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ABSTRACT

Sign language recognition and translation technologies have the po-

tential to increase access and inclusion of deaf signing communities,

but research progress is bottlenecked by a lack of representative

data. We introduce a new resource for American Sign Language

(ASL) modeling, the Sem-Lex Benchmark. The Benchmark is the

current largest of its kind, consisting of over 84k videos of isolated

sign productions from deaf ASL signers who gave informed consent

and received compensation. Human experts aligned these videos

with other sign language resources including ASL-LEX, SignBank,

and ASL Citizen, enabling useful expansions for sign and phonolog-

ical feature recognition. We present a suite of experiments which

make use of the linguistic information in ASL-LEX, evaluating the

practicality and fairness of the Sem-Lex Benchmark for isolated

sign recognition (ISR). We use an SL-GCN model to show that

the phonological features are recognizable with 85% accuracy, and

that they are effective as an auxiliary target to ISR. Learning to

recognize phonological features alongside gloss results in a 6% im-

provement for few-shot ISR accuracy and a 2% improvement for

ISR accuracy overall. Instructions for downloading the data can be

found at https://github.com/leekezar/SemLex.
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1 INTRODUCTION

Word recognition is the foundation of many automatic speech-

based technologies, like voice assistants, language learning apps,

and translators. While immensely practical in day-to-day use, these

technologies exclude signed languages and are inaccessible to deaf

people
1
who primarily use sign language to communicate. There

has been an increasing enthusiasm among experts in many fields,

including human-computer interaction, computer vision, natural

language processing, and computer graphics in developing technol-

ogy for automatically understanding, processing, translating, and

generating sign languages [4, 40].

However, such work has had variable levels of utility and success.

One barrier to progress is a lack of adequate sign language data.

While an array of tasks, models, and learning procedures have

been developed to focus on signed languages [40], less attention

has been given to building large-scale, systematically-annotated,

and ethically-sourced datasets to fully realize the potential of these

methods [3]. Another barrier to progress is the lack of linguistically-

informed approaches to sign recognition. Most prior work has

treated sign recognition as a vision problem rather than a language

problem, meaning these works have little-to-no acknowledgement

of structural linguistic complexities of signs. For example, recent

evidence has shown that models which treat signs as a collection

of linguistic components (rather than holistic gestures) are up to

6% more accurate at isolated sign recognition accuracy [21]. In

this paper, we introduce new data for the purpose of overcoming

these barriers, replicating the finding that phonology improves

sign recognition, and investigating other benefits, namely, few-shot

generalizability and sensitivity to race and gender.

1
There have been various conventions for referring to deaf communities, but there is

not broad consensus on a preferred term [30]. We use ’deaf’ rather than other terms

that are widely viewed as offensive (e.g., ’hearing impaired’). We use the lower case

’deaf’ here—as opposed to the capitalized ’Deaf’—to be inclusive of people with varying

auditory access and with varying identities with respect to Deaf culture.

https://github.com/leekezar/SemLex
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3597638.3608408
https://doi.org/10.1145/3597638.3608408
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Although datasets of isolated signs have many potential uses,

we position this benchmark as uniquely helpful for isolated sign

recognition (ISR
2
). The benchmark contains over 84k videos of iso-

lated sign productions from deaf ASL signers who gave informed

consent and received compensation. The signs were reviewed and

annotated by human experts using a novel labelling system that en-

ables rapid, reliable labelling of sign language data. The annotations

are cross-referenced with reference signs from the ASL-LEX data-

base [6, 34], as well as SignBank [17], and ASL Citizen [9]. Second,

we conduct a suite of experiments related to sign and phonological

feature recognition. These experiments show that incorporating

linguistic information about the composition of signs, namely the

phonological features extracted from ASL-LEX, enables accurate

phonological feature recognition and more accurate ISR. We also

conduct a quantitative analysis of model sensitivity to signer appear-

ance and demographics and explore the models’ ability to recognize

signs that had few instances in training.

2 BACKGROUND AND RELATED WORK

Deaf communities have worked hard for the recognition of sign

languages as legitimate languages, as opposed to simplistic gestural

systems or manual ways of expressing spoken language. There are

ongoing campaigns in many countries around the world for legal

recognition of national sign languages [8]. According to the World

Federation of the Deaf (WFD), the lack of recognition, acceptance,

and use of sign language represents the major barrier that prevents

deaf people from accessing basic human rights, especially in de-

veloping countries [29]. The Linguistic Society of America passed

a resolution [28] acknowledging that sign languages are, in fact,

languages with all the linguistic structure inherent to any language

(syntax, morphology, phonology, prosody, etc.). Systemic recogni-

tion of languages is important because access to sign language can

be precarious. Deaf children are often denied the opportunity to

acquire a signed language putting them at risk of language depriva-

tion during the critical window of childhood development [11, 13].

Without recognition of sign languages and robust systems for sign

language interpreting services, deaf people are often denied full

access to basic aspects of life such as employment, education, or

healthcare [2, 39].

Along these lines, deaf communities have raised concerns about

lack of recognition of sign languages as real languages in the de-

velopment of sign language technology. For example, in a paper in

Nature Electronics, Hill laments a “lack of an appropriate linguistic

framework” and the “lack of interdisciplinary collaboration” [15].

These calls highlight the need for technologists to honor sign lan-

guages as equally structured, complex, and organically-evolving

as spoken languages. For our part, the Sem-Lex Benchmark is the

result of collaboration among computer scientists and linguists,

and directly relies on contemporary ideas in ASL phonology and

machine learning.

2
The term isolated sign language recognition or ISLR is also common. We prefer ISR to

more clearly disambiguate the task from sign language identification, where a model

must recognize which signed language is found in a video.

2.1 Insights From Research On Sign Language

Phonology

Spoken words are composed of discrete, recombinable sound units,

such as vowels or consonants (phonemes), and there is a general

consensus that signs are made up of a finite number of analogous

phonological parameters. Early work on sign languages identified

the central parameters as handshape, movement, place of articu-

lation (location) and non-manual markers [36]. More recent work

goes beyond these basic parameters, noting that the parameters can

be further described in terms of phonological features
3
that have

complex dependencies (e.g., handshape may be further specified in

terms of selected fingers that vary in flexion and spread) [5, 31, 38].

