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Abstract— Distributed optimization often requires finding the
minimum of a global objective function written as a sum
of local functions. A group of agents work collectively to
minimize the global function. We study a continuous-time
decentralized mirror descent algorithm that uses purely local
gradient information to converge to the global optimal solution.
The algorithm enforces consensus among agents using the idea
of integral feedback. Recently, the asymptotic convergence of
this algorithm was studied for when the global function is
strongly convex but local functions are convex. Using control
theoretical tools, in this work, we prove (theoretically) that the
algorithm indeed achieves local exponential convergence. We
also provide a numerical experiment on a real data-set as a
validation of the convergence speed of our algorithm.

I. INTRODUCTION

Distributed gradient-based optimization is well-studied in

the literature. Generally, the problem is to find the optimal

solution for a global objective function that is a sum of

local cost functions assigned to various agents. Each agent

only has limited knowledge of the global problem, and the

agents must work collectively to reach consensus around

the optimum for the global objective function. Distributed

optimization has applications in distributed resource allo-

cation [1], distributed sensor localization [2], distributed

cooperative control [3], social learning [4], and beyond.

Naturally, one of the most fundamental questions in

distributed optimization is that whether a distributed algo-

rithm is able to match the performance of its centralized

counterpart. The basic idea of gradient descent with local

averaging has proven to be a simple yet powerful approach.

The seminal work of [5] is a prominent point in case,

which shows this approach converges for convex problems

using a diminishing step-size sequence, which decreases the

influence of local gradients and allows all agents to reach

consensus. However, as soon as assumptions like smoothness

and/or strong convexity come into play, a diminishing step-

size may no longer be optimal in centralized optimization,

thereby being a sub-optimal choice for decentralized algo-

rithms as well.

A number of works proposed gradient tracking, that uses

an additional term to ensure consensus with non-decreasing

step-sizes. This line of work includes EXTRA [6] and

DEXTRA [7], where we can observe decentralized perfor-

mances on par with their respective centralized problems. In

continuous-time distributed optimization, another approach,

termed integral feedback, has been used in the literature in
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a similar spirit. The integral feedback introduces another

variable to account for differences between agents and helps

the network reach consensus. Examples of recent works

adopting this approach include [8]–[11].

However, most of the recent works in distributed gradient-

based optimization have focused on gradient descent. Al-

though effective, gradient descent sometimes cannot yield

desirable results by not exploiting the geometry of the

problem. Mirror descent [12], on the other hand, is widely

used in large-scale optimization problems. Mirror descent

replaces the Euclidean distance in gradient descent with

Bregman divergence as the regularizer, and it can be viewed

as a more general version of gradient descent. For some of

high-dimensional optimization problems, mirror descent can

provide significantly faster convergence rates compared to

gradient descent [13].

Motivated by the generality of mirror descent, in this

work we focus on distributed mirror descent (DMD). Most

of prior work on DMD is in discrete time (see e.g., [14]–

[18]). With the exception of [16], the works above either

use diminishing step-size sequence or multi-communications

per round in order to reach consensus. For the same rea-

sons mentioned for gradient descent, a diminishing step-

size would not be optimal for strongly convex problems,

resulting in slower convergence compared to centralized

methods. In this work, we study continuous-time DMD with

integral feedback, recently proposed in [19]. The authors

focused on a setup where the global objective is strongly

convex but the local functions are convex, and they provided

asymptotic convergence analysis. In the current work, we

use dynamical systems tools (Lyapunov’s indirect method)

to prove the local exponential convergence of DMD with

integral feedback, which provides a theoretical analysis on

the linear convergence observed (empirically) in [19]. We

also test our algorithm on a real data-set to show that the

proposed algorithm indeed converges exponentially fast (or

linearly in log-scale).

We remark that DMD in continuous time has also been

studied prior to this work, mostly by focusing on reduction

of noise variance in stochastic optimization [20], [21]. [22]

also motivates mirror descent using RLC circuits and utilize

derivative and integration in the algorithm. The distinction

between [22] and the current work includes different as-

sumptions on the objective functions, which yields different

convergence results.

