that it will
likely take longer for pulsar timing to detect the memory
effect than LISA. Finally, there are forecasts that show that
next-generation ground-based detectors such as the Einstein
Telescope [41] and Cosmic Explorer [42] will be sensitive
enough to measure the displacement memory from indi-
vidual events [34]. We give further evidence for this in
this paper.
While detecting the displacement memory effect from

individual events is unlikely, it it is possible to measure the
presence of the memory in the entire population of mergers
by combining the evidence for the effect over all the
observed events [43]. This procedure (often referred to as
“stacking” and described in more detail in Sec. II A below)
makes use of the fact that many low-significance events
below the threshold of detection can be coherently com-
bined to give a single higher-significance “effective event”
that would exceed a threshold for detection. Stacking has
also been proposed as a means of measuring phenomena
other than memory that are similarly small (for example, to
search for features in the ringdown waves [44]). In
Refs. [32,45], this method was used to determine the
statistical evidence for the presence of the displacement
memory effect in the first two gravitational-wave transient
catalogs. There was not significant evidence for the memory
in these events. This is consistent with the results of
Ref. [43], which determined that about 100 events similar
to GW150914 would be necessary for detection of the
memory in a population of events.
The study in Ref. [43] was a proof-of-principle work,

and the subsequent works [32,45] developed a more
complete detection pipeline and more accurate forecasts
of the detection prospects. For example, the analysis in
Ref. [45] used the events from the first gravitational-wave
catalog and the associated astrophysical population models
from the first two observing runs [8], and found that it
would take Oð2000Þ events at the LIGO/Virgo design
sensitivities to reach a detection threshold. This would
most likely occur during the fifth observing run (O5) [46].
The methods used in Refs. [32,45] were Bayesian, and
they specifically involved computing an evidence ratio
between the hypotheses that each event did or did not
include the displacement memory. These evidence-ratio
calculations are computationally intensive, and having a
faster method for performing forecasts is useful. One such
less computationally intensive approach was also dis-
cussed in Ref. [43]. The method is to add the signal-to-
noise ratios (SNRs) of the memory part of each signal in
quadrature—while excluding some lower-significance
events where certain parameters cannot be adequately
measured (which we discuss in detail in Sec. II C
below)—to compute an “effective memory SNR” for the
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population of events. This approach was performed in
Ref. [47], which showed that a detection with an effective
SNR of 3 would be seen in 5 years of LIGO and Virgo
operation at their design (O4) sensitivities. The results of
Ref. [47] are consistent with those of Ref. [45] in terms of
the number of events which were needed. In this paper, we
adopt the approach of Refs. [43,47], although we also
illustrate in Sec. II A a limit in which it is equivalent to the
Bayesian hypothesis test of Refs. [32,45].
The goals of this paper are twofold. (i) We update the

results of Ref. [47] to use a population model that was
informed by the second gravitational-wave catalog [9] and
to account for the updated observing scenarios of the
current ground-based detectors. Specifically, as outlined in
Ref. [46], we allow for the detector sensitivities to increase
to those of O5 (the “plus” sensitivities) after 1.5 years, with
LIGO India added after 2.25 years. These two changes
result in the effective SNR for the memory reaching the
threshold of 3 after about 3 years of total observation.
(ii) We perform a similar type of forecast for the detection
prospects for the spin memory effect in a population of
binary black hole mergers. Previous estimates had sug-
gested that the spin memory is about 10 times smaller than
the displacement memory [48], which makes it too weak to
be detected by the current generation of ground-based
detectors, even in a population of events. We thus perform
the forecasts using next-generation detectors, and find that
the effective SNR of the spin memory could reach 3 in the
Cosmic Explorer detector network (assuming three detec-
tors) after 5 years of observation. Furthermore, Cosmic
Explorer can detect the displacement memory from indi-
vidual loud events, as predicted in Ref. [34].
The outline of the remainder of the paper is as follows.

First, in Sec. II, we discuss various aspects of detecting the
memory: the stacking procedure outlined above, the defi-
nition of the part of the waveform that gives rise to the
memory effect, and an issue (related to the “sign” of a
detector’s response to this part of the waveform) that arises
for certain events whose parameters are not well constrained.
In Sec. III we describe the methods we use for forecasting
the memory: how one generates event parameters from a
distribution of population parameters, the models we use to
generate waveforms, and the details of how the SNR is then
computed for a given detector network. We then give our
results in Sec. IV, predicting the accumulated SNR as a
function of time, and we discuss a subtlety due to the current
lack of constraints on the population of events at large
redshift. We give our conclusions and discuss future
directions in Sec. V.

II. FORMALISM FOR DETECTION

OF MEMORY EFFECTS

In the three parts of this section, we discuss a few topics
needed for our procedure to forecast the detection prospects
of the memory. These are the signal-to-noise ratio, the

Bayes factor, and the “stacking” of events (Sec. II A); the
memory signals used in the forecasts (Sec. II B); and a
subtlety related to stacking associated with the “sign” of a
detector’s response to the memory effect’s signal (Sec. II C).

A. Signal-to-noise ratio and stacking

A common figure of merit used in assessing whether an
event can be measured in a given detector (or set of
detectors) is the so-called signal-to-noise ratio. In the
context of gravitational waves, the SNR is commonly
defined in the frequency domain. To give the expression
for the SNR, it is first helpful to define the noise-weighted
inner product of two (real) signals aðtÞ and bðtÞ by

hajbi≡ 2

Z

∞

−∞

ãðfÞb̃ðfÞdf
SnðfÞ

: ð2:1Þ

The tildes above denote the Fourier transforms of a and b,
and SnðfÞ is the power spectral density of the noise, a
quantity which characterizes the (assumed) stationary
Gaussian noise in the detector (see, for example,
Chapter 2 of Ref. [49]). For real a and b and
Snð−fÞ ¼ SnðfÞ, the inner product hajbi is also real.
Then, the optimal SNR ρh associated with a given signal
hðtÞ is given by

ρh ≡
ffiffiffiffiffiffiffiffiffiffiffi

hhjhi
p

: ð2:2Þ

In Ref. [43], two approaches were used to forecast the
detection prospects for the displacement memory effect. The
first directly involved the SNR. More specifically, an
effective SNR was computed by adding in quadrature the
individual SNRs of the memory part of the signal in all
detectors for all events. The second method did not directly
compute an SNR; rather, it performed Bayesian model
comparison by computing (the log of) an evidence ratio
for the hypotheses that the memory effect is present versus
absent in the simulated events (this will be described more
quantitatively below). We now summarize the context in
which the two approaches become equivalent to one another.
We start by reviewing the evidence-ratio calculation,

which in the context of gravitational-wave memory detec-
tion, aims to answer the following question: given a set of
data dðtÞ, which model is more favored: a waveform hoscðtÞ
that has a vanishing memory effect, or hoscðtÞ þ hmemðtÞ,1
which has a nonvanishing memory effect? The probability
that a set of data dðtÞ is given by sðtÞ þ nðtÞ, with nðtÞ
being some realization of stationary, Gaussian noise char-
acterized by the power spectral density SnðfÞ, is given by
(see, for example, Refs. [50,51])

1Note that, in this section, we do not define what “hmemðtÞ” is,
other than to distinguish between a model with versus without
memory. See Sec. II B for a further discussion of the subtleties in
defining this quantity, which we call the “memory signal.”
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L½djs� ∝ exp

"

−
1

2
ρ2d−s

"

: ð2:3Þ

In the language of Bayesian statistics, this is a likelihood.2

Assuming that each model is equally favored beforehand,
the Bayes factor, which assesses by how much the model
with memory is favored over the model without, is given by

Bmem
nomemðdÞ ¼

R

dθL½djhoscðθÞ þ hmemðθÞ�pðθÞ
R

dθL½djhoscðθÞ�pðθÞ
; ð2:4Þ

where pðθÞ is the (prior) probability that the parameters
take on a particular value θ. Bayes’ theorem,

p½hðθÞjd�pðdÞ ¼ L½djhðθÞ�pðθÞ; ð2:5Þ

where pðdÞ is the evidence for the model hðθÞ and
p½hðθÞjd� is the posterior probability of the parameters θ

given the data d, can be used to rewrite the Bayes factor in
Eq. (2.4). First, one can see that the Bayes factor is
precisely the ratio of the evidences pðdÞ of the two signal
models. Second, one can rewrite the Bayes factor in
Eq. (2.4) in the form

Bmem
nomemðdÞ ¼

Z

dθ
L½djhoscðθÞ þ hmemðθÞ�

L½djhoscðθÞ�
p½hoscðθÞjd�;

ð2:6Þ

where

L½djhoscðθÞ þ hmemðθÞ�
L½djhoscðθÞ�

¼ exp

�

−
1

2
ρ2
d−hoscðθÞ−hmemðθÞ þ

1

2
ρ2
d−hoscðθÞ

�

ð2:7Þ

is the ratio of the likelihoods of the two models and
p½hoscðθÞjd� is the posterior for the parameters θ under the
assumption of a model containing just the oscillatory signal
and no memory signal. This posterior probability is the one
that is most commonly computed for the observed events in
the current gravitational-wave transient catalogs [3,4].
Next, we make two assumptions. First, we assume that

the signal contains the memory effect, so that the set of data
d is given by

d ¼ hoscðθ0Þ þ hmemðθ0Þ þ n; ð2:8Þ

where n is a realization of the noise and θ0 are some “true”
values of these parameters. The second assumption is that
we can approximate the posterior distribution by a delta
function, namely,

p½hoscðθÞjd� ¼ δðθ − θ0Þ: ð2:9Þ

In this approximation, we are neglecting the spread in
p½hoscðθÞjd� and biases from the true parameters that would
arise from a particular realization of the detector’s noise, as
well as any errors to the parameter estimation that would
arise from neglecting the memory part of the signal.
However, we focus on this approximation because it results
in an exact relationship between the two data-analysis
methods. Note that, for reasons discussed in Sec. II C, this
is not always a good approximation, as p½hoscðθÞjd� can
have multiple peaks (and would not be well represented by
a single delta function).
It then follows that the Bayes factor is given by

Bmem
nomemðdÞ ¼ exp

�

−
1

2
ρ2n þ

1

2
ρ2
hmemðθ0Þþn

�

¼ exp

�

1

2
ρ2
hmemðθ0Þ þ hhmemðθ0Þjni

�

: ð2:10Þ

We now average Eq. (2.10) over the noise, which we denote
by E (for “expectation value”). We apply the result in
Eq. (A3) to determine that

Efexp ½hhmemðθ0Þjni�g ¼ exp

�

1

2
ρ2
hmemðθ0Þ

�

; ð2:11Þ

and then take the logarithm of the expectation value
to obtain

lnE½Bmem
nomemðdÞ� ¼ ρ2

hmemðθ0Þ: ð2:12Þ

The total Bayes factor for independent events is simply
the product of the individual Bayes factors for each
individual event. Since the square of the SNR is the log
of the Bayes factor in this approximation, it is apparent that
the “effective” SNR squared of a series of independent
events, as well as a single event measured in multiple
detectors, is given simply by the sum

ρ2eff ¼
X

i

ρ2i : ð2:13Þ

This is what allows for the “stacking” of multiple inde-
pendent events over time: even if the SNR of each
individual event is small, by adding up contributions from
each event, the total log of the Bayes factor can be large,
indicating that the evidence for the memory in a population
of events is strong. In this paper, we use ρ2eff as a proxy for
the Bayes factor to make our forecasts less computation-
ally intensive.

