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Abstract— Distributed optimization often requires finding the
minimum of a global objective function written as a sum
of local functions. A group of agents work collectively to
minimize the global function. We study a continuous-time
decentralized mirror descent algorithm that uses purely local
gradient information to converge to the global optimal solution.
The algorithm enforces consensus among agents using the idea
of integral feedback. Recently, the asymptotic convergence of
this algorithm was studied for when the global function is
strongly convex but local functions are convex. Using control
theoretical tools, in this work, we prove (theoretically) that the
algorithm indeed achieves local exponential convergence. We
also provide a numerical experiment on a real data-set as a
validation of the convergence speed of our algorithm.

I. INTRODUCTION

Distributed gradient-based optimization is well-studied in
the literature. Generally, the problem is to find the optimal
solution for a global objective function that is a sum of
local cost functions assigned to various agents. Each agent
only has limited knowledge of the global problem, and the
agents must work collectively to reach consensus around
the optimum for the global objective function. Distributed
optimization has applications in distributed resource allo-
cation [1], distributed sensor localization [2], distributed
cooperative control [3], social learning [4], and beyond.

Naturally, one of the most fundamental questions in
distributed optimization is that whether a distributed algo-
rithm is able to match the performance of its centralized
counterpart. The basic idea of gradient descent with local
averaging has proven to be a simple yet powerful approach.
The seminal work of [5] is a prominent point in case,
which shows this approach converges for convex problems
using a diminishing step-size sequence, which decreases the
influence of local gradients and allows all agents to reach
consensus. However, as soon as assumptions like smoothness
and/or strong convexity come into play, a diminishing step-
size may no longer be optimal in centralized optimization,
thereby being a sub-optimal choice for decentralized algo-
rithms as well.

A number of works proposed gradient tracking, that uses
an additional term to ensure consensus with non-decreasing
step-sizes. This line of work includes EXTRA [6] and
DEXTRA [7], where we can observe decentralized perfor-
mances on par with their respective centralized problems. In
continuous-time distributed optimization, another approach,
termed integral feedback, has been used in the literature in
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a similar spirit. The integral feedback introduces another
variable to account for differences between agents and helps
the network reach consensus. Examples of recent works
adopting this approach include [8]-[11].

However, most of the recent works in distributed gradient-
based optimization have focused on gradient descent. Al-
though effective, gradient descent sometimes cannot yield
desirable results by not exploiting the geometry of the
problem. Mirror descent [12], on the other hand, is widely
used in large-scale optimization problems. Mirror descent
replaces the Euclidean distance in gradient descent with
Bregman divergence as the regularizer, and it can be viewed
as a more general version of gradient descent. For some of
high-dimensional optimization problems, mirror descent can
provide significantly faster convergence rates compared to
gradient descent [13].

Motivated by the generality of mirror descent, in this
work we focus on distributed mirror descent (DMD). Most
of prior work on DMD is in discrete time (see e.g., [14]—
[18]). With the exception of [16], the works above either
use diminishing step-size sequence or multi-communications
per round in order to reach consensus. For the same rea-
sons mentioned for gradient descent, a diminishing step-
size would not be optimal for strongly convex problems,
resulting in slower convergence compared to centralized
methods. In this work, we study continuous-time DMD with
integral feedback, recently proposed in [19]. The authors
focused on a setup where the global objective is strongly
convex but the local functions are convex, and they provided
asymptotic convergence analysis. In the current work, we
use dynamical systems tools (Lyapunov’s indirect method)
to prove the local exponential convergence of DMD with
integral feedback, which provides a theoretical analysis on
the linear convergence observed (empirically) in [19]. We
also test our algorithm on a real data-set to show that the
proposed algorithm indeed converges exponentially fast (or
linearly in log-scale).

We remark that DMD in continuous time has also been
studied prior to this work, mostly by focusing on reduction
of noise variance in stochastic optimization [20], [21]. [22]
also motivates mirror descent using RLC circuits and utilize
derivative and integration in the algorithm. The distinction
between [22] and the current work includes different as-
sumptions on the objective functions, which yields different
convergence results.

II. PROBLEM FORMULATION
Notation: We let [n] denote the set {1,2,3,...,n} for
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any integer n. ' (and AT) denotes transpose of vector x
(and matrix A), respectively. I; represents identity matrix of
size d x d. We let 14 denote d-dimensional vector of all ones.
(x,y) denotes the standard inner product between x and y
and ||z|| = v/{z, x) is the Euclidean norm of vector . A® B
represents the Kronecker product of matrices A and B. The
i-th element of the vector z is denoted by [z];, and the ij-th
element of the matrix A is denoted by [A];;. We let det(A)
denote the determinant of matrix A and use col{vy,...,v,}
to denote the vector that stacks all vectors v; for i € [n]. We
use diag{ai,...,a,} to represent an n x n diagonal matrix
that has the scalar a; in its i-th diagonal element. We use
Re[] to denote the real part of a complex number. We use
0 to represent the null vector and the null matrix when it is
clear from the context.

