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Abstract. Like speech, signs are composed of discrete, recombinable
features called phonemes. Prior work shows that models which can rec-
ognize phonemes are better at sign recognition, motivating deeper explo-
ration into strategies for modeling sign language phonemes. In this work,
we learn graph convolution networks to recognize the sixteen phoneme
“types” found in ASL-LEX 2.0. Specifically, we explore how learning
strategies like multi-task and curriculum learning can leverage mutually
useful information between phoneme types to facilitate better modeling
of sign language phonemes. Results on the Sem-Lex Benchmark show
that curriculum learning yields an average accuracy of 87% across all
phoneme types, outperforming fine-tuning and multi-task strategies for
most phoneme types.

1 Introduction

Phonology can act as a low-level yet discrete feature space to help guide a lan-
guage model’s perception of language. This guidance is particularly attractive
for computationally modeling signed languages, a task where accurate and reli-
able perception is fundamental but frequently muddied by insufficient data and a
high degree of signer variation. From the perspective of phonology, however, the
features of interest are significantly easier to learn. As the systematic compo-
nents of signs, phonemes are by definition more abundant and less complex than
whole signs. Meanwhile, the utility of phoneme recognition for understanding
signed language is clear. [1] showed that leading models for isolated sign recogni-
tion (ISR) do not reliably encode sign language phonemes, but with supervision
for phonemes alongside gloss, those models will be up to 9% more accurate at
ISR. Moreover, the descriptive power of sign language phonology can readily
extend to sign constructions not found in lexicons, like derivatives of signs (e.g.
DAY vs. TWO-DAYS) and classifier constructions (e.g. CL:DRIVE-UP-HILL).

Building on these observations, we focus on modeling sign language phonol-
ogy as a task unto itself. We evaluate two learning strategies, multi-task and
curriculum learning, on their ability to improve the recognition of American
Sign Language (ASL) phonemes. Our experiments using the Sem-Lex Bench-
mark [2] to learn a graph convolution network reveal that learning phoneme
types together (rather than separately) improves accuracy. We additionally show
that curriculum learning, wherein the model is given structural priors related to
phoneme types, is the most accurate method to date.
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Phoneme Type Description #Values
Major Location The sign’s broad location. )
Minor Location The signs’s specific location. 37
Second Minor Loc. The sign’s specific, secondary location. 37
Contact If the hand touches body. 2
Thumb Contact If the thumb touches other fingers. 3
Sign Type Movement symmetry (if 2H) 6
Repeated Movement  If the movement is repeated. 2
Path Movement The shape that the hand traces. 8
Wrist Twist If the hand rotates. 2
Spread If the hand’s fingertips touch. 3
Flexion The way the finger joints are bent. 8
Thumb Position If the thumb is in/out. 2
Selected Fingers Which fingers are salient to the sign. 8
Spread Change If Spread changes. 3
Nondom. Handshape Configuration of the nondominant hand. 56
Handshape Configuration of the dominant hand. 58

Table 1: Overview of each phoneme types found in ASL-LEX 2.0, including the
number of possible values. See [4] for a more detailed description of the types.

2 Related Work on Modeling Sign Language Phonology

Several related works have explored models for sign language phonology, both
as its own task and in relation to sign recognition, in a variety of ways. Per-
haps the earliest effort to recognize sign language phonemes, [3] explores the use
of nearest-neighbor classifiers for recognizing handshapes, palm orientations, lo-
cations, and movements, based on hand-crafted feature representations of the
hands and body, such as “rotation values of the hand joints.” Although they
claim 85%-95% accuracy, the classifiers are trained and evaluated on synthetic
sign recognition, raising concerns regarding their classifiers’ ability to generalize
to naturalistic signing.

Later efforts to recognize SL phonemes would focus on designing neural archi-
tectures to replace the hand-crafted features with encodings. While [5], [6], and
[7] improve sign recognition by more intentionally attending to the hands and
mouth, one might describe their connection with language phonetic, as they are
more closely associated with continuous input-level features than they are with
discrete and symbolic representations. WLASL-LEX [8] is conceptually simi-
lar to the work presented here. This work compared four classification models
for each of the 6 phoneme types found in ASL-LEX 1.0, learned with WL-ASL
dataset. In contrast, the work presented here uses the Sem-Lex Benchmark
[2], which contains 10 additional phoneme types (see Table 1 and approximately
300% more sign videos to learn from. Additionally, we explore learning strategies
rather than model architectures.
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1. Multi-task Learning 2. Curriculum Learning
Learn all phoneme types at once Learn phoneme types sequentially, in order of difficulty
Major || Minor | | Hand Major Major | | Minor Major || Minor | | Hand
Loc Loc Shape Loc Loc Loc Loc Loc Shape
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Fig. 1: We explore multi-task and curriculum learning to improve modeling of
sign language phonology by sharing knowledge across phoneme types.

3 Methodology

3.1 Task Description

Brentari’s Prosodic Model [9] organizes sign language phonology into a hierarchy
of sixteen distinct phoneme types Pi.145. We view learning each phoneme type
P; as a classification task with K; distinct classes, where a model takes as input
a pose estimation video x and predicts an output class y € {1, ..., K;}.

