The Sem-Lex Benchmark: Modeling ASL Signs and
Their Phonemes

Lee Kezar
lkezar@usc.edu
University of Southern California
Los Angeles, CA, USA

Connor Baer
cab9@bu.edu
Boston University
Boston, MA, USA

Jesse Thomason
jessetho@usc.edu
University of Southern California
Los Angeles, CA, USA

ABSTRACT

Sign language recognition and translation technologies have the po-
tential to increase access and inclusion of deaf signing communities,
but research progress is bottlenecked by a lack of representative
data. We introduce a new resource for American Sign Language
(ASL) modeling, the Sem-Lex Benchmark. The Benchmark is the
current largest of its kind, consisting of over 84k videos of isolated
sign productions from deaf ASL signers who gave informed consent
and received compensation. Human experts aligned these videos
with other sign language resources including ASL-LEX, SignBank,
and ASL Citizen, enabling useful expansions for sign and phonolog-
ical feature recognition. We present a suite of experiments which
make use of the linguistic information in ASL-LEX, evaluating the
practicality and fairness of the Sem-Lex Benchmark for isolated
sign recognition (ISR). We use an SL-GCN model to show that
the phonological features are recognizable with 85% accuracy, and
that they are effective as an auxiliary target to ISR. Learning to
recognize phonological features alongside gloss results in a 6% im-
provement for few-shot ISR accuracy and a 2% improvement for
ISR accuracy overall. Instructions for downloading the data can be
found at https://github.com/leekezar/SemLex.
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1 INTRODUCTION

Word recognition is the foundation of many automatic speech-
based technologies, like voice assistants, language learning apps,
and translators. While immensely practical in day-to-day use, these
technologies exclude signed languages and are inaccessible to deaf
people! who primarily use sign language to communicate. There
has been an increasing enthusiasm among experts in many fields,
including human-computer interaction, computer vision, natural
language processing, and computer graphics in developing technol-
ogy for automatically understanding, processing, translating, and
generating sign languages [4, 40].

However, such work has had variable levels of utility and success.
One barrier to progress is a lack of adequate sign language data.
While an array of tasks, models, and learning procedures have
been developed to focus on signed languages [40], less attention
has been given to building large-scale, systematically-annotated,
and ethically-sourced datasets to fully realize the potential of these
methods [3]. Another barrier to progress is the lack of linguistically-
informed approaches to sign recognition. Most prior work has
treated sign recognition as a vision problem rather than a language
problem, meaning these works have little-to-no acknowledgement
of structural linguistic complexities of signs. For example, recent
evidence has shown that models which treat signs as a collection
of linguistic components (rather than holistic gestures) are up to
6% more accurate at isolated sign recognition accuracy [21]. In
this paper, we introduce new data for the purpose of overcoming
these barriers, replicating the finding that phonology improves
sign recognition, and investigating other benefits, namely, few-shot
generalizability and sensitivity to race and gender.

IThere have been various conventions for referring to deaf communities, but there is
not broad consensus on a preferred term [30]. We use 'deaf” rather than other terms
that are widely viewed as offensive (e.g., ’hearing impaired’). We use the lower case
"deaf” here—as opposed to the capitalized 'Deaf’—to be inclusive of people with varying
auditory access and with varying identities with respect to Deaf culture.


https://github.com/leekezar/SemLex
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3597638.3608408
https://doi.org/10.1145/3597638.3608408

ASSETS °23, October 22-25, 2023, New York, NY, USA

Although datasets of isolated signs have many potential uses,
we position this benchmark as uniquely helpful for isolated sign
recognition (ISR?). The benchmark contains over 84k videos of iso-
lated sign productions from deaf ASL signers who gave informed
consent and received compensation. The signs were reviewed and
annotated by human experts using a novel labelling system that en-
ables rapid, reliable labelling of sign language data. The annotations
are cross-referenced with reference signs from the ASL-LEX data-
base [6, 34], as well as SignBank [17], and ASL Citizen [9]. Second,
we conduct a suite of experiments related to sign and phonological
feature recognition. These experiments show that incorporating
linguistic information about the composition of signs, namely the
phonological features extracted from ASL-LEX, enables accurate
phonological feature recognition and more accurate ISR. We also
conduct a quantitative analysis of model sensitivity to signer appear-
ance and demographics and explore the models’ ability to recognize
signs that had few instances in training.