II. PROBLEM FORMULATION

Notation: We let [n] denote the set {1, 2, 3, . . . , n} for
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any integer n. x> (and A>) denotes transpose of vector x

(and matrix A), respectively. Id represents identity matrix of

size d×d. We let 1d denote d-dimensional vector of all ones.

〈x, y〉 denotes the standard inner product between x and y

and ‖x‖ =
√

〈x, x〉 is the Euclidean norm of vector x. A⊗B

represents the Kronecker product of matrices A and B. The

i-th element of the vector x is denoted by [x]i, and the ij-th

element of the matrix A is denoted by [A]ij . We let det(A)
denote the determinant of matrix A and use col{v1, . . . , vn}
to denote the vector that stacks all vectors vi for i ∈ [n]. We

use diag{a1, . . . , an} to represent an n× n diagonal matrix

that has the scalar ai in its i-th diagonal element. We use

Re[·] to denote the real part of a complex number. We use

0 to represent the null vector and the null matrix when it is

clear from the context.

A. Distributed Optimization

Distributed convex optimization consists of minimizing an

objective function F : R
d → R. F is written as a sum of local

cost functions, denoted by fi : R
d → R for i ∈ [n], and the

cost function fi is associated with agent i. The minimization

task is as follows

minimize
x∈Rd

F (x) =

n
∑

i=1

fi(x). (1)

In a distributed optimization setup, agents only have the

information about their associated local functions, and the

network of agents relies on communication between agents

in order to find the solution to the global task presented in

(1). We now introduce some assumptions on the local and

global functions.

Assumption 1: For any agent i ∈ [n] in the network, we

assume that the local cost function fi : R
d → R is convex

and differentiable.

From this assumption, we can immediately get that the global

function F is also convex and differentiable, but we impose

an additional assumption on the global cost function as

follows.

Assumption 2: The global function F : R
d → R is

strongly convex. There exists a unique minimizer for F

and the optimal value denoted by F ? = F (x?) exists. The

gradients of local functions ∇fi(x) are locally continuously

differentiable around x?.

B. Network Settings

The agents form a network, modeled by a simple undi-

rected graph G = (V, E), where the agents are denoted by

nodes V = [n] and the connection between two agents i and

j is captured by the edge {i, j} ∈ E . The neighborhood of

agent i is denoted by Ni , {j ∈ V : {i, j} ∈ E}. The

agents work collectively to find the optimum of the global

cost function, which is the sum of all local cost functions.

Assumption 3: The graph G is connected, i.e., there exists

a path between any two distinct agents i, j ∈ V . The graph

Laplacian is denoted by L ∈ R
n×n.

The connectivity assumption implies that L has a unique null

eigenvalue. That is, L1n = 0, and 1n is the only direction

(eigenvector) recovering the zero eigenvalue.

C. Mirror Descent

We now provide a brief introduction of centralized mirror

descent algorithm and explain the transition from discrete

mirror descent (as mentioned in [12] ) to a continuous-time

setup. Later, in Section II-D we derive the distributed mirror

descent updates in continuous time.

In gradient descent method, each iterate can be seen as

an optimization problem on a simplified model, constructed

by a first order approximation of a function plus a Euclidean

regularizer. Mirror descent replaces the Euclidean regularizer

with Bregman divergence. Bregman divergence is defined

with respect to a distance generating function (DGF) φ :
R
d → R, as follows

Dφ(x, x
′) , φ(x)− φ(x′)− 〈∇φ(x′), x− x′〉. (2)

In discrete time, the mirror descent algorithm with learning

rate η is written as

x(k+1) = argmin
x∈Rd

{

F (x(k)) + η∇F (x(k))>(x− x(k))

+Dφ(x, x
(k))

}

.

(3)

Bregman divergence is regarded as a more general version of

the Euclidean regularizer. When using the Euclidean distance

as the Bregman divergence (i.e., Dφ(x, x
(k)) = 1

2‖x−x(k)‖2)

we recover gradient descent. Hence, mirror descent is seen

as a more general version of gradient descent.

