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ABSTRACT

Computational methodologies are increasingly addressing modeling of the whole cell at the
molecular level. Proteins and their interactions are the key component of cellular processes.
Techniques for modeling protein interactions, so far, have included protein docking and molecular
simulation. The latter approaches account for the dynamics of the interactions, but are relatively
slow, if carried out at all-atom resolution, or are significantly coarse-grained. Protein docking
algorithms are far more efficient in sampling spatial coordinates. However, they do not account
for the kinetics of the association (i.e., they do not involve the time coordinate). Our proof-of-
concept study bridges the two modeling approaches, developing an approach that can reach
unprecedented simulation timescales at all-atom resolution. The global intermolecular energy
landscape of a large system of proteins was mapped by the pairwise Fast Fourier Transform
docking and sampled in space and time by Monte Carlo simulations. The simulation protocol was
parametrized on existing data and validated on a number of observations from experiments and
molecular dynamics simulations. The simulation protocol performed consistently across very
different systems of proteins at different protein concentrations. It recapitulated data on the
previously observed protein diffusion rates and aggregation. The speed of calculation allows
reaching second-long trajectories of protein systems that approach the size of the cells, at atomic

resolution.

SIGNIFICANCE

Advances in computational modeling have led to an increasing focus on larger biomolecular
systems, up the level of a cell. Protein interactions are a central component of cellular processes.
Techniques for modeling protein interactions have been divided between two fields: protein
docking (predicting the static structures of protein complexes) and molecular simulation (modeling

the dynamics of protein association, for relatively short simulation times at atomic resolution). Our



study combined the two approaches to reach very long simulation times. The study opens the
way to make the model more adequate to the real cells, to explore cellular processes at atomic
resolution to better understand molecular mechanisms of life, and to use this knowledge to

improve our ability to treat diseases.



INTRODUCTION

Rapid progress in experimental and computational techniques is redrawing the map of molecular
and cellular biology, eliminating old boundaries between research fields, and creating new
opportunities for breakthroughs. In structural biology, AlphaFold has achieved unprecedented
near-experimental accuracy in predicting the structure of individual proteins (1) and, at the same
time, a similar approach is successfully used in a different research field - protein docking - to
predict the structure of protein complexes (2, 3). Techniques for modeling protein interactions (4),
so far, have consisted of two major categories: (a) protein docking (5), such as the Fast Fourier
Transform (FFT) algorithm (which in short computing times performs full systematic search
through translational and rotational degrees of freedom) (6), that can be combined with
approaches modeling large conformational changes (7-9); and (b) molecular simulations, such as
Molecular Dynamics (MD) or Brownian Dynamics (BD) (10). Borrowing from the 4D space-time
continuum terminology, protein docking has been restricted to sampling of the intermolecular
energy landscape at atomic resolution in the 3D space component only, whereas atomic
resolution molecular simulation protocols sample the entire 4D landscape albeit, due to the high
computational cost, for short timescales only. Simulation approaches have been applied before,
across the fields, to the protein docking problem, broadly for the refinement of the docking global
search predictions (9, 11), with more advanced approaches addressing the global docking search
itself (12-14). Our study puts forward the reverse across-the-fields application of the docking
techniques to the dynamics of the protein interactions.

The great accomplishments in structure prediction based on the deep learning do not solve
the protein docking problem. This problem, traditionally thought of as a 3D one, simply requires
adding the missing time coordinate from the docking space-time continuum. Re-focusing docking
from the problem of finding the unique global minimum solution, to sampling the enormous
multitude of transient interactions (15, 16) dominating the crowded cellular environment, allows

propagating protein interactions in time. Such propagation can take full advantage of the vast



amount of powerful and efficient methodologies accumulated in the protein docking field (5). Thus,
it opens extraordinary new opportunities in structural modeling of the biomolecular mechanisms,
allowing modeling of larger systems, at longer timescales, all based on the inherent to docking
atomic resolution.