Some of these features change during the sign (e.g., the flexion or

spread of the fingers) and some do not (e.g., themajor location of the
hand, the selected fingers). The study of sign language phonology is

crucial for our understanding of how people learn, recognize, and

produce signs. Additionally, we find it can contribute to automatic

sign recognition.

2.2 Labelling and Annotating Signs

In the absence of a standard writing system for signed languages,

the question of how to best represent signing is surrounded with

much debate [10, 16, 19, 26, 32]. For the purposes of ISR, a useful

labelling system should be both efficient to apply and reliably lem-

matizes signs, that is, the system should produce the same label for

different instances of the same sign, and different labels for signs

that are distinct.

While most researchers have used English-like glosses, some

signs have multiple possible English translations (one-to-many),

some English words have many possible ASL translations (many-

to-one), and some signs have no equivalent English translations.

Meanwhile, efforts to replace or augment English glosses with

phonological information, like SignStream [27] and HamNoSys

[12] rely on idiosyncratic labelling systems which require some

amount of training to apply consistently and may result in different

productions of the same sign to receive different labels.

Taking these considerations into account, we chose to label the

videos in Sem-Lex from a large collection of reference signs. This

feature minimizes both English interference and the amount of

linguistic knowledge needed for labelling.

2.3 Existing Datasets

There are a handful of existing datasets of isolated signs in ASL that

have been used in ISR (see Table 2). Some of these datasets were

‘curated’, meaning they were collected from participants who were

recruited to contribute data in a specific fashion, e.g., by modeling

signs based on a dictionary. Some datasets were scraped from the

internet in ways that are legally and ethically questionable, often

without attribution to the video creators and without informed

consent of the people in the videos [20, 22]. Further, some datasets

include signers with unknown backgrounds—people who may or

3
We refer to the component parts of signs as ‘phonological features’ rather than

‘phonemes’. Spoken phonemes are sequenced, discrete bundles of phonological features

like voicing, place of articulation, and manner. For many signs, there is one and only

one of each phonological feature (e.g., signs must have a major location, and cannot

have more than one major location), and the timing and sequence of features is not

segmental as it is in speech.
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Phonological Feature Description #Values Top Value

Major Location The broad location where the sign is produced. 5 /neutral/
Minor Location The specific location where the sign is produced. 37 /neutral/
Second Minor Location The specific location after the first minor location. 37 /n/a/
Contact Whether the dominant hand touches the body. 2 /true/
Thumb Contact Whether the dominant thumb touches the selected fingers. 3 /false/
Thumb Position Whether the thumb is on the palm or extended. 2 /open/
Nondominant Handshape Configuration of the nondominant hand. 56 /n/a/
Handshape Configuration of the dominant hand. 58 /open b/
Selected Fingers The fingers that move, or are in marked configurations. 8 /imrp/
Flexion The way the finger joints are bent. 8 /fully open/
Spread Whether the selected fingers touch one another. 3 /n/a/
Spread Change Whether Spread changes. 3 /n/a/
Repeated Movement Whether the movement is repeated 2+ times. 2 /false/
Sign Type Number of hands, and symmetry (if two handed) 6 /one handed/
Wrist Twist Whether the hand rotates about the wrist. 2 /false/
Path Movement The shape that the hand traces. 8 /straight/

Table 1: Overview of each phonological feature types found in ASL-LEX, including the number of possible values and the most

frequent value for each type. n/a appears in some Boolean phonological feature types, resulting in three possible values instead

of two. imrp refers to index, middle, ring, and pinky. Detailed descriptions of each feature in ASL-LEX can be found in [34].

may not have lived experience of deafness and may have learned

sign language as adults [20, 22]. Like all languages, people who

learned sign language later in life, perhaps as a second or additional

language, have highly variable levels of proficiency and articulate

signs differently compared to those who acquired sign language in

childhood and use it as a primary language of communication [24].

This difference leads to heterogeneity and inconsistencies in how

signs are articulated [14]. Generally, training data should match the

anticipated end user. In most cases, the imagined end users of sign

language technology are deaf signers. Training data that consist of a

broad diversity of signers, including novice signers, may be suitable

for some applications and end users. However, it is not clear that

models developed on novice signers will generalize to deaf signers.

Thus, we present the Sem-Lex Benchmark to solve many of the

issues associated with existing datasets–a curated, larger than the

state-of-the-art benchmark of isolated ASL signs produced by deaf

fluent signers who provided informed consent and compensated

for their effort.

3 SEM-LEX BENCHMARK

The Sem-Lex Benchmark contributes 84,568 isolated sign videos,

divided into train/validation/test splits and lemmatized (𝑛 = 65, 935)

or described with free text (𝑛 = 18, 393). Lemmatized signs were

aligned with either ASL-LEX (𝑛 = 60, 203) or SignBank (𝑛 = 5, 732)

(see Figure 1). The test set is entirely comprised of participants who

are not frequently represented in sign language training data, in

order to help quantify model bias with regard to race and gender.

We select 10 participants among the 41 contributors whose videos

make up approximately 20% of the entire dataset such that the

ratio of non-white and women signers is substantially higher than

average. We then place all of these participants’ productions in the

test set, to ensure that they are unseen during both training and

validation.

The distribution of samples contributed by each participant is in

Figure 2. The median number of samples per sign was 10 (IQR 4-26).

A total of 3,149 unique signs were represented in the lemmatized

data. Of these, 945 signs had fewer than five samples. To put these

numbers in some perspective, the current most popular benchmark

for ISR is Word-Level American Sign Language (WLASL, [23]),

containing 21,083 videos representing 2,000 signs for an average of

10.5 video examples per sign.

Phonological Feature Annotations. Although all videos have

a split, in this work we only use the videos which have been aligned

with ASL-LEX in order to maintain consistency among the target

gloss labels and complete coverage of phonological feature anno-

tations. Future work might consider including the non-ASL-LEX

videos.