2 BACKGROUND AND RELATED WORK

Deaf communities have worked hard for the recognition of sign
languages as legitimate languages, as opposed to simplistic gestural
systems or manual ways of expressing spoken language. There are
ongoing campaigns in many countries around the world for legal
recognition of national sign languages [8]. According to the World
Federation of the Deaf (WFD), the lack of recognition, acceptance,
and use of sign language represents the major barrier that prevents
deaf people from accessing basic human rights, especially in de-
veloping countries [29]. The Linguistic Society of America passed
a resolution [28] acknowledging that sign languages are, in fact,
languages with all the linguistic structure inherent to any language
(syntax, morphology, phonology, prosody, etc.). Systemic recogni-
tion of languages is important because access to sign language can
be precarious. Deaf children are often denied the opportunity to
acquire a signed language putting them at risk of language depriva-
tion during the critical window of childhood development [11, 13].
Without recognition of sign languages and robust systems for sign
language interpreting services, deaf people are often denied full
access to basic aspects of life such as employment, education, or
healthcare [2, 39].

Along these lines, deaf communities have raised concerns about
lack of recognition of sign languages as real languages in the de-
velopment of sign language technology. For example, in a paper in
Nature Electronics, Hill laments a “lack of an appropriate linguistic
framework” and the “lack of interdisciplinary collaboration” [15].
These calls highlight the need for technologists to honor sign lan-
guages as equally structured, complex, and organically-evolving
as spoken languages. For our part, the Sem-Lex Benchmark is the
result of collaboration among computer scientists and linguists,
and directly relies on contemporary ideas in ASL phonology and
machine learning.

2The term isolated sign language recognition or ISLR is also common. We prefer ISR to
more clearly disambiguate the task from sign language identification, where a model
must recognize which signed language is found in a video.
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2.1 Insights From Research On Sign Language
Phonology

Spoken words are composed of discrete, recombinable sound units,
such as vowels or consonants (phonemes), and there is a general
consensus that signs are made up of a finite number of analogous
phonological parameters. Early work on sign languages identified
the central parameters as handshape, movement, place of articu-
lation (location) and non-manual markers [36]. More recent work
goes beyond these basic parameters, noting that the parameters can
be further described in terms of phonological features® that have
complex dependencies (e.g., handshape may be further specified in
terms of selected fingers that vary in flexion and spread) [5, 31, 38].
Some of these features change during the sign (e.g., the flexion or
spread of the fingers) and some do not (e.g., the major location of the
hand, the selected fingers). The study of sign language phonology is
crucial for our understanding of how people learn, recognize, and
produce signs. Additionally, we find it can contribute to automatic
sign recognition.

2.2 Labelling and Annotating Signs

In the absence of a standard writing system for signed languages,
the question of how to best represent signing is surrounded with
much debate [10, 16, 19, 26, 32]. For the purposes of ISR, a useful
labelling system should be both efficient to apply and reliably lem-
matizes signs, that is, the system should produce the same label for
different instances of the same sign, and different labels for signs
that are distinct.

While most researchers have used English-like glosses, some
signs have multiple possible English translations (one-to-many),
some English words have many possible ASL translations (many-
to-one), and some signs have no equivalent English translations.
Meanwhile, efforts to replace or augment English glosses with
phonological information, like SignStream [27] and HamNoSys
[12] rely on idiosyncratic labelling systems which require some
amount of training to apply consistently and may result in different
productions of the same sign to receive different labels.

Taking these considerations into account, we chose to label the
videos in Sem-Lex from a large collection of reference signs. This
feature minimizes both English interference and the amount of
linguistic knowledge needed for labelling.

2.3 Existing Datasets

There are a handful of existing datasets of isolated signs in ASL that
have been used in ISR (see Table 2). Some of these datasets were
‘curated’, meaning they were collected from participants who were
recruited to contribute data in a specific fashion, e.g., by modeling
signs based on a dictionary. Some datasets were scraped from the
internet in ways that are legally and ethically questionable, often
without attribution to the video creators and without informed
consent of the people in the videos [20, 22]. Further, some datasets
include signers with unknown backgrounds—people who may or

3We refer to the component parts of signs as ‘phonological features’ rather than
‘phonemes’. Spoken phonemes are sequenced, discrete bundles of phonological features
like voicing, place of articulation, and manner. For many signs, there is one and only
one of each phonological feature (e.g., signs must have a major location, and cannot
have more than one major location), and the timing and sequence of features is not
segmental as it is in speech.
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Phonological Feature Description #Values Top Value
Major Location The broad location where the sign is produced. 5 /neutral/
Minor Location The specific location where the sign is produced. 37 /neutral/
Second Minor Location The specific location after the first minor location. 37 /n/al
Contact Whether the dominant hand touches the body. 2 /true/
Thumb Contact Whether the dominant thumb touches the selected fingers. 3 /false/
Thumb Position Whether the thumb is on the palm or extended. /open/
Nondominant Handshape Configuration of the nondominant hand. 56 /n/al/
Handshape Configuration of the dominant hand. 58 /open b/
Selected Fingers The fingers that move, or are in marked configurations. 8 /imrp/
Flexion The way the finger joints are bent. 8 /fully open/
Spread Whether the selected fingers touch one another. 3 /n/a/

Spread Change Whether Spread changes. 3 /n/a/
Repeated Movement Whether the movement is repeated 2+ times. 2 /false/

Sign Type Number of hands, and symmetry (if two handed) 6 /one handed/
Wrist Twist Whether the hand rotates about the wrist. 2 /false/

Path Movement

The shape that the hand traces.