In the context of the spectacular advances in experimental and computational structural
biology, structure-based modeling of protein interactions in the living cell is becoming more central
than ever before (17-19). Traditional simulation protocols (such as MD and BD) are either
relatively slow, if carried out at the all-atom representation (20), or significantly coarse-grained,
with one particle representing a protein (21). Thus, there are only a few examples of structure-
based simulations at the scale of the whole cell (18, 20, 22). Cell modeling is important for a
variety of reasons, including integration of data into a unified representation of knowledge about
an organism, prediction of multi-network phenotypes, filling the gaps in our knowledge of cellular
processes, and development of our ability to modulate them (17, 23-25). Early approaches to cell
modeling represented proteins by hard spheres (21, 26). BD simulations of a part of the E. coli
cytoplasm were run for 20 ps in rigid body all-atom representation (27), coarse grained in a
subsequent study (28). All-atom MD simulations of bacterial cytoplasm were run for 100 ns (29).
Since then, the all-atom MD simulations of cellular environment reached the ps timescales (20,
30-32). Modeling also has been used to study the confinement effect and hydrodynamic
properties of the crowded environment (33), the physical limits of cells (34), and packing of the
cellular environment (35, 36). The FFT approach was used to study protein folding and binding in
the crowded environment (37, 38) and in the free energy calculations (39).

It has been commonly accepted that mesoscopic particles, such as proteins, in simple
solvents can be described with Brownian diffusion. However, this description fails dramatically
with molecules in complex biological media, such as the cellular environment (40, 41). While
theoretical models can, in principle, explain some of these effects, their applicability requires a

priori knowledge of the molecular organization of crowding particles in time and space (42). Thus,



simulation techniques, such as MD or BD, are currently the only computational way to access
dynamical characteristics of cellular environments. MD simulations are usually restricted to very
short time scales. BD simulations allow access to much longer times, but require careful
mesoscopic parameterization, e.g., with diffusion constants. An alternative to these simulation
methods is Monte Carlo (MC) protocols, which allow computing kinetic parameters, such as
diffusion coefficients. It requires only computation of the system’s potential energy at each time
step. MC estimate of the self-diffusion coefficient in the continuous move case is in good
agreement with the BD simulations (43).

Rigorous experimental tests of the predictions from cell simulations have remained elusive.
They have focused almost exclusively on validating predictions of the diffusion coefficient of a
protein in a crowded cellular environment by measurements of fluorescent proteins diffusion in
cells (17, 29). These results showed that effects like transient interactions and excluded volume
significantly decrease the rate of diffusion of proteins in cells (17). Rapidly evolving experimental
techniques, such as cryo-electron tomography (44) and high-resolution cryo-electron microscopy
(45), time-resolved macromolecular crystallography (46), X-ray photon correlation spectroscopy
(47), in-cell NMR spectroscopy (48), and crosslinking mass spectrometry (49, 50) will provide new
data on protein diffusion and dynamics of protein association in the crowded cellular environment,
including intermediate states and assembly patterns of the protein systems, which can be used
for experimental validation of the modeling.

Our proof-of-concept study linked FFT-accelerated systematic docking with the MC
simulations, allowing propagation of large protein systems in time with great computational
efficiency. The approach was validated on experimental and computational observations from
prior studies and is capable of reaching second-long simulations of the cellular environment at

all-atom resolution.



METHODS

Modeling paradigm

Our approach was to dramatically speed-up the sampling of the intermolecular energy landscape
by skipping the low-probability (high-energy) states, focusing only on the set of high-probability
(low-energy) states corresponding to the energy minima. The "minima hopping" paradigm has
been widely used since the early days of molecular modeling for the sampling of the energy
landscapes of biomolecules - such as conformational analysis of biopolymers (51), rotamer
libraries (52), and refinement of protein-protein interfaces (53), providing extraordinary savings of
computing time by avoiding travel in low-probability areas of the landscape. Markov State Models
(MSM), have been used to study protein folding, dynamics (54), and association (55) by
representing the energy landscape by a set of the energy minima and the probabilities of transition
between them. In this study we use a similar idea, namely a Markov State Monte Carlo approach
to sampling transitions between low energy states, to perform very long trajectory simulations of

large systems of proteins at atomic resolution.

