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Abstract

We use insights from research on Ameri-
can Sign Language (ASL) phonology to train
models for isolated sign language recognition
(ISLR), a step towards automatic sign lan-
guage understanding. Our key insight is to
explicitly recognize the role of phonology in
sign production to achieve more accurate ISLR
than existing work which does not consider
sign language phonology. We train ISLR mod-
els that take in pose estimations of a signer pro-
ducing a single sign to predict not only the sign
but additionally its phonological characteris-
tics, such as the handshape. These auxiliary
predictions lead to a nearly 9% absolute gain
in sign recognition accuracy on the WLASL
benchmark, with consistent improvements in
ISLR regardless of the underlying prediction
model architecture. This work has the po-
tential to accelerate linguistic research in the
domain of signed languages and reduce com-
munication barriers between deaf and hearing
people.

1 Introduction

When learning to recognize sign language, there is
evidence that people rely on breaking signs down
into their constituent parts, such as the configura-
tion and location of the hand (Klima and Bellugi,
1979). This process is also true of spoken lan-
guage recognition, where recognizing sound pat-
terns plays a crucial role in one’s ability to rec-
ognize a word. Sometimes, one of these “parts”
(phonemes) is the only distinguishing factor be-
tween two very different terms, as seen in the signs
for DIFFERENCE (palms up) and BALANCE (palms
down) in Croatian Sign Language (Kuhn et al.,
2006). Thus, the ability to encode and recognize
individual phonemes and the relationships among
them is essential for sign recognition. As a first
step in exploring the practicality of phoneme recog-
nition, we ask: Can machine learning models for
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Figure 1: We demonstrate that sign language recogni-
tion models improve in accuracy when also tasked with
predicting component phonemes of the sign.

isolated sign language recognition (ISLR) benefit
from the phonological structure of signs?

While some ISLR models explicitly focus on
the signers’ hands (Hu et al., 2021) or face (Al-
banie et al., 2020), none have leveraged sign lan-
guage phonology. Instead, ISLR has been treated
similarly to gesture recognition, where a “gesture”
(such as swinging an imaginary bat or waving a
hand) has no underlying structure except for that of
the human body itself. This lack of structure might
explain why state-of-the-art models like the Sign
Language Graph Convolution Network (SL-GCN,
Jiang et al. 2021) sometimes predict labels that are
visually and phonologically unrelated to the ground
truth, as shown in Figure 1.

In contrast, we show that models trained to rec-
ognize both signs and their phonemes will be more
accurate at sign identification than those trained for
ISLR alone. Our main contributions are:
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• We join an ISLR benchmark with a dataset
of phonologically-labeled signs (§3.1) and de-
scribe a simple method for learning these la-
bels alongside the target gloss1 (§3.2).

• We explore which and how many phoneme
types are most beneficial as an auxiliary task
to sign recognition (§3.3, §4.1).

• We demonstrate that adding auxiliary pre-
dictions for sign language phonology targets
yields nearly 9% absolute gain in accuracy
for ISLR sign prediction (§4.2), and that the
resulting phoneme classification heads outper-
form prior work (§4.3).

2 Background

Sign languages are complete and natural languages
primarily used by deaf and hard-of-hearing people.
There are hundreds of sign languages in the world
today collectively used by tens of millions of peo-
ple (Eberhard et al., 2022). They rely on the hands,
face, and body to communicate meaning according
to complex grammars which are independent of
any spoken language.

Sign languages have been and continue to be
largely overlooked in natural language process-
ing (NLP) research, necessitating explicit calls for
more inclusivity (e.g. Yin et al. 2021, Bragg et al.
2019). In this paper, we seek to bridge robust tech-
niques in NLP with insights from theories of sign
language phonology.

Sign language phonology is an abstract system
of rules that governs how the structural units of
signs (e.g., handshape, location, movement) are
combined to create an infinite number of utter-
ances. These manual units play a significant
role at the phonological level similarly to place
of articulation, manner, and voicing in spoken
language. Theories of sign language phonology
attempt to enumerate the meaningless units or
“phonemes” found in a sign language and describe
the complex relationships among them. In ASL-
LEX 2.0, Sehyr et al. (2021) describe 16 types of
phonemes, largely guided by Brentari’s Prosodic
Model (Brentari, 1998). We provide three exam-
ples of these phoneme types here:

• Minor Location: one of 37 regions of the
body where the sign is produced (e.g. “chin”).