8 /straight/

Table 1: Overview of each phonological feature types found in ASL-LEX, including the number of possible values and the most
frequent value for each type. n/a appears in some Boolean phonological feature types, resulting in three possible values instead
of two. imrp refers to index, middle, ring, and pinky. Detailed descriptions of each feature in ASL-LEX can be found in [34].

may not have lived experience of deafness and may have learned
sign language as adults [20, 22]. Like all languages, people who
learned sign language later in life, perhaps as a second or additional
language, have highly variable levels of proficiency and articulate
signs differently compared to those who acquired sign language in
childhood and use it as a primary language of communication [24].
This difference leads to heterogeneity and inconsistencies in how
signs are articulated [14]. Generally, training data should match the
anticipated end user. In most cases, the imagined end users of sign
language technology are deaf signers. Training data that consist of a
broad diversity of signers, including novice signers, may be suitable
for some applications and end users. However, it is not clear that
models developed on novice signers will generalize to deaf signers.
Thus, we present the Sem-Lex Benchmark to solve many of the
issues associated with existing datasets—a curated, larger than the
state-of-the-art benchmark of isolated ASL signs produced by deaf
fluent signers who provided informed consent and compensated
for their effort.

3 SEM-LEX BENCHMARK

The Sem-Lex Benchmark contributes 84,568 isolated sign videos,
divided into train/validation/test splits and lemmatized (n = 65, 935)
or described with free text (n = 18,393). Lemmatized signs were
aligned with either ASL-LEX (n = 60, 203) or SignBank (n = 5, 732)
(see Figure 1). The test set is entirely comprised of participants who
are not frequently represented in sign language training data, in
order to help quantify model bias with regard to race and gender.
We select 10 participants among the 41 contributors whose videos
make up approximately 20% of the entire dataset such that the
ratio of non-white and women signers is substantially higher than
average. We then place all of these participants’ productions in the
test set, to ensure that they are unseen during both training and
validation.

The distribution of samples contributed by each participant is in
Figure 2. The median number of samples per sign was 10 (IQR 4-26).
A total of 3,149 unique signs were represented in the lemmatized
data. Of these, 945 signs had fewer than five samples. To put these
numbers in some perspective, the current most popular benchmark
for ISR is Word-Level American Sign Language (WLASL, [23]),
containing 21,083 videos representing 2,000 signs for an average of
10.5 video examples per sign.

Phonological Feature Annotations. Although all videos have
a split, in this work we only use the videos which have been aligned
with ASL-LEX in order to maintain consistency among the target
gloss labels and complete coverage of phonological feature anno-
tations. Future work might consider including the non-ASL-LEX
videos.

Sufficient Examples. Signs with fewer than 5 instances are
not given a split (but may be included in future work on few-shot
generalizability).

3.1 Data Collection

The dataset consists of ASL signs elicited using a free semantic asso-
ciations paradigm as part of another study aimed at understanding
the lexical-semantic properties of the ASL lexicon [33]. For this
study, we developed an interface for rapid data collection and an-
notation of signs called SignLab #. Participants contributed data
remotely from their own computers. We asked that they ensure no
other people were visible on camera, but otherwise did not control
the filming conditions. SignLab first presented participants with a
video of a cue sign from ASL-LEX (e.g., CAT) and prompted them
to produce the first three meaning-related signs that came to mind
(e.g., DOG, MOUSE, MILK). Participants contributed the first three
signs that came to mind by 1) pressing the space bar to turn on

4SignLab is a work in progress, and will be forthcoming.
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Dataset Number of Signs Number of Videos Source  Participants Informed Consent
Purdue RVL-SLLL [25] 39 546 Curated Deaf Yes
Boston ASLLVD [1] 2,742 9,794 Curated Deaf Yes
RWTH-BOSTON-50 [41] 50 483 Curated Deaf Yes
MS-ASL [20] 1,000 25,513 Scraped Unknown No
WL-ASL [22] 2,000 21,083 Scraped Unknown No
ASL Citizen [9] 2,731 83,912 Curated Deaf Yes
Sem-Lex Benchmark 3,149 84,568 Curated Deaf Yes