Molecular systems

Simulations were performed on three different sets of proteins. To determine the volume fraction
of the system, for each protein, the volume was calculated by the 3V server
(http://3vee.molmovdb.org) (56).

Set 1. Five arbitrarily selected globular proteins of average size to represent a "typical" crowded
cellular environment (hereafter called "5 mix" set; Fig. 1A and Table S1).

Set 2. Set 1 plus Green Fluorescent Protein ("GFP + 5 mix" set; Fig. 1B and Table S1) for
comparison with the experimental data on GFP diffusion.

Set 3. Three small proteins ("3 mix" set; Fig. 1C and Table S1) from Feig and co-workers (22)

representing the non-membrane part of that study: Ubiquitin, G-protein B subunit, and Villin.



Generation of the initial state
For the starting point of the simulation, the proteins were placed on a cubical grid of a pre-set
size, with the step of the grid calculated according to the desired protein volume fraction. In this
study, we used 500 x 500 x 500 A2 grid (the linear dimension about half of that of the smallest cell
- Mycoplasma genitalium) with periodic boundary conditions. Each protein had an equal share of
copies (e.g., in the "5 mix" set of the five proteins mixture, each protein had 1/5 share of copies).
The total number of protein copies and the step of the grid were calculated according to the pre-
set protein volume fraction V. In this study, we used a range of volume fraction values, from V =
0.10 to close to physiological V = 0.30. Table S2 shows the total number of molecular copies
corresponding to each volume fraction.

The proteins were placed in a random order. They were randomly rotated and translated
within half of the grid step interval. No collision check was applied at this stage since the collisions
were eliminated at the start of the simulation. Supplementary Information Figure S1 shows a

fragment of the initial state of the system before the start of the simulation.

Simulation protocol

An MC procedure was developed to simulate the cellular environment with proteins in rigid-body
approximation, using an all-atom representation. The procedure by design is based on proteins
transitioning between different protein-protein associations. Thus, our approach applies to
crowded protein environments only, where proteins encounter each other in close proximity, and
monomeric states (the absence of all protein-protein interactions, including transient) are
uncommon. The energy landscape of the system is represented by our GRAMM FFT docking (6)
scores/energies, based on the step function approximation of the Lennard-Jones potential (57).

In this representation, the docking poses (including the multiplicity of transient encounters)



correspond to negative energy values, and the monomeric states (i.e., the barriers between the
minima) have energy zero.

The position of each protein is described with the 3 x 3 rotation matrix and the translation
vector relative to the origin of the coordinate system. Protein-protein docking poses are
systematically pre-computed for all rotations and translations of each protein, relative to all other
proteins in the system by GRAMM docking, unscored and unrefined, at intermediate resolution,
previously optimized for the docking of unbound proteins (58) (grid step 3.5 A, repulsion 9.0, and
rotation interval 10°). For proteins A and B, both docking combinations A - B (A is the ligand, and
B is the receptor) and B - A (B - ligand, A - receptor) are precalculated. Thus, e.g., for the "5 set"
the number of precalculated docking outputs is 25 (5 x 5). If A is the moving molecule (ligand), its
new putative energy is taken from the A - B docking (and vice versa).

The docking results are stored on six-dimensional grids (three translations and three
rotations), accessed during the MC runs. The MC move is initiated by a random selection of a
protein ("ligand") considered for a move to proteins ("receptors") within a certain neighborhood
(described below) from the ligand's current position. The receptor to move to is selected randomly
among all neighborhood proteins. Our minima-hopping paradigm, based on the approximation of
the Lennard-Jones potential (see above), assumes only the short-distance interactions between
the immediate docking partners. The presence of the neighboring proteins not selected for this
move is accounted for by the detailed balance condition in the Metropolis acceptance criterion
(described below). Once the ligand and the receptor are selected, the move is chosen randomly
among the precalculated 30,000 lowest energy docking matches for that ligand-receptor pair.