A. Distributed Optimization
Distributed convex optimization consists of minimizing an
objective function F' : R? — R. F is written as a sum of local
cost functions, denoted by f; : R? — R for i € [n], and the
cost function f; is associated with agent 7. The minimization
task is as follows
minimize
zER

Pla) =Y fix). (M

In a distributed optimization setup, agents only have the
information about their associated local functions, and the
network of agents relies on communication between agents
in order to find the solution to the global task presented in
(1). We now introduce some assumptions on the local and
global functions.

Assumption 1: For any agent ¢ € [n] in the network, we

assume that the local cost function f; : R? — R is convex
and differentiable.
From this assumption, we can immediately get that the global
function F' is also convex and differentiable, but we impose
an additional assumption on the global cost function as
follows.

Assumption 2: The global function F' : R? — R is
strongly convex. There exists a unique minimizer for F'
and the optimal value denoted by F* = F'(x*) exists. The
gradients of local functions V f;(z) are locally continuously
differentiable around x*.

B. Network Settings

The agents form a network, modeled by a simple undi-
rected graph G = (V, £), where the agents are denoted by
nodes V = [n] and the connection between two agents ¢ and
j is captured by the edge {i,j} € £. The neighborhood of
agent i is denoted by N; = {j € V : {i,j} € £}. The
agents work collectively to find the optimum of the global
cost function, which is the sum of all local cost functions.

Assumption 3: The graph G is connected, i.e., there exists
a path between any two distinct agents 4,5 € V. The graph
Laplacian is denoted by £ € R™*"™,

The connectivity assumption implies that £ has a unique null
eigenvalue. That is, £1,, = 0, and 1,, is the only direction
(eigenvector) recovering the zero eigenvalue.

C. Mirror Descent

We now provide a brief introduction of centralized mirror
descent algorithm and explain the transition from discrete
mirror descent (as mentioned in [12] ) to a continuous-time
setup. Later, in Section II-D we derive the distributed mirror
descent updates in continuous time.

In gradient descent method, each iterate can be seen as
an optimization problem on a simplified model, constructed
by a first order approximation of a function plus a Euclidean
regularizer. Mirror descent replaces the Euclidean regularizer
with Bregman divergence. Bregman divergence is defined
with respect to a distance generating function (DGF) ¢ :
RY — R, as follows

Dy(x,2") £ p(2) — ¢(a’) = (Vo(2'),x —2'). ()

In discrete time, the mirror descent algorithm with learning
rate 7 is written as

D = argmin{F(x(k)) +nVE@@®)T (@ — 2®)
z€R?

3)
+D¢(:z:,:17(k))}.

Bregman divergence is regarded as a more general version of
the Euclidean regularizer. When using the Euclidean distance
as the Bregman divergence (i.e., Dy(z, 2*)) = L ||lz—z®)||?)
we recover gradient descent. Hence, mirror descent is seen
as a more general version of gradient descent.

Assumption 4: The distance generating function ¢ is
closed, differentiable and ji4-strongly convex.

Assumption 5: The Hessian of distance generating func-

tion, V2¢, is locally continuously differentiable around the
neighborhood of z* (the minimizer of F).
The two assumptions above on ¢ are satisfied by some of
the commonly used Bregman divergences, such as ¢(z) =
%||J:||2, DGF of the Euclidean distance, and the negative
entropy function ¢(z) = Z?Zl[x} jlog([z];), DGF of the
Kullback-Leibler divergence.

Now, we introduce an equivalent form of the update above
for more convenient analysis. This equivalent form is based
on the convex conjugate (also known as Fenchel dual) of
function ¢, which is denoted by ¢* and defined as follows

¢*(2) & sup {(z,z2) — p(x)}.
rEeRE
From the definition, we can derive the the subsequent rela-
tionship,

z2=Vo¢(z) <= == Vo (2).