2In the gravitational-wave literature, this is often written as
L½djθ�, which implicitly assumes some signal model hðθÞ; this
will be written as L½djhðθÞ� in our notation.
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B. Memory signals

The calculation of the Bayes factor above relies on having
a procedure to split the model for the waveform into
“oscillatory” and “memory” components. However, what
characterizes the presence of memory (either displacement
or spin) in a waveform is the difference in a quantity
(respectively the strain or its time integral) before and after
the passage of gravitational waves. For example, the
displacement memory is characterized by the difference
in the strain hij between early and late times, and there is no
unique way to determine a part of the waveform that
contributes to this final difference. In principle, any function
that interpolates between the initial and final values of hij
could be a choice for the “memory” part of the signal.

However, having a reasonable definition of the memory
signal is important, because in detectors such as LIGO, it is
the memory part of the signal (however one might define it)
that the detectors can measure directly, rather than the finite
offset between early and late times. A similar issue arises for
defining the spin memory signal.
However, there is a particularly well-motivated choice

that has been used frequently in both numerical relativity
(for example, Ref. [52]) and the post-Newtonian and post-
Minkowskian approximations (see Refs. [48,53]). It relies
on the fact that the strain hij obeys two “consistency
conditions” that can be derived from the asymptotic form of
the Einstein equations in Bondi-Sachs coordinates [20,54]
(see, for example, Ref. [22]). In vacuum, they are given by

D iDj
Δhijðu; u0Þ ¼

1

r

�

4Δmðu; u0Þ þ
r2

2

Z

u

u0

du1 _hijðu1Þ _hijðu1Þ
�

; ð2:14aÞ

Z

u

u0

du1D2D ½iD
khj�kðu1Þ ¼

1

r

�

−4D ½iΔN̂j�ðu;u0Þþ
r2

2

Z

u

u0

du1D ½ij½ _hklðu1ÞDkhljj�ðu1Þþ 3hjj�kðu1ÞD l
_hklðu1Þ− ðh↔ _hÞ�

!

;

ð2:14bÞ

where (as is customary) we use square brackets around
indices to denote antisymmetrization, with j to indicate
indices not antisymmetrized over [so that, for example,
T ½ajbjc� ≡

1
2
ðTabc − TcbaÞ]. Here, r is the distance to the

source, the indices i, j, etc. are indices on the two-sphere,
D i is the covariant derivative on the two-sphere, andm and
Ni are functions which appear in the metric called the mass
and angular momentum aspects. Finally, the quantity N̂i is
defined by

N̂iðuÞ≡ NiðuÞ − ðu − u0ÞD imðuÞ

−
r2

4

�

hijðuÞDkh
jkðuÞ þ 1

4
D i½hjkðuÞhjkðuÞ�

!

;

ð2:15Þ

and ΔQðu; u0Þ≡QðuÞ −Qðu0Þ. The quantities m, N̂i, and
hij are also functions of the angular coordinates xj, but we
suppress the additional functional dependence on xj to
simplify the notation.
For computing the displacement or spin memory effects,

the limits of integration in Eq. (2.14a) or Eq. (2.14b) should
run from some u0 before the start of the gravitational waves
until some u1 after the gravitational waves have passed by,
as was the case in, for example, Ref. [16]. In that context,
the first terms (those involvingΔ) on the right-hand side are
referred to as the charge contributions, and the second
terms are referred to as the (nonlinear) flux contributions, to
the displacement or spin memory.

Both equalities in Eqs. (2.14a)–(2.14b) are satisfied for
any values of u0 and u, but in that case they are just a set
of expressions that relate the strain to the mass and
angular momentum aspects. When the mass and angular
momentum aspects are known as functions of time,
Eqs. (2.14a)–(2.14b) can also be used as a consistency
check of the waveform (as described in Refs. [14,55]).
If the waveform is found to be inconsistent with
Eqs. (2.14a)–(2.14b), then Eqs. (2.14a)–(2.14b) can be
used to determine a correction to the gravitational-wave
strain needed to restore consistency. We use this approach,
and the charge-flux-type split on the right-hand sides of
Eqs. (2.14a)–(2.14b), to define the so-called “memory
signals.”
First, for the displacement memory, we define the

memory signal to be the part of the strain related to the
second term on the right-hand side of Eq. (2.14a):

D iDjh
disp
ij ðuÞ≡ r

2

Z

u

u0

du1 _hijðu1Þ _hijðu1Þ: ð2:16Þ

This definition is motivated by the fact that this nonlinear
contribution dominates over the one fromΔmðu1; u0Þwhen
the spacetime is asymptotically stationary before and after
the burst of gravitational waves (that is, outside the interval
½u0; u1�).3 Moreover, it has been confirmed in numerical

3This follows from the fact that the mass aspect m becomes a
constant on the sphere and so cannot contribute to D iDj

Δhij,
which only contains l ≥ 2 spherical harmonics [22].
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relativity simulations of binary black holes that the con-
tribution from Δmðu1; u0Þ is much smaller than the con-
tribution from Eq. (2.16), at least for the l ¼ 2, m ¼ 0

mode [52].
By analogy, we define the spin memory signal by the

integrand of the second term on the right-hand side of
Eq. (2.14b):

D2D ½iD
kh

spin
j�k ≡

r

2
D ½ij½ _hklDkhljj� þ 3hjj�kD l

_hkl − ðh↔ _hÞ�:

ð2:17Þ

The reason why we consider the integrand in Eq. (2.14b) is
that while the displacement memory is related to
(differences in the value of) the strain hij, the spin memory
is related to its integral. In contrast, the spin memory signal
should be the part of the strain that contributes to this
integral and hence is given by the integrand. Similarly to
the case of the displacement memory, the contribution to
the total integral of the waveform from ΔN̂iðu1; u0Þ has
been confirmed to be smaller than the contribution from
Eq. (2.17) in numerical relativity simulations of binary
black holes, at least for the l ¼ 3, m ¼ 0 mode [52].
In principle, the strain hij and the news _hij on the right-

hand sides of Eqs. (2.16) and (2.17) contain h
disp
ij and h

spin
ij ,

respectively, thereby making these equations partial integro-
differential equations. However, because it has been deter-
mined empirically, for example, in Ref. [52] or Ref. [56],
that the oscillatory contribution to hij is the dominant one,
we use the approximation that the terms on the right-hand
sides of Eqs. (2.16) and (2.17) only contain hoscij .
In this paper, we will often write the strain hij in terms

of spin-weighted spherical harmonics. Using the plus- and
cross-polarization tensors ðeþ;×Þij, we can write

hij½ðeþÞij − iðe×Þij�≡ hþ − ih×

≡

X

l≥2;
jmj≤l

hlmð−2ÞYlm: ð2:18Þ

The formula for the displacement memory signal in terms
of these coefficients of the multipolar expansion of the
strain is then

h
disp
lm ðuÞ ¼

X

l0≥2;
jm0 j≤l0

X

l00∈
2
I
ll0mm0 ;

m00¼m−m0

ð−1Þm00
ð−2Þ2C

l

l0l00m0m00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ 2Þðlþ 1Þlðl − 1Þ
p

×
Z

u

u0

du0 _hoscl0m0ðu0Þ _hoscl00ð−m00Þðu0Þ; ð2:19Þ

where

sIll0mm0 ¼ fmaxðjsj; jl − l0j; jm −m0jÞ;…; lþ l0g; ð2:20Þ

and
ss0C

l
l0l00m0m00 are coefficients determined by the overlaps

of the spin-weighted spherical harmonics:

sYlms0Yl0m0 ¼
X

l00
ss0C

l00
ll0mm0 ðsþs0ÞYl00ðmþm0Þ: ð2:21Þ

These coefficients can be written in terms of Clebsch-
Gordan coefficients (as was done in Ref. [48]4), or
(equivalently) in terms of Wigner 3−j symbols:

ss0C
l00
ll0mm0 ¼ ð−1Þsþs0þmþm0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ
4π

r

×

"

l l0 l00

m m0 −ðmþm0Þ

""

l l0 l00

−s −s0 sþ s0

"

:

ð2:22Þ

We compute the Wigner 3−j symbols using the software
package PY3NJ [57].
The spin memory signal is described in terms of a

similar, although somewhat more complicated, equation:

h
spin
lm ¼

X

l0≥2;
jm0 j≤l0

X

l00∈
2
I
ll0mm0 ;

m00¼m−m0

ξl
l0l00m0m00 þ ð−1Þlþl0þl00ξl

l00l0m00m0

lðlþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ 2Þðl − 1Þ
p ωl0m0l00m00 ;

ð2:23Þ

where5

ξl
l0l00m0m00 ≡

1

4

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl0 − 2Þðl0 þ 3Þ
p

ð−3Þ2C
l

l0l00m0m00

þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl00 þ 2Þðl00 − 1Þ
p

ð−2Þ1C
l

l0l00m0m00

i

ð2:24Þ

and

ωlml0m0 ≡ ð−1Þm0
�

hosclm
_hoscl0ð−m0Þ − _hosclm hosc

l0ð−m0Þ

�

: ð2:25Þ

The available waveform models for the oscillatory part
of the waveform include only a handful of lm modes, so
when we compute the memory effects with these wave-
forms, the infinite sums will reduce to a sum over a few
terms. We illustrate this with the leading quadrupole
approximation for the waveforms in the next part.