The simulation step is completed when all proteins have attempted to move. Once the ligand
moves, the energy (GRAMM docking score) of the new match is added to the ligand's energy and
the energy of the old match it detaches from is subtracted. Correspondingly, its new receptor's
energy adds that new match's energy, and the old receptor's (the one the ligand is detaching

from) energy subtracts the energy of the detaching docking match.



The move is accepted or rejected based on the Metropolis acceptance criterion (detailed
balance condition). Ligands (L) are allowed to move to the neighboring receptors (R) only
(randomly selected among all neighboring proteins), defined as those within the distance between
R and L geometric centers less than the sum of the R and L radii, plus 50 A, to accommodate
binding to the first layer of receptors in the crowded environment. Collision check is performed for
each attempted move according to C* - C* minimal distance of 8 A. The moves resulting in
collision are rejected. Figure 2 illustrates the general principle of the move set. Periodic boundary
conditions were introduced. Temperature is a parameter to be adjusted for an adequate
acceptance rate.

The detailed balance condition for the system was implemented. The probability P; of move
from step i to step j had to be the same as P; from j to i. Accordingly, the Metropolis criterion was

normalized (59) as

P; = min{1,exp|—(E; — E;)/T| x N;/N;}, (1)
where N, is the numbers of possible moves (receptors to move to; Fig. S2) from state m with
probability to be selected 1/Nnm; Emis the energy of state m; and T is the temperature (a scaling
factor).
As noted above, in our system, the monomeric states have energy zero, and all minima
have negative energy values. Our model assumes no additional barriers between states i and j.
We also assume the same curvature of the potential wells of each state. Thus, in the Kramers (or

Arrhenius) rate equation, which for our system can be written as
k=A-Py (2)

where k is the rate constant and P; is the energy and temperature-based probability of move from
step i to step j (Eq. 1), the pre-factor A is the same for all transitions. Thus, our scheme differs
from the Kinetic Monte Carlo, because the transition rates are computed on-the-fly at each step

and are proportional (with the constant A) to the acceptance probability of a new state.
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Observed parameters of the simulation (per simulation step) were: potential energy E - the
average energy of a molecule (the sum of all molecules' energies - GRAMM docking scores -
divided by the number of molecules); the shift (the average length of a molecule's move per
simulation step); the MSD (the average mean square deviation of a molecule's geometric center
after unwrapping coordinates from the periodic boundary conditions); acceptance rate
(percentage of accepted moves), and the aggregation number N. (the average number of proteins
in an aggregate/oligomer formed by docked proteins). To allow off-the-grid relaxation of the
system, the reference position for MSD calculation was set at step 100. Diffusion rates D; were
calculated from the slope of MSD according to the Einstein relationship D: = MSD({)/6t, where t is

the lag time.

RESULTS AND DISCUSSION

Temperature
The results of the simulation on the "5 mix" set at the physiological volume fraction (Fig. 3) and
lower volume fractions (Fig. S3) showed that at low temperatures, the system is frozen (little to
no movement of the proteins). At high temperatures, the system is overheated (moves accepted
regardless of the energy). The melting curves (Fig. 3 and Fig. S3) had a clear inflection point at
T =100, consistently at all volume fractions, at which the system melts (breaks from the freeze)
but is not overheated yet, and thus is likely most representative of the physiological conditions.
The value of T corresponding to the melting phase transition reflects the docking energy
landscape (mapped in GRAMM energy units), as follows from Eq. 1, namely the energy gap
between a few deep minima (frozen system states) and multiple high-energy/transient states
(melted system).

Simulation on the "3 mix" set, which is a very different system from the "5 mix" set (the "3

mix" proteins are much smaller than the ones in the "5 mix") yielded virtually identical melting
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behavior, at all volume fractions, with the same optimal temperature T = 100 (Fig. S4). This
confirms the robustness of our approach and adds evidence to the validity of our approximation.

Accordingly, for the rest of this study, we used T = 100 as the temperature of the systems.