Sufficient Examples. Signs with fewer than 5 instances are

not given a split (but may be included in future work on few-shot

generalizability).

3.1 Data Collection

The dataset consists of ASL signs elicited using a free semantic asso-

ciations paradigm as part of another study aimed at understanding

the lexical-semantic properties of the ASL lexicon [33]. For this

study, we developed an interface for rapid data collection and an-

notation of signs called SignLab
4
. Participants contributed data

remotely from their own computers. We asked that they ensure no

other people were visible on camera, but otherwise did not control

the filming conditions. SignLab first presented participants with a

video of a cue sign from ASL-LEX (e.g., CAT) and prompted them

to produce the first three meaning-related signs that came to mind

(e.g., DOG, MOUSE, MILK). Participants contributed the first three

signs that came to mind by 1) pressing the space bar to turn on

4
SignLab is a work in progress, and will be forthcoming.
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Dataset Number of Signs Number of Videos Source Participants Informed Consent

Purdue RVL-SLLL [25] 39 546 Curated Deaf Yes

Boston ASLLVD [1] 2,742 9,794 Curated Deaf Yes

RWTH-BOSTON-50 [41] 50 483 Curated Deaf Yes

MS-ASL [20] 1,000 25,513 Scraped Unknown No

WL-ASL [22] 2,000 21,083 Scraped Unknown No

ASL Citizen [9] 2,731 83,912 Curated Deaf Yes

Sem-Lex Benchmark 3,149 84,568* Curated Deaf Yes

Table 2: Existing datasets of isolated signs in ASL. *Includes unlabeled videos. 65,935 are labeled with a gloss.

Figure 1: The Sem-Lex Benchmark data is divided into 3:1:1 train/validation/test, where each subset is in turn amix of lemmatized

(i.e. has been matched to an entry in a lexical database) or “unlabeled” (i.e. free-text description). In our experiments, we only

use the lemmatized items from ASL-LEX 2.0.

their webcam, 2) producing a sign, 3) pressing the space bar to turn

off their camera and then repeating the process up to three times.

Participants could delete any of these responses with one button

press (e.g., if there was an error), but could not re-record them. This

process enabled us to rapidly collect and segment videos so each

video contained just one sign. Because the protocol allowed partici-

pants to freely produce a sign that came to mind, it also ensured

that participants knew and used each sign (i.e., rather than copying

a sign they may or may not be familiar with).

Forty-one deaf ASL signers contributed data (see Table 3). Partic-

ipants were paid $15 for the initial training, $20 per 100 trials (i.e.,

100 cue signs), and a completion bonus of $100 for every 1,000 trials

they completed. All participants gave informed consent to sharing

their video data in a public online repository. Consent forms were

provided online in both written English and as ASL videos. Data

from three participants were removed from the dataset prior to anal-

ysis because an early review of their responses indicated that they

did not understand the task as intended (e.g., repeating the prompt

sign, producing multi-sign responses, producing unrecognizable

signs).

3.2 Labelling

We developed a novel method for labeling videos of signs which

resolves some of the limitations of current methods using English

glosses or phonological transcriptions as labels: we use videos of

ASL signs as labels for ASL signs. The SignLab system presents

the labeler with a video of a to-be-labeled sign and allows them to

simultaneously search two lexical databases of ASL sign labels by

typing in possible English translations (ASL-LEX and SignBank).

The lexical databases were annotated to identify a variety of possible

English translations for each sign, and all videos that had English

translations that matched the typed input appeared in the search

results. The labeler could visually scan the video thumbnails in the

search results and play the videos by hovering their mouse over

the thumbnail. They could click to select an entry from the lexical

databases that matched the production. If both lexical databases

contain the item, only the ASL-LEX label was presented to the

labeler. If the sign did not appear in either lexical database, the

labeler could type in a free text description of the sign.

With respect to lemmatizing, labelers were given the following

instructions:
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Overall

(N=41)

Age

Mean (SD) 31.9 (11.6)

Median [Min, Max] 27.0 [21.0, 65.0]

Missing 2 (4.9%)

Age of First ASL Exposure

Mean (SD) 2.00 (3.88)

Median [Min, Max] 0 [0, 14.0]

Missing 4 (9.8%)

Sex

Female 27 (65.9%)

Male 12 (29.3%)

Non Binary 1 (2.4%)

Missing 1 (2.4%)

Ethnicity

Not Hispanic or Latina/o/x 34 (82.9%)

Hispanic or Latina/o/x 3 (7.3%)

I prefer not to answer 3 (7.3%)

Missing 1 (2.4%)

Race

African American/Black 3 (7.3%)

Asian 3 (7.3%)

White 27 (65.9%)

More than one 3 (7.3%)

I prefer not to answer 3 (7.3%)

Missing 2 (4.9%)

Table 3: Participant demographics. All signers were exposed

to ASL early in childhood. The dataset is not representative

in racial, ethnic, and gender makeup.

• If the sign and label mean the same thing, but look a little

different (e.g., DUCK with two fingers versus four fingers):

the sign and label match.

• If the sign and label mean the same thing, but look very

different (e.g., CHILD and KID): the sign and label do not

match.

• Sign and labels that differ in more than one parameter (hand-

shape, movement, or location) are probably not a match.

• If the sign and label mean something different, but look very

similar (e.g., PEACH and EXPERIENCE): the sign and label

do not match.

While labelers searched ASL-LEX by English translations, they

were encouraged to ignore English when considering whether a

sign was a match (e.g., “Do not worry if the English translation is

not the one you would prefer to use. For example, if the ASL-LEX

translation reads ‘father’ and you prefer the English translation

‘dad,’ just focus on whether the signs match). In some videos, par-

ticipants mouthed English words while signing. Labelers could use

English mouthing to the extent that it was helpful, and were free to

match signs that differed inmouthing (e.g., a signwith themouthing

‘dinner’ could be a match to a reference video with the mouthing

‘supper’). If the labeler was unable to confidently label the sign,

they marked it as uncertain, and these videos were excluded from

the dataset (n = 2,288).