This means V¢* will map the range of z back to RY.
Assumption 4 on the DGF ¢ guarantees the u;l-smoothness
property on ¢* (see e.g., [23]). Using the definition of ¢*,
the update (3) can be rewritten in the following equivalent

form
LkF1) — (k) _ nVF(a?(k))

2Dy (D), 4)
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Then, the continuous-time update can be obtained by setting
7 infinitesimally small as follows

i =—VF(z),
x = V¢*(2), (5)
{E(O) = Xy, Z(O) = 20 Wlth o = V(b*(Z(]),

This setup was studied in [24].

D. Distributed Mirror Descent with Integral Feedback

In this section, we introduce the distributed algorithm for
mirror descent shown in (5). Our end goal is to have all
agents converge to the global optimum in (1) and reach
consensus. Motivated by [8], [9], we use integral feedback
to get

Zi = —Vfi<l‘i) + Z ($j — ;) -‘r/o Z («Tj - -Ti)

ieEN; ieEN;
€ € 6)

zi = Vo™ (),

Wlth xi(O) = X0, 21(0) = zio,and Ti0 = V(;S*(ZZQ)

The algorithm only utilizes gradient information of the
local costs. The first equation updates the dual variable z;
using gradient information, a consensus term, and the integral
feedback. Then, the second equation updates the primal
variable by mirroring the dual variable back with function
¢*. For convenience, we stack vectors from all agents and
define the following notation,

LAL®Iy,

x 2 col{wy,29,...,2,}

z 2 col{z1,2,...,2,}, (7)
V' (z) £ col{V¢*(21),V§*(22),..., V6" (2,)}

Vf(x) 2 col{V fi(x1),Vfa(z2),...,Vu(zn)}.

Additionally, we introduce a variable y to replace the inte-
gral. Then, the dynamical system (6) can be written using
the newly defined notations,

z=—(Vf(x)+Lx+y),
y = Lx, (8)
x = V¢*(z),

where y € R™ and y(0) = 0.

III. MAIN RESULTS

In this section, we provide the convergence results of
(8). In particular, we prove that under our assumptions, all
agents in the network will converge exponentially fast to the
global minimum of F' in (1). In a previous work, the authors
showed that under a subset of assumptions, the algorithm
will asymptotically converge to the global optimum (without
providing the rate).

Theorem 1: [ [19]] Given Assumptions 1-4, for any start-
ing point x;(0) = x0,2;(0) = 20 with z;9 = Vé*(z0),

the distributed mirror descent algorithm with integral feed-
back proposed in (6) will converge to the global optimum
asymptotically, i.e., lim;_, o x;(t) = z* for any ¢ € [n].

The proof of this theorem can be found in [19], where it is
also shown that agents reach consensus at the global optimal
point, which is the unique equilibrium of the dynamical
system (8). The equilibrium point for x,y,z is denoted by

xX'=1,®@z", y' =-Vf{x),

z" =1,z =1, @ Vé(x¥).

A. Coordinate Transformation

We use the change of variables in [19] for further analysis.
Let S = L3, and recall that L = £ ® 14 is a symmetric
positive semi-definite matrix. We then introduce a new
variable w(t) = Sfot x(7)dr. From (8) it is easy to show
that y = Sw. We then center the variables by moving the
system’s equilibrium to the origin as follows

A *

~ A
x—x" y= *

y-y, w

Ay *

X w—Ww", Z

The first two equations in (8) can be rewritten as

7z=—(Vf(x+x*) - Vf(x*)) — Lx — Sw,

w = Sx,

(10)

Next, we perform a dimension reduction on variable w.
Define r 2 ﬁ]ln and let £ = QAQT, where A =
diag{0, A1, ..., Ap—1}. From Assumption 3 it is clear that r
is the first column of Q. We then define R € R"*(»—1)
such that Q = [r, R]. The following relationships follow
subsequently

1
r"R=0, R'"TR=1,,, RR' =1I,—--1,1,,
n (11)
r'Lr=0, R'LR>O.
Now, let
réT@Ida RéR@Idv QéQ®Ida (12)

and define new vectors by the following transformations from

w,

T Ta
A AT~ _|T - |r'w| W,
we e v ) - W)
Note that for W1, from (10) we can derive that

W,=r'w=r'Sx=0, W,(0) = —r'w* =0.
Therefore W1 = 0 for all time ¢, and the system variable
can be represented by W only. w = [r R| W =rW; +
RW,; = RW,.

Furthermore, we replace variable z with x. Since z =
Vo(x), we have
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Assumption 4 implies that V2¢(x) is positive definite and
therefore invertible. Now, we can rewrite the system in (10)
using only variables x and Wy as follows

x = -V?p(x +x") " (Vf(X+x") - V(x)

+ L% + SRW,), (13)

W, = R"Sx,
Thus, the (exponential) stability of (8) can be analyzed using
the (exponential) stability of (13).