1A “gloss” is a label for a sign that corresponds to its
translation in the target language, such as APPLE.

• Handshape: one of 49 configurations of the
hand (e.g. “2”).

• Path Movement: one of 8 ways of moving
the hand through space during the production
of a single sign (e.g. “circular”).

Brentari’s Prosodic Model contains < 200 pos-
sible phonemes across its 16 phoneme types, each
of which can be observed during the production of
any sign. In ASL-LEX 2.0, about 70% of signs can
be uniquely identified by their phonemes, making
them an appealing conduit for learning to recognize
signs. We leverage these properties by using them
as target labels alongside the target gloss.

ISLR: Definition and Prior Work In ISLR, a
model is given a video of one sign being produced
in isolation and must predict the target gloss Sgloss.
Many models have been proposed to recognize iso-
lated signs, varying with regard to input modality
(e.g. pose, RGB video), pretraining (e.g. frame
prediction, hand modeling), and encoding strategy
(e.g. attention, convolution). Selvaraj et al. (2022)
provide a comprehensive framework for compar-
ing models across multilingual data, in particular
LSTMs (Konstantinidis et al., 2018), Transformers
(Devlin et al., 2019), Spatio-Temporal Graph Con-
volution Network (ST-GCN, Cheng et al. 2020),
and Sign Language Graph Convolutional Network
(SL-GCN, Jiang et al. 2021).

We evaluate our method with SL-GCN and via
a Transformer network. These models are open-
sourced,2 easily modifiable, and take in pose in-
formation as input. These models perform well
on the WLASL 2000 benchmark (Li et al., 2020).
While the model from (Hu et al., 2021) obtains
higher accuracy on that benchmark, their code is
not publicly available to replicate those findings.

3 Method

We combine two datasets for the task of ISLR, ASL-
LEX 2.0 (Sehyr et al., 2021) and WLASL 2000
(Li et al., 2020), in order to learn ASL phonology
(§3.1). Then, we describe how to utilize these data
by learning two ISLR models to predict both the
target gloss and the phonemes for any input (§3.2).
Finally, we address the questions of how many
and which phoneme types are best for ISLR (§3.3).
The dataset and modified models are released for

2https://openhands.readthedocs.io/

https://openhands.readthedocs.io/


replication and future work.3

3.1 Data
We combine the phonological annotations in ASL-
LEX 2.0 (Sehyr et al., 2021) with signs in the
WLASL 2000 ISLR benchmark (Li et al., 2020).
ASL-LEX contains 2,723 videos, each demon-
strating a unique sign and human-annotated with
phonemes across 16 categories. WLASL contains
21,083 videos, each demonstrating one of 2,000
unique signs (an average of 10.5 videos per sign).

To combine these datasets, we edit the WLASL
metadata file to add 16 new properties (one for
each phoneme type) to each video example. If
the video’s English gloss is also found in ASL-
LEX, then we copy the phonemes directly from
ASL-LEX. If it is not found, then we set these new
properties to -1 and ignore them during training.
After combining, 48% of videos in the aggregated
dataset have phonological labels, and all of the
videos retain their original split (train, validation,
and test) and English gloss. Note that this dataset
is identical in structure to WLASL-LEX (Tavella
et al., 2022), however, both our sources are more
recently updated and contain more samples. Table 1
provides a summary of the combined data.

# VideosP Labels # Signs Train Val Test Total
7 1246 7850 2221 1574 11645
3 754 6439 1695 1304 9438

Total 2000 14289 3916 2878 21083

Table 1: We match phonological data from ASL-LEX
2.0 with signs in the WLASL benchmark to create a
subset of WLASL with phoneme type labels P .

3.2 Models
We add phoneme value predictions to two ISLR
model architectures: a graph convolutional net-
work, SL-GCN (Jiang et al., 2021), and a
Transformer-based model. These models are imple-
mented by the OpenHands project (Selvaraj et al.,
2022) and are largely left untouched; we refer the
reader to the OpenHands paper and code for im-
plementation details. The SL-GCN model treats
pose estimations over time as a connected graph
and learns 10 convolution layers over this graph,
using spatial and temporal attention. The Trans-
former model treats pose estimations as a sequence
of coordinates over time and learns 5 Transformer

3https://github.com/leekezar/
ImprovingSignRecognitionWithPhonology
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Figure 2: The proposed decoder relies on fully-
connected layers for each classification head: one for
the target gloss and one for each of the n phoneme
types.

layers similarly to BERT (Devlin et al., 2019). Im-
portantly, both of these models implement spatial
and temporal attention, a feature which enables
phoneme recognition even when the phoneme ex-
ists for a short amount of time.