Table 2: Existing datasets of isolated signs in ASL. *Includes unlabeled videos. 65,935 are labeled with a gloss.

train: 51,029

all videos: 84,568

validation: 18,025

test: 15,514 I

ASL-LEX labels: 60,203
lemmatized: 65,935

SignBank labels: 5,732

free-text description: 18,393 I

Figure 1: The Sem-Lex Benchmark data is divided into 3:1:1 train/validation/test, where each subset is in turn a mix of lemmatized
(i.e. has been matched to an entry in a lexical database) or “unlabeled” (i.e. free-text description). In our experiments, we only

use the lemmatized items from ASL-LEX 2.0.

their webcam, 2) producing a sign, 3) pressing the space bar to turn
off their camera and then repeating the process up to three times.
Participants could delete any of these responses with one button
press (e.g., if there was an error), but could not re-record them. This
process enabled us to rapidly collect and segment videos so each
video contained just one sign. Because the protocol allowed partici-
pants to freely produce a sign that came to mind, it also ensured
that participants knew and used each sign (i.e., rather than copying
a sign they may or may not be familiar with).

Forty-one deaf ASL signers contributed data (see Table 3). Partic-
ipants were paid $15 for the initial training, $20 per 100 trials (i.e.,
100 cue signs), and a completion bonus of $100 for every 1,000 trials
they completed. All participants gave informed consent to sharing
their video data in a public online repository. Consent forms were
provided online in both written English and as ASL videos. Data
from three participants were removed from the dataset prior to anal-
ysis because an early review of their responses indicated that they
did not understand the task as intended (e.g., repeating the prompt
sign, producing multi-sign responses, producing unrecognizable
signs).

3.2 Labelling

We developed a novel method for labeling videos of signs which
resolves some of the limitations of current methods using English
glosses or phonological transcriptions as labels: we use videos of
ASL signs as labels for ASL signs. The SignLab system presents
the labeler with a video of a to-be-labeled sign and allows them to
simultaneously search two lexical databases of ASL sign labels by
typing in possible English translations (ASL-LEX and SignBank).
The lexical databases were annotated to identify a variety of possible
English translations for each sign, and all videos that had English
translations that matched the typed input appeared in the search
results. The labeler could visually scan the video thumbnails in the
search results and play the videos by hovering their mouse over
the thumbnail. They could click to select an entry from the lexical
databases that matched the production. If both lexical databases
contain the item, only the ASL-LEX label was presented to the
labeler. If the sign did not appear in either lexical database, the
labeler could type in a free text description of the sign.

With respect to lemmatizing, labelers were given the following
instructions:
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Overall
(N=41)
Age
Mean (SD) 31.9 (11.6)
Median [Min, Max] 27.0 [21.0, 65.0]
Missing 2 (4.9%)
Age of First ASL Exposure
Mean (SD) 2.00 (3.88)
Median [Min, Max] 0 [0, 14.0]
Missing 4(9.8%)
Sex
Female 27 (65.9%)
Male 12 (29.3%)
Non Binary 1(2.4%)
Missing 1 (2.4%)
Ethnicity

Not Hispanic or Latina/o/x 34 (82.9%)

Hispanic or Latina/o/x 3(7.3%)
I prefer not to answer 3 (7.3%)
Missing 1(2.4%)
Race
African American/Black 3(7.3%)
Asian 3(7.3%)
White 27 (65.9%)
More than one 3(7.3%)
I prefer not to answer 3(7.3%)
Missing 2 (4.9%)

Table 3: Participant demographics. All signers were exposed
to ASL early in childhood. The dataset is not representative
in racial, ethnic, and gender makeup.

o If the sign and label mean the same thing, but look a little
different (e.g., DUCK with two fingers versus four fingers):
the sign and label match.

o If the sign and label mean the same thing, but look very
different (e.g., CHILD and KID): the sign and label do not
match.

o Sign and labels that differ in more than one parameter (hand-
shape, movement, or location) are probably not a match.

o If the sign and label mean something different, but look very
similar (e.g., PEACH and EXPERIENCE): the sign and label
do not match.

While labelers searched ASL-LEX by English translations, they
were encouraged to ignore English when considering whether a
sign was a match (e.g., “Do not worry if the English translation is
not the one you would prefer to use. For example, if the ASL-LEX
translation reads ‘father’ and you prefer the English translation
‘dad, just focus on whether the signs match). In some videos, par-
ticipants mouthed English words while signing. Labelers could use
English mouthing to the extent that it was helpful, and were free to
match signs that differed in mouthing (e.g., a sign with the mouthing
‘dinner’ could be a match to a reference video with the mouthing
‘supper’). If the labeler was unable to confidently label the sign,
they marked it as uncertain, and these videos were excluded from
the dataset (n = 2,288).