Before beginning to tag signs, labelers attended a training ses-

sion with a member of the research team. They then independently

tagged 100 training signs
5
which were checked for inter-rater re-

liability with a set of correct answers developed by the research

team. The team also examined responses for patterns of errors that

reflected a misunderstanding of one or more of the training guide-

lines. If the inter-rater reliability (Cohen’s Kappa) was lower than

.7, or if systematic errors emerged when reviewing the training

signs, we held another training meeting to review the responses and

clarify the training guidelines before they proceeded. All labellers

passed the .7 threshold after the second round of training signs.

By labelling using lexical databases, the Sem-Lex Benchmark

is cross-compatible with available linguistic resources for ASL,

namely ASL-LEX [6, 34], ASL Citizen [9], and the ASL SignBank

[17]. ASL-LEX contains detailed, manually annotated phonolog-

ical descriptions of each of the 2,723 signs. These phonological

transcriptions can be merged with the larger dataset as a “broad

transcription,” making it possible to use phonological information

in modeling without requiring manual annotation of the full dataset.

ASL SignBank has been used to label corpora of continuous signing

[7], which may also be leveraged in concert with the dataset we

present here.

4 MODELING SIGNS AND THEIR PHONEMES

To provide empirical evidence that the Sem-Lex Benchmark data is

both high-quality and practical, we conduct a suite of experiments

related to sign and phoneme recognition. The experiments are

selected to answer a diverse array of research questions pertaining

to sign and phoneme recognition:

4.2 Isolated sign recognition: How accurate will a model be

at recognizing isolated signs?

4.3 Phonological FeatureRecognition: Howwell will amodel

trained to recognize only the phonological features perform?

4.4 Phonological Feature+Isolated Sign Recognition: How

will a model benefit from learning signs in tandem with their

phonological features?

4.5 Generalizability to Unseen & Diverse Signers: How sen-

sitive is the model to spurious correlations among signers in

the train set?

4.6 Few-Shot Generalizability for ISR: How well do models

trained for Phonological Feature Recognition + ISR perform

at recognizing signs with few training instances?

To answer these questions, we compare quantitative measures of

performance (accuracy@k, mean reciprocal rank) across SL-GCN

models (described below) learned on either WL-ASL or Sem-Lex

training data for ISR and/or phonological feature recognition.

4.1 The Sign Language Graph Convolution

Network

The SL-GCN model [18] is a specialized model for tasks involving

sign language understanding. It is an encoder-decoder model which

takes a human pose estimation format of the input video and can

5
These signs were randomly drawn from the dataset at the outset of labelling, and are

not the same as the training fold of SemLex.

https://asl-lex.org/visualization/?sign=duck
https://vimeo.com/378822204/9feba6bb0b
https://asl-lex.org/visualization/?sign=kid
https://asl-lex.org/visualization/?sign=peach
https://asl-lex.org/visualization/?sign=experience
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Figure 2: The distribution of samples per sign and per participant. The red line in the left panel represents 5 samples.

be learned for one classification problem. The SL-GCN encoder con-

sists of ten repeated blocks, each of which contains (a) a decoupled

GCN layer that encodes each keypoint in concert with its neigh-

bors, (b) spatial and temporal attention over those keypoints, and

(c) a temporal convolution layer. The SL-GCN decoder consists of

one fully-connected layer from the encoding to the desired output

logits.

We modify the decoder to allow for a variable number of classifi-

cation heads by copying the encoding and providing it to multiple

fully connected layers in parallel. Structured this way, the SL-GCN

model must encode all of the features that are pertinent to the clas-

sification tasks at hand in such a way that the decoder can easily

separate the encoding into logits for each task.

This model architecture was selected for a variety of reasons.

First, we use pose estimations over RGB video because it reduces

not only the number of model parameters necessary to effectively

process the input, but also the chance of biases due to spurious cor-

relations between production and gender, race, or age. Second, the

SL-GCN model contains separate attention mechanisms for space

and time at each layer, improving the model’s ability to recognize

patterns over time (e.g. movement) or space (e.g. sign type). And

finally, there is empirical evidence that the SL-GCNmodel performs

well on isolated sign recognition [35].

4.2 Isolated Sign Recognition

For the task of ISR, we use one classification head of size 2,731 (for

the Sem-Lex Benchmark data) or 2,000 (for WLASL) coresponding

to the number of target signs. At the end of each forward pass, a

cross-entropy loss is computed according to the one-hot encoding of

the target label, and all model weights are trained while minimizing

that loss. We then compare the resulting accuracy (the correct

answer is the top prediction), recall@𝑘 (correct answer in the top-

𝑘 predictions), and mean reciprocal rank (1/rank of the correct

answer) averaged across each item in the test set.

4.3 Phonological Feature Recognition

For the task of phonological feature recognition, we train 16 classi-

fication heads ranging from size 2 to 58, one for each phonological

feature type (see Table 1 for the complete enumeration of types)

that each take in the SL-GCN encoder representation of the sign

video. To compare with WLASL, we augment the dataset similarly

to Tavella et al. [37] such that each video entry also contains esti-

mations of its phonological features. At the end of each forward

pass, a summed cross-entropy loss is computed according to the

one-hot encoding of the target label within each type. We then

compare the resulting accuracy, recall-at-𝑘 , and mean reciprocal

rank on the test set.

4.4 Phonological Features + Sign Recognition

Following Kezar et al. [21], we explore the possibility that ISR and

phonological feature recognition are “symbiotic” tasks, meaning

that a model which is trained to do both tasks simultaneously will

be more accurate than one trained for either task alone. We experi-

ment with learning to recognize gloss alongside all 16 phonological

feature types, as well as gloss alongside a small but informative sub-

set of phonological feature types (handshape and minor location).

