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ABSTRACT 

Computational methodologies are increasingly addressing modeling of the whole cell at the 

molecular level. Proteins and their interactions are the key component of cellular processes. 

Techniques for modeling protein interactions, so far, have included protein docking and molecular 

simulation. The latter approaches account for the dynamics of the interactions, but are relatively 

slow, if carried out at all-atom resolution, or are significantly coarse-grained. Protein docking 

algorithms are far more efficient in sampling spatial coordinates. However, they do not account 

for the kinetics of the association (i.e., they do not involve the time coordinate). Our proof-of-

concept study bridges the two modeling approaches, developing an approach that can reach 

unprecedented simulation timescales at all-atom resolution. The global intermolecular energy 

landscape of a large system of proteins was mapped by the pairwise Fast Fourier Transform 

docking and sampled in space and time by Monte Carlo simulations. The simulation protocol was 

parametrized on existing data and validated on a number of observations from experiments and 

molecular dynamics simulations. The simulation protocol performed consistently across very 

different systems of proteins at different protein concentrations. It recapitulated data on the 

previously observed protein diffusion rates and aggregation. The speed of calculation allows 

reaching second-long trajectories of protein systems that approach the size of the cells, at atomic 

resolution. 

 

SIGNIFICANCE 

Advances in computational modeling have led to an increasing focus on larger biomolecular 

systems, up the level of a cell. Protein interactions are a central component of cellular processes. 

Techniques for modeling protein interactions have been divided between two fields: protein 

docking (predicting the static structures of protein complexes) and molecular simulation (modeling 

the dynamics of protein association, for relatively short simulation times at atomic resolution). Our 
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study combined the two approaches to reach very long simulation times. The study opens the 

way to make the model more adequate to the real cells, to explore cellular processes at atomic 

resolution to better understand molecular mechanisms of life, and to use this knowledge to 

improve our ability to treat diseases. 
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INTRODUCTION 

Rapid progress in experimental and computational techniques is redrawing the map of molecular 

and cellular biology, eliminating old boundaries between research fields, and creating new 

opportunities for breakthroughs. In structural biology, AlphaFold has achieved unprecedented 

near-experimental accuracy in predicting the structure of individual proteins (1) and, at the same 

time, a similar approach is successfully used in a different research field - protein docking - to 

predict the structure of protein complexes (2, 3). Techniques for modeling protein interactions (4), 

so far, have consisted of two major categories: (a) protein docking (5), such as the Fast Fourier 

Transform (FFT) algorithm (which in short computing times performs full systematic search 

through translational and rotational degrees of freedom) (6), that can be combined with 

approaches modeling large conformational changes (7-9); and (b) molecular simulations, such as 

Molecular Dynamics (MD) or Brownian Dynamics (BD) (10). Borrowing from the 4D space-time 

continuum terminology, protein docking has been restricted to sampling of the intermolecular 

energy landscape at atomic resolution in the 3D space component only, whereas atomic 

resolution molecular simulation protocols sample the entire 4D landscape albeit, due to the high 

computational cost, for short timescales only. Simulation approaches have been applied before, 

across the fields, to the protein docking problem, broadly for the refinement of the docking global 

search predictions (9, 11), with more advanced approaches addressing the global docking search 

itself (12-14). Our study puts forward the reverse across-the-fields  application of the docking 

techniques to the dynamics of the protein interactions. 

The great accomplishments in structure prediction based on the deep learning do not solve 

the protein docking problem. This problem, traditionally thought of as a 3D one, simply requires 

adding the missing time coordinate from the docking space-time continuum. Re-focusing docking 

from the problem of finding the unique global minimum solution, to sampling the enormous 

multitude of transient interactions (15, 16) dominating the crowded cellular environment, allows 

propagating protein interactions in time. Such propagation can take full advantage of the vast 
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amount of powerful and efficient methodologies accumulated in the protein docking field (5). Thus, 

it opens extraordinary new opportunities in structural modeling of the biomolecular mechanisms, 

allowing modeling of larger systems, at longer timescales, all based on the inherent to docking 

atomic resolution. 