4The coefficients
ss0C

l00
ll0mm0 are equal to the coefficients

Cl00ðs; l; m; s0; l0; m0Þ in Ref. [48].
5The coefficients ξl

l0l00m0m00 are related to the coefficients
cl
l0;m0;l00;m00 in Ref. [14] by cl

l0;m0;l00;m00 ¼ 4ð−1Þlþl0þl00ξl
l00l0m00m0.
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1. Leading quadrupole-order results

We now consider an (often-used) approximation, where
the only nonzero hosclm ’s are those given by l ¼ 2, m ¼ �2,
and that

hosc2m ¼ hosc
2ð−mÞ: ð2:26Þ

For equal-mass, nonprecessing compact binaries, these
modes are notably larger than all other multipoles, and
thus these modes also contribute the most to the displace-
ment and spin memory signals. Note that we do not use this
approximation, and the results of this section, in the main
results of this paper. We only consider this approximation
because it shows that certain parts of the oscillatory and
memory parts of the waveform are dominant, which is
relevant for discussing an issue known as the “sign of the
memory” in Sec. II C.
Using this approximation, we find that in both

Eqs. (2.19) and (2.23), m0; m00 ¼ �2, which requires that
m ¼ 0 or m ¼ �4. Since l00 ∈ sIll0mm0 , it follows that
jl − l0j ≤ 2, and so 2 ≤ l ≤ 4. In order to narrow down
the value of l, note that, assuming that Eq. (2.26) holds,

_hosc2m0 _hosc2ð−m00Þ ¼ _hosc2m0 _hosc2m00 ; ð2:27Þ

which is of even parity under m0
↔ m00, while

ω2m02m00 ¼ ð−1Þm00ðhosc
2m0 _h

osc
2m00 − _hosc2m0hosc

2m00Þ ð2:28Þ

is of odd parity under this transformation, when m0 and m00

are both even (as they are in this case). Moreover, the
properties of the Wigner 3−j symbols imply that

ss0C
l
22m0m00 ¼ ð−1Þl

ss0C
l
22m00m0

¼ ð−1Þl
ss0C

l
22ð−m0Þð−m00Þ; ð2:29Þ

which implies that

ξl
22m0m00 ¼ ð−1Þlξl

22m00m0

¼ ð−1Þlξl
22ð−m0Þð−m00Þ: ð2:30Þ

The first line of Eq. (2.29) implies that the only values of l
for which the displacement memory signal does not vanish
are l ¼ 2, 4 (as found in, for example, Ref. [58]). The first
line of Eq. (2.30) shows that the only value of l where the
spin memory signal does not vanish is l ¼ 3 [48]. Similarly,
the second lines of Eqs. (2.29) and (2.30) imply that

h
disp=spin
lm ¼ ð−1Þlhdisp=spin

lð−mÞ ; ð2:31Þ

which (since
−2Yl0 is real) implies that the spin memory

signal only has cross polarization, as was found in Ref. [48].

C. “Sign” of the memory signals

One of the assumptions made in Sec. II A to justify
adding the SNRs of the memory signals in quadrature was
that the parameters of the binary could be determined
precisely from just the oscillatory part of the signal.
However, this will not always be the case, even in the
high signal-to-noise limit, when there are transformations
of the parameters of the oscillatory waveform model that
leave the waveform invariant (in other words, there are
“degeneracies” of the waveform model). More specifically,
we are most concerned with cases in which there are
different values of the parameters of the model, θ and θ0,
such that hoscðθÞ and hoscðθ0Þ are very close, whereas
hmemðθÞ and hmemðθ0Þ are very different. The case that we
consider in this section is where hmemðθ0Þ ≈ −hmemðθÞ6;
namely, there is a parameter degeneracy in the oscillatory
waveform model that prevents the sign of the memory
signal from being determined. This degeneracy and its
effect on the sign of the memory signal were noted
previously in Ref. [43]. We also discuss how this degen-
eracy can be broken using an approach similar to that in
Refs. [43,47].

1. Transformations of oscillatory and memory signals

We now discuss one such transformation θ → θ0 here
and discuss a different transformation in Appendix C. The
relevant set of parameters that we consider is

θ≡ ðϕref ;ψÞ; ð2:32Þ

where ϕref is the azimuthal coordinate of the detector on the
sky (relative to the binary) and ψ (the polarization angle)
gives additional information about the orientation of the
binary relative to the detector (see, for example, Ref. [59])
at a given reference time. These parameters are discussed in
more detail in Sec. III A; see Ref. [60] for a diagram
showing the definitions of these quantities (where ϕref in
our notation is denoted by ϕ, and ψ in our notation is the
observable quantity ψ þ Ω). The important relation for this
section is the fact that the signal measured by the detector
will be

hðθÞ ¼
X

l≥2;
jmj≤l

hðlmÞðθÞ; ð2:33Þ

where (see Ref. [47])

6For nonprecessing binaries, the transformation we discuss
in Sec. II C 1 has the property hmemðθ0Þ ¼ −hmemðθÞ as noted
in Refs. [43,47], but for precessing binaries the relationship
between the memory signals at different parameters is approxi-
mate, not exact.
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hðlmÞðθÞ≡ FþðψÞRe½hlm−2Ylmð{;ϕrefÞ�
− F×ðψÞIm½hlm−2Ylmð{;ϕrefÞ�; ð2:34Þ

and where { is the inclination, or the polar angle of the
detector on the sky relative to the binary. Here, the antenna-
pattern functions Fþ;× are defined by (see, for example,
Ref. [61])

Fþ;× ¼ Dijðeþ;×Þij; ð2:35Þ

where Dij is a matrix that only depends on the location and
orientation of the detector on the Earth, and is independent
of ψ . All dependence of Fþ;× on this parameter arises
through ðeþ;×Þij, which are given by

ðeþÞij ¼ XiXj − YiYj; ðe×Þij ¼ XiYj þ YiXj; ð2:36Þ

with

X ¼ ½sinðα − ωTÞ cosψ − cosðα − ωTÞ sinψ sin δ�i
þ ½− cosðα − ωTÞ cosψ − sinðα − ωTÞ sinψ sin δ� j
þ sinψ cos δ k; ð2:37aÞ

Y ¼ ½− sinðα − ωTÞ sinψ − cosðα − ωTÞ cosψ sin δ�i
þ ½cosðα − ωTÞ sinψ − sinðα − ωTÞ cosψ sin δ� j
þ cosψ cos δ k: ð2:37bÞ

Here, α and δ are the right ascension and declination of the
binary on the sky (in equatorial coordinates), ω is the
angular frequency of Earth’s rotation, and T is the time of
detection; the vectors i, j, and k are unit vectors in a fixed,
inertial, Earth-centered reference frame [61].
The specific transformation θ → θ0 that we consider is

given by

ϕref → ϕref þ π=2; ψ → ψ þ π=2: ð2:38Þ

Due to the transformation of ψ , we find that

X → Y; Y → −X; ð2:39Þ

and thus Fþ;× → −Fþ;×. Since the spin-weighted harmon-
ics satisfy

sYlmð{;ϕref þ π=2Þ ¼ imsYlmð{;ϕrefÞ; ð2:40Þ

we find that, for evenm (which is the case we are concerned
with here)

hðlmÞ → −ð−1Þm=2hðlmÞ: ð2:41Þ

In the case where hosc is given by only the l ¼ 2; m ¼ �2

modes and Eq. (2.26) holds, it follows that hosc is even

under this transformation, while hdisp and hspin are
both odd.
A key point is that the transformation (2.38) is only a

degeneracy of the oscillatory part of the signal when it is
given by the l ¼ 2, m ¼ �2 modes and obeys Eq. (2.26).
For all compact binaries, there will be additional modes
present in the oscillatory signal that are not degenerate;
furthermore, if the orbital plane of the binary precesses,
Eq. (2.26) (and its generalization to higher values of l) is
also no longer true, which implies that the l ¼ 2, m ¼ �2

modes are not degenerate under this transformation either.
As we now show, the SNR of the part of the signal that is
“odd” under such transformations is the part that deter-
mines how well θ0 and θ00 can be distinguished. As we
argue in Appendix B, if the parameters cannot be distin-
guished for a given event, then on average (over different
noise realizations) that event contributes much less to the
overall Bayes factor Bmem

nomemðdÞ.

2. Criteria for breaking the degeneracy

To write the criteria for breaking the degeneracy between
the parameters, we first write the waveform as

h ¼ heven þ hodd; ð2:42Þ

where

hevenðθ00Þ ¼ hevenðθ0Þ; ð2:43aÞ

hoddðθ00Þ ¼ −hoddðθ0Þ: ð2:43bÞ

The decomposition of h into even and odd parts applies for
the entire waveform (namely, both the oscillatory and
memory signals). Consider now the Bayes factor between
the two hypotheses that a set of data d is given by an event
with parameters θ0 and an event with parameters θ00:

Bðd; θ0; θ00Þ ¼
exp ½− 1

2
ρ2
d−hðθ0Þ�

exp ½− 1
2
ρ2
d−hðθ0

0
Þ�

¼ exp ½2hd − hevenðθ0Þjhoddðθ0Þi�: ð2:44Þ

We assume here that the prior probabilities satisfy
pðθ0Þ ¼ pðθ00Þ. Note that, unlike in Eq. (2.4), there is
not an integral over the different parameters, as the
particular values of the parameters are part of the hypoth-
esis. Using the fact that d ¼ hðθ0Þ þ n, we find [upon
averaging over the noise using Eq. (A3)] that

lnE½Bðd; θ0; θ00Þ� ¼ 4ρ2
hoddðθ0Þ: ð2:45Þ

This shows that the SNR of the odd part of the signal is
what determines how well this degeneracy can be broken.
Moreover, since the Bayes factor for independent mea-
surements is multiplicative, this means that the effective
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SNR2 is additive, just as it was in the case of the detection
of the memory. This justifies adding together the SNR2 for
the measurements of the same event by multiple detectors,
which makes this degeneracy easier to break. In this paper,
we assume that an SNR2 of 2 in the odd part of the
oscillatory signal, computed for the entire detector net-
work, is sufficient to break the degeneracy.7 Using hoddosc
rather than the full hodd to break the degeneracy does not
make much difference, because the SNR of the memory
component hoddmem is typically a small correction relative to
the SNR of the oscillatory component, and the memory and
oscillatory waveforms have a negligible overlap (noise-
weighted inner product).
Finally, we note that having a large value for the SNR for

the odd part of the oscillatory signal does not just break this
degeneracy. The result that the displacement and spin
memory signals are entirely odd under the transformation
in Eq. (2.38) relies on the oscillatory part of the signal being
entirely in the l ¼ 2; m ¼ �2 modes and the fact that
Eq. (2.26) holds. If there were a case in which the odd part
of the oscillatory signal is large, then the displacement and
spin memory signals could also have a large even part
compared with their odd parts. We did not note any binaries
in our simulated populations that had this property,
however.

III. FORECASTING METHODS

We outline several different aspects of our forecasting
procedure in this section. We begin by describing the
population models and how we draw realizations of these
populations from these models in Sec. III A. We then
discuss in Sec. III B the signal-to-noise ratio calculations, in
particular the factors that influence it, such as the detector
networks, the waveform families, and the signal processing
methods used.