B. Exponential Convergence

With the system transformation in place, we can discuss
the convergence and stability of distributed mirror descent
(with integral feedback) in the following theorem.

Theorem 2: (Main Result) Given Assumptions 1-5, the
origin is a locally exponentially stable equilibrium of (8)
and (13).

Proof: If we linearize the system (13) at the origin,
using the notation VZ¢(X + x*)7z—o = D, V2f(x +
x*)|x=0 = H, the linearized version of (13) is

)

[D(H L) DSR} W

(1>

where M “R'S 0
We denote by A1,...,A\(2n—1)q the eigenvalues of the lin-
earized system matrix M in (14). Based on Lemma 4,
Re[X;] > 0 for all eigenvalues. Lemma 4 and its proof are
provided later in the paper. Now, from Theorem 3.2 in [25],
since Re[A;] > 0, the equilibrium of system (13), as well as
the equilibrium of system (8) given by Theorem 1, are both
locally exponentially stable. This means there exists § > 0
such that for any ||col{x,y,z} — col{x*,y*,z*}|| < 4, the
system state variables converge to the equilibrium (global
optimal solution) exponentially fast. [ ]
Recall from Theorem 1 that the system (8) also exhibits
global asymptotic convergence to the equilibrium. Then, for
any starting point for col{x,y,z}, the state variables can
converge to a neighborhood of radius § of equilibrium in a
finite time 7'(§). Combined with the exponential convergence
rate within the ball, this means that (after a finite time),
the system exhibits exponential convergence to the global
optimal solution.

We now provide the following two lemmas used in the
proof of Theorem 2.

Lemma 3: Given Assumptions 1-3, the matrix (H+ L) is
positive definite.

Proof: First, (H 4 L) is symmetric since both H and

L are symmetric. For any non-zero vector v € R"™?, from
Assumptions 1 and 3, we know that

v Ho>0,0 Lv>0= UT(H-FL)U = v Ho+v Lv > 0.

Furthermore, Since 1,, is the unique eigenvector of L re-

shows that the symmetric matrix H + L is positive definite.

H
Lemma 4: Given Assumptions 1-5, Re[\;] > 0 for all
eigenvalues A1, ..., A2p—1)q of M = DEI;::—_SL) DgR} .

Proof: For any i € [(2n—1)d], \; must be a solution to
det(M —Xl(2,,_1yq) = 0. First, let us rule out the possibility
of having \; = 0.

det(M) = det( [DE?SSL) DgR] )

det([D(H+L) o}

-R™S  Iy-1ya
T (D(H+L))"'DSR
0 RTS(D(H+L))'DSR
= det(D(H + L))det(R"S(D(H + L)) 'DSR)
= det(D)det(H + L)det(R"S(H + L) 'SR).
15)
Since RTSSR = (RTLR)®1, > 0, the null space of SR is
0. Then, RTS(H+ L)~ 'SR is positive definite since H-+L
is positive definite (Lemma 3). As a result, this confirms that
det(M) > 0, implying X; # 0 for all ¢ € [(2n — 1)d].
The next step is to look at the characteristic polynomial
of M, where we have

0= det(M - >\I(2n71)d)

:det< [D(H—FL) —M,. DSR } >
~R'S ~M_1)a
= det(D(H+ L) — A, — DSR(A\(,,_1)a) 'R'S)
det(—=M(n—1)q)

1
= det(D)det(H+ L) — AD~! — XSRRTS)

1
=det(H+L) - D! - XS(I,Ld —rr")S)

=det(H+L) - AD™ ! - %L)‘

(16)
Observe that (H+L) — AD~! — 1L is a symmetric matrix,
and det((H+L)—AD ™! — {L) = 0 implies that there exists
a non-zero vector v € R™? for any solution of \ such that

1
v (H+L)—-AD™! — XL)u =0.
Since L is positive semi-definite, D! and (H + L) are
positive definite, v 'Lv > 0,0 "D~ v > 0,v T (L+H)v > 0.
When v "Ly = 0,

v (L+H)p

A= 0
v D~y =5

when v Lo > 0,

v (L+Hp+ /T (L+H)pv)? -4 Lov'D v

covering the null eigenvalue, when v'Ly = 0, v must )\ 55T D1 ,

satisfy v = 1,, ® u for some u. Then, Assumption 2 ensures v v

v Hv = (1, ®u) "H(1, ® u) = u' V2F(x*)u > 0. This  certifying that Re[\] > 0 in both cases. [ |
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IV. NUMERICAL SIMULATION

In this section, we use a real data-set to show the linear
convergence of the training loss in a regression problem. We
will investigate the performance of distributed mirror descent
with and without integral feedback. We utilize Euler’s dis-
cretization scheme on algorithm (8). The resulting discrete-
time algorithm for distributed mirror descent with integral
feedback is provided below.