ASSETS ’23, October 22-25, 2023, New York, NY, USA

Before beginning to tag signs, labelers attended a training ses-
sion with a member of the research team. They then independently
tagged 100 training signs® which were checked for inter-rater re-
liability with a set of correct answers developed by the research
team. The team also examined responses for patterns of errors that
reflected a misunderstanding of one or more of the training guide-
lines. If the inter-rater reliability (Cohen’s Kappa) was lower than
.7, or if systematic errors emerged when reviewing the training
signs, we held another training meeting to review the responses and
clarify the training guidelines before they proceeded. All labellers
passed the .7 threshold after the second round of training signs.

By labelling using lexical databases, the Sem-Lex Benchmark
is cross-compatible with available linguistic resources for ASL,
namely ASL-LEX [6, 34], ASL Citizen [9], and the ASL SignBank
[17]. ASL-LEX contains detailed, manually annotated phonolog-
ical descriptions of each of the 2,723 signs. These phonological
transcriptions can be merged with the larger dataset as a “broad
transcription,” making it possible to use phonological information
in modeling without requiring manual annotation of the full dataset.
ASL SignBank has been used to label corpora of continuous signing
[7], which may also be leveraged in concert with the dataset we
present here.

4 MODELING SIGNS AND THEIR PHONEMES

To provide empirical evidence that the Sem-Lex Benchmark data is
both high-quality and practical, we conduct a suite of experiments
related to sign and phoneme recognition. The experiments are
selected to answer a diverse array of research questions pertaining
to sign and phoneme recognition:

4.2 Isolated sign recognition: How accurate will a model be
at recognizing isolated signs?

4.3 Phonological Feature Recognition: How well will a model
trained to recognize only the phonological features perform?

4.4 Phonological Feature+Isolated Sign Recognition: How
will a model benefit from learning signs in tandem with their
phonological features?

4.5 Generalizability to Unseen & Diverse Signers: How sen-
sitive is the model to spurious correlations among signers in
the train set?

4.6 Few-Shot Generalizability for ISR: How well do models
trained for Phonological Feature Recognition + ISR perform
at recognizing signs with few training instances?

To answer these questions, we compare quantitative measures of
performance (accuracy@k, mean reciprocal rank) across SL-GCN
models (described below) learned on either WL-ASL or Sem-Lex
training data for ISR and/or phonological feature recognition.

4.1 The Sign Language Graph Convolution
Network
The SL-GCN model [18] is a specialized model for tasks involving

sign language understanding. It is an encoder-decoder model which
takes a human pose estimation format of the input video and can

SThese signs were randomly drawn from the dataset at the outset of labelling, and are
not the same as the training fold of SemLex.


https://asl-lex.org/visualization/?sign=duck
https://vimeo.com/378822204/9feba6bb0b
https://asl-lex.org/visualization/?sign=kid
https://asl-lex.org/visualization/?sign=peach
https://asl-lex.org/visualization/?sign=experience
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Figure 2: The distribution of samples per sign and per participant. The red line in the left panel represents 5 samples.

be learned for one classification problem. The SL-GCN encoder con-
sists of ten repeated blocks, each of which contains (a) a decoupled
GCN layer that encodes each keypoint in concert with its neigh-
bors, (b) spatial and temporal attention over those keypoints, and
(c) a temporal convolution layer. The SL-GCN decoder consists of
one fully-connected layer from the encoding to the desired output
logits.

We modify the decoder to allow for a variable number of classifi-
cation heads by copying the encoding and providing it to multiple
fully connected layers in parallel. Structured this way, the SL-GCN
model must encode all of the features that are pertinent to the clas-
sification tasks at hand in such a way that the decoder can easily
separate the encoding into logits for each task.

This model architecture was selected for a variety of reasons.
First, we use pose estimations over RGB video because it reduces
not only the number of model parameters necessary to effectively
process the input, but also the chance of biases due to spurious cor-
relations between production and gender, race, or age. Second, the
SL-GCN model contains separate attention mechanisms for space
and time at each layer, improving the model’s ability to recognize
patterns over time (e.g. movement) or space (e.g. sign type). And
finally, there is empirical evidence that the SL-GCN model performs
well on isolated sign recognition [35].