A. Populations and events

To forecast the prospects for detecting gravitational-
wave memory effects, we first must generate simulated
populations of events that are consistent with the binary
black hole mergers that have been detected so far. Each
event is characterized by a set of 15 parameters. The

intrinsic parameters (that is, those that do not depend on the
location of the detector) are

(i) the mass m1 of the primary;
(ii) the mass ratio q≡m2=m1;
(iii) the (dimensionless) spin magnitudes χ1 and χ2;
(iv) z1 and z2, the cosines of the angle of each spin vector

relative to the orbital plane; and
(v) ϕ1 and ϕ2, the angles of each spin vector in the

orbital plane relative to some arbitrarily chosen axis.
Because the spins and the orbital plane precess, z1;2 and
ϕ1;2 need to be specified at some time. By convention, this
is when the l ¼ 2; m ¼ �2 modes (in the coprecessing
frame) have a “reference frequency” fref , which is often
related to the low-frequency cutoff of the detector. The
remaining extrinsic parameters are

(i) the location of the detector on the sky, relative to the
plane of the orbit, determined by the polar angle {
and axial angle ϕref ;

(ii) the location of the binary on the sky, relative to the
detector, as determined by the right ascension α and
the declination δ;

(iii) the polarization angle ψ , determining the orientation
of the binary on the sky relative to a fixed polari-
zation frame defined on Earth;

(iv) the redshift8 z; and
(v) the time difference ΔT between each event, which

can be summed to determine the absolute (GPS)
time T that is frequently used by ground-based
detectors.

Note, again, that the orbital plane used to define { and ϕref is
the orbital plane at fref . Moreover, ϕref is the axial angle
that is relative to the vector pointing towards the primary
black hole from the secondary, again at fref .

1. Population model

To generate simulated populations of events, we need a
model for the distributions of these parameters. Several
parameters, by assumptions of isotropy, will have either
uniform distributions (ϕ1, ϕ2, ϕref , α, and ψ ), or effectively
uniform distributions (cos { and sin δ are uniformly distrib-
uted). The distributions of the remaining event parameters
are determined by the particular population model in
question. The population model that we use to generate
events in this paper is the so-called “Power Lawþ Peak”
(PLPP) model [62], which is the model that was most
favored by the events during the O1, O2, and O3a
observing runs of LIGO and Virgo, which form the second
gravitational-wave transient catalog (GWTC-2) [9]. This
population model is characterized by a set of population

7In Ref. [43], the definition of hodd was twice that of our
definition, so their threshold of 2 for the SNR would be
equivalent to a threshold of 1 by our definition of hodd. Note,
however, that their hodd contained just l ¼ 2 and l ¼ 3 modes,
whereas ours includes all the available ðl; mÞ modes in the
waveform models that we use. In Ref. [47], only the oddmmodes
were used in the definition of the higher-order-mode waveform
hHOM, which was used to compute an SNR threshold. A short
calculation shows that ρ2hodd ≃ ρ2hHOM=2; thus, the threshold chosen
in Ref. [47] of ρhHOM ¼ 2 is approximately equivalent to the
choice that we have made of ρ2hodd ¼ 2.

8More precisely, it is the luminosity distanceDL and redshifted
masses that appear in the amplitude of the gravitational wave-
form; the redshift is then inferred from the luminosity distance
assuming a given cosmological model. However, Ref. [9] para-
metrized the distances in terms of the redshift z.
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parameters, and the observed events were used to determine
posterior distributions for these parameters using a hierar-
chical Bayesian analysis [9].
We now consider the various pieces of this model. The

PLPP model describes the distribution of the primary mass
and mass ratio of the merging binary black holes, and it is
characterized by nine population parameters9:

(i) mmin, which is the minimum value of the mass of
either black hole in the binary;

(ii) mmax, which is the maximum mass of either black
hole for the power-law component of the mass
distribution;

(iii) δm, which characterizes the width of the transition of
the mass distribution at low masses to zero;

(iv) α and β, which are power-law exponents character-
izing the power-law component of the primary mass
distribution and the mass-ratio distribution, respec-
tively;

(v) μm and σm, which give the mean and width of the
Gaussian component of the primary mass distri-
bution;

(vi) mgaussmax, which determines the upper mass of the
Gaussian component, and also determines the Gaus-
sian’s normalization10; and

(vii) λpeak, which determines fraction of systems in the
Gaussian component of the primary mass distri-
bution.

The form of the joint m1-q probability distribution is

πðm1; qÞ ∝ Pðq; β; mmin=m1; 1Þ½ð1 − λpeakÞ
× Pðm1;−α; mmin; mmaxÞ
þ λpeakGðm1; μm; σm; mmin; mgaussmaxÞ�
× Sðm1;mmin; δmÞSðqm1;mmin; δmÞ; ð3:1Þ

where

Pðx; γ; x0; x1Þ≡
γ þ 1

x
γþ1

1 − x
γþ1

0

�

xγ x0 ≤ x ≤ x1

0 otherwise
ð3:2Þ

is a power-law distribution with exponent γ, normalized on
the domain ½x0; x1�;

Gðx; μ; σ; x0; x1Þ≡
1

σ
ffiffi

π
2

p

½erfðx1−μ
σ
ffiffi

2
p Þ − erfðx0−μ

σ
ffiffi

2
p Þ�

×

8

<

:

exp

�

−
ðx−μÞ2
2σ2

�

x0 ≤ x ≤ x1

0 otherwise

ð3:3Þ

is a truncated Gaussian normalized on the domain ½x0; x1�
[and erfðyÞ is the error function; see, for example,
Eq. (7.2.1) of Ref. [64]]; and

Sðx;x0;δÞ≡

8

>

>

>

<

>

>

>

:

0 x≤x0
�

1þexp

�

δ
x−ðx0þδÞþ δ

x−x0

�!

−1

x0≤x≤x0þδ

1 x≥x0þδ

ð3:4Þ

is a smooth transition function between 0 and 1 from x0
to x0 þ δ.
Next, we consider distributions for the parameters

related to the spin (ignoring ϕ1 and ϕ2, which are sampled
from a uniform distribution). We use the so-called
“default” spin model in Ref. [9], in which the spin
magnitudes χ1 and χ2 are drawn from beta distributions
and the parameters z1 and z2 are drawn from a sum of a
uniform distribution and a product of Gaussians [65,66].
The population parameters are

(i) μχ and σχ , the mean and standard deviation of the
spin magnitude distributions, which are the same for
both spins;

(ii) σt, the standard deviation of the Gaussian compo-
nent of the z1 and z2 distribution; and

(iii) ζ, the fraction of the distribution for z1 and z2 that is
in the Gaussian component.

Explicitly,

πðχiÞ ∝ χ
αχ−1

i ð1 − χiÞβχ−1; ð3:5Þ

where αχ and βχ are defined by

αχ ≡
ð1 − μχÞ

σ2χ
−

1

μχ
; βχ ≡ αχ

"

1

μχ
− 1

"

: ð3:6Þ

The distribution for z1 and z2 is given by

πz1;2ðz1; z2Þ ∝ ζGðz1; 1;σt;−1;1ÞGðz2; 1;σt;−1;1Þ þ
1− ζ

4
:

ð3:7Þ

Finally, we use a model for redshift and timeΔT between
events where the event rate evolves with redshift [67]. This
model is characterized by the following parameters:

9Reference [9] described the PLPP model as depending on
only eight parameters, because one of the nine parameters was
fixed to a constant value and not inferred from the observed black
hole mergers; see Footnote 10.

10Note that we did not see this value specified explicitly in
either of Refs. [9,62]. The source code of the GWPOPULATION

package [63] (mentioned as being used by Ref. [9]) indicates
that the Gaussian component is normalized over ½mmin; 100M⊙�.
In a private communication, Colm Talbot confirmed this choice
of normalization. We therefore fix mgaussmax ¼ 100M⊙ in our
analysis.
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(i) R0, the local (z ¼ 0) event rate (with respect to
detector time), per comoving volume;

(ii) κ, the power-law exponent for the event rate per
comoving volume; and

(iii) zmax, the maximum value of redshift for binary black
hole mergers allowed for in this model.

Unless otherwise specified, we take zmax ¼ 1, and do not
draw any events at higher redshifts. While astrophysical
events will occur at higher redshifts, this particular pop-
ulation model is only well constrained up to z ¼ 1 [9]. Note
that systems may be detected at greater values of redshift
during the O4 and O5 observing runs, and will be detected
at much larger redshifts by Cosmic Explorer [68]. However,
since the star formation rate peaks at z ≃ 1.9 [69], simply
extending these models may not correctly estimate the
number of events at redshifts higher than one. In an attempt
to be conservative in our forecasts, we do not extrapolate
these models and simply use zmax ¼ 1.
The explicit distribution for redshift is given by a

power law

πðzÞ ∝
� ð1þ zÞκ−1 dVc

dz 0 ≤ z ≤ zmax;

0 otherwise;
ð3:8Þ

where dVc=dz is the differential comoving volume. The
distribution for ΔT is that given by a Poisson process:

πðΔTÞ ∝ exp

�

−
ΔT

R0

R zmax
0 ð1þ zÞκ−1 dVc

dz dz

�

: ð3:9Þ

Note that dVc=dz, as a function of redshift, depends on the
cosmological model that we are using; here, we use the
software package ASTROPY [70,71], using their Planck15
model based on Planck 2015 cosmological parameters [72].

2. Drawing population parameters and events

With the population model now defined, we turn to
discussing how we draw the population parameters from the
posterior distributions given in the public data release of
Ref. [9], available at Ref. [73]. These distributions are given
as a set of samples which represent a fair draw from the full
posterior distribution. We do not want to be restricted to this
specific draw from the distribution, so we instead use the
software package KOMBINE to draw from an estimate of the
full distribution that was constructed from a Gaussian kernel
density estimation [74]. Once we have generated a set of
parameters for a population, we draw event parameters in
order to generate a set of events. For m1, q, and z, there are
no simple analytic methods to draw from their distributions,
so we use Markov chain Monte Carlo sampling as imple-
mented in the EMCEE software package [75]. Note that there
are only two separate distributions that need to be sampled:
the joint distribution for m1 and q and the distribution for z.