Calibration

We calibrated the time units of the simulation protocol on the available data from MD simulation
of Villin at the physiological volume fraction in the non-membrane system (22). Here, the diffusion
coefficient D; value was determined to be 3.5 A%/ns, which according to the authors is three times
greater than in experiment. Our simulation of the Villin within the "3 mix" protein set at the
physiological volume fraction (Fig. S5) allowed us to calibrate our system's time variable t, by
matching the D; values calculated as D; = MSD/6t (see Methods) with the MD results, corrected
by the above-mentioned factor of 3. Accordingly, one step of our simulation protocol was

determined to be 20 ns.

Validation and Quantitative Characterization of Protein Systems

The simulation protocol was validated on a number of observable parameters, testing for
consistency of the results and correspondence to experimental and modeling studies. Our
"minima hopping" paradigm, which by design allows no intermediate states between the minima
(the minima correspond to the protein bound to another protein), assumes close proximity of the
minima to each other (i.e., a crowded environment). Thus, our approximation would not hold for
dilute systems. However, it allows for an observation of quantitative characteristics at a range of

volume fractions. In our study, this range was set from 0.1 to close to physiological 0.3.

Melting temperature. As described above, the melting temperature for very different protein

systems - the "5 mix" set of average size proteins and the "3 set" of much smaller proteins - at
the full range of volume fractions, from 0.1 to 0.3, is the same. This supports the validity of our

approximation and its consistency across different concentrations and size scales of proteins.
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Diffusion rate in different systems. Experimental data on the diffusion of GFP in the cytoplasm of

Escherichia coli (60) puts the GFP diffusion coefficient D in the 0.2 - 0.9 A%ns range. We ran
simulation of the GFP with the "5 mix" protein set at a physiological volume fraction. The results
(Fig. S6) showed the GFP diffusion rate was 0.3 A?%ns, in excellent agreement with the
experiment. It provides another confirmation of the approach validity and consistency across very

disparate systems of proteins.

Diffusion rate dependence on concentration. Simulation in the "5 mix" set at different volume

fractions showed a pronounced slowdown of the diffusion D; with the increase of the protein
volume fraction V in accordance with long established evidence (20, 22). The data (Fig. 4) is an
excellent fit to the Cohen-Turnbull expression (61) D: = Do exp[ -y VI(1 - V)], where Dy is the dilute
diffusion rate, and yis a constant characterizing the slowdown of the diffusion with the increase
of the volume fraction (Do = 4.9 A%/ns and y= 7.7 in our simulation). The quantitative scope of this

slowdown according to the ratio of the diffusion rates, for our range of volume fractions, is
available from the MD simulation for Villin as 5.4, from V = 0.1 to 0.3 (22). In our simulation of the

"3 mix" set, that slowdown for Villin was 3.4, in good agreement with the MD data.

Diffusion rate dependence on size. It is well established by experiment and simulation that larger

proteins diffuse at a slower rate (22, 60). Due to the complexity and heterogeneity of the systems,
the quantitative estimates of the size vs. diffusion correlation vary significantly. Our simulation of
sets of small proteins vs. those of much larger proteins (see above) showed that the smaller ones
diffuse significantly faster. Diffusion of proteins in the same "5 mix" set simulation showed clear
size vs. diffusion rate correlation, at all volume fractions (Fig. 5). A similar trend was observed in
the simulation of the "3 mix" set (Fig. S7). The rate of the slowdown scales exponentially with the

size of the protein defined by the number of residues N (see Table S3 for the parameters).
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The Einstein-Stokes equation for diffusion of spherical particles predicts that the diffusion
rate is inversely proportional to the particle radius. Thus, the slowdown of the diffusion relative to
the fastest diffusion rate (D max/D¢) would have linear dependence on the radius. Our data (Fig.
S8) based on the protein size defined by the radius related metric R = N'°, show that this
dependence is close to linear at lower volume fractions. However, the slowdown rate becomes
more pronounced for larger proteins, deviating to exponential at closer to physiological
concentrations (60), possibly reflecting the complexity and heterogeneity of the dense protein
solutions. Modifying the move set based on the moves acceptance probability (43), which we plan
for the future study, may provide further insights into the diffusion dependence on protein size at

higher volume fractions.