4.2 Isolated Sign Recognition

For the task of ISR, we use one classification head of size 2,731 (for
the Sem-Lex Benchmark data) or 2,000 (for WLASL) coresponding
to the number of target signs. At the end of each forward pass, a
cross-entropy loss is computed according to the one-hot encoding of
the target label, and all model weights are trained while minimizing

that loss. We then compare the resulting accuracy (the correct
answer is the top prediction), recall@k (correct answer in the top-
k predictions), and mean reciprocal rank (1/rank of the correct
answer) averaged across each item in the test set.

4.3 Phonological Feature Recognition

For the task of phonological feature recognition, we train 16 classi-
fication heads ranging from size 2 to 58, one for each phonological
feature type (see Table 1 for the complete enumeration of types)
that each take in the SL-GCN encoder representation of the sign
video. To compare with WLASL, we augment the dataset similarly
to Tavella et al. [37] such that each video entry also contains esti-
mations of its phonological features. At the end of each forward
pass, a summed cross-entropy loss is computed according to the
one-hot encoding of the target label within each type. We then
compare the resulting accuracy, recall-at-k, and mean reciprocal
rank on the test set.

4.4 Phonological Features + Sign Recognition

Following Kezar et al. [21], we explore the possibility that ISR and
phonological feature recognition are “symbiotic” tasks, meaning
that a model which is trained to do both tasks simultaneously will
be more accurate than one trained for either task alone. We experi-
ment with learning to recognize gloss alongside all 16 phonological
feature types, as well as gloss alongside a small but informative sub-
set of phonological feature types (handshape and minor location).
Otherwise, the model architecture is identical to the one described
in Section 4.3 only with an extra classification head for gloss.
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Task

Test Set ISR ISR+PFR

ACCq ACC3 MRR ACCq ACC3 MRR

WLASL-2000  26.4%  50.2% 43 38.1% 61.0% 52
Sem-Lex 66.6%  81.5% .39 68.6%  82.0% .40

Table 4: Comparison of SL-GCN models trained with WLASL
vs. Sem-Lex pose data (acc; = top-1accuracy, AcC3 =
top-3 accuracy, and MRR = mean reciprocal rank). ISR mod-
els are trained to predict gloss only, ISR+PFR models predict
both gloss and phonological features.

4.5 Generalizability to Unseen & Diverse Signers

To explore the influence of spurious correlations between produc-
tions and the people who sign them (which is undesirable for most
applications), we additionally compare the models trained for ISR
and phonological feature recognition (separately) with regard to
the validation set (seen and less diverse) vs. the test set (unseen
and more diverse). To the extent that the test set yields worse per-
formance than the validation set, we may attribute some amount
of the difference to the model relying on factors pertaining to race
and/or gender.

4.6 Few-Shot Generalizability for ISR

To illustrate the practicality of learning phonology, we explore
the average model performance with respect to the number of
training instances per sign. We compare the models described in
Sections 4.2 and 4.4 to provide empirical support that learning
phonology enables a model to learn robust representations of signs
more easily. Among the itemized test results for each of these
models, we first group signs by the number of instances found in
training (in particular, those with 4-10 instances in the training
set), and then compute the average performance within each group.

5 RESULTS

5.1 Isolated Sign Recognition

When learned to recognize only gloss, the SL-GCN model has a top-
1 accuracy of 67.7%, a top-3 accuracy of 81.5%, and a mean reciprocal
rank (MRR) of 0.396 (see Table 4). We juxtapose these results to
WLASL, which has a smaller vocabulary of 2,000 signs, but the SL-
GCN model performs worse, with a top-1 accuracy of 26.4%, a top-3
accuracy of 45.7%, and an MRR of 0.228. This experiment shows
that, relative to the WL-ASL benchmark, the Sem-Lex Benchmark
data is well-labeled and therefore more tractible, but not trivial.

5.2 Phonological Feature Recognition

Table 5 shows the top-1 accuracies for phonological feature recogni-
tion (feature types described in Table 1). When learned to recognize
the 16 phonological feature types presented in the Sem-Lex Bench-
mark, the SL-GCN is 85% accurate on average regardless of how
it learns them (individually by fine-tuning the entire model or by
learning them all at once). The most accurate phonological feature
types were Wrist Twist (92.6% accurate), Thumb Contact (91.7%
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X Learning Method
Phonological Feature Type Fine-Tune . Multitask
Major Location 0.877 0.875
Minor Location 0.792 0.781
Second Minor Location 0.787 0.772
Contact 0.893 0.886
Thumb Contact 0.917 0.911
Sign Type 0.889 0.879
Repeated Movement 0.855 0.854
Path Movement 0.756 0.754
Wrist Twist 0.924 0.926
Selected Fingers 0.911 0.902
Thumb Position 0.915 0.915
Flexion 0.812 0.810
Spread 0.884 0.880
Spread Change 0.903 0.895
Nondominant Handshape 0.835 0.817
Handshape 0.774 0.747
Average 0.858 0.850