Assumption 4: The distance generating function φ is

closed, differentiable and µφ-strongly convex.

Assumption 5: The Hessian of distance generating func-

tion, ∇2φ, is locally continuously differentiable around the

neighborhood of x? (the minimizer of F).

The two assumptions above on φ are satisfied by some of

the commonly used Bregman divergences, such as φ(x) =
1
2 ‖x‖

2
, DGF of the Euclidean distance, and the negative

entropy function φ(x) =
∑d

j=1[x]j log([x]j), DGF of the

Kullback–Leibler divergence.

Now, we introduce an equivalent form of the update above

for more convenient analysis. This equivalent form is based

on the convex conjugate (also known as Fenchel dual) of

function φ, which is denoted by φ? and defined as follows

φ?(z) , sup
x∈Rd

{〈x, z〉 − φ(x)}.

From the definition, we can derive the the subsequent rela-

tionship,

z = ∇φ(x) ⇐⇒ x = ∇φ?(z).

This means ∇φ? will map the range of z back to R
d.

Assumption 4 on the DGF φ guarantees the µ−1
φ -smoothness

property on φ? (see e.g., [23]). Using the definition of φ?,

the update (3) can be rewritten in the following equivalent

form

z(k+1) = z(k) − η∇F (x(k))

x(k+1) = ∇φ?(z(k+1)).
(4)
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Then, the continuous-time update can be obtained by setting

η infinitesimally small as follows

ż = −∇F (x),

x = ∇φ?(z),

x(0) = x0, z(0) = z0 with x0 = ∇φ?(z0),

(5)

This setup was studied in [24].

D. Distributed Mirror Descent with Integral Feedback

In this section, we introduce the distributed algorithm for

mirror descent shown in (5). Our end goal is to have all

agents converge to the global optimum in (1) and reach

consensus. Motivated by [8], [9], we use integral feedback

to get

żi = −∇fi(xi) +
∑

j∈Ni

(xj − xi) +

∫ t

0

∑

j∈Ni

(xj − xi)

xi = ∇φ?(zi),

(6)

with xi(0) = xi0, zi(0) = zi0, and xi0 = ∇φ?(zi0).

The algorithm only utilizes gradient information of the

local costs. The first equation updates the dual variable zi
using gradient information, a consensus term, and the integral

feedback. Then, the second equation updates the primal

variable by mirroring the dual variable back with function

φ?. For convenience, we stack vectors from all agents and

define the following notation,

L , L ⊗ Id

x , col{x1, x2, . . . , xn}

z , col{z1, z2, . . . , zn},

∇φ?(z) , col{∇φ?(z1),∇φ?(z2), . . . ,∇φ?(zn)}

∇f(x) , col{∇f1(x1),∇f2(x2), . . . ,∇fn(xn)}.

(7)

Additionally, we introduce a variable y to replace the inte-

gral. Then, the dynamical system (6) can be written using

the newly defined notations,

ż = −(∇f(x) + Lx+ y),

ẏ = Lx,

x = ∇φ?(z),

(8)

where y ∈ R
nd and y(0) = 0.

III. MAIN RESULTS

In this section, we provide the convergence results of

(8). In particular, we prove that under our assumptions, all

agents in the network will converge exponentially fast to the

global minimum of F in (1). In a previous work, the authors

showed that under a subset of assumptions, the algorithm

will asymptotically converge to the global optimum (without

providing the rate).

Theorem 1: [ [19]] Given Assumptions 1-4, for any start-

ing point xi(0) = xi0, zi(0) = zi0 with xi0 = ∇φ?(zi0),

the distributed mirror descent algorithm with integral feed-

back proposed in (6) will converge to the global optimum

asymptotically, i.e., limt→∞ xi(t) = x? for any i ∈ [n].

The proof of this theorem can be found in [19], where it is

also shown that agents reach consensus at the global optimal

point, which is the unique equilibrium of the dynamical

system (8). The equilibrium point for x,y, z is denoted by

x? = 1n ⊗ x?, y? = −∇f(x?),

z? = 1n ⊗ z? = 1n ⊗∇φ(x?).