For each model, we modify the decoder to clas-
sify not only the target gloss, but also the selected
phonemes. This is accomplished by adding n fully-
connected layers to the decoder, each with shape
(hidden size, # phoneme values). During the
forward pass, the video encoding is used as the
input for each fully connected layer (not chained
together). The total loss is then computed as:

Ltotal = Lgloss +
∑

phoneme∈P
Lphoneme,

where Lgloss is the cross entropy of the model’s
gloss predictions, while Lphoneme is the cross en-
tropy of the model’s phoneme predictions. The sum
of these losses is then backpropagated to the entire
model, encouraging the encoder to learn a represen-
tation which more explicitly captures the desired
phonemes P alongside the target gloss (Fig 2).

We train models until the validation accuracy has
not improved in the last 30 epochs and use the top
performing model for testing. For further details
on model implementation and training procedure,
see Selvaraj et al. (2022).

3.3 Phoneme Type Selection
It is not immediately clear which, if any, of the
16 phoneme types in ASL-LEX 2.0 yield improve-
ments on ISLR. Regarding how many phoneme
types, one might assume that more informative out-
puts would only improve a model’s ability to rec-
ognize signs, and therefore all 16 phoneme types

https://github.com/leekezar/ImprovingSignRecognitionWithPhonology
https://github.com/leekezar/ImprovingSignRecognitionWithPhonology


Pred WLASLtest
all WLASLtest

wP WLASLtest
w/oPModel P %A@1 %A@3 MRR %A@1 %A@3 MRR %A@1 %A@3 MRR

7 29.4±1.6 50.2±2.3 .43±.02 35.0±1.8 56.1±1.7 .48±.02 24.8±1.4 45.3±3.0 .39±.02
SL-GCN

3 38.1±0.5 61.0±0.3 .52±.00 44.1±1.1 64.1±0.6 .56±.01 33.1±0.3 58.4±0.2 .49±.00

∆ Improvement ∗8.7 ∗10.8 ∗.09 9.1 8.1 .08 8.3 13.1 .10

7 20.5±0.4 36.9±1.0 .32±.01 24.5±1.1 41.2±1.7 .36±.01 17.2±0.3 33.3±0.7 .29±.00
Transformer

3 23.4±0.4 41.7±0.7 .36±.01 28.2±0.4 46.5±0.6 .40±.01 19.3±1.0 37.8±1.6 .32±.01

∆ Improvement ∗2.8 ∗4.8 ∗.04 3.7 5.3 .04 2.1 4.5 .03

Table 2: ISLR model performance with and without training with auxiliary phoneme predictions averaged over
four seeds. Models are trained on WLASLtrain

all and evaluated on WLASLtest
all . Models trained to predict phonemes

improve over their ISLR-only baselines on both signs seen at training time with phonemes (WLASLtest
wP ) and

signs for which no phonological data was available during training (WLASLtest
w/oP ). Differences on WLASLtest

all are
significant (∗) at p < 0.05 under a Welch’s two-sided t-test with a Bonferroni correction applied.

should be included. However, these additions come
at a cost to the encoder, which must now learn to
fit more information into the same encoding space
without adding new samples. Furthermore, it is
unclear which types to maximize performance.

To address these questions, we define the utility
U of a set of phonemes types P as the percentage
of signs that are uniquely identified by those types.
Defined in this way, a set of phoneme types with
high utility ensures that when a model can accu-
rately predict those types, it is guaranteed to have
sufficient information to recognize U(P) percent
of signs. U(P) is provided by:

U(P) =

∑
S,S′∈V 1 [p(S|P) > p(S′|P)]

|V | − 1
,

where V is the set of all target glosses and
P (S|P) is the probability of a sign S given the
observed phoneme values in P . We implement
P (S|P) with a simple look-up table for all possi-
ble combinations of the 16 phoneme types. With
this utility function in hand, we can define the opti-
mal subset of n phoneme types as:

P∗(n) =

{
arg max
P

U(P) : |P| = n

}
.

4 Results

We demonstrate across-the-board improvements on
ISLR when predicting phonemes alongside glosses.
We measure model performance via ISLR accuracy,
both top-1 and top-3, as well as mean reciprocal
rank (MRR), which ranges from 1 (correct sign
given highest prediction score) to 1/2000 (correct
sign given lowest prediction score).

