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ABSTRACT ARTICLE HISTORY
Human mobility analytics using artificial intelligence (Al) has Received 26 October 2022
gained significant attention with advancements in computational Accepted 25 September 2023

power and the availability of high-resolution spatial data.
However, the application of deep learning in social sciences and
human geography remains limited, primarily due to concerns
with model explainability. In this stu_dy, we emp_loy an explainable short-term memory (LSTM);
GeoAl approach called geographically localized interpretable trajectory prediction;
model-agnostic explanation (GLIME) to explore human mobility residential mobility
patterns over large spatial and temporal extents. Specifically, we

develop a two-layered long short-term memory (LSTM) model

capable of predicting individual-level residential mobility patterns

across the United States from 2012 to 2019. We leverage GLIME

to provide geographical perspectives and interpret deep neural

networks at the state level. The results reveal that GLIME enables

spatially explicit interpretations of local impacts attributed to dif-

ferent variables. Our findings underscore the significance of con-

sidering path dependency in residential mobility dynamics. While

the prediction of complex human spatial decision-making proc-

esses still presents challenges, this research demonstrates the util-

ity of deep neural networks and explainable GeoAl to support

human dynamics understanding. It sets the stage for further finely

tuned investigations in the future, promising deep insights into

intricate mobility phenomena.

KEYWORDS
Explainable GeoAl; model-
agnostic explanation; long

1. Introduction

Residential mobility, the relocation of individuals and households from one dwelling
to another, offers valuable insights into the intricate interplay of socioeconomic
dynamics, environmental exposures, and urban development. The research area has
attracted sustained attention across diverse social science disciplines, including

CONTACT Sohyun Park @ spark230@gmu.edu
© 2023 Informa UK Limited, trading as Taylor & Francis Group


http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2023.2264921&domain=pdf&date_stamp=2023-11-24
http://orcid.org/0000-0001-8883-8817
http://orcid.org/0000-0002-1231-5662
http://orcid.org/0000-0003-1859-3441
http://orcid.org/0000-0002-7275-769X
http://orcid.org/0009-0004-4567-2238
http://orcid.org/0000-0003-4173-7773

2598 (%) C.JINET AL

geography, sociology, and economics, as evidenced by seminal works of Rossi (1955),
Schelling (1969), and others. Residential mobility not only represents potential changes
in socioeconomic opportunities (Winstanley et al. 2002, Jelleyman and Spencer 2008)
and long-term exposure to environmental variables (Brokamp et al. 2016) at an indi-
vidual level but also touches on urban typologies (South and Crowder 1997b, Torrens
and Nara 2007, Cooke 2010, Sharkey 2012) and local housing/labor markets (Van der
Vlist et al. 2002) at the collective level.

With recent advancements in geospatial understanding, GeoAl has contributed
remarkable progress in prediction accuracy across various domains, particularly health
(VoPham et al. 2018, Kamel Boulos et al. 2019), land use changes (Gebru et al. 2017,
Helber et al. 2019), and urban dynamics (Grekousis 2019, Yun et al. 2020). Deep neural
networks have been applied to analyze a huge amount of individual-level human
mobility data to predict trajectories (Li et al. 2021, Hagenauer and Helbich 2022). The
models have proven accurate in predicting individual trajectories at small spatiotem-
poral scales by considering prior movements and social interactions (Xu et al. 2018, Ip
et al. 2021, Yin et al. 2023).

However, despite considerable strides in predicting short-term individual trajecto-
ries, there remains a scarcity of research utilizing deep learning techniques to forecast
long-term residential mobility. The prevailing approach has treated residential mobility
from a macroscopic perspective where individual moves are aggregated into origin
and destination (OD) flows (Robinson and Dilkina 2018, Xu et al. 2019, Golenvaux
et al. 2020). This limitation stems from a dearth of large-scale individual-level datasets
on residential mobility and the inherent lack of explainability in GeoAl models (Li
2020, Xing and Sieber 2023).

Prior investigations into individual residential mobility have relied on datasets with
either limited spatial coverage or small sample sizes, which constrained the develop-
ment and validation of deep learning models. For instance, empirical studies in the
United States often drew upon city-level survey data (Clark and Ledwith 2006,
Sampson and Sharkey 2008), providing insights within confined geographic bounda-
ries. While the Panel Study of Income Dynamics (PSID) has tracked household residen-
tial trajectories for over 50years, its small sample size (fewer than 10,000
households) cannot be taken as representative of the entire US population (Johnson
et al. 2018).