Aggregation. Experimental data on aggregation of proteins (cluster formation) at close to
physiological concentrations points to the aggregation number N. (the average number of proteins
in protein assemblies) for lysozyme N. = 5 (62), and monoclonal antibodies N; = 4 - 6 (63). Our
data obtained on the "5 mix" set (Fig. 6A), at the physiological volume fraction 0.3, yielded the
aggregation number (cluster size) N; = 3.9, in excellent agreement with these estimates. The
results show that the aggregation number does not change much across the whole range of the
volume fractions (Fig. 6A). This explains similarity of the energy values E per molecule at different
volume fractions (Figs. 3 and S3), since according to our move set, this energy is determined by
the number of the protein's interfaces with other proteins.

The distribution of the cluster sizes (Fig. 6B) is in qualitative agreement with the results of
the MD simulation in the N: = 1 - 10 range (22). On average, at each step of the simulation, a
small percentage of proteins in our system (4% for V = 0.3 and 7% for V = 0.1) are monomers
(proteins whose partners have moved away, and who have not acquired another partner yet,

according to our move set).
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Residence time. The existing estimates of the proteins' residence time (the lifetime of a protein

pair) vary dramatically among the studies. An experimental study of lysozyme protein solution
determined that the protein clusters (complexes) have a lifetime longer than the time required to
diffuse over a distance of a monomer diameter (64). Such a distance would correspond to
approximately 50 steps in our simulation protocol (1 us). The MD simulation, however, predicted
far shorter lifetimes, with most times < 20 ns (20). In our simulation, at volume fractions
comparable to the ones in the above studies, protein residence time is ~ 570 ns. Thus, our results

are in-between the above experimental and MD estimates.

Trajectory length

Running the "5 mix" protein set in a 500 x 500 x 500 A® box (the smallest cell is ~1,000 A in linear
dimension) for 10,000 steps (200 us) at volume fraction 0.3 (Fig. 7) takes ~5 hours on 3.1 GHz
Intel Core i7 processor (one core). The same calculation at volume fraction 0.1 takes ~30 min.
That puts a 0.3 - 3 second simulation of such system in about one year 1 CPU-core timeframe.
Given the all-atom resolution of our approach, this is an extraordinary long simulation trajectory,
that provides an opportunity to explicitly recreate in silico the physiological mechanisms that now

are beyond the reach of atomic-resolution simulations.

CONCLUSIONS AND FUTURE DIRECTIONS

Spectacular achievements of the deep learning approaches to protein structure prediction open
the opportunity for protein docking to re-focus from the unique lowest energy states to the
enormous multitude of the transient protein interactions that dominate the crowded cellular
environment. Taking account of the transient interactions, makes it possible to propagate in time
the results of static protein docking, thus taking advantage of the powerful and efficient

methodologies accumulated in the protein docking field. It opens exciting opportunities in
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structural modeling of the protein interactions, allowing modeling of larger systems, at longer
timescales, based on the atomic resolution which is integral to docking approaches.

Rapid progress in experiment and modeling is leading to the merger of molecular and
cellular biology fields. New computational methodologies increasingly address modeling of the
whole cell at the molecular level. The whole cell modeling can provide better understanding of
cellular mechanisms and increase our ability to modulate them. The overarching goal, however,
is the intellectual challenge of modeling life in silico.

Proteins and their interactions are the key component of cellular processes. Techniques for
modeling protein interactions include protein docking and molecular simulation. The latter
approaches account for the dynamics of the interactions. However, they are relatively slow, if
carried out at the all-atom resolution, or significantly coarse-grained (e.g., one particle
representing a protein). Protein docking algorithms (such as systematic docking by FFT) are far
more efficient in sampling the spatial coordinates. However, they do not account for the kinetics
of the association (i.e., do not involve the time coordinate). The approach put forward in this study
bridges the two modeling techniques. The global intermolecular energy landscape of a large
system of proteins was mapped by the pairwise FFT docking and sampled in space and time
using MC simulations. The approach is capable of reaching unprecedented simulation timescales
at all-atom resolution.