A. Coordinate Transformation

We use the change of variables in [19] for further analysis.

Let S = L
1

2 , and recall that L = L ⊗ Id is a symmetric

positive semi-definite matrix. We then introduce a new

variable w(t) = S
∫ t

0
x(τ)dτ . From (8) it is easy to show

that y = Sw. We then center the variables by moving the

system’s equilibrium to the origin as follows

x̃ , x− x?, ỹ , y − y?, w̃ , w −w?, z̃ , z− z?.

(9)

The first two equations in (8) can be rewritten as

˙̃z = −(∇f(x̃+ x?)−∇f(x?))− Lx̃− Sw̃,

˙̃w = Sx̃,
(10)

Next, we perform a dimension reduction on variable w̃.

Define r , 1√
n
1n and let L = QΛQ>, where Λ =

diag{0, λ1, ..., λn−1}. From Assumption 3 it is clear that r

is the first column of Q. We then define R ∈ R
n×(n−1)

such that Q = [r,R]. The following relationships follow

subsequently

r>R = 0, R>R = In−1, RR> = In −
1

n
1n1

>
n ,

r>Lr = 0, R>LR � 0.
(11)

Now, let

r , r ⊗ Id, R , R⊗ Id, Q , Q⊗ Id, (12)

and define new vectors by the following transformations from

w̃,

W , Q>w̃ =

[

r>

R>

]

w̃ =

[

r>w̃
R>w̃

]

=

[

W1

W2

]

.

Note that for W1, from (10) we can derive that

Ẇ1 = r> ˙̃w = r>Sx̃ = 0, W1(0) = −r>w? = 0.

Therefore W1 ≡ 0 for all time t, and the system variable

can be represented by W2 only. w̃ =
[

r R
]

W = rW1 +
RW2 = RW2.

Furthermore, we replace variable z with x. Since z =
∇φ(x), we have

˙̃z =
d

dt
(z− z?) = ∇2φ(x) ˙̃x.
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Assumption 4 implies that ∇2φ(x) is positive definite and

therefore invertible. Now, we can rewrite the system in (10)

using only variables x̃ and W2 as follows

˙̃x = −∇2φ(x̃+ x?)−1(∇f(x̃+ x?)−∇f(x?)

+ Lx̃+ SRW2),

Ẇ2 = R>Sx̃,

(13)

Thus, the (exponential) stability of (8) can be analyzed using

the (exponential) stability of (13).

B. Exponential Convergence

With the system transformation in place, we can discuss

the convergence and stability of distributed mirror descent

(with integral feedback) in the following theorem.

Theorem 2: (Main Result) Given Assumptions 1-5, the

origin is a locally exponentially stable equilibrium of (8)

and (13).

Proof: If we linearize the system (13) at the origin,

using the notation ∇2φ(x̃ + x?)−1|x̃=0 = D, ∇2f(x̃ +
x?)|x̃=0 = H, the linearized version of (13) is

[

˙̃x

Ẇ2

]

= −M

[

x̃

W2

]

,

where M ,

[

D(H+ L) DSR

−R>S 0

]

.

(14)

We denote by λ1, ..., λ(2n−1)d the eigenvalues of the lin-

earized system matrix M in (14). Based on Lemma 4,

Re[λi] > 0 for all eigenvalues. Lemma 4 and its proof are

provided later in the paper. Now, from Theorem 3.2 in [25],

since Re[λi] > 0, the equilibrium of system (13), as well as

the equilibrium of system (8) given by Theorem 1, are both

locally exponentially stable. This means there exists δ > 0
such that for any ‖col{x,y, z} − col{x?,y?, z?}‖ ≤ δ, the

system state variables converge to the equilibrium (global

optimal solution) exponentially fast.

Recall from Theorem 1 that the system (8) also exhibits

global asymptotic convergence to the equilibrium. Then, for

any starting point for col{x,y, z}, the state variables can

converge to a neighborhood of radius δ of equilibrium in a

finite time T (δ). Combined with the exponential convergence

rate within the ball, this means that (after a finite time),

the system exhibits exponential convergence to the global

optimal solution.