The complexity of deep neural networks has enabled non-linear combinations of
input features beyond the reach of static equations but has hindered their ability to
offer comprehensible explanations of model outcomes. The difficulty in explanation
from deep neural networks has limited their applicability to social sciences and human
geographic studies, which strive to elucidate underlying mechanisms through the
examination of socioeconomic relationships (Jin 2022) rather than solely focusing on
predictive tasks. To address this “black-box” issue, explainable artificial intelligence
(XAl) has emerged as a prominent area of research (Samek et al. 2017).

In the domain of geography, researchers have proposed various methodologies to
shed light on variable contributions and model internals (Cheng et al. 2021, Yudistira
et al. 2021, Hagenauer and Helbich 2022). Model-agnostic and local explanations, such
as local interpretable model-agnostic explanations (LIME) have attracted increasing
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attention due to their potential to enhance the understanding of input-output rela-
tionships by perturbing models (van der Velden et al. 2022, Xing and Sieber 2023).
LIME, introduced by Ribeiro et al. (2016), has proven effective in explaining latent
inference mechanisms within various studies by approximating local simple models
using a range of data that brings a huge, complex model to an interpretable level
(Parmar et al. 2021, Shams Amiri et al. 2021, Viana et al. 2021). Nevertheless, few
efforts have been made to elucidate neural network models for geospatial phenomena
while considering their geographic context (Jin 2022, Xing and Sieber 2023), despite
the critical role of geographic context in understanding spatial variations and their
underlying mechanisms.

To fill these research gaps, this study proposed the application of a long short-term
memory (LSTM) model to predict individual residential mobility patterns in the con-
tiguous United States between 2012 and 2019. It leveraged a unique dataset, the
DataAxle Historical Consumer Database, which captured long-term migration behavior
of a substantial sample of US households. From this data set, the research identified
four categories of residential mobility—no move, intra-county move, intra-state move,
inter-state  move—and predicted the sequence of residential movements over
seven years.

The study also employed the geographically localized interpretable model-agnostic
explanation (GLIME) to evaluate the model’s local fidelity and to enhance explainabil-
ity. The model-agnostic approach, coupled with geographically localized explanations,
enabled the identification of the contributing factors that influenced mobility decisions
in different regions. By venturing into the realm of deep neural network models for
individual residential mobility data, the study enriches the literature by providing
more accurate predictions than traditional regression models over large spatial and
temporal extents. Moreover, the research enhances the interpretability of deep learn-
ing models, providing insights to the socioeconomic factors that underlie residential
mobility at the individual level.

The rest of this article is structured as follows. Section 2 provides background on
this research regarding terms of residential mobility in the United States. Section 3
describes our model with evaluation strategies and introduces GLIME. We also explain
how we constructed and validated the dataset. Sections 4 and 5 present the findings
and concluding remarks, respectively.

2. Background

Al-based research has focused on macroscopic predictions of human migration using
data on inter-county migration (Robinson and Dilkina 2018), international migration
(Golenvaux et al. 2020), and job mobility (Xu et al. 2019). Employing artificial neural
networks (ANNs), these models incorporated input variables representing socioeco-
nomic and environmental characteristics of neighborhoods, such as land use, popula-
tion density, and economic indicators like median income and Gross Domestic
Product, either at the origin or destination. By capturing nonlinear and irregular migra-
tion distributions, these ANNs outperform traditional spatial interaction models, such
as gravity and radiation models (Alis et al. 2021). Macroscopic approaches may suffer
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from an ecological fallacy, limiting the translation of findings into practical policy and
commercial strategies. For example, relying solely on flows between geographically
proximate or similar neighborhoods provides only limited insights into how the select-
ive residential mobility of individuals contributes to segregation within a city.
Considering that an individual’s relocation decision is influenced by neighborhood fac-
tors and their own residential history (Schelling 1969, Stovel and Bolan 2004, van Ham
and Feijten 2008, Clark and Coulter 2015), investigating residential mobility at multiple
levels and encompassing individual-level dynamics becomes essential.

The scant attention provided to individual-level residential mobility dynamics poses
a sharp contrast to the significant amount of work on mobility prediction models
(Tarasyev et al. 2018, Haddad and Sanders 2020, Nurhaida et al. 2020, Ip et al. 2021,
Zhu et al. 2022). Despite their relevance to mobility in general, studies on
small spatial and temporal scales do not directly address the nuances of residential
mobility.

The extensive body of literature on residential mobility offers valuable insights for
formulating model specifications to predict individual residential mobility. Classical
theories posit that people move or desire to move to adapt to changing life course
needs and preferences, including demographic and employment-related events (Rossi
1955, Geist and McManus 2008, Coulter and Scott 2015). For example, young adults
often migrate to take advantage of educational and job opportunities elsewhere
(Bailey 1993), while parents of young children may relocate in search of more spacious
homes (Lee et al. 1994). The residential mobility of older adults is influenced by factors
such as amenities, a lower cost of living, and their own care needs (Meyer and
Cromley 1989, Sergeant and Ekerdt 2008).