The remaining parameters can all be drawn “exactly,” as
there exist efficient methods to draw from their distributions
using random number generators.11

Finally, the parameters that characterize events in the
population model described above are not those which most
naturally arise when generating waveforms. We must
transform these parameters into the following parameters,
which can be computed as functions of the event param-
eters given above:

(i) the redshifted total mass M≡ ð1þ qÞð1þ zÞm1;
(ii) the luminosity distance DLðzÞ12;
(iii) the Cartesian spin vectors χ⃗1;2, which are constructed

from the magnitudes and angles using the trans-
formations from spherical polar to Cartesian coor-
dinates; and

(iv) the GPS time T of the event relative to some
reference time, determined by adding up the ΔT of
each previous event.

These “waveform parameters” allow us to compute the
signal-to-noise ratio of each event.

B. Signal-to-noise ratio of single events

In this section, we describe the computation of the SNR
of each event. As described above, for each event we
compute the SNR of the “odd” part of the waveform under
the transformation in Sec. II C (to determine the sign of the
memory), and then we use that as a threshold for whether or
not to compute the SNR of the displacement or spin
memory signal. Events for which the SNR2 of the odd
part of the waveform exceeds the threshold of two also have
a sufficiently high SNR that they would pass the threshold
of detection for the total signal. We therefore do not impose
a minimum SNR for the total signal.

1. Detector networks

Here, we describe the various parameters that we use
in order to model the (network of) detectors used to
measure these signals. We summarize these parameters in
Table I.
As described above Eq. (2.33), the signal measured by a

single detector depends on the antenna pattern functions
Fþ and F×. In the frequency domain, we have that

h̃ðfÞ ¼ Fþh̃þðfÞ þ F×h̃×ðfÞ; ð3:10Þ

11That the joint distribution for z1 and z2 can be sampled
exactly follows from the fact that it is the sum of two distribu-
tions, each of which can also be sampled exactly. That this is the
case was pointed out to us by an anonymous referee.

12This function is dependent on the cosmological model in
question; as we did with dVc=dz above, we use the Planck15
model of ASTROPY [70,71].
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where we have assumed that the time dependence in the
antenna pattern functions can be ignored; this approxima-
tion is only valid for sufficiently short signals (significantly
shorter than a day). With the frequency-domain signal, we
estimate the SNR (squared) by its optimal value, which is
given by the integral

ρ2h ¼ 4

Z

fhigh

flow

df
jh̃ðfÞj2
SnðfÞ

; ð3:11Þ

integrating only between flow and fhigh.
For a given event, multiple SNRs from a collection of

detectors can be added in quadrature, as described in
Sec. II A. Each individual detector has a “duty cycle,”
which reflects the fraction of time that the detector is
operational. As a pessimistic estimate based upon O3, we
pick a duty cycle for O4 and O5 of 75% [80], which we also
use for Cosmic Explorer. Moreover, for each event, we
consider the total SNR to be zero if only one detector is
operating when it occurs. This prescription is how we
compute the total SNR for an event in a particular network
of detectors.
Detector networks improve in sensitivity over time, and

by using different networks, we can show how improve-
ments in detector sensitivity will affect the detection
prospects for the different memory effects. The detector
upgrade time scale is best estimated for second-generation
detectors, and the projected detector sensitivity will have an
important impact on the memory detection forecasts. The
particular choice of run times for O4 and O5 (with and
without LIGO India) are given by the observation scenarios
in Ref. [46]. Note, however, that Ref. [46] did not give
observing scenarios after 2 years of operation of O5. We
nevertheless run the full, final network (O5 with LIGO
India) for a longer period of time than this so that our
forecasts extend for 5 years of O4 and O5 operations. This
duration was chosen to allow for a direct comparison with

the results [47] (and it will prove long enough to have a
good chance of detecting the displacement memory effect).
For Cosmic Explorer, we also use 5 years, which is a
sufficiently long period of time to potentially detect the spin
memory effect, and it is on the order of the expected run
time of Cosmic Explorer [42].

2. Waveform generation

We now discuss the waveform families and approxima-
tions that we use for the oscillatory and memory signals that
enter into the signal-to-noise ratio calculations. Since the
population described in Sec. III A includes spins, the model
used to generate these waveforms needs to be able to
account for nonzero spins and, in general, spins that are not
aligned with the orbital angular momentum. Such spins
result in a precession of the orbital plane; this results in a
significant contribution to the “odd” part of the waveform,
the SNR of which is used as a threshold for determining the
sign of the memory effect.
In this paper, we make use of three different oscillatory

waveform models:
(i) an effective one-body model SEOBNRv4PHM [81],

which is available as part of the LALSIMULATION

software package [77];
(ii) a numerical relativity surrogate model NRSur7dq4

[82], available through the GWSURROGATE software
package [83]; and

(iii) a hybridized numerical relativity surrogate model
NRHybSur3dq8 [84], also available through
GWSURROGATE.

Each of these models has advantageous and disadvanta-
geous features, which we summarize in Table II.
For the analysis of this paper, except outside of the range

of mass ratios in which it is valid, we use the (non-
hybridized) surrogate model NRSur7dq4; for q < 1=4,
we use SEOBNRv4PHM. This is motivated first by con-
sidering a collection of zero-spin events where we fix the

TABLE I. Summary of the detector networks considered in this paper. “HLVK” refers to the second-generation
detector network of LIGO (Hanford and Livingston), Virgo, and KAGRA; “HLVKI” denotes HLVK plus LIGO India.
“2CE” and “3CE,” respectively, refer to networks with two and three Cosmic Explorer detectors, where 2CE has
detectors in the United States and Australia, and 3CE has an additional detector in Europe. We also give the references
that we use to compute the amplitude spectral densities

ffiffiffiffiffiffiffiffiffiffiffiffi

SnðfÞ
p

and the antenna response functions Fþ=×. See the
main text for a justification for the run time for each detector network.

Detector network Frequency range (Hz)
ffiffiffiffiffiffiffiffiffiffiffiffi

SnðfÞ
p

Fþ;× Run time (yrs)

HLVK O4 [10, 4096] [76]a [77] 1.5
HLVK O5 [10, 4096] [76]b [77] 0.75
HLVKI O5 [10, 4096] [76]b,c [77]d 2.75

2CE=3CE [5, 4096] [78]e [79] 5
aUses the “high” sensitivity for KAGRA in O4.
bUses the “high” sensitivity for Virgo in O5.
cLIGO India is considered here to be a copy of LIGO Livingston or Hanford.
dLocation for LIGO India in Ref. [77] is only a hypothetical example.
eSensitivity is for the “default”mode and an arm length of 40 km, comparable to the Stage 2 sensitivity of Ref. [42].
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values of all the parameters except for the mass M of the
primary.13 The nonhybridized surrogate model NRSur7dq4
will have some fixed length which, for masses smaller than
∼100M⊙, is shorter than the hybridized surrogate model
NRHybSur3dq8. In Fig. 1, we compare the SNRs (as
computed in the HLVKI network of detectors at its O5
sensitivity) of the odd part of the waveform, the displace-
ment memory signal, and the spin memory signal, com-
puted first using the full waveform from NRHybSur3dq8,
and then using a truncated waveform of the same length as
the NRSur7dq4 waveform. This figure shows that for the
masses considered, the length of the waveform affects the
SNR of the displacement memory signal by at most a
hundredth of a percent, and that of the spin memory signal
by at most a few tenths of a percent. Note that this result is
somewhat surprising, as the amplitude of the final displace-
ment memory does depend strongly on the length of the
waveform; however, the SNR does not. The SNR of the odd
part of the waveform depends much more strongly on the
length of the waveform; however, as computing the SNR of
this part of thewaveform is performed for every event, using
SEOBNRv4PHM would be prohibitively expensive. As
such, we use NRSur7dq4 for all calculations in this paper,
only using SEOBNRv4PHM when q < 1=4. From Fig. 1
we anticipate that using different waveform models will
affect the results of these forecasts by at most 20%, but a
thorough investigation of these effects is outside the scope
of the current work.
Finally, we choose a sampling frequency for these

waveforms of fsamp ¼ 2fhigh, which in all cases is
8192 Hz. Moreover, for the “reference frequency”
remarked upon above, we use fref ¼ 0.03=M. Note that
this is not the same as the starting frequency for any of the
waveforms that we use; as remarked above, it is used to

determine the time at which the orbital plane, the compo-
nents of the spins, etc., are defined. We choose a specific
value of fref , instead of defining these quantities at the
starting frequency, since the starting frequencies vary.14

3. Windowing of waveform time series

The waveforms discussed above are all generated in the
time domain, whereas the SNR is computed in the
frequency domain. It is therefore necessary to compute
the Fourier transform of all of the time-domain signals. The
Fourier transform is estimated using an implementation (in
NUMPY [85]) of the fast Fourier transform (FFT) algorithm.
Since the FFT estimates from a finite-length time series the
Fourier transform of a formally infinite-length time series,
it is necessary to ensure that any finite-time effects do not
influence the estimate of the Fourier transform in the
frequency bandwidth of the detector. Some methods for
mitigating these finite-time effects are discussed in
Ref. [86]. We will briefly describe a few issues here that
are most pertinent for our memory forecasts.
Since the signals that we consider are nonzero at the

boundaries of the domain (either the start of the waveform,
for the odd part of the waveform, or at the end of the
waveform for the displacement memory signal), the perio-
dicity inherent in the FFT treats this nonzero value as a
discontinuity and leads to “edge effects.” The known way
to diminish the effects of this discontinuity is to apply a
time-domain window function that smooths out this

FIG. 1. Comparison of the relative error in the SNR computed
either from the full waveform or a waveform truncated in length.
The specific SNRs that are computed are from the parts of the
waveform that are odd under the transformation in Sec. II C, the
displacement memory signal, and the spin memory signal.

TABLE II. Summary of the waveform models considered in
this paper. In particular, it shows that there are trade-offs between
allowing for arbitrary spins, including the early inspiral, and
being able to be evaluated as rapidly as possible. After a
comparison described in more detail in the text, we settled upon
using NRSur7dq4 for all calculations with mass ratios with
q > 1=4 and SEOBNRv4PHM otherwise.

Waveform model
Arbitrary
spins?

Early
inspiral?

Run
time
(s)a

SEOBNRv4PHM Yes Yes ∼4.2
NRSur7dq4 Yes No ∼0.091
NRHybSur3dq8 No Yes ∼0.26

aComputed for an event with the same parameters as in
Footnote 13, with a total mass M ¼ 65M⊙ and a starting
frequency of 10 Hz (for SEOBNRv4PHM and NRHybSur3dq8).

13The particular values that we use are q ¼ 0.8, { ¼ 7π=9,
DL ¼ 410 Mpc, with all of the remaining parameters (except for
M, which varies) set to zero.