Otherwise, the model architecture is identical to the one described

in Section 4.3 only with an extra classification head for gloss.
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Test Set

Task

ISR ISR+PFR

acc1 acc3 mrr acc1 acc3 mrr

WLASL-2000 26.4% 50.2% .43 38.1% 61.0% .52

Sem-Lex 66.6% 81.5% .39 68.6% 82.0% .40

Table 4: Comparison of SL-GCN models trained with WLASL

vs. Sem-Lex pose data (acc1 = top-1 accuracy, acc3 =

top-3 accuracy, and mrr = mean reciprocal rank). ISR mod-

els are trained to predict gloss only, ISR+PFR models predict

both gloss and phonological features.

4.5 Generalizability to Unseen & Diverse Signers

To explore the influence of spurious correlations between produc-

tions and the people who sign them (which is undesirable for most

applications), we additionally compare the models trained for ISR

and phonological feature recognition (separately) with regard to

the validation set (seen and less diverse) vs. the test set (unseen

and more diverse). To the extent that the test set yields worse per-

formance than the validation set, we may attribute some amount

of the difference to the model relying on factors pertaining to race

and/or gender.

4.6 Few-Shot Generalizability for ISR

To illustrate the practicality of learning phonology, we explore

the average model performance with respect to the number of

training instances per sign. We compare the models described in

Sections 4.2 and 4.4 to provide empirical support that learning

phonology enables a model to learn robust representations of signs

more easily. Among the itemized test results for each of these

models, we first group signs by the number of instances found in

training (in particular, those with 4–10 instances in the training

set), and then compute the average performance within each group.

5 RESULTS

5.1 Isolated Sign Recognition

When learned to recognize only gloss, the SL-GCN model has a top-

1 accuracy of 67.7%, a top-3 accuracy of 81.5%, and amean reciprocal

rank (MRR) of 0.396 (see Table 4). We juxtapose these results to

WLASL, which has a smaller vocabulary of 2,000 signs, but the SL-

GCN model performs worse, with a top-1 accuracy of 26.4%, a top-3

accuracy of 45.7%, and an MRR of 0.228. This experiment shows

that, relative to the WL-ASL benchmark, the Sem-Lex Benchmark

data is well-labeled and therefore more tractible, but not trivial.

5.2 Phonological Feature Recognition

Table 5 shows the top-1 accuracies for phonological feature recogni-

tion (feature types described in Table 1). When learned to recognize

the 16 phonological feature types presented in the Sem-Lex Bench-

mark, the SL-GCN is 85% accurate on average regardless of how

it learns them (individually by fine-tuning the entire model or by

learning them all at once). The most accurate phonological feature

types were Wrist Twist (92.6% accurate), Thumb Contact (91.7%

Phonological Feature Type

Learning Method

Fine-Tune Multitask

Major Location 0.877 0.875

Minor Location 0.792 0.781

Second Minor Location 0.787 0.772

Contact 0.893 0.886

Thumb Contact 0.917 0.911

Sign Type 0.889 0.879

Repeated Movement 0.855 0.854

Path Movement 0.756 0.754

Wrist Twist 0.924 0.926

Selected Fingers 0.911 0.902

Thumb Position 0.915 0.915

Flexion 0.812 0.810

Spread 0.884 0.880

Spread Change 0.903 0.895

Nondominant Handshape 0.835 0.817

Handshape 0.774 0.747

Average 0.858 0.850

Table 5: Phoneme feature recognition accuracy (top-1) be-

tween SL-GCN models fine-tuned to predict each type at a

time or by learning them all at once, as evaluated on Sem-

Lex𝑡𝑒𝑠𝑡 . All models are SL-GCNs pre-trained to predict gloss

𝑦𝑔 and then trained to predict phonological feature types 𝑦𝑝
(𝑝 ∈ P) with the Sem-Lex𝑡𝑟𝑎𝑖𝑛 dataset. Bold values indicate

the highest per row.

accurate), and Thumb Position (91.5% accurate). The least accurate

types were Path Movement (75.6% accurate), Handshape (77.4%

accurate), and Second Minor Location (78.7% accurate).

5.3 Phonological Features + Sign Recognition

When learned to recognize both gloss and the 16 phonological

feature types, the SL-GCN model is more accurate at ISR (71.3%)

than when trained to predict gloss alone (67.7%). This increase

in performance is consistent with the results presented in Kezar

et al. [21], which shows that phonology is a useful auxiliary task to

learning to recognize isolated signs.

5.4 Few-Shot Generalizability

Focusing on signs which are “rare” (i.e. had 4 ≤ 𝑛 ≤ 10 examples

during training), we observe a Pearson 𝑟 correlation of 0.73 between

number of instances and average top-1 accuracy per sign class for

Sem-Lex Benchmark. This suggests a strong relationship between

test accuracy and number of signs seen in training. With only 4

signs in training, the SL-GCN model is able to recognize a sign

with 62.2% accuracy, and with 10 signs in training, that accuracy

jumps to 72.3%. This is compared to WL-ASL, where the model

recognizes 18.4% and 31.3%, respectively, for 4 and 10 training

samples (see Table 6). Given the realistic, long-tailed distribution of

signs in Sem-Lex Benchmark (specifically, 45% signs have less than

10 instances), these findings indicate the SL-GCN model trained on

Sem-Lex Benchmark is both effective at ISR, and in particular at
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Dataset Task

Evaluation Set

val𝑎𝑙𝑙 test𝑎𝑙𝑙 test𝑛=10 test𝑛=4

WLASL ISR — 26.4% 31.3% 18.4%

Sem-Lex ISR 68.2% 66.6% 72.3% 62.2%

Sem-Lex ISR+PFR 69.8% 68.6% 73.0% 68.2%

Table 6: Comparison* of ISR accuracy (top-1) for varying eval-

uation sets and learning targets. The validation set (val𝑎𝑙𝑙 )
and test set (test𝑎𝑙𝑙 ) intentionally differwith respect to signer

race and gender, in addition to the latter set containing only

unseen signers. test𝑛=𝑘 is only the signs in the test set which

have exactly 𝑘 corresponding instances in the training set. *

Without zero-shot transfer from one test set to the other or

human performance baselines, this comparison is limited in

interpretability.

recognizing signs with more consistent performance regardless of

their frequency in the vocabulary.