7P = 7,0 — (Vfi(%(k)) +y

)
JEN; (17)
yi P =y ) 4 Z (2, — ;) A,
JEN;

:Ei(k+1) — v¢*(zl(k+1))

Details of this discretization is omitted in this manuscript
and has been provided in [19].

Distance Generating Function for MD: We use the Nega-
tive Entropy as our distance generation function ¢, namely,

d

¢(x) = Y _laljlog([z];) = [2)i = [Vo(x)]i = 1-+log([a];).

Jj=1

Based on Section II-C, the corresponding convex conjugate
function ¢* can be written below,

d
0 (2) = D el = [ai = [V ()]s = €11
j=1

The reason for our choice of DGF is that Kullback-Leibler
divergence is one the most commonly used Bregman diver-
gences other than Euclidean distance, which simply reduces
the method to distributed gradient descent with integral
feedback as in [9].
Network Structure: We consider a 3 x 3 grid network, which
results in a 9-agent network. The connectivity degree for each
agent is between 2 — 4. This network satisfies Assumption
3.
Data Set and Model: We use the Wine Quality Data Set
in UCI ML repository [26]. This is a regression data-set
with 11 continuous input variables. Each agent is assigned
400 data instances with no overlap. For agent ¢ € [n], we
denote the input data and output data as A; € R0*11 and
b; € R0, respectively. The model is a linear regression
where the loss function is defined as the quadratic error
loss, fi(z) = & ||Az — bi||*. We can verify that this setup
satisfies Assumptions 1 and 2. The global objective function
F(x) = Yiein 3 14w = bi|*> = 4 |Az — b||*, where A, b
are the stacked version of A;, b;, respectively. Moreover, we
can calculate the closed form solution of the global problem,
z* = Afb, where AT denotes the pseudo-inverse of A.

Note that the selected model is not necessarily optimal
for test prediction accuracy, and the aim of this numerical

simulation is to show the ability of our proposed algorithm
to converge exponentially fast to the optimal loss on a given
data set. Finding a better model to fit this data set is not the
main focus of this work.
Performance: We provide the trajectory of our proposed
algorithm and also a comparison between our work and
prior works [14], [17] on distributed mirror descent without
integral feedback. In particular, we once run the algorithm
without integral feedback using diminishing step-size ﬁ to
ensure consensus, and once using a constant step-size in
optimization, which is unable to reach optimal solution.
The plot of F(xgk)) — F(z*) is shown in Fig. 2, rep-
resenting the convergence speed of the three algorithms.
We can see that our proposed algorithm converges faster
than diminishing step-size setup, while the constant step-
size setup without integral feedback fails to converge. We
plot log(F(xgk)) — F(z*)) in Fig. 2 to further display the
exponential convergence (i.e., linear in log-scale) speed of
our proposed method.

—— Integral Feedback (Our work)
Constant Step-size
—— Diminishing Step-size

17.51

15.0 1

12.5 1

10.0

F(x1) —F"

7.51

5.0 1

2.51

0.0 1

0.0 2.5 5.0 7.5 10.0 125 15.0 175 20.0
iteration (k)

10°

Fig. 1: The trajectory of difference between F'(z)
and optimal F'(z*) evaluated at agent 1.

—— Integral Feedback (Our work)
Constant Step-size
—— Diminishing Step-size

101
] &

—104

o
L

log(F(x1) = F")
b

—15 4

—-20

0.0 2.5 5.0 75 10.0 125 150 175 20.0
iteration (k)

10°

Fig. 2: The trajectory of log-distance between
F(z) and optimal F(x*) evaluated at agent 1.
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V. CONCLUSION

In this paper, we studied the distributed optimization
problem, where a network of agents work together to find
the optimal solution for a global objective function. We
studied a distributed mirror descent algorithm that benefits
from the idea of integral feedback. We established that the
convergence rate of our algorithm is exponential (locally),
which shows the advantage of adopting integral feedback
for strongly convex problems. Our claim is supported by
empirical results on a real data-set.

Though our work provides exponential convergence rate
for strongly convex distributed optimization, more analysis
is needed to generalize this work to other network settings,
such as dynamic networks and networks with delays. Another
interesting direction includes the theoretical analysis of the
discretized version of this algorithm, shown in (17). These
are open questions left for future works.
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