14Note that the analysis used to generate the distribution of
parameters for the populations in Ref. [9] may not have used such
a uniform value of this reference frequency, but we suspect that
this difference should not significantly affect our results.
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discontinuity (and thus avoids spurious 1=f features in the
Fourier transform).
In Fig. 2, we show the effects of windowing on the SNR

of the displacement and spin memory signals. This
windowing is performed by first padding both the begin-
ning and end of the waveform (using the values at the
beginning or end, in order to preserve continuity), and then
applying a window over both of the padded portions of the
waveform. An explicit example of the windowing applied

to the memory signal is given in Fig. 3. Throughout this
paper, we use the Planck window [87], which uses the
same smoothing function as in Eq. (3.4) at the start of the
window (and a similar function at the end of the window).
As one would expect that an infinitely long window is
closest to the true Fourier transform of the signal, we
compute in Fig. 2 the error in the SNR, relative to a
window of length 10 s. This figure shows that padding and
windowing over 1 s is sufficient for the range of masses
that will be important for this paper, and as that is less
computationally expensive, we use this window length for
the results of this paper. It also demonstrates that not
windowing the displacement memory signal results in a
significant relative error.
We now turn to the windowing of the odd part of the

waveform, the effects of which are shown in Fig. 4. Here,
since padding the beginning of the signal would result in a
signal with a large discontinuity in its first derivative, we
instead only pad the end of the waveform by some fraction
of the waveform’s length. We then apply a window with the
same length as this padded portion of the waveform, so that
the beginning of the waveform is also windowed over. This
plot computes the error in the SNR as a function of the
fraction of the waveform’s length over which the window is
applied, relative to a window of length zero (so no
windowing at all). Since the effects of windowing have
a very small effect, in this paper we do not window the odd
part of the waveform when computing its SNR to speed up
our computation.

FIG. 3. Displacement memory signal, as a function of time,
showing the method of padding and windowing described in the
text. For this particular case, we only show the þ-polarized
component of the displacement memory signal at the location of
the detector. The mass of the system is 65M⊙, and the remaining
parameters are the same as in Footnote 13.

FIG. 4. Relative error in the SNR, as a function of the length of
the window (as a fraction of the length of the unwindowed
waveform), for the odd part of the waveform. The window is
applied over both the beginning of the waveform and a padded
region at the end of the waveform of the same length. The error is
computed by comparing with a window length of 0. As in Fig. 2,
the SNR is computed in the HLVKI detector at its O5 sensitivity,
for a range of masses between 10 and 102.5M⊙; the parameters
are the same as in Footnote 13.

FIG. 2. Relative error in the SNR vs. window length, for just the
displacement and spin memory signals, using a window that pads
both the beginning and end of the waveform. The error is
computed by comparing against a window with a length of
10 s. The SNR is computed in the HLVKI detector at its O5
sensitivity, and for a range of masses between 10 and 102.5M⊙;
the remaining parameters are the same as in Footnote 13.
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IV. FORECAST RESULTS

In this section, we present the main results of this paper,
which are contained in Figs. 5 and 6. Figure 5 shows the
accumulated SNR in second-generation HLVK and HLVKI
detector networks for the displacement memory signals;
Fig. 6 shows the signal-to-noise ratio for the spin memory
signal in two and three Cosmic Explorer detectors at their
full sensitivities. To generate these forecasts, 300 realiza-
tions of populations of events are used, as in Ref. [47]. We
then compute the median values and credible regions for the
accumulated SNR as a function of time by computing these
statistics over the different realizations of the populations.
The solid lines indicate the median values, and the shaded
regions indicate the symmetric 68% confidence intervals.
Since the events in each population occur at different times,
these are computed by first interpolating the SNR for each
population as a function of time at evenly spaced points, and
then computing these statistics at each of these points.

A. Discussion of displacement and spin memory results

We can compare Fig. 5 to Fig. 4 of Ref. [47], which used
the O4 sensitivity for LIGO and Virgo (HLV) and the
power-law population model from the first gravitational-
wave transient catalog (GWTC-1). The comparison illus-
trates that the population model from GWTC-2 [9] produces
an estimate for the detection prospects of the gravitational-

wave memory effect that is somewhat less optimistic than
that of the GWTC-1 populations. By allowing the network
to upgrade from O4 to O5 sensitivity, we find that detection
prospects are more optimistic: after only ∼3 years of total
run time, the displacement memory will likely be measured
with an accumulated SNR ρeff ¼ 3, with the median
reaching this threshold after ∼2.4 years. According to the
timeline in Ref. [46], LIGO India will start 0.75 years into
O5, and so its contribution to the time of the initial detection
of the memory is minimal. However, after a total run time of
5 years, including LIGO India will increase the accumulated
SNR from ρeff ≃ 5.5 to ρeff ≃ 6.5, so it will help increase the
significance of the detection.
From Fig. 6, we can similarly see that, after 5 years of

run time for the Cosmic Explorer network, the accumu-
lated SNR in the spin memory signal will be just over
ρeff ¼ 3 for the median population, assuming that there are
three Cosmic Explorer detectors in Europe, the United
States, and Australia (3CE). If there are only two detectors,
it is less likely that the spin memory will be detected in this
time. However, as we discussed in Sec. III A 1, limiting to
zmax ¼ 1 is very likely underestimating the effective SNR,
and so the results will most likely be more optimistic than
those illustrated in Fig. 6. A feature that stands out in this
plot is that the median and boundaries of the credible
region appear smoother than those in Fig. 5. The main
reason for this is that many more events exceed the
threshold of ρ2hodd > 2 in Cosmic Explorer. Events then
are detected at a much higher rate, which leads to a shorter
time between events and a smoother appearance of the
curves. This also implies that while measurements of

FIG. 6. Median accumulated SNR and 68% symmetric credible
region for the spin memory in the third-generation Cosmic
Explorer detectors as a function of run time for different
realizations of binary black hole populations. The blue and
orange regions correspond to two- and three-detector networks,
respectively. The green dashed line corresponds to an accumu-
lated SNR of 3 and is reached by the median of the populations
for Cosmic Explorer for a three-detector network.

FIG. 5. Median accumulated SNR and 68% symmetric credible
region for the displacement memory in second-generation de-
tector networks as a function of run time for different realizations
of binary black hole populations. The blue region corresponds to
the O4 HLVK network at design sensitivity for all four detectors,
which can be compared with the results of Ref. [47]. The orange
region instead accounts for an upgrade to the O5 sensitivity of the
HLVKI network after 1.5 years, as is currently planned [46], and
the green region accounts for the addition of LIGO India after
2.25 years. The red dashed line is an SNR of 3, which
corresponds via Eq. (2.12) to a log Bayes factor of 9, which
would indicate strong evidence for the hypothesis that there is
displacement memory in the population of black-hole mergers.
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displacement memory in second-generation detectors will
involve a smaller number of the loudest events, the
measurement of spin memory in third-generation detectors
will be dominated by a large number of more average SNR
events for the detector network.
Finally, we show in Fig. 7 a cumulative histogram of the

median rate of individual events that have an SNR greater
than 3 in the displacement memory for Cosmic Explorer.
This histogram is computed from 5 years of data, and
(to speed up the calculation) we restricted to zmax ¼ 0.3, as
we did not find many loud events at higher redshifts. For
the median population, this histogram shows that two
Cosmic Explorer detectors are expected to see around
three to four events with an SNR greater than 3 per year,
while three Cosmic Explorer detectors would see around
seven. These detectors may even see a handful of events
with an SNR in the displacement memory greater than 7,
over the span of 5 years.

B. Dependence of the results on maximum redshift

As we noted above in Sec. III A 1, the maximum redshift
to which Ref. [9] recommended using its population model
is zmax ¼ 1. Because the SNR falls off with the inverse of
the luminosity distance, but the number of events increases
with the volume of space surveyed, it is not obvious a priori
whether the fewer louder and closer events contribute more
to the SNR than the quieter and more distant events do
(assuming these events pass the threshold for the SNR in
the odd part of the waveform). For second-generation
detectors, empirical checks found that it was the nearest
events that were most important. For example, Ref. [47]
noted that it did not see much difference in the effective
SNR when applying a distance cutoff of 2 Gpc and when

including more distant events. Placing a cutoff in distance
has the benefit of saving computational time by only
considering the subset of events that contribute to the
effective SNR.
To investigate the effects of a cutoff in redshift, in Fig. 8

we plot the accumulated SNR of the displacement memory
signal after 0.1 years for different redshift cutoffs. We show
both second-generation detector sensitivities for O4 and
O5, as well as the accumulated SNR of the spin memory
signal after the same amount of time for Cosmic Explorer.
These plots show that a redshift of 0.8 is sufficient for both
O4 and O5, which we used in Fig. 5. Note that this redshift,
which corresponds to a luminosity distance cutoff of
∼5 Gpc, is larger than that in Ref. [47], but comparable
to that of Ref. [45].
For Cosmic Explorer, however, Fig. 8 shows that we

should not use a redshift cutoff at all: even up to a redshift
of 2.3 (which is the maximum redshift at which an event
could possibly have been seen so far [9]), the accumulated
SNR after 0.1 years is still growing with increasing
redshift. Therefore, while we use the redshift cutoff of
z ¼ 1 for Fig. 6, this comes with the caveat that this is very
likely underestimating the effective SNR.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have estimated the detection prospects
for the displacement and spin memory effects using
simulated populations of binary black hole mergers based
on the most favored model inferred from the detections in
LIGO and Virgo’s second gravitational-wave transient
catalog. Based on a detection criteria of an effective
signal-to-noise ratio of 3 in a population and a signal-
to-noise ratio of 5 for an individual event, we have
found that

FIG. 7. Median rate of events with an SNR in the displacement
memory higher than some given amount, in Cosmic Explorer
with either a two-detector (orange) or three-detector (blue)
network. Error bars correspond to the symmetric 68% confidence
interval. The green line corresponds to seeing a single event over
5 years.

FIG. 8. Final accumulated SNR after 0.1 years for a given
memory signal in a particular detector network, as a function of
redshift cutoff zmax, as a fraction of the SNR computed using a
redshift cutoff of zmax ¼ 2.3.
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(i) the LIGO, Virgo, and KAGRA detectors can detect
the displacement memory in the population of
binary mergers after 3 years when operating at
design sensitivity (1.5 years) and “plus” sensitivity

)1.5 years) (an observing scenario consistent with
that in Ref. [46]);

(ii) Cosmic Explorer can measure the spin memory
effect in the median population of events if it
operates for 5 years; and

(iii) Cosmic Explorer will, on average, have three to four
events per year for which the displacement memory
can be measured for a single event.