Additionally, we report how learning gloss alongside phonolog-

ical feature recognition influences few-shot generalizability. The

SL-GCNmodel, when learned to recognize both gloss and phonolog-

ical features, is 68.2% and 73.0%, respectively, for 4 and 10 training

samples. In general, we observe that learning phonology as an aux-

iliary task not only improves overall gloss recognition accuracy,

but also lessens the gap between less and more frequent signs.

5.5 Seen vs. Unseen Signers

In Table 6, we additionally report the model’s reliance on spurious

correlations pertaining to individual signer differences by com-

paring performance on the validation set containing seen signers

(𝑛 = 11, 954) and test set containing unseen signers representing

more diverse demographics (𝑛 = 11, 127). For seen signers, the

SL-GCN trained to only predict gloss is 68.2% accurate, while for

unseen signers, the SL-GCN is 66.6%. These findings illustrate that

there is a slight reliance on undesirable factors when learning to

recognize signs. Because we only use pose estimations of the videos,

we believe the difference in performance is most likely attribut-

able to differences in articulation, as opposed to visual differences

among signers which are only observable with pixel-level informa-

tion, such as skin color (which an RGB model might leverage to

learn a spurious correlation with race or ethnicity).

6 DISCUSSION

We present the Sem-Lex Benchmark for modeling ASL signs and

their phonemes. Our experiments show that Sem-Lex enables accu-

rate models for recognizing signs and phonemes. We additionally

show that learning these tasks simultaneously improves accuracy

across the board, including few-shot and unseen signers. The suc-

cess at few-shot generalization is especially true for the SL-GCN

learned to predict both gloss and phonological features, demon-

strating that learning phonology is an even more effective auxiliary

task to learning ISR than previous work had shown. However, there

appears to be a slight reliance on spurious correlations, as demon-

strated by the slightly lower performance on unseen and more

diverse signers. A unique aspect of the Sem-Lex Benchmark is that

the signs were spontaneously produced by deaf fluent signers using

a widely-used experimental paradigm in psycholinguistic research.

This approach ensures that signers were familiar with the signs

they produced, and were not simply reproducing signs they may

or may not know (e.g., [9]).

6.1 Limitations

First, while there are more signs included in this benchmark than in

other ASL datasets, it is still not representative of the full breadth of

ASL. Our participants represent a small cross-section of all signers,

who vary along many axes like experience and gender. The data is

not representative of the larger population of ASL users in terms

of race, ethnicity, and gender. Additionally, fingerspelled words

are underrepresented in the lexical databases we used for labelling,

and so while participants may have contributed fingerspelled items,

these are not among the labelled benchmark released here. Similarly,

much of the morphology of ASL is not well represented in the

labelled benchmark either (e.g., signs that are inflected for verb

agreement, compound signs, etc.). Depicting signs and classifier
constructions—semantically dense constructions which are unique

to many signed languages—are also underrepresented in the Sem-

Lex Benchmark.

Second, we note that models based on this benchmark alone

(or any benchmark of isolated signs) may not generalize to con-

tinuous sign recognition (CSR). By focusing on isolated signs, the

benchmark is not representative of grammatical features (e.g. ref-

erential use of space, certain facial expressions) or coarticulation.

Researchers who intend to use these data or models for CSR or

translation in any way should be aware of these discrepancies as

they make and evaluate their models.

Finally, it should be noted that despite decades of sign linguis-

tics research, many aspects of ASL phonology remain much less

understood. The phonological descriptions of signs in ASL-LEX are

incomplete, and so this paper represents an early step toward mod-

eling sign phonology. While we did not conduct a direct validation

of the models through research activities with the representative

end users, this work is anchored in prior research involving the

representative users and has been motivated by their priorities (see

Section 2).

6.2 Accessing Data

The goal of this paper is to share a benchmark which includes

videos that were contributed with informed consent by deaf peo-

ple who were compensated and recognized for their contributions

(financially and/or via authorship). We hope that this benchmark is

broadly useful, and spurs creativity and innovation. At the same

time, ethical considerations for how sign language data are used

are complex and sensitive [3]. Prior to submitting this work, we

convened a large group of deaf and signing scholars from a range

of disciplines to consider how the community would like to share

data. Following the recommendations of this group, we ask that

users of these data:

• commit to “do no harm,”
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• work closely with deaf signing communities–the people who

will be most impacted by sign language technology–to iden-

tify and mitigate possible harms, and maximize benefits to

these communities

• recognize deaf contributors fairly (financially, through attri-

bution, or other acknowledgement, as appropriate)

• work to mitigate possible power imbalances

• limit claims to those that are appropriate to the technology

(e.g., even high-performing ISR models do not obviate the

need for human interpreters or teachers who are fluent in

sign language)

We refer users who do not have connections to deaf communities

to the CREST network at Gallaudet University, which aims to foster

collaboration on sign-related technologies.

6.3 Future Work

The benchmark we present here was developed as part of a larger

linguistic investigation of the semantic structure of the ASL lexicon.

By identifying signs that people freely associate, we can learn how

signs are related in meaning to one another. These associations can

inform questions about how people learn and use signs. We are

also eager to see this benchmark used for linguistic research (e.g.,

exploring variation in how different signers produce signs).

Interdisciplinary work between linguists and technologists can

be mutually beneficial. As we have laid out here, incorporating

knowledge and resources from linguistics can aid in the develop-

ment of sign language technology. Similarly, we believe modeling

sign phonology will also benefit linguistics and psychology. Models

of sign phonology can inform linguistic theories as to the phono-

logical composition of signs. They can also be used to help build

knowledge about relatively low-resource sign languages (e.g., those

that do not have manually annotated databases), and can offer meth-

ods for cross-linguistic comparisons. This project paves the way for

ethically sourced, efficient, and reproducible sign language research

and more successful sign recognition technologies down the line.

7 CONCLUSION

The Sem-Lex Benchmark introduces new, high-quality data for

modeling signs and their phonemes. The 84,568 isolated sign pro-

ductions were collected directly from Deaf participants with in-

formed consent and financial compensation for their contributions.