We now provide the following two lemmas used in the

proof of Theorem 2.

Lemma 3: Given Assumptions 1-3, the matrix (H+L) is

positive definite.

Proof: First, (H+ L) is symmetric since both H and

L are symmetric. For any non-zero vector v ∈ R
nd, from

Assumptions 1 and 3, we know that

v>Hv ≥ 0, v>Lv ≥ 0 ⇒ v>(H+L)v = v>Hv+v>Lv ≥ 0.

Furthermore, Since 1n is the unique eigenvector of L re-

covering the null eigenvalue, when v>Lv = 0, v must

satisfy v = 1n ⊗u for some u. Then, Assumption 2 ensures

v>Hv = (1n ⊗ u)>H(1n ⊗ u) = u>∇2F (x?)u > 0. This

shows that the symmetric matrix H+L is positive definite.

Lemma 4: Given Assumptions 1-5, Re[λi] > 0 for all

eigenvalues λ1, ..., λ(2n−1)d of M =

[

D(H+ L) DSR

−R>S 0

]

.

Proof: For any i ∈ [(2n−1)d], λi must be a solution to

det(M−λI(2n−1)d) = 0. First, let us rule out the possibility

of having λi = 0.

det(M) = det

(

[

D(H+ L) DSR

−R>S 0

]

)

= det

(

[

D(H+ L) 0
−R>S I(n−1)d

]

[

Ind (D(H+ L))−1DSR

0 R>S(D(H+ L))−1DSR

]

)

= det(D(H+ L))det(R>S(D(H+ L))−1DSR)

= det(D)det(H+ L)det(R>S(H+ L)−1SR).
(15)

Since R>SSR = (R>LR)⊗Id � 0, the null space of SR is

0. Then, R>S(H+L)−1SR is positive definite since H+L

is positive definite (Lemma 3). As a result, this confirms that

det(M) > 0, implying λi 6= 0 for all i ∈ [(2n− 1)d].

The next step is to look at the characteristic polynomial

of M, where we have

0 = det(M− λI(2n−1)d)

= det

(

[

D(H+ L)− λInd DSR

−R>S −λI(n−1)d

]

)

= det(D(H+ L)− λInd −DSR(λI(n−1)d)
−1R>S)

det(−λI(n−1)d)

= det(D)det((H+ L)− λD−1 −
1

λ
SRR>S)

= det((H+ L)− λD−1 −
1

λ
S(Ind − rr>)S)

= det((H+ L)− λD−1 −
1

λ
L).

(16)

Observe that (H+L)−λD−1 − 1
λ
L is a symmetric matrix,

and det((H+L)−λD−1− 1
λ
L) = 0 implies that there exists

a non-zero vector v ∈ R
nd for any solution of λ such that

v>((H+ L)− λD−1 −
1

λ
L)v = 0.

Since L is positive semi-definite, D−1 and (H + L) are

positive definite, v>Lv ≥ 0, v>D−1v > 0, v>(L+H)v > 0.

When v>Lv = 0,

λ =
v>(L+H)v

v>D−1v
> 0,

when v>Lv > 0,

λ =
v>(L+H)v ±

√

(v>(L+H)v)2 − 4v>Lvv>D−1v

2v>D−1v
,

certifying that Re[λ] > 0 in both cases.
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V. CONCLUSION

In this paper, we studied the distributed optimization

problem, where a network of agents work together to find

the optimal solution for a global objective function. We

studied a distributed mirror descent algorithm that benefits

from the idea of integral feedback. We established that the

convergence rate of our algorithm is exponential (locally),

which shows the advantage of adopting integral feedback

for strongly convex problems. Our claim is supported by

empirical results on a real data-set.

Though our work provides exponential convergence rate

for strongly convex distributed optimization, more analysis

is needed to generalize this work to other network settings,

such as dynamic networks and networks with delays. Another

interesting direction includes the theoretical analysis of the

discretized version of this algorithm, shown in (17). These

are open questions left for future works.
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