The literature has increasingly recognized the significance of neighborhood fac-
tors in residential relocations (van Ham and Feijten 2008, Rabe and Taylor 2010,
Sharkey and Sampson 2010, Clark and Coulter 2015), though empirical studies
have yielded mixed results. Some studies report that distressed neighborhoods,
inhabited by low-income residents, rented housing, and ethnic minorities, tend to
push residents to move away, with those possessing sufficient socioeconomic cap-
acity opting for better neighborhoods (South and Crowder 1997a, Bailey and
Livingston 2008, Rabe and Taylor 2010). In contrast, other studies found that
neighborhood characteristics had only a marginal influence on residents’ relocation
decisions (Clark and Huang 2003, Kearns and Parkes 2003, Clark and Ledwith
2006), suggesting that people’s dissatisfaction with their neighborhood might not
cause them to move out.

While previous research has often distinguished local from long-distance moves
(e.g., across state boundaries), it is increasingly acknowledged that such categoriza-
tions may be oversimplifications, as residential moves are rarely driven by a single
identifiable motive (Clark 2005, Coulter and Scott 2015). Changes in family life and
personal values call for a comprehensive examination of diverse residential trajectories
influenced by complex factors (Coulter et al. 2016). For instance, long-distance moves
may be influenced by individual characteristics interacting with statewide policies and
macroeconomic dynamics (Stoll 2013, Johnson et al. 2016, Li et al. 2020). Moreover,
past mobility experiences and path dependence significantly influence future mobility



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE ‘ 2601

decisions by shaping attachment to a place and willingness to pay for relocation
(Bailey 1993, Hassler et al. 2005, Orvin and Fatmi 2022).

Methodologically, in the residential mobility literature, earlier empirical studies have
predominantly employed traditional logistic and linear regression models. These stud-
ies demonstrated the statistical significance of specific variables or groups, rather than
achieving high prediction accuracy, resulting in relatively poor model fits. For
instance, in Crowder and South’s study (2008) that estimated the distance of residen-
tial mobility using an Ordinary Least Squares (OLS) model, the adjusted R? value was
0.024. Similarly, in the work of Robinson and Dilkina (2018) that estimated
migration volume between counties using a radiation model, the adjusted R? value
was 0.26.

3. Methodology
3.1. Recurrent neural networks and long short-term memory

Due to their looping structure, recurrent neural networks (RNNs) are well suited to
handle sequential data such as speech processing and non-Markovian control
(Hochreiter and Schmidhuber 1997). The network creates hidden neurons representing
the current state (h;) with inputs and previous states (h;_1) through an activation func-
tion (Eqg. 1) to encompass the impact of prior results on the current status. The struc-
ture enables the identification of the time-variant effects of given covariates, thus fully
recurrent neural networks generate a hidden layer that recurrently influences the sta-
tus of the next steps (Rumelhart et al. 1986). With this recurrent structure, a network is
able to model temporally autocorrelated events, such as cumulative changes and
sequential movements, known as trajectories (C. Wang et al. 2022).

ht == f(hr_‘I,Xr) (1)

LSTM models, special RNN architectures, are suggested to limit the risks of vanish-
ing gradient problems in training long-term sequence data (Nair and Hinton 2010).
LSTM models enable better learning of long-term dependencies by including more
complicated structures of weights in hidden layers that control the way information is
stored, forgotten, and utilized throughout training procedures. In an LSTM cell of a
hidden layer, four gates determine forgettable information (forget gate, f; in Eq. 2a),
acceptable information (input gate, iy in Eq. 2b), output information (output gate, o;
in Eq. 2c), and current cell status (cell state, (~_'r in Egq. 2d) (Hochreiter and
Schmidhuber 1997).

fr = cWielhe_1, x¢] + br) (2a)
i = oWi[he_1, x| + b;) (2b)
or = oWy [he_1, %] + bo) (29
C; = tanhWc¢he_q,x] + bc) (2d)

W and b with each notation indicate weights and bias. Therefore, the number of train-
able weights is 4(nm + n?), where n indicates the number of input features, and m is
the number of output features. The status in an LSTM cell is a function of
forgettable information about previous status, acceptable information of current input
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(Eg. 3a), and the output of the hidden layer defined as Eq. (1) is determined by the
value of the output gate and the activated current state (Eq. 3b).