Additionally, some 78% are aligned with other datasets, allowing for

phonological featurization for each video. We show that modeling

phonology is is worthwhile: when learned to classify phonological

features in concert with gloss, a state-of-the-art model is able to

recognize signs more accurately, and in particular signs that are

rare. With these data, we hope to inspire future work on studying

signed languages in a more representative and ethical way, and

with these insights, create more robust models for sign language

understanding in direct collaboration with the Deaf community.

REFERENCES

[1] Vassilis Athitsos, Carol Neidle, Stan Sclaroff, Joan Nash, Alexandra Stefan, Quan

Yuan, and Ashwin Thangali. 2008. The american sign language lexicon video

dataset. In 2008 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops. IEEE, Anchorage, AK, USA, 1–8.

[2] Carolyn Ball et al. 2017. The History of American Sign Language Interpreting.

Revue Internationale d’Études en Langues Modernes Appliquées 10, Special (2017),
115–124.

[3] Danielle Bragg, Naomi Caselli, Julie A Hochgesang, Matt Huenerfauth, Leah

Katz-Hernandez, Oscar Koller, Raja Kushalnagar, Christian Vogler, and Richard E

Ladner. 2021. The fate landscape of sign language ai datasets: An interdisciplinary

perspective. ACM Transactions on Accessible Computing (TACCESS) 14, 2 (2021),
1–45.

[4] Danielle Bragg, Oscar Koller, Mary Bellard, Larwan Berke, Patrick Boudreault,

Annelies Braffort, Naomi Caselli, Matt Huenerfauth, Hernisa Kacorri, Tessa

Verhoef, et al. 2019. Sign language recognition, generation, and translation:

An interdisciplinary perspective. In Proceedings of the 21st International ACM
SIGACCESS Conference on Computers and Accessibility. 16–31.

[5] Diane Brentari. 1998. A prosodic model of sign language phonology. MIT Press,

Cambridge, MA, USA.

[6] Naomi K Caselli, Zed Sevcikova Sehyr, Ariel M Cohen-Goldberg, and Karen Em-

morey. 2017. ASL-LEX: A lexical database of American Sign Language. Behavior
research methods 49 (2017), 784–801.

[7] Deborah Chen Pichler and Julie Hochgesang. n.d.. Sign Language Acquisition,
Annotation, Archiving and Sharing. https://slla.lab.uconn.edu/slaaash/

[8] Maartje De Meulder, Joseph J Murray, and Rachel L McKee. 2019. The legal recog-
nition of sign languages: Advocacy and outcomes around the world. Multilingual

Matters, Staple Hill, Bristol, UK.

[9] Aashaka Desai, Lauren Berger, Fyodor O Minakov, Vanessa Milan, Chinmay

Singh, Kriston Pumphrey, Richard E Ladner, Hal Daumé III, Alex X Lu, Naomi

Caselli, et al. 2023. ASL Citizen: A Community-Sourced Dataset for Advancing

Isolated Sign Language Recognition. arXiv preprint arXiv:2304.05934 (2023).
[10] Jordan Fenlon, Kearsy Cormier, and Adam Schembri. 2015. Building BSL Sign-

Bank: The lemma dilemma revisited. International Journal of Lexicography 28, 2

(2015), 169–206.

[11] Matthew L Hall, Wyatte C Hall, and Naomi K Caselli. 2019. Deaf children need

language, not (just) speech. First Language 39, 4 (2019), 367–395.
[12] Thomas Hanke. 2004. HamNoSys-representing sign language data in language

resources and language processing contexts. In LREC, Vol. 4. 1–6.
[13] Julia LHecht. 2020. Responsibility in the current epidemic of language deprivation

(1990–present). Maternal and Child Health Journal 24, 11 (2020), 1319–1322.
[14] Allison I Hilger, Torrey MJ Loucks, David Quinto-Pozos, and Matthew WG Dye.

2015. Second language acquisition across modalities: Production variability in

adult L2 learners of American Sign Language. Second Language Research 31, 3

(2015), 375–388.

[15] Joseph Hill. 2020. Do deaf communities actually want sign language gloves?

Nature Electronics 3, 9 (2020), 512–513.
[16] Julie Hochgesang, OA Crasborn, and Diane Lillo-Martin. 2018. Building the ASL

Signbank. Lemmatization Principles for ASL. (2018).

[17] Julie A Hochgesang, Onno Crasborn, and Diane Lillo-Martin. 2019. ASL Signbank.

New Haven, CT: Haskins Lab, Yale University.

[18] Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li, and

Yun Raymond Fu. 2021. Skeleton Aware Multi-modal Sign Language

Recognition. 2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW) (2021). https://openaccess.thecvf.

com/content/CVPR2021W/ChaLearn/papers/Jiang_Skeleton_Aware_Multi-

Modal_Sign_Language_Recognition_CVPRW_2021_paper.pdf

[19] Trevor Johnston and Adam C Schembri. 1999. On defining lexeme in a signed

language. Sign language & linguistics 2, 2 (1999), 115–185.
[20] Hamid Reza Vaezi Joze and Oscar Koller. 2018. MS-ASL: A large-scale data set

and benchmark for understanding American Sign Language. arXiv preprint
arXiv:1812.01053 (2018).

[21] Lee Kezar, Jesse Thomason, and Zed Sevcikova Sehyr. 2023. Improving Sign

Recognition with Phonology. In European Association for Computational Linguis-
tics.

[22] Dongxu Li, Cristian Rodriguez, Xin Yu, and Hongdong Li. 2020. Word-level deep

sign language recognition from video: A new large-scale dataset and methods

comparison. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision. 1459–1469.

[23] Dongxu Li, Cristian Rodriguez, Xin Yu, and Hongdong Li. 2020. Word-level Deep

Sign Language Recognition from Video: A New Large-scale Dataset and Methods

Comparison. In The IEEE Winter Conference on Applications of Computer Vision
(WACV).