In the context of the spectacular advances in experimental and computational structural 

biology, structure-based modeling of protein interactions in the living cell is becoming more central 

than ever before (17-19). Traditional simulation protocols (such as MD and BD) are either 

relatively slow, if carried out at the all-atom representation (20), or significantly coarse-grained, 

with one particle representing a protein (21). Thus, there are only a few examples of structure-

based simulations at the scale of the whole cell (18, 20, 22).  Cell modeling is important for a 

variety of reasons, including integration of data into a unified representation of knowledge about 

an organism, prediction of multi-network phenotypes, filling the gaps in our knowledge of cellular 

processes, and development of our ability to modulate them (17, 23-25). Early approaches to cell 

modeling represented proteins by hard spheres (21, 26). BD simulations of a part of the E. coli 

cytoplasm were run for 20 μs in rigid body all-atom representation (27), coarse grained in a 

subsequent study (28). All-atom MD simulations of bacterial cytoplasm were run for 100 ns (29). 

Since then, the all-atom MD simulations of cellular environment reached the μs timescales (20, 

30-32). Modeling also has been used to study the confinement effect and hydrodynamic 

properties of the crowded environment (33), the physical limits of cells (34), and packing of the 

cellular environment (35, 36). The FFT approach was used to study protein folding and binding in 

the crowded environment (37, 38) and in the free energy calculations (39). 

It has been commonly accepted that mesoscopic particles, such as proteins, in simple 

solvents can be described with Brownian diffusion. However, this description fails dramatically 

with molecules in complex biological media, such as the cellular environment (40, 41). While 

theoretical models can, in principle, explain some of these effects, their applicability requires a 

priori knowledge of the molecular organization of crowding particles in time and space (42). Thus, 
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simulation techniques, such as MD or BD, are currently the only computational way to access 

dynamical characteristics of cellular environments. MD simulations are usually restricted to very 

short time scales. BD simulations allow access to much longer times, but require careful 

mesoscopic parameterization, e.g., with diffusion constants. An alternative to these simulation 

methods is Monte Carlo (MC) protocols, which allow computing kinetic parameters, such as 

diffusion coefficients. It requires only computation of the system’s potential energy at each time 

step. MC estimate of the self-diffusion coefficient in the continuous move case is in good 

agreement with the BD simulations (43). 

Rigorous experimental tests of the predictions from cell simulations have remained elusive. 

They have focused almost exclusively on validating predictions of the diffusion coefficient of a 

protein in a crowded cellular environment by measurements of fluorescent proteins diffusion in 

cells (17, 29). These results showed that effects like transient interactions and excluded volume 

significantly decrease the rate of diffusion of proteins in cells (17). Rapidly evolving experimental 

techniques, such as cryo-electron tomography (44) and high-resolution cryo-electron microscopy 

(45), time-resolved macromolecular crystallography (46), X-ray photon correlation spectroscopy  

(47), in-cell NMR spectroscopy (48), and crosslinking mass spectrometry (49, 50) will provide new 

data on protein diffusion and dynamics of protein association in the crowded cellular environment, 

including intermediate states and assembly patterns of the protein systems, which can be used 

for experimental validation of the modeling. 

Our proof-of-concept study linked FFT-accelerated systematic docking with the MC 

simulations, allowing propagation of large protein systems in time with great computational 

efficiency. The approach was validated on experimental and computational observations from 

prior studies and is capable of reaching second-long simulations of the cellular environment at 

all-atom resolution. 
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METHODS 

Modeling paradigm 

Our approach was to dramatically speed-up the sampling of the intermolecular energy landscape 

by skipping the low-probability (high-energy) states, focusing only on the set of high-probability 

(low-energy) states corresponding to the energy minima. The "minima hopping" paradigm has 

been widely used since the early days of molecular modeling for the sampling of the energy 

landscapes of biomolecules - such as conformational analysis of biopolymers (51), rotamer 

libraries (52), and refinement of protein-protein interfaces (53), providing extraordinary savings of 

computing time by avoiding travel in low-probability areas of the landscape. Markov State Models 

(MSM), have been used to study protein folding, dynamics (54), and association (55) by 

representing the energy landscape by a set of the energy minima and the probabilities of transition 

between them. In this study we use a similar idea, namely a Markov State Monte Carlo approach 

to sampling transitions between low energy states, to perform very long trajectory simulations of 

large systems of proteins at atomic resolution. 

Molecular systems 

Simulations were performed on three different sets of proteins. To determine the volume fraction 

of the system, for each protein, the volume was calculated by the 3V server 

(http://3vee.molmovdb.org) (56). 

Set 1. Five arbitrarily selected globular proteins of average size to represent a "typical" crowded 

cellular environment (hereafter called "5 mix" set; Fig. 1A and Table S1). 

Set 2. Set 1 plus Green Fluorescent Protein ("GFP + 5 mix" set; Fig. 1B and Table S1) for 

comparison with the experimental data on GFP diffusion. 

Set 3. Three small proteins ("3 mix" set; Fig. 1C and Table S1) from Feig and co-workers (22) 

representing the non-membrane part of that study: Ubiquitin, G-protein B subunit, and Villin. 
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Generation of the initial state 

For the starting point of the simulation, the proteins were placed on a cubical grid of a pre-set 

size, with the step of the grid calculated according to the desired protein volume fraction. In this 

study, we used 500 x 500 x 500 Å3 grid (the linear dimension about half of that of the smallest cell 

- Mycoplasma genitalium) with periodic boundary conditions. Each protein had an equal share of 

copies (e.g., in the "5 mix" set of the five proteins mixture, each protein had 1/5 share of copies). 

The total number of protein copies and the step of the grid were calculated according to the pre-

set protein volume fraction V. In this study, we used a range of volume fraction values, from V = 

0.10 to close to physiological V = 0.30. Table S2 shows the total number of molecular copies 

corresponding to each volume fraction. 

The proteins were placed in a random order. They were randomly rotated and translated 

within half of the grid step interval. No collision check was applied at this stage since the collisions 

were eliminated at the start of the simulation. Supplementary Information Figure S1 shows a 

fragment of the initial state of the system before the start of the simulation. 

Simulation protocol 

An MC procedure was developed to simulate the cellular environment with proteins in rigid-body 

approximation, using an all-atom representation. The procedure by design is based on proteins 

transitioning between different protein-protein associations. Thus, our approach applies to 

crowded protein environments only, where proteins encounter each other in close proximity, and 

monomeric states (the absence of all protein-protein interactions, including transient) are 

uncommon. The energy landscape of the system is represented by our GRAMM FFT docking (6) 

scores/energies, based on the step function approximation of the Lennard-Jones potential (57). 

In this representation, the docking poses (including the multiplicity of transient encounters) 



 9 

correspond to negative energy values, and the monomeric states (i.e., the barriers between the 

minima) have energy zero. 

The position of each protein is described with the 3 x 3 rotation matrix and the translation 

vector relative to the origin of the coordinate system. Protein-protein docking poses are 

systematically pre-computed for all rotations and translations of each protein, relative to all other 

proteins in the system by GRAMM docking, unscored and unrefined, at intermediate resolution, 

previously optimized for the docking of unbound proteins (58) (grid step 3.5 Å, repulsion 9.0, and 

rotation interval 10°). For proteins A and B, both docking combinations A - B (A is the ligand, and 

B is the receptor) and B - A (B - ligand, A - receptor) are precalculated. Thus, e.g., for the "5 set" 

the number of precalculated docking outputs is 25 (5 x 5). If A is the moving molecule (ligand), its 

new putative energy is taken from the A - B docking (and vice versa). 

The docking results are stored on six-dimensional grids (three translations and three 

rotations), accessed during the MC runs. The MC move is initiated by a random selection of a 

protein ("ligand") considered for a move to proteins ("receptors") within a certain neighborhood 

(described below) from the ligand's current position. The receptor to move to is selected randomly 

among all neighborhood proteins. Our minima-hopping paradigm, based on the approximation of 

the Lennard-Jones potential (see above), assumes only the short-distance interactions between 

the immediate docking partners. The presence of the neighboring proteins not selected for this 

move is accounted for by the detailed balance condition in the Metropolis acceptance criterion 

(described below). Once the ligand and the receptor are selected, the move is chosen randomly 

among the precalculated 30,000 lowest energy docking matches for that ligand-receptor pair. 

The simulation step is completed when all proteins have attempted to move. Once the ligand 

moves, the energy (GRAMM docking score) of the new match is added to the ligand's energy and 

the energy of the old match it detaches from is subtracted. Correspondingly, its new receptor's 

energy adds that new match's energy, and the old receptor's (the one the ligand is detaching 

from) energy subtracts the energy of the detaching docking match. 
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The move is accepted or rejected based on the Metropolis acceptance criterion (detailed 

balance condition). Ligands (L) are allowed to move to the neighboring receptors (R) only 

(randomly selected among all neighboring proteins), defined as those within the distance between 

R and L geometric centers less than the sum of the R and L radii, plus 50 Å, to accommodate 

binding to the first layer of receptors in the crowded environment. Collision check is performed for 

each attempted move according to Ca - Ca minimal distance of 8 Å. The moves resulting in 

collision are rejected. Figure 2 illustrates the general principle of the move set. Periodic boundary 

conditions were introduced. Temperature is a parameter to be adjusted for an adequate 

acceptance rate. 

The detailed balance condition for the system was implemented. The probability Pij of move 

from step i to step j had to be the same as Pji from j to i. Accordingly, the Metropolis criterion was 

normalized (59) as 

𝑃!" = 𝑚𝑖𝑛&1, 𝑒𝑥𝑝,−.𝐸" − 𝐸!0/𝑇3 × 𝑁!/𝑁"6, (1) 

where Nm is the numbers of possible moves (receptors to move to; Fig. S2) from state m with 

probability to be selected 1/Nm; Em is the energy of state m; and T is the temperature (a scaling 

factor). 

As noted above, in our system, the monomeric states have energy zero, and all minima 

have negative energy values. Our model assumes no additional barriers between states i and j. 

We also assume the same curvature of the potential wells of each state. Thus, in the Kramers (or 

Arrhenius) rate equation, which for our system can be written as 

k	=	A	·	Pij,	 	 	 	 	 	 (2)	 

where k is the rate constant and Pij is the energy and temperature-based probability of move from 

step i to step j (Eq. 1), the pre-factor A is the same for all transitions.	Thus, our scheme differs 

from the Kinetic Monte Carlo, because the transition rates are computed on-the-fly at each step 

and are proportional (with the constant A) to the acceptance probability of a new state. 
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Observed parameters of the simulation (per simulation step) were: potential energy E - the 

average energy of a molecule (the sum of all molecules' energies - GRAMM docking scores - 

divided by the number of molecules); the shift (the average length of a molecule's move per 

simulation step); the MSD (the average mean square deviation of a molecule's geometric center 

after unwrapping coordinates from the periodic boundary conditions); acceptance rate 

(percentage of accepted moves), and the aggregation number Nc (the average number of proteins 

in an aggregate/oligomer formed by docked proteins). To allow off-the-grid relaxation of the 

system, the reference position for MSD calculation was set at step 100. Diffusion rates Dt were 

calculated from the slope of MSD according to the Einstein relationship Dt = MSD(t)/6t, where t is 

the lag time. 

 

RESULTS AND DISCUSSION 

Temperature 

The results of the simulation on the "5 mix" set at the physiological volume fraction (Fig. 3) and 

lower volume fractions (Fig. S3) showed that at low temperatures, the system is frozen (little to 

no movement of the proteins). At high temperatures, the system is overheated (moves accepted 

regardless of the energy). The melting curves (Fig. 3 and Fig. S3) had a clear inflection point at 

T = 100, consistently at all volume fractions, at which the system melts (breaks from the freeze) 

but is not overheated yet, and thus is likely most representative of the physiological conditions. 

The value of T corresponding to the melting phase transition reflects the docking energy 

landscape (mapped in GRAMM energy units), as follows from Eq. 1, namely the energy gap 

between a few deep minima (frozen system states) and multiple high-energy/transient states 

(melted system). 

Simulation on the "3 mix" set, which is a very different system from the "5 mix" set (the "3 

mix" proteins are much smaller than the ones in the "5 mix") yielded virtually identical melting 
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behavior, at all volume fractions, with the same optimal temperature T = 100 (Fig. S4). This 

confirms the robustness of our approach and adds evidence to the validity of our approximation. 

Accordingly, for the rest of this study, we used T = 100 as the temperature of the systems. 

Calibration 

We calibrated the time units of the simulation protocol on the available data from MD simulation 

of Villin at the physiological volume fraction in the non-membrane system (22). Here, the diffusion 

coefficient Dt value was determined to be 3.5 Å2/ns, which according to the authors is three times 

greater than in experiment. Our simulation of the Villin within the "3 mix" protein set at the 

physiological volume fraction (Fig. S5) allowed us to calibrate our system's time variable t, by 

matching the Dt values calculated as Dt = MSD/6t (see Methods) with the MD results, corrected 

by the above-mentioned factor of 3. Accordingly, one step of our simulation protocol was 

determined to be 20 ns. 

Validation and Quantitative Characterization of Protein Systems 

The simulation protocol was validated on a number of observable parameters, testing for 

consistency of the results and correspondence to experimental and modeling studies. Our 

"minima hopping" paradigm, which by design allows no intermediate states between the minima 

(the minima correspond to the protein bound to another protein), assumes close proximity of the 

minima to each other (i.e., a crowded environment). Thus, our approximation would not hold for 

dilute systems. However, it allows for an observation of quantitative characteristics at a range of 

volume fractions. In our study, this range was set from 0.1 to close to physiological 0.3. 

Melting temperature. As described above, the melting temperature for very different protein 

systems - the "5 mix" set of average size proteins and the "3 set" of much smaller proteins - at 

the full range of volume fractions, from 0.1 to 0.3, is the same. This supports the validity of our 

approximation and its consistency across different concentrations and size scales of proteins. 
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Diffusion rate in different systems. Experimental data on the diffusion of GFP in the cytoplasm of 

Escherichia coli (60) puts the GFP diffusion coefficient Dt in the 0.2 - 0.9 Å2/ns range. We ran 

simulation of the GFP with the "5 mix" protein set at a physiological volume fraction. The results 

(Fig. S6) showed the GFP diffusion rate was 0.3 Å2/ns, in excellent agreement with the 

experiment. It provides another confirmation of the approach validity and consistency across very 

disparate systems of proteins. 

Diffusion rate dependence on concentration. Simulation in the "5 mix" set at different volume 

fractions showed a pronounced slowdown of the diffusion Dt with the increase of the protein 

volume fraction V in accordance with long established evidence (20, 22). The data (Fig. 4) is an 

excellent fit to the Cohen-Turnbull expression (61) Dt = D0 exp[ -g V/(1 - V)], where D0 is the dilute 

diffusion rate, and g is a constant characterizing the slowdown of the diffusion with the increase 

of the volume fraction (D0 = 4.9 Å2/ns and g = 7.7 in our simulation). The quantitative scope of this 

slowdown according to the ratio of the diffusion rates, for our range of volume fractions, is 

available from the MD simulation for Villin as 5.4, from V = 0.1 to 0.3 (22). In our simulation of the 

"3 mix" set, that slowdown for Villin was 3.4, in good agreement with the MD data. 

Diffusion rate dependence on size. It is well established by experiment and simulation that larger 

proteins diffuse at a slower rate (22, 60). Due to the complexity and heterogeneity of the systems, 

the quantitative estimates of the size vs. diffusion correlation vary significantly. Our simulation of 

sets of small proteins vs. those of much larger proteins (see above) showed that the smaller ones 

diffuse significantly faster. Diffusion of proteins in the same "5 mix" set simulation showed clear 

size vs. diffusion rate correlation, at all volume fractions (Fig. 5). A similar trend was observed in 

the simulation of the "3 mix" set (Fig. S7). The rate of the slowdown scales exponentially with the 

size of the protein defined by the number of residues N (see Table S3 for the parameters). 
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The Einstein-Stokes equation for diffusion of spherical particles predicts that the diffusion 

rate is inversely proportional to the particle radius. Thus, the slowdown of the diffusion relative to 

the fastest diffusion rate (Dt max/Dt) would have linear dependence on the radius. Our data (Fig. 

S8) based on the protein size defined by the radius related metric R = N1/3, show that this 

dependence is close to linear at lower volume fractions. However, the slowdown rate becomes 

more pronounced for larger proteins, deviating to exponential at closer to physiological 

concentrations (60), possibly reflecting the complexity and heterogeneity of the dense protein 

solutions. Modifying the move set based on the moves acceptance probability (43), which we plan 

for the future study, may provide further insights into the diffusion dependence on protein size at 

higher volume fractions. 

Aggregation. Experimental data on aggregation of proteins (cluster formation) at close to 

physiological concentrations points to the aggregation number Nc (the average number of proteins 

in protein assemblies) for lysozyme Nc @ 5 (62), and monoclonal antibodies Nc = 4 - 6 (63). Our 

data obtained on the "5 mix" set (Fig. 6A), at the physiological volume fraction 0.3, yielded the 

aggregation number (cluster size) Nc = 3.9, in excellent agreement with these estimates. The 

results show that the aggregation number does not change much across the whole range of the 

volume fractions (Fig. 6A). This explains similarity of the energy values E per molecule at different 

volume fractions (Figs. 3 and S3), since according to our move set, this energy is determined by 

the number of the protein's interfaces with other proteins. 

The distribution of the cluster sizes (Fig. 6B) is in qualitative agreement with the results of 

the MD simulation in the Nc = 1 - 10 range (22).  On average, at each step of the simulation, a 

small percentage of proteins in our system (4% for V = 0.3 and 7% for V = 0.1) are monomers 

(proteins whose partners have moved away, and who have not acquired another partner yet, 

according to our move set). 
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Residence time. The existing estimates of the proteins' residence time (the lifetime of a protein 

pair) vary dramatically among the studies. An experimental study of lysozyme protein solution 

determined that the protein clusters (complexes) have a lifetime longer than the time required to 

diffuse over a distance of a monomer diameter (64). Such a distance would correspond to 

approximately 50 steps in our simulation protocol (1 µs). The MD simulation, however, predicted 

far shorter lifetimes, with most times < 20 ns (20). In our simulation, at volume fractions 

comparable to the ones in the above studies, protein residence time is ~ 570 ns. Thus, our results 

are in-between the above experimental and MD estimates. 

Trajectory length 

Running the "5 mix" protein set in a 500 x 500 x 500 Å3 box (the smallest cell is ~1,000 Å in linear 

dimension) for 10,000 steps (200 µs) at volume fraction 0.3 (Fig. 7) takes ~5 hours on 3.1 GHz 

Intel Core i7 processor (one core). The same calculation at volume fraction 0.1 takes ~30 min. 

That puts a 0.3 - 3 second simulation of such system in about one year 1 CPU-core timeframe. 

Given the all-atom resolution of our approach, this is an extraordinary long simulation trajectory, 

that provides an opportunity to explicitly recreate in silico the physiological mechanisms that now 

are beyond the reach of atomic-resolution simulations. 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

Spectacular achievements of the deep learning approaches to protein structure prediction open 

the opportunity for protein docking to re-focus from the unique lowest energy states to the 

enormous multitude of the transient protein interactions that dominate the crowded cellular 

environment. Taking account of the transient interactions, makes it possible to propagate in time 

the results of static protein docking, thus taking advantage of the powerful and efficient 

methodologies accumulated in the protein docking field. It opens exciting opportunities in 
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structural modeling of the protein interactions, allowing modeling of larger systems, at longer 

timescales, based on the atomic resolution which is integral to docking approaches. 

Rapid progress in experiment and modeling is leading to the merger of molecular and 

cellular biology fields. New computational methodologies increasingly address modeling of the 

whole cell at the molecular level. The whole cell modeling can provide better understanding of 

cellular mechanisms and increase our ability to modulate them. The overarching goal, however, 

is the intellectual challenge of modeling life in silico. 

Proteins and their interactions are the key component of cellular processes. Techniques for 

modeling protein interactions include protein docking and molecular simulation. The latter 

approaches account for the dynamics of the interactions. However, they are relatively slow, if 

carried out at the all-atom resolution, or significantly coarse-grained (e.g., one particle 

representing a protein). Protein docking algorithms (such as systematic docking by FFT) are far 

more efficient in sampling the spatial coordinates. However, they do not account for the kinetics 

of the association (i.e., do not involve the time coordinate). The approach put forward in this study 

bridges the two modeling techniques. The global intermolecular energy landscape of a large 

system of proteins was mapped by the pairwise FFT docking and sampled in space and time 

using MC simulations. The approach is capable of reaching unprecedented simulation timescales 

at all-atom resolution. 

The simulation protocol was parametrized on existing MD data and validated on 

observations from experiments and MD simulations. The simulation performed consistently 

across very different systems of proteins, at a broad range of concentrations. It recapitulated data 

on the previously observed protein diffusion rates and aggregation. The speed of calculation 

allows reaching second-long trajectories of protein systems that approach the size of the cells, at 

atomic resolution. 

The long time scale atomic resolution simulations will provide the tool to explore the 

dynamics of cellular processes in structural detail and address important biological questions 
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based on the molecular mechanisms involving protein association, such as cell signaling 

pathways and cellular metabolism. These simulations can provide important insights into 

fundamental biological problems of the specificity of protein interactions, facilitate studies of multi-

network phenotypes, emergent behavior in cellular protein systems, and advance our ability to 

modulate interaction networks. 

This proof-of concept study is obviously just the very beginning of an expansive task of 

incorporating other types of macromolecules, employing more sophisticated force fields that 

include electrostatics and solvent effects, more accurately accounting for energy barriers, 

optimizing the move set based on the moves acceptance probability, introducing structural 

flexibility, adding membrane environment and other cellular components, multiscale modeling, 

and improving computational efficiency. Nonetheless, our study shows that approaches grounded 

in protein docking can produce unprecedented dynamic simulations of protein systems at the 

cellular scale. 
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FIGURES 

 

 

 

Figure 1. Molecular systems used in the study. (A) Five arbitrarily selected globular proteins of 

average size to represent a typical crowded cellular environment (PDB codes 1mat, 1g81, 3chy, 

1jxb and 1cm2). (B) Green Fluorescent Protein (1ema). (C) Three small proteins: ubiquitin (1ubq), 

G-protein B subunit (1pga) and villin (1vii). Molecular images were obtained using PyMOL (65) 
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Figure 2. The simulation move set. Docking results are precalculated and stored on six-

dimensional grids, accessed during the MC runs. The move set includes a move of one protein 

(L - ligand) at a time to a putative docking match with another protein (R - receptor) in the vicinity 

of the ligand. The energies of the states are set according to the docking scores. The move is 

accepted or rejected based on the Metropolis criterion (detailed balance condition). 
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Figure 3. Simulations of the "5 mix" set at physiological volume fraction and a range of 

temperatures. The volume fraction V was set to close to physiological 0.3 value. The top panels 

show the energy E, shift, and MSD vs. simulation steps. MSD was calculated as the average for 

1mat proteins. The temperatures T = 1 - 10,000 are shown by different colors. The data on the 

plots was smoothed by a 100-steps averaging sliding window. At low temperatures, the system 

is frozen (little or no movement of the proteins). At high temperatures, the system is overheated 

(moves accepted regardless of the energy). The melting curves (the bottom panels in log scale) 

have a clear inflection point at T = 100 indicating the optimal temperature at which the system 

melts (breaks from the freeze) but is not overheated yet. 
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Figure 4. The slowdown of protein diffusion with the increase of protein volume fraction. The 

diffusion rate Dt was calculated for 1mat proteins in the "5 mix" set. The solid line is the data fit by 

the Cohen-Turnbull expression (61) Dt = D0 exp[ -g V/(1 - V)], where D0 is the dilute diffusion rate, 

and g is a constant characterizing the slowdown of the diffusion with the increase of the volume 

fraction V (D0 = 4.9 Å2/ns and g = 7.7 in our simulation). 
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Figure 5. Diffusion rates vs. size of proteins. Results obtained on the "5 mix" set for the range of 

volume fractions. The vertical axis shows the slowdown of the diffusion rate relative to the fastest 

diffusion rate. The slowdown correlates with the size of the protein at all volume fractions. 
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Figure 6. Cluster formation. (A) The aggregation number Nc (the average size of protein clusters) 

across volume fractions V. (B) Distribution of cluster sizes at different volume fractions. The total 

number of proteins in the simulation box grows with increase of the volume fraction (Table S2). 

Thus, the absolute numbers of clusters at higher volume fractions are larger than those at the 

lower volume fractions. 
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Figure 7. The simulation box. Protein volume fraction is the physiological 0.3. The image was 

obtained using PyMOL (65). 
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Figure S1. A fragment of the initial state of the system before the start of simulation. The volume 
fraction shown is 0.10. Proteins were placed on a cubical grid in random order, and randomly 
rotated and translated within half of the grid step. No collision check was applied since the 
collisions are eliminated at the start of the simulation. 
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Figure S2. A possible move set from states i and j. 
 
  



 34 

 
 
Figure S3. Simulations of the "5 mix" set at lower than physiological volume fractions and a range 
of temperatures. For each volume fraction V, the top panels show the energy E, shift, and MSD 
vs. simulation steps. MSD was calculated as the average for 1mat proteins. The temperatures T 
= 1 - 10,000 are shown by different colors. The data on the plots was smoothed by a 100-steps 
averaging sliding window. At low temperatures, the system is frozen (little or no movement of the 
proteins). At high temperatures, the system is overheated (moves accepted regardless of the 
energy). The melting curves (the bottom panels in log scale) have a clear inflection point at T = 
100 indicating the optimal temperature at which the system melts (breaks from the freeze) but is 
not overheated yet. 
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Figure S4. Simulations of the "3 mix" set at low and physiological volume fractions and a range 
of temperatures. For each volume fraction V, the top panels show the energy E, shift, and MSD 
vs. simulation steps. MSD was calculated as the average for the ubiquitin (1ubq)  proteins. The 
details of the observable parameters are the same as in Figure S3.  
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Figure S5. Simulation of Villin within the "3 mix" protein set. The simulation was run at T = 100 
and V = 0.3 (see text). MSD was calculated as the average for the Villin proteins. The details of 
the observable parameters are the same as in Figure S3. The system's time variable t was 
calibrated by matching the Dt value, calculated from the slope of the MSD, as Dt = MSD/6t, with 
the previously determined Dt values (see text). One step of our simulation protocol was thus 
determined to be 20 ns. 
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Figure S6. Simulation of the GFP with the "5 mix" protein set. The simulation was run at T = 100 
and V = 0.3 (see text). MSD was calculated as the average for the GFP proteins. The details of 
the observable parameters are the same as in Figure S3.  
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Figure S7. Diffusion vs. size of proteins. Results obtained on the "3 mix" set for volume fractions 
V = 0.1 and 0.3. The vertical axis shows the slowdown of the diffusion rate relative to the fastest 
diffusion rate. The slowdown correlates with the size of the protein at both volume fractions. 
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Figure S8. Diffusion slowdown vs. size of proteins. The vertical axis shows the slowdown of the 
diffusion rate relative to the fastest diffusion rate. The size of the proteins is estimated as the 
radius related metric R = N1/3, where N is the number of residues. The data is shown in (A) linear 
and (B) logarithmic scales. While the size dependence is close to linear at lower volume fractions, 
it becomes more pronounced, deviating to exponential at closer to physiological concentrations.  
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Table S1. Characteristics of the proteins. 

Size 
5 mix set GFP 3 mix set 

1mat1 1g81 3chy 1jxb 1cm2 1ema 1ubq 1pga 1vii 

No. of 
residues 263 163 128 152 85 210 76 56 35 

Volume, Å3 40,693 27,823 21,151 25,753 13,720 36,767 12,965 9,019 6,583 

 

1PDB codes. 
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Table S2. Characteristics of the molecular systems. 

Volume 
fraction 

Number of molecules in simulation system 

5 mix set GFP + 5 mix1 3 mix set2 

0.10 460  1,314 

0.15 725   

0.20 970   

0.25 1,210   

0.30 1,450 1,356 3,939 

 

1GFP + 5 mix set was run only at physiological volume fraction 0.30 at which the experimental 
data was obtained. 
 
23 mix set was run only at volume fractions 0.1 and 0.3 for which the molecular dynamics data 
was available. 
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Table S3. Parameters of the protein diffusion rate dependence on molecular size. 
 
 

Parameters1 
Volume fraction V 

0.1 0.2 0.3 

A 0.6815 0.4058 0.3329 

B 0.0042 0.0100 0.0149 

 
 

1The diffusion slowdown is defined as the ratio of the fastest diffusion rate Dt max to the diffusion 
rate Dt. The slowdown is approximated by A exp(BN), where N is the number of residues in the 
protein. 
 
 