The simulation protocol was parametrized on existing MD data and validated on
observations from experiments and MD simulations. The simulation performed consistently
across very different systems of proteins, at a broad range of concentrations. It recapitulated data
on the previously observed protein diffusion rates and aggregation. The speed of calculation
allows reaching second-long trajectories of protein systems that approach the size of the cells, at
atomic resolution.

The long time scale atomic resolution simulations will provide the tool to explore the

dynamics of cellular processes in structural detail and address important biological questions
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based on the molecular mechanisms involving protein association, such as cell signaling
pathways and cellular metabolism. These simulations can provide important insights into
fundamental biological problems of the specificity of protein interactions, facilitate studies of multi-
network phenotypes, emergent behavior in cellular protein systems, and advance our ability to
modulate interaction networks.

This proof-of concept study is obviously just the very beginning of an expansive task of
incorporating other types of macromolecules, employing more sophisticated force fields that
include electrostatics and solvent effects, more accurately accounting for energy barriers,
optimizing the move set based on the moves acceptance probability, introducing structural
flexibility, adding membrane environment and other cellular components, multiscale modeling,
and improving computational efficiency. Nonetheless, our study shows that approaches grounded
in protein docking can produce unprecedented dynamic simulations of protein systems at the

cellular scale.
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FIGURES

Figure 1. Molecular systems used in the study. (A) Five arbitrarily selected globular proteins of
average size to represent a typical crowded cellular environment (PDB codes 1mat, 1g81, 3chy,
1jxb and 1cm2). (B) Green Fluorescent Protein (1ema). (C) Three small proteins: ubiquitin (1ubq),

G-protein B subunit (1pga) and villin (1vii). Molecular images were obtained using PyMOL (65)
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Figure 2. The simulation move set. Docking results are precalculated and stored on six-
dimensional grids, accessed during the MC runs. The move set includes a move of one protein
(L - ligand) at a time to a putative docking match with another protein (R - receptor) in the vicinity
of the ligand. The energies of the states are set according to the docking scores. The move is

accepted or rejected based on the Metropolis criterion (detailed balance condition).
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Figure 3. Simulations of the "5 mix" set at physiological volume fraction and a range of
temperatures. The volume fraction V was set to close to physiological 0.3 value. The top panels
show the energy E, shift, and MSD vs. simulation steps. MSD was calculated as the average for
1mat proteins. The temperatures T = 1 - 10,000 are shown by different colors. The data on the
plots was smoothed by a 100-steps averaging sliding window. At low temperatures, the system
is frozen (little or no movement of the proteins). At high temperatures, the system is overheated
(moves accepted regardless of the energy). The melting curves (the bottom panels in log scale)
have a clear inflection point at T = 100 indicating the optimal temperature at which the system

melts (breaks from the freeze) but is not overheated yet.
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Figure 4. The slowdown of protein diffusion with the increase of protein volume fraction. The
diffusion rate D; was calculated for 1mat proteins in the "5 mix" set. The solid line is the data fit by
the Cohen-Turnbull expression (61) D: = Do exp[ -y VI(1 - V)], where Dy is the dilute diffusion rate,

and yis a constant characterizing the slowdown of the diffusion with the increase of the volume

fraction V (Do = 4.9 A%/ns and y = 7.7 in our simulation).
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diffusion rate. The slowdown correlates with the size of the protein at all volume fractions.
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Figure 6. Cluster formation. (A) The aggregation number N. (the average size of protein clusters)
across volume fractions V. (B) Distribution of cluster sizes at different volume fractions. The total
number of proteins in the simulation box grows with increase of the volume fraction (Table S2).
Thus, the absolute numbers of clusters at higher volume fractions are larger than those at the

lower volume fractions.
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Figure 7. The simulation box. Protein volume fraction is the physiological 0.3. The image was