3.2 Learning to Classify Phoneme Types with SL-GCN

Following [1], we perform phoneme classification using an SL-GCN encoder [10]
Mg to encode the pose estimation video. To classify phoneme type P;, a
linear classification layer 6; maps the encoding to a probability distribution
p(y|x; Msr,0;) over the K; output classes of that phoneme type. The cross-
entropy loss with ground-truth label y; is minimized over training dataset D:

min Log (yZ‘, P(y\X;MSLveiD (1)

x,yi~D

3.3 Multi-task Learning of Phoneme Types

Training separate models for each phoneme type misses an opportunity to lever-
age shared knowledge across phoneme types. To this end, the first strategy
we explore is multi-task learning of phoneme types, where individual classifica-
tion layers for each of the 16 phoneme types are trained simultaneously. All 16
phoneme type classifiers 6, 16 are learned jointly using video encodings from a
shared SL-GCN encoder.

16
min ZECE (yi, p(ylx; Mse, 91')) (2)
=1

X,y1...16~D 4
1
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3.4 Curriculum Learning of Phoneme Types

While multi-task learning allows the model to implicitly share knowledge across
phoneme types, there is no structural prior or inductive bias that regulates how
the knowledge is shared. Controlling the order in which phoneme types are
introduced might introduce such a structural prior. For instance, learning to
locate the hands first can help us identify the type of hand movement better.

To decide this order, we follow two principles: earlier types should be “easier”
than later types, and the knowledge of earlier types should reduce the entropy of
later types. Because Brentari’s Prosodic Model is hierarchical—phoneme types
have children and/or parent types—the most sensible way to follow these prin-
ciples is to start with “leaf” phoneme types (those which have no children and
fewer values) and moving up towards broader, more holistic phoneme types. For
example, Handshape has children types Flexion, Selected Fingers, et al. Ergo,
learning the more specific children types before Handshape is both easier (in
terms of number of values possible values) and reduces the entropy of Hand-
shape. The resulting curriculum is shown in the ordering of Table 1, starting
with Major Location and ending in Handshape.

We perform curriculum learning by introducing phoneme types into the learn-
ing objective cumulatively. We begin training by only learning phoneme type
Py, and introduce a new phoneme type Pj into the learning objective every e
epochs. For the final e epochs, model training is identical to multi-task learning
of all 16 phoneme types P;.. 16-

k
Step k:_ min ZﬁCE(yz‘, p(y|X§MSL,9z‘)) (3)
—1

X7Y1.,.k~'Di

4 Data and Experimental Setup

To evaluate our method, we use the Sem-Lex Benchmark [2], which contains
65,935 isolated sign videos annotated by humans with both gloss and ASL-LEX
phoneme types. This dataset was collected from deaf, fluent signers who gave
informed consent and received financial compensation. We use the train partition
(n = 51,029) gloss labels to pre-train the SL-GCN model to recognize gloss only
and use this as the base model to fine-tune for phonological feature recognition.
For multi-task learning, we use a cosine-annealing learning rate and train for 100
epochs, at which point the validation accuracy plateaus. For curriculum learning,
we follow the same procedure but with e = 20 between the introduction of a new
phoneme type. Models are implemented in PyTorch, largely building on the
OpenHands framework [11], and trained on four Nvidia 3090 GPUs. Our code
can be found at https://github.com/leekezar/Modeling-ASL-Phonology/.
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Learning Method Type

Phoneme Type
Fine-Tune Multitask Curriculum Average

Major Location 87.7 87.5 89.1 88.1
Minor Location 79.2 78.1 80.7 79.3
Second Minor Location 78.7 77.2 80.9 78.9
Contact 89.3 88.6 91.1 89.7
Thumb Contact 91.7 91.1 92.1 91.6
Sign Type 88.9 87.9 89.4 88.7
Repeated Movement 85.5 85.4 87.3 86.1
Path Movement 75.6 75.4 79.6 76.9
Wrist Twist 92.4 92.6 93.5 92.8
Selected Fingers 91.1 90.2 90.6 90.6
Thumb Position 91.5 91.5 91.8 91.6
Flexion 81.2 81.0 83.2 81.8
Spread 88.4 88.0 88.8 88.4
Spread Change 90.3 89.5 90.4 90.1
Nondominant Handshape 83.5 81.7 83.2 82.8
Handshape 77.4 4.7 76.9 76.3
Method Average 85.8 85.0 86.8 85.9

Table 2: Phoneme recognition top-1 accuracy (%) across the proposed methods,
evaluated on Sem-Lex (test). All models are pre-trained to predict sign gloss.

5 Results and Discussion

The top-1 accuracies for each phoneme type across methods are shown in Table
2. Overall, the three methods are effective at learning the phonological features
in Sem-Lex, with an overall accuracy of 85.9%. This outperforms WLASL-LEX
[8] across its six phoneme types by 5.9-20.9%. From these results, we glean the
following conclusions:

e Phoneme types co-occur. There is a relatively small difference of 0.8%
between learning the entire model for each phoneme type individually (fine-
tune) vs. learning them all at once (multi-task). This indicates that the
value of P; informs the value of P; to such an extent that it overcomes the
challenges associated with learning many tasks simultaneously.

e Inductive priors help. The slight but consistent improvement imbued by
the curriculum shows that, in addition to co-occurrence (captured by the
multi-task strategy), there exist structural priors in the form of hierarchical
relationships. In other words, the information gain is minimized (i.e. P; is
least surprising) when more fine-grained phoneme types are learned after
coarse-grained ones.
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6 Conclusion

In this work, we provide empirical evidence that modeling sign language phonol-
ogy is a complex task which benefits from special attention to linguistic theory.
By learning models from high-quality, specialized data which reflect phonologi-
cal features in sign language, we show that phonemes exhibit both co-occurrence
and hierarchical relationships. Future work will compare varied curricula, ex-
plore the capacity of phonemes to describe a variety of sign constructions, and
assess any biases associated with race and gender.
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