[24] Chloe Marshall, Aurora Bel, Sannah Gulamani, and Gary Morgan. 2021. How

are signed languages learned as second languages? Language and Linguistics
Compass 15, 1 (2021), e12403.

[25] Aleix MMartínez, Ronnie BWilbur, Robin Shay, and Avinash C Kak. 2002. Purdue

RVL-SLLL ASL database for automatic recognition of American Sign Language.

In Proceedings. Fourth IEEE International Conference on Multimodal Interfaces.
IEEE, 167–172.

[26] Johanna Mesch and Lars Wallin. 2015. Gloss annotations in the Swedish Sign

Language corpus. International Journal of Corpus Linguistics 20, 1 (2015), 102–120.

https://www.crest-network.com
https://slla.lab.uconn.edu/slaaash/
https://openaccess.thecvf.com/content/CVPR2021W/ChaLearn/papers/Jiang_Skeleton_Aware_Multi-Modal_Sign_Language_Recognition_CVPRW_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021W/ChaLearn/papers/Jiang_Skeleton_Aware_Multi-Modal_Sign_Language_Recognition_CVPRW_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021W/ChaLearn/papers/Jiang_Skeleton_Aware_Multi-Modal_Sign_Language_Recognition_CVPRW_2021_paper.pdf


ASSETS ’23, October 22–25, 2023, New York, NY, USA Kezar et al.

[27] C. Neidle, Augustine Opoku, Greg Dimitriadis, and Dimitris N. Metaxas. 2018.

NEW shared & interconnected ASL resources: SignStream® 3 Software; DAI 2

for web access to linguistically annotated video corpora; and a sign bank.

[28] Linguistic Society of America. n.d.. Resolutions, Statements, Endorsements,
and Related Actions. https://www.linguisticsociety.org/resource/resolutions-

statements-and-guides

[29] World Federation of the Deaf. n.d. Human Rights of the Deaf. https://wfdeaf.org/

our-work/human-rights-of-the-deaf/

[30] Kimberly K Pudans-Smith, Katrina R Cue, Ju-Lee A Wolsey, and M Diane Clark.

2019. To Deaf or not to deaf: That is the question. Psychology 10, 15 (2019),

2091–2114.

[31] Wendy Sandler. 1987. Sequentiality and simultaneity in American Sign Language
phonology. The University of Texas at Austin.

[32] Anique Schüller et al. 2021. The Lemma Dilemma: Finding relevant lemmas to

include in the Communicative Development Inventory for Sign Language of the

Netherlands (NGT-CDI). (2021).

[33] S. Z. Sehyr, N. Caselli, A. Cohen-Goldberg, and K. Emmorey. 2022. The semantic

structure of American Sign Language: Evidence from free sign associations. The
63rd Annual Meeting of The Psychonomic Society (2022).

[34] Zed Sevcikova Sehyr, Naomi Caselli, Ariel M Cohen-Goldberg, and Karen Em-

morey. 2021. The ASL-LEX 2.0 Project: A database of lexical and phonological

properties for 2,723 signs in American Sign Language. The Journal of Deaf Studies
and Deaf Education 26, 2 (2021), 263–277.

[35] Prem Selvaraj, C. GokulN., Pratyush Kumar, and Mitesh M. Khapra. 2021. Open-

Hands: Making Sign Language Recognition Accessible with Pose-based Pre-

trained Models across Languages. In Annual Meeting of the Association for Com-
putational Linguistics.

[36] William C Stokoe. 1960. Sign language structure: an outline of the visual commu-
nication systems of the American deaf. Dept. of Anthropology and Linguistics,

University of Buffalo, Buffalo.

[37] Federico Tavella, Viktor Schlegel, Marta Romeo, Aphrodite Galata, and Angelo

Cangelosi. 2022. WLASL-LEX: a Dataset for Recognising Phonological Properties

in American Sign Language. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers). https://

aclanthology.org/2022.acl-short.49

[38] Els Van der Kooij. 2002. Phonological categories in Sign Language of the Nether-
lands: The role of phonetic implementation and iconicity. Netherlands Graduate
School of Linguistics.

[39] Xiao Xiaoyan and Yu Ruiling. 2009. Survey on sign language interpreting in

China. Interpreting 11, 2 (2009), 137–163.

[40] Kayo Yin, Amit Moryossef, Julie A. Hochgesang, Yoav Goldberg, and Malihe

Alikhani. 2021. Including Signed Languages in Natural Language Processing. In

Association for Computational Linguistics (ACL).
[41] Morteza Zahedi, Daniel Keysers, Thomas Deselaers, and Hermann Ney. 2005.

Combination of tangent distance and an image distortion model for appearance-

based sign language recognition. In Pattern Recognition: 27th DAGM Symposium,
Vienna, Austria, August 31-September 2, 2005. Proceedings 27. Springer, 401–408.

https://www.linguisticsociety.org/resource/resolutions-statements-and-guides
https://www.linguisticsociety.org/resource/resolutions-statements-and-guides
https://wfdeaf.org/our-work/human-rights-of-the-deaf/
https://wfdeaf.org/our-work/human-rights-of-the-deaf/
https://aclanthology.org/2022.acl-short.49
https://aclanthology.org/2022.acl-short.49

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Insights From Research On Sign Language Phonology
	2.2 Labelling and Annotating Signs
	2.3 Existing Datasets

	3 Sem-Lex Benchmark
	3.1 Data Collection
	3.2 Labelling

	4 Modeling Signs and Their Phonemes
	4.1 The Sign Language Graph Convolution Network
	4.2 Isolated Sign Recognition
	4.3 Phonological Feature Recognition
	4.4 Phonological Features + Sign Recognition
	4.5 Generalizability to Unseen & Diverse Signers
	4.6 Few-Shot Generalizability for ISR

	5 Results
	5.1 Isolated Sign Recognition
	5.2 Phonological Feature Recognition
	5.3 Phonological Features + Sign Recognition
	5.4 Few-Shot Generalizability
	5.5 Seen vs. Unseen Signers

	6 Discussion
	6.1 Limitations
	6.2 Accessing Data
	6.3 Future Work

	7 Conclusion
	References