Table 5: Phoneme feature recognition accuracy (top-1) be-
tween SL-GCN models fine-tuned to predict each type at a
time or by learning them all at once, as evaluated on Sem-
Lex;es:. All models are SL-GCN s pre-trained to predict gloss
yg and then trained to predict phonological feature types y,,
(p € P) with the Sem-Lex;4i, dataset. Bold values indicate
the highest per row.

accurate), and Thumb Position (91.5% accurate). The least accurate
types were Path Movement (75.6% accurate), Handshape (77.4%
accurate), and Second Minor Location (78.7% accurate).

5.3 Phonological Features + Sign Recognition

When learned to recognize both gloss and the 16 phonological
feature types, the SL-GCN model is more accurate at ISR (71.3%)
than when trained to predict gloss alone (67.7%). This increase
in performance is consistent with the results presented in Kezar
et al. [21], which shows that phonology is a useful auxiliary task to
learning to recognize isolated signs.

5.4 Few-Shot Generalizability

Focusing on signs which are “rare” (i.e. had 4 < n < 10 examples
during training), we observe a Pearson r correlation of 0.73 between
number of instances and average top-1 accuracy per sign class for
Sem-Lex Benchmark. This suggests a strong relationship between
test accuracy and number of signs seen in training. With only 4
signs in training, the SL-GCN model is able to recognize a sign
with 62.2% accuracy, and with 10 signs in training, that accuracy
jumps to 72.3%. This is compared to WL-ASL, where the model
recognizes 18.4% and 31.3%, respectively, for 4 and 10 training
samples (see Table 6). Given the realistic, long-tailed distribution of
signs in Sem-Lex Benchmark (specifically, 45% signs have less than
10 instances), these findings indicate the SL-GCN model trained on
Sem-Lex Benchmark is both effective at ISR, and in particular at
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Evaluation Set

Dataset Task

val,; test,; testp=19 testp=s
WLASL ISR - 26.4% 31.3% 18.4%
Sem-Lex ISR 68.2% 66.6% 72.3% 62.2%
Sem-Lex ISR+PFR  69.8% 68.6% 73.0% 68.2%

Table 6: Comparison” of ISR accuracy (top-1) for varying eval-
uation sets and learning targets. The validation set (val,y;)
and test set (test,;;) intentionally differ with respect to signer
race and gender, in addition to the latter set containing only
unseen signers. test,_ is only the signs in the test set which
have exactly k corresponding instances in the training set. *
Without zero-shot transfer from one test set to the other or
human performance baselines, this comparison is limited in
interpretability.

recognizing signs with more consistent performance regardless of
their frequency in the vocabulary.

Additionally, we report how learning gloss alongside phonolog-
ical feature recognition influences few-shot generalizability. The
SL-GCN model, when learned to recognize both gloss and phonolog-
ical features, is 68.2% and 73.0%, respectively, for 4 and 10 training
samples. In general, we observe that learning phonology as an aux-
iliary task not only improves overall gloss recognition accuracy,
but also lessens the gap between less and more frequent signs.

5.5 Seen vs. Unseen Signers

In Table 6, we additionally report the model’s reliance on spurious
correlations pertaining to individual signer differences by com-
paring performance on the validation set containing seen signers
(n = 11,954) and test set containing unseen signers representing
more diverse demographics (n = 11,127). For seen signers, the
SL-GCN trained to only predict gloss is 68.2% accurate, while for
unseen signers, the SL-GCN is 66.6%. These findings illustrate that
there is a slight reliance on undesirable factors when learning to
recognize signs. Because we only use pose estimations of the videos,
we believe the difference in performance is most likely attribut-
able to differences in articulation, as opposed to visual differences
among signers which are only observable with pixel-level informa-
tion, such as skin color (which an RGB model might leverage to
learn a spurious correlation with race or ethnicity).

6 DISCUSSION

We present the Sem-Lex Benchmark for modeling ASL signs and
their phonemes. Our experiments show that Sem-Lex enables accu-
rate models for recognizing signs and phonemes. We additionally
show that learning these tasks simultaneously improves accuracy
across the board, including few-shot and unseen signers. The suc-
cess at few-shot generalization is especially true for the SL-GCN
learned to predict both gloss and phonological features, demon-
strating that learning phonology is an even more effective auxiliary
task to learning ISR than previous work had shown. However, there
appears to be a slight reliance on spurious correlations, as demon-
strated by the slightly lower performance on unseen and more
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diverse signers. A unique aspect of the Sem-Lex Benchmark is that
the signs were spontaneously produced by deaf fluent signers using
a widely-used experimental paradigm in psycholinguistic research.
This approach ensures that signers were familiar with the signs
they produced, and were not simply reproducing signs they may
or may not know (e.g., [9]).