The assumptions that go into these forecasts were enu-
merated throughout the text and will not be repeated here.
For the displacement memory, this work updates the

results of Refs. [43,45,47] to use populations consistent
with the detections from the first two and a half observing
runs [9] and to account for the updated observing scenarios
including the O5 observing run (upgrades to “plus” sensi-
tivities). Updating the population model changed the time
needed to detect the memory, since our results were less
optimistic than those of Ref. [47] when we used a similar
observing scenario, although our results are consistent
(the 68% confidence intervals for our results overlap).
The shorter time to detection found in this paper over the
5-year frame given in Ref. [47] is, however, primarily
determined by the increased sensitivity of the detectors
during the O5 observing run. We have also performed an
initial check that using the most recent distributions for
population parameters from the third catalog [10] does not
make any significant difference from using just the second
catalog [9] as we did in this paper. A more systematic
comparison of the forecasts from different mass models (our
forecasts for both only use the “Power Lawþ Peak”model)
is certainly one possible future direction. Another direction
could be to refine the forecasts once O4 data is analyzed,
since detection only becomes likely after the O5 run
progresses for a few years.
The forecasts for the spin memory presented in this paper

were new (as far as we are aware). They were more
computationally intensive, because of the large number
of events detected by third-generation detectors, and, as a
result, they could be refined in a few ways. As with the
displacement memory, further detections during O4 and O5
will improve our knowledge of the population, allowing for
more accurate forecasts. In particular, with the increased
detection horizon during these runs, we expect to learn more
about the population of distant (meaning z > 1) binaries,
which are important for the spin memory—since the total
SNR is dominated by a large number of events with small
SNR in the spin memory—but are not well constrained by
the current population models. That these events contribute
the most to the total SNR also yields two further issues: first,
one may need to disentangle overlapping events, and second
the spin memory may be small enough to be affected more

by the detectors’ calibration and gravitational waveform
model uncertainties. Gaining a better understanding of these
potential systematic effects is beyond the scope of this
initial study.
Finally, the displacement and spin memory effects are

examples of so-called “persistent observables” [15], which
are effects that a set of observers can measure by comparing
measurements before and after a burst of gravitational
waves. These persistent observables in general arise from
different nonoscillatory features of a gravitational-wave
signal which would manifest as lasting offsets in different
numbers of time integrals of the gravitational-wave strain.
For example, observers with constant, nonzero relative
acceleration would measure a persistent observable related
to two time integrals of the gravitational-wave strain. The
simplest of these persistent observables, the “curve
deviation,” arises from a lasting displacement measured
by observers with an initial relative separation, velocity, and
acceleration. The piece of the lasting displacement that
depends on initial separation is related to the displacement
memory; the piece depending on initial relative velocity
contains both the spin memory and the center-of-mass
memory [14]. The pieces that depend on the initial accel-
eration (and higher derivatives such as the initial jerk),
however, are distinct from these better-studied effects, and
their related gravitational-wave signals have not yet been
computed for binary mergers. These higher-order observ-
ables were analyzed in general asymptotically flat space-
times in Ref. [16], and it was found that each higher-order
effect probes distinct nonlinear aspects of the propagation of
gravitational waves [each piece of it obeys equations similar
to Eqs. (2.14a)–(2.14b)]. Once the phenomenology of these
new observables is studied for compact binary sources in
more detail, and in particular once a useful definition of a
“memory signal” (as in Sec. II B) is established, we will
investigate the detection prospects in future work.
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APPENDIX A: AVERAGES OVER

GAUSSIAN NOISE

In this appendix, we compute averages of noise-
weighted inner products over realizations of zero-mean
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Gaussian noise n. We use them in Sec. II A, for example, to
determine expected values of the Bayes factor. Our main
result is the following: for any real, deterministic function
a, the expected value of a power of the noise-weighted
inner product of a with Gaussian noise n is given by

E½hajnim� ¼
� ðm − 1Þ!!hajaim=2 m even;

0 m odd;
ðA1Þ

where the double factorial satisfies

ð2k − 1Þ!! ¼ ð2kÞ!
2kk!

: ðA2Þ

An immediate consequence of these two equations which
we use throughout this paper is that

E½eβhajni� ¼
X

∞

k¼0

ð2k − 1Þ!!
ð2kÞ! ðβ2hajaiÞk

¼
X

∞

k¼0

1

k!

"

β2

2
hajai

"

k

¼ eβ
2hajai=2; ðA3Þ

for any constant β.
In order to derive Eq. (A1), we only need to compute the

expectation value of a product of the noise evaluated at
different times. This follows from the linearity of the noise-
weighted inner product and the Fourier transform. To
compute this expectation value, we start by introducing
the characteristic function Θm for a collection of m random
variables ξ1;…; ξm:

Θmðu1;…; um; ξ1;…; ξmÞ≡ E

�

exp

"

i
X

m

i¼1

uiξi

"�

: ðA4Þ

This equation implies the following useful expression for
the following expectation value:

E½ξ1 � � � ξm� ¼
1

im
∂
m
Θðu1;…; um; ξ1;…ξmÞ

∂u1 � � � ∂um

"

"

"

"

u1¼���¼um¼0

:

ðA5Þ

The noise n is a stationary Gaussian process with zero
mean, and so the characteristic function for n evaluated at
the times t1;…; tm is given by (see, for example, Chapter 3
of Ref. [49])

Θm½u1;…; um; nðt1Þ;…; nðtmÞ�

¼ exp

�

−
1

2

X

m

i;j¼1

uiujk2ðti − tj; nÞ
�

; ðA6Þ

where k2 is the correlation function of the noise. The
correlation function is related to the power spectral density
SnðfÞ by a Fourier transform:

k̃2ðf; nÞ ¼
1

2
SnðfÞ: ðA7Þ

Note that k2 and k̃2 are even. As Eq. (A6) has only even
powers of each ui in its power series, it follows from
Eq. (A5) that

E½n1ðt1Þ � � �n2kþ1ðt2kþ1Þ� ¼ 0: ðA8Þ

This immediately proves the odd-m case of Eq. (A1).
For the remainder of this appendix, we restrict to even m

and write m ¼ 2k. Next, the fact that in Eq. (A5) the right-
hand side is evaluated at u1 ¼ � � � ¼ u2k ¼ 0 implies that
the contributing terms in this expression must have exactly
2k distinct ui’s. Thus, the collection of indices that appear
must be a permutation of f1;…; 2kg; we denote this set of
permutations by P2k. Note, moreover, that each permuta-
tion occurs in the expansion of the exponential in Eq. (A6)
exactly once, so we find

E½nðt1Þ � � � nðt2kÞ� ¼
1

k!2k

X

π∈P2k

Y

k

i¼1

k2½tπð2i−1Þ − tπð2iÞ; n�;

ðA9Þ

where the factor if i2k ¼ ð−1Þk cancels the same factor in
the expansion of the exponential. The notation πðiÞ denotes
the ith element of the permutation π of f1;…; 2kg. Now,
note that certain of these permutations give exactly the
same term in the sum: since k2 is even, if two permutations
π and π0 are equal, except that

πð2i − 1Þ ¼ π0ð2iÞ; πð2iÞ ¼ π0ð2i − 1Þ; ðA10Þ

for all i in some subset of f1;…; kg, then these permu-
tations yield the same contribution to the sum. Similarly, if
π and π0 agree up to

πð2i − 1Þ ¼ π0ð2j − 1Þ; πð2iÞ ¼ π0ð2jÞ; ðA11Þ

for all ði; jÞ in some subset in f1;…; kg × f1;…; kg, then
these permutations give the same term in the sum, since they
simply differ by the order in which each k2 appears. Since
there are 2k permutations which are related by Eq. (A10) and
k! permutations which are related by Eq. (A11), we can
cancel the factor of 1=ð2kk!Þ in Eq. (A9) by considering only
a subset, denoted P̃2k, containing permutations π such that

πð2i − 1Þ > πð2iÞ; ðA12Þ

for all i, and
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πð1Þ > πð3Þ > � � � > πð2k − 1Þ: ðA13Þ

The final result is that

E½nðt1Þ � � � nðt2kÞ� ¼
X

π∈P̃2k

Y

k

i¼1

k2½tπð2i−1Þ − tπð2iÞ; n�: ðA14Þ

Denoting the number of elements in a set S by jSj, note that,
while jP2kj ¼ ð2kÞ!, we find that Eq. (A2) implies that

jP̃2kj ¼ ð2k − 1Þ!!: ðA15Þ

We next use Eq. (A14) to compute the average of the
Fourier transforms of the noise:

E½ñðf1Þ � � � ñðf2kÞ� ¼
X

π∈P̃2k

Z

Y

k

i¼1

dtπð2i−1Þdtπð2iÞ exp f2πi½fπð2i−1Þtπð2i−1Þ þ fπð2iÞtπð2iÞ�gk2½tπð2i−1Þ − tπð2iÞ; n�: ðA16Þ

To simplify the integrals, we define the variables

τπ;i ≡ tπð2i−1Þ − tπð2iÞ; Tπ;i ≡
1

2
½tπð2i−1Þ þ tπð2iÞ�; ðA17Þ

so that

tπð2i−1Þ ¼ Tπ;i þ
1

2
τπ;i; tπð2iÞ ¼ Tπ;i −

1

2
τπ;i: ðA18Þ

The Jacobian determinant of the transformation is given by
"

"

"

"

"

"

"

∂tπð2i−1Þ
∂Tπ;i

∂tπð2i−1Þ
∂τπ;i

∂tπð2iÞ
∂Tπ;i

∂tπð2iÞ
∂τπ;i

"

"

"

"

"

"

"

¼ −1: ðA19Þ

We therefore have that

E½ñðf1Þ � � � ñðf2kÞ� ¼
X

π∈P̃2k

Z

Y

k

i¼1

dτπ;idTπ;i exp fπi½fπð2i−1Þ − fπð2iÞ�τπ;i þ 2πi½fπð2i−1Þ þ fπð2iÞ�Tπ;igk2½τπ;i; n�: ðA20Þ

Doing the integral over each Tπ;i gives delta functions δ½fπð2i−1Þ þ fπð2iÞ�. Because this will then require that
fπð2i−1Þ ¼ −fπð2iÞ, we can impose this condition and perform the integral over each τπ;i. This gives the Fourier
transform of k2, and the resulting expression can be written as

E½ñðf1Þ � � � ñðf2kÞ� ¼
X

π∈P̃2k

Y

k

i¼1

δ½fπð2i−1Þ þ fπð2iÞ�k̃2½fπð2i−1Þ; n�: ðA21Þ

With Eq. (A7), the noise-weighted inner product can be written as

hajbi ¼
Z

∞

−∞

df
ãðfÞ b̃ðfÞ
k̃2ðf; nÞ

; ðA22Þ

for real a and b. Therefore, assuming that a1;…; a2k are real and deterministic, we have that

E½hnja1i � � � hnja2ki� ¼
Z

d2kf
E½ñð−f1Þ � � � ñð−f2kÞ�ã1ðf1Þ � � � ã2kðf2kÞ

k̃2ðf1; nÞ � � � k̃2ðf2n; nÞ

¼
X

π∈P̃2k

Z

Y

k

i¼1

dfπð2i−1Þdfπð2iÞ
δðfπð2i−1Þ þ fπð2iÞÞãπð2i−1Þðfπð2i−1ÞÞãπð2iÞðfπð2iÞÞ

k̃2½fπð2iÞ; n�

¼
X

π∈P̃2k

Y

k

i¼1

haπð2i−1Þjaπð2iÞi; ðA23Þ
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where we have used the fact that ãiðfÞ ¼ aið−fÞ and
k̃2ðf; nÞ ¼ k̃2ð−f; nÞ. Finally, using Eq. (A15) and setting
a1 ¼ � � � ¼ a2k ¼ a, the even case of Eq. (A1) follows.