Cr = fr*Cr_1 +ir*c~[ (3a)
hy = oy * tanh(C;) (3b)

As sequential movements are affected not only by recent status but also by histor-
ical contexts, LSTM is appropriate for predicting long-term changes. In terms of resi-
dential mobility, people’s decision to relocate relies both on the previous year’s status
and on cumulative changes in socioeconomic factors such as income or changes in
neighborhood environments. To predict residential mobility for the next year, we built
a general two-layered LSTM. Two layers were selected to balance the model’s perform-
ance and explainability as we tested a new interpreter for the deep learning model.
We trained the model with the input features from 2012 to 2018 and with the
observed movement types spanning from 2013 to 2019 as output. For the experi-
ments, we trained the model with 70% data and tested it with 30%.

For the evaluation of the model, we selected the model accuracy on the test set,
prediction precision, recall rate, F1 score, and balanced accuracy score. After calculat-
ing global accuracy, we calculated the local accuracy of the LSTM model through
resampling datasets at the state level. Local accuracy compares the goodness-of-fit in
local samples to that of the global model. Areas with low accuracy imply that the
LSTM model does not fit well in that area with the same input datasets. The loss func-
tion measures the distance between the predicted and desired output during training.
We chose the categorical cross-entropy loss function for the four types of residential
movement as our loss function (Eq. 4).

Loss = — ) y,logy; (4)

4
i=1

We used the F1 score and balanced accuracy to evaluate the performance of the
models (Yang and Liu 1999, Brodersen et al. 2010) (Eqgs. 5a, 5b). This approach is well
suited to classification problems with imbalanced data. The precision value of a class
(k) is the proportion of true positive classification (TP) to the total number of true
records classified as class k (Eq. 5c), while the recall value is the proportion of TP to
the total number of predictions classified as class k (Eq. 5d). The precision value ranges
from 0 to 1, with higher values indicating greater prediction accuracy.

precisiony - recallg

F1k =2 — (5a)
precisiony + recall,
Zf:1recallk
Balanced Accuracy, = — (5b)
recisiony = TP (5¢)
P KT TPt PPy
TP,
recally = —— & (5d)

TPy + FNg
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3.2. Geographically localized interpretable model-agnostic explanation

We inspected the input features that drove the output of the model by adopting a
model agnostic XAl approach. We conducted a sensitivity analysis to explain the rela-
tionship between input variables and output classification through the geographically
localized interpretable model-agnostic explanation (GLIME), which is a spatially explicit
algorithm of the local interpretable model-agnostic explanation (LIME).

The LIME algorithm explains the predictions of a machine learning model, f(x), by
approximating it with a local model, g(x), at a data point x and local samples around
x, following the equation (Ribeiro et al. 2016):

E(x) = argmin L(f, g, m) + Q(g) (7)

where § is the LIME explanation, £ is the fidelity function, m, is the proximity measure
defining locally around a data point x, and Q is the complexity measure (Patil et al.
2019). To ensure interpretability and local fidelity, it is necessary to minimize
L(f, g, m):

L(f, gm) = Y m(2)(f(z) -g(2))? (8)

z,27€Z

where z is a perturbed data point in original data space, and m,(z) is local weights on
data points z around data point x. In other words, LIME is the value of a loss that min-
imizes differences between local and global models at a single point with a certain
number of data points neighboring the point to be explained. Figure 1a shows the
algorithm of LIME (original image from Ribeiro et al. 2016). Consider the curve in
Figure 1 to be a complex function that categorizes two objects: crosses (+) and circles
(o). With the non-linear classifier, it is difficult to explain the relationship between
inputs and outputs. However, by focusing on a single observation, a simpler function
like a linear regression (i.e., a dashed line in Figure 1a) may be an approximate fit to
the complex model. With a reasonable number of neighboring samples, the simple
model enables explanations for the relationships between inputs and outputs at the
point (highlighted by larger size of crosses and circles in Figure 1a).

(a) (b)
1
g/
o ° o b

Figure 1. Conceptual diagrams for two model-agnostic explanation algorithms: (a) LIME (Ribeiro
et al. 2016) and (b) GLIME.
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Despite its widespread application, LIME has limitations when used for geospatial
analysis. The use of conceptual mathematical coordinate systems for neighboring
points hinders spatial interpretability. Additionally, arbitrary neighborhood ranges in
variable space and sensitivity to the number of neighborhoods can lead to overfitting
issues. Furthermore, the local samples chosen lack meaningful spatial implications as
they are merely results of model optimization.

To overcome the limitations of LIME in geospatial analysis, we introduce the geo-
graphically localized interpretable model-agnostic explanations (GLIME) method.
Unlike LIME, GLIME defines local neighborhoods based on geographic units, incorpo-
rating human understanding rather than relying solely on model optimization
(Figure 1b). By fixing a specific geographic range (e.g., green hexagons in Figure 1b),
GLIME is calculated as follows (Jin 2022):

L (f, 9)= (f(2) —g(@))’ (9)

As the neighborhood is given, m