6.1 Limitations

First, while there are more signs included in this benchmark than in
other ASL datasets, it is still not representative of the full breadth of
ASL. Our participants represent a small cross-section of all signers,
who vary along many axes like experience and gender. The data is
not representative of the larger population of ASL users in terms
of race, ethnicity, and gender. Additionally, fingerspelled words
are underrepresented in the lexical databases we used for labelling,
and so while participants may have contributed fingerspelled items,
these are not among the labelled benchmark released here. Similarly,
much of the morphology of ASL is not well represented in the
labelled benchmark either (e.g., signs that are inflected for verb
agreement, compound signs, etc.). Depicting signs and classifier
constructions—semantically dense constructions which are unique
to many signed languages—are also underrepresented in the Sem-
Lex Benchmark.

Second, we note that models based on this benchmark alone
(or any benchmark of isolated signs) may not generalize to con-
tinuous sign recognition (CSR). By focusing on isolated signs, the
benchmark is not representative of grammatical features (e.g. ref-
erential use of space, certain facial expressions) or coarticulation.
Researchers who intend to use these data or models for CSR or
translation in any way should be aware of these discrepancies as
they make and evaluate their models.

Finally, it should be noted that despite decades of sign linguis-
tics research, many aspects of ASL phonology remain much less
understood. The phonological descriptions of signs in ASL-LEX are
incomplete, and so this paper represents an early step toward mod-
eling sign phonology. While we did not conduct a direct validation
of the models through research activities with the representative
end users, this work is anchored in prior research involving the
representative users and has been motivated by their priorities (see
Section 2).

6.2 Accessing Data

The goal of this paper is to share a benchmark which includes
videos that were contributed with informed consent by deaf peo-
ple who were compensated and recognized for their contributions
(financially and/or via authorship). We hope that this benchmark is
broadly useful, and spurs creativity and innovation. At the same
time, ethical considerations for how sign language data are used
are complex and sensitive [3]. Prior to submitting this work, we
convened a large group of deaf and signing scholars from a range
of disciplines to consider how the community would like to share
data. Following the recommendations of this group, we ask that
users of these data:

e commit to “do no harm,”
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o work closely with deaf signing communities—the people who
will be most impacted by sign language technology—-to iden-
tify and mitigate possible harms, and maximize benefits to
these communities

o recognize deaf contributors fairly (financially, through attri-
bution, or other acknowledgement, as appropriate)

e work to mitigate possible power imbalances

o limit claims to those that are appropriate to the technology
(e.g., even high-performing ISR models do not obviate the
need for human interpreters or teachers who are fluent in
sign language)

We refer users who do not have connections to deaf communities
to the CREST network at Gallaudet University, which aims to foster
collaboration on sign-related technologies.

6.3 Future Work

The benchmark we present here was developed as part of a larger
linguistic investigation of the semantic structure of the ASL lexicon.
By identifying signs that people freely associate, we can learn how
signs are related in meaning to one another. These associations can
inform questions about how people learn and use signs. We are
also eager to see this benchmark used for linguistic research (e.g.,
exploring variation in how different signers produce signs).
Interdisciplinary work between linguists and technologists can
be mutually beneficial. As we have laid out here, incorporating
knowledge and resources from linguistics can aid in the develop-
ment of sign language technology. Similarly, we believe modeling
sign phonology will also benefit linguistics and psychology. Models
of sign phonology can inform linguistic theories as to the phono-
logical composition of signs. They can also be used to help build
knowledge about relatively low-resource sign languages (e.g., those
that do not have manually annotated databases), and can offer meth-
ods for cross-linguistic comparisons. This project paves the way for
ethically sourced, efficient, and reproducible sign language research
and more successful sign recognition technologies down the line.

7 CONCLUSION

The Sem-Lex Benchmark introduces new, high-quality data for
modeling signs and their phonemes. The 84,568 isolated sign pro-
ductions were collected directly from Deaf participants with in-
formed consent and financial compensation for their contributions.
Additionally, some 78% are aligned with other datasets, allowing for
phonological featurization for each video. We show that modeling
phonology is is worthwhile: when learned to classify phonological
features in concert with gloss, a state-of-the-art model is able to
recognize signs more accurately, and in particular signs that are
rare. With these data, we hope to inspire future work on studying
signed languages in a more representative and ethical way, and
with these insights, create more robust models for sign language
understanding in direct collaboration with the Deaf community.
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