4.1 Not All Phonemes are Helpful.

First, we explore which subsets of the 16 labeled
phonemes are most beneficial for downstream
ISLR. We train models with auxiliary losses for
P∗(n), n ∈ {2, 5, 9, 16} and report their perfor-
mance in Table 3. With two classification heads—
handshape and minor location—we most improve
ISLR on WLASLval

wP .

4.2 Predicting Phonemes Improves ISLR.

Table 2 demonstrates that adding classification
heads for handshape and minor location yield a
3–9% gain on top-1 accuracy, 5–11% gain on top-3
accuracy, and .04–.09 gain on MRR. These gains
are greater for signs trained with phonological la-
bels, but extend to signs that do not have phonolog-
ical labels as well!

4.3 SL-GCN Performs Accurate Phoneme
Classification.

To lay the groundwork for modeling phonology
in and of itself, we train SL-GCN to predict all
16 phoneme types and examine its accuracy at
phoneme prediction (Figure 3). We compare to a
frozen SL-GCN encoder pretrained for only ISLR,
on top of which we learn linear probes for each
phoneme type, as well as a majority class base-
line. In all cases, training SL-GCN explicitly for
phoneme prediction leads to the highest phoneme
prediction accuracy. Prior work predicted phoneme
values for Flexion, Major Location, Minor Loca-
tion, Path Movement, Selected Fingers, and Sign
Type (Tavella et al., 2022). Despite not being the
explicit goal of this work, SL-GCN with auxiliary
phoneme prediction outperforms that model, too.



n P∗(n) %A@1 %A@3 MRR
0 ∅ 50.2 69.3 .62
2 Dominant Handshape, Minor Location 55.7 74.7 .67
5 P∗(2) + Nondominant HS, Path Movement, Repeated Movement 51.5 69.3 .62
9 P∗(5) + 2nd Minor Loc., 2nd Handshape, Wrist Twist, Contact 52.5 69.3 .64

16 P∗(9) + Remaining 7 phoneme types 54.3 72.7 .65

Table 3: SL-GCN sign recognition accuracy when trained on WLASLtrain
wP with auxiliary predictions of the top-n

phoneme types P and tested on WLASLval
wP . See §3.3 for the details of P∗(n).
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Figure 3: Model phoneme prediction accuracy when
trained on WLASLtrain

wP and tested on WLASLtest
wP .

5 Discussion

We find that adding auxiliary classification tasks for
sign phonemes to ISLR models statistically signifi-
cantly improves sign recognition accuracy. Repre-
senting phonemes during training may enable mod-
els to learn a more holistic latent representation of
sign videos compared to models that only predict
the target gloss. The success of this approach pro-
vides evidence that handshape and minor location
are not only useful in recognizing signs, but also
easy enough to learn with semi-supervision (recall
that only 48% of the dataset has handshape and
minor location labels). Our findings show that both
models learn these new labels well (Fig 3) and as
a result, the encodings for all videos contain more
relevant information for ISLR.

A secondary finding of this paper is that SL-
GCN, when trained to recognize all 16 phoneme
types, outperforms prior work by anywhere from
1%-9%. Still, there is room for improvement in
phoneme recognition, especially for handshape, mi-
nor location, and path movement.

6 Limitations

The WLASL benchmark has several notable lim-
itations that must be taken into account by those
interested in using it. Dafnis et al. (2022) show that
incorrect labels are pervasive in WLASL, causing
lower ISLR accuracy and, in this work, incorrect
phoneme labels. Additionally, existing sign lan-
guage datasets do not provide information about
the signers’ fluency, dialect, age, or race and there-
fore may not be representative of those who use
ASL. Finally, we caution those interested in col-
lecting ASL data against scraping websites without
permission, and we encourage acknowledging the
creators of those sources.

As a first attempt to model sign language phonol-
ogy in order to improve sign recognition, we ap-
plied our approach to two models and used data for
one language pair (ASL/English). Although many
phonemes are shared across signed languages,
more language pairs and models should be tested
in order to verify our claim that learning phonology
improves sign recognition in general. In partic-
ular, the Two-Stream Inflated 3D ConvNet (I3D;
Carreira and Zisserman 2017) model, designed for
gesture recognition, has also been shown to do
well on ISLR (e.g. Hosain et al. 2021, Albanie
et al. 2020) and we look forward to extending our
method to this model as well.
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