APPENDIX B: UNKNOWN SIGN

OF THE MEMORY

In the analysis in this paper, we ignore the events for
which the sign of the memory cannot be determined
(specifically, by rejecting events for which the SNR2 in
the odd part of the oscillatory waveform is less than 2 in the
detector network). However, the analysis in Ref. [45] did
not ignore such events, and it was argued there that such
events contribute much less to the overall Bayes factor (or
“effective” SNR) in a population of events. In this appen-
dix, we provide an argument for why this is the case by
using the same toy model that we consider in Sec. II A.

We begin our calculation of the Bayes factor by starting
with Eq. (2.6), but instead of using a posterior for a model
without memory that is peaked around the true value of the
parameters θ0, we use

p½hoscðθÞjd� ¼ ð1 − αÞδðθ − θ0Þ þ αδðθ − θ00Þ: ðB1Þ

As in Sec. II C, θ00 are the approximately degenerate values
of the parameters that give the incorrect sign of the
memory. The factor of α in the posterior p½hoscðθÞjd�
describes how well the degeneracy is broken; α ¼ 0 is
the case where the degeneracy is completely broken, and
α ¼ 1=2 is the case were it is completely unbroken.
Substituting this posterior into the expression for the
Bayes factor in Eq. (2.6) we obtain after some calculation

Bmem
nomemðdÞ ¼ ð1 − αÞ exp

�

1

2
ρ2
hmemðθ0Þ þ hhmemðθ0Þjni

�

þ α exp

�

1

2
ρ2
hmemðθ00Þ

þ hhmemðθ00Þj2hoddðθ0Þ þ ni
�

: ðB2Þ

Note that hodd in the expression above includes the odd parts of both the oscillatory and memory signals. Using Eq. (A3) and
assuming, for simplicity, the same value of α for all noise realizations, we find after some additional calculations that

E½Bmem
nomemðdÞ� ¼ ð1 − αÞ exp½ρ2

hmemðθ0Þ� þ α expf−ρ2
hmemðθ0Þ þ 2½hhmemðθ0Þjhevenmemðθ0Þi þ hhmemðθ00Þjhoddosc ðθ0Þi�g: ðB3Þ

From this general expression, it is not clear whether, on
average, the memory hypothesis is favored (that is
E½Bmem

nomemðdÞ� ≥ 1). However, we now argue that we can
reasonably neglect the last two terms in the second
exponential. The first of these terms we expect to be
smaller in magnitude than ρ2

hmemðθ0Þ since the even part of the

memory signal is subdominant. The second term is also
likely small, as the subdominant oscillatory and the non-
oscillatory parts of the signal are not morphologically
similar and would thus not have a significant overlap.
When we neglect these terms, we find that

E½Bmem
nomemðdÞ� ¼ coshαρ2hmemðθ0Þ; ðB4Þ

where we have defined

coshαx≡ ð1 − αÞex þ αe−x; ðB5aÞ

sinhα x≡ ð1 − αÞex − αe−x; ðB5bÞ

as generalizations of the hyperbolic trigonometric functions
cosh ξ and sinh ξ (which are cosh1=2 x and sinh1=2 x,
respectively). In what follows, we simply assume that
Eq. (B4) holds, keeping in mind that this is just an estimate
for the average Bayes factor. This estimate holds exactly

when hosc is purely even and hmem is purely odd (for
example, for nonprecessing binaries), as the two terms that
we have neglected are linear in hoddosc and hevenmem, respectively;
in this case, since hosc is purely even, the degeneracy is also
completely unbroken (namely, α ¼ 1=2).
Given Eq. (B4), we now investigate the bounds on

E½Bmem
nomemðdÞ�. First, one can show that coshα x and sinhα x

satisfy the identities

cosh2α x − sinh2α x ¼ 4ð1 − αÞα; ðB6Þ

d
dx

coshαx ¼ sinhαx;
d
dx

sinhαx ¼ coshαx: ðB7Þ

These equations can be used to show that

coshα x ≥ 1 ðB8Þ

if x ≥ 0 and α ≤ 1=2. Because the SNR is not imaginary
and because we do not consider systematic biases that
could make the posterior favor the parameters θ00, this
will be sufficient for our calculations. To prove Eq. (B8),
note that

coshα0 ¼ 1; sinhα0 ¼ 1 − 2α ≥ 0; ðB9Þ
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and the only root of sinhα x is at ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α=ð1 − αÞ
p

, which is
not positive when α ≤ 1=2. As a result, if follows that
sinhα x ≥ 0 for x ≥ 0 and that coshα x is increasing, which
proves Eq. (B8). Using Eq. (B4), we therefore find that

1 ≤ E½Bmem
nomemðdÞ�: ðB10Þ

This lower bound implies that, even though the degeneracy
is not broken, on average this signal will still increase the
evidence for memory in the population.
We now discuss an upper bound on E½Bmem

nomemðdÞ�. First,
note that

d
dx

ln coshαx ¼ tanhαx; ðB11aÞ

d2

dx2
ln coshαx ¼ 4αð1 − αÞsech2αx ≤ 4αð1 − αÞ; ðB11bÞ

where tanhα x ¼ sinhα x= coshα x and sechαx ¼ 1= coshα x.
Using Taylor’s theorem (see, for example, Theorem 5.15 of
Ref. [88]), which states that

fðxÞ ¼
X

N

n¼0

fðnÞðaÞ
n!

ðx − aÞn þ RNðxÞ; ðB12Þ

where

RNðxÞ ¼
fNþ1ðxLÞ
ðN þ 1Þ! ðx − aÞNþ1; ðB13Þ

for some xL ∈ ½a; x�, we can use Eq. (B11) to give bounds
on ln coshα x:

ln coshαx ≤ ð1 − 2αÞxþ 2αð1 − αÞx2: ðB14Þ

Applying the estimate in Eq. (B4) then yields

E½Bmem
nomemðdÞ� ≤ exp

h

ð1 − 2αÞρ2
hmemðθ0Þ

þ 2αð1 − αÞρ4
hmemðθ0Þ

i

: ðB15Þ

The upper bound shows that the expected value of the Bayes
factor grows more slowly than in the case where the
degeneracy is completely broken (α ¼ 0). When the degen-
eracy is completely unbroken (α ¼ 1=2), the Bayes factor’s
log grows with the SNR of the memory to the fourth power,
as stated in Ref. [45]. For SNRs much less than one, this
growsmuchmore slowly than the case where the sign of the
memory is known. However, for α even slightly above 1=2,
the growth becomes much faster due to its dependence on
the square, instead of the fourth power, of the SNR.
Although this argument suggests that on average it

would be beneficial to include all events and not just those
for which the degeneracy is broken with strong confidence,
for any individual noise realization, the Bayes factor could

be less than one. To aid with comparisons to prior literature
[43,47] and to help make the forecasts more computation-
ally efficient, we use only the events that satisfy the criteria
described in Sec. II C 2.

APPENDIX C: ANOTHER DEGENERACY

OF THE DOMINANT QUADRUPOLAR MODE

In this appendix, we discuss another transformation,
separate from that in Eq. (2.38), that is considered in
Sec. VA 3 of Ref. [48]:

{ → π − {: ðC1Þ

Since the spin-weighted spherical harmonics transform as

sYlmðπ − {;ϕrefÞ ¼ ð−1Þlþs
sYlð−mÞð{;ϕrefÞ; ðC2Þ

it was noted in Ref. [48] that the spin-memory mode would
also flip sign under this transformation. Thus, it was
mentioned in Ref. [48] that one would need to additionally
need to distinguish the binary’s inclination between { and
π − { to stack the SNR for the spin memory mode to
compute the effective SNR. While this is true, the trans-
formation (C1) is not a degeneracy of the dominant
quadrupole mode, so distinguishing between { and π − {
will not present an additional challenge. This can be shown
by computing the transformation of hðlmÞ under Eq. (C1).
The result that we find is

X

jmj≤l
hðlmÞ → ð−1Þl

X

jmj≤l

n

FþRe
h

hlð−mÞ−2Ylm

i

þ F×Im
h

hlð−mÞ−2Ylm�
o

: ðC3Þ

Note that, relative to Eq. (2.34), there is a sign difference in
the second line coming from Im½z̄� ¼ −Im½z�. This trans-
formation therefore treats plus and cross polarizations
differently, with the cross polarization gaining an additional
relative sign. Using Eq. (2.31), and the fact that (in the
quadrupole approximation) the displacement memory is
purely plus polarized and the spin memory purely cross
polarized, we therefore find that this transformation is a
degeneracy of the displacement memory and flips the sign
of the spin memory. This transformation, however, is not a
degeneracy of the oscillatory part of the signal, as this part
of the signal has nonzero plus- and cross-polarized com-
ponents. Thus, it does not result in the same “sign-of-the-
memory” issue as the transformation in Eq. (2.38).
However, if in addition to Eq. (C1), one were to

simultaneously perform the transformation15

15Since this transformation changes the location of the binary
on the sky, any degeneracy that it induces could be broken by
measuring the arrival times of the signal at the different detectors.
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ψ → −ψ ; δ → −δ; α → αþ π; ðC4Þ

this induces a transformation

X → −X; Y → Y; ðC5Þ

so that the antenna patterns undergo Fþ → Fþ,
F× → −F×. This changes the sign of the second line of

Eq. (C3), which implies that this transformation now is
effectively the same as

hlm → ð−1Þlhlð−mÞ: ðC6Þ

However, by Eqs. (2.26) and (2.31), we find that hosc (for
even l), hdisp, and even hspin are all even under this
transformation. Therefore, once again, this transformation
does not result in any sign-of-the-memory issue.
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