obtained using PyMOL (65).
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Figure S1. A fragment of the initial state of the system before the start of simulation. The volume
fraction shown is 0.10. Proteins were placed on a cubical grid in random order, and randomly
rotated and translated within half of the grid step. No collision check was applied since the
collisions are eliminated at the start of the simulation.
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Figure S2. A possible move set from statesi andj.
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Figure S3. Simulations of the "5 mix" set at lower than physiological volume fractions and a range
of temperatures. For each volume fraction V, the top panels show the energy E, shift, and MSD
vs. simulation steps. MSD was calculated as the average for 1mat proteins. The temperatures T
=1 - 10,000 are shown by different colors. The data on the plots was smoothed by a 100-steps
averaging sliding window. At low temperatures, the system is frozen (little or no movement of the
proteins). At high temperatures, the system is overheated (moves accepted regardless of the
energy). The melting curves (the bottom panels in log scale) have a clear inflection point at T =
100 indicating the optimal temperature at which the system melts (breaks from the freeze) but is
not overheated yet.
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Figure S4. Simulations of the "3 mix" set at low and physiological volume fractions and a range
of temperatures. For each volume fraction V, the top panels show the energy E, shift, and MSD
vs. simulation steps. MSD was calculated as the average for the ubiquitin (1ubq) proteins. The
details of the observable parameters are the same as in Figure S3.
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Figure S5. Simulation of Villin within the "3 mix" protein set. The simulation was run at T = 100
and V = 0.3 (see text). MSD was calculated as the average for the Villin proteins. The details of
the observable parameters are the same as in Figure S3. The system's time variable t was
calibrated by matching the D; value, calculated from the slope of the MSD, as D; = MSD/6t¢, with
the previously determined D; values (see text). One step of our simulation protocol was thus
determined to be 20 ns.
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Figure S6. Simulation of the GFP with the "5 mix" protein set. The simulation was run at T = 100
and V = 0.3 (see text). MSD was calculated as the average for the GFP proteins. The details of
the observable parameters are the same as in Figure S3.
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Figure S7. Diffusion vs. size of proteins. Results obtained on the "3 mix" set for volume fractions
V= 0.1 and 0.3. The vertical axis shows the slowdown of the diffusion rate relative to the fastest
diffusion rate. The slowdown correlates with the size of the protein at both volume fractions.

38



16
14 B
12
10
z 10 =
~ S~
>3 b3
© 8 ©
= €
8 a
6
4
2
0 1
4 5 6 7 4 7
Protein Size Protein Size

Figure S8. Diffusion slowdown vs. size of proteins. The vertical axis shows the slowdown of the
diffusion rate relative to the fastest diffusion rate. The size of the proteins is estimated as the
radius related metric R = N', where N is the number of residues. The data is shown in (A) linear
and (B) logarithmic scales. While the size dependence is close to linear at lower volume fractions,
it becomes more pronounced, deviating to exponential at closer to physiological concentrations.
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Table S1. Characteristics of the proteins.

5 mix set GFP 3 mix set
Size
1mat’  1g81 3chy 1jxb 1cm2 | 1ema | 1ubq 1pga 1vii
No. of 263 163 128 152 85 210 76 56 35
residues
Volume, A® | 40,693 27,823 21,151 25,753 13,720 | 36,767 | 12,965 9,019 6,583
'PDB codes.
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Table S2. Characteristics of the molecular systems.

Number of molecules in simulation system
Volume
fraction
5 mix set GFP + 5 mix' 3 mix set?
0.10 460 1,314
0.15 725
0.20 970
0.25 1,210
0.30 1,450 1,356 3,939

'GFP + 5 mix set was run only at physiological volume fraction 0.30 at which the experimental

data was obtained.

23 mix set was run only at volume fractions 0.1 and 0.3 for which the molecular dynamics data

was available.
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Table S3. Parameters of the protein diffusion rate dependence on molecular size.

Volume fraction V'

Parameters’
0.1 0.2 0.3
A 0.6815 0.4058 0.3329
B 0.0042 0.0100 0.0149

'The diffusion slowdown is defined as the ratio of the fastest diffusion rate D; max to the diffusion
rate D;. The slowdown is approximated by 4 exp(BN), where N is the number of residues in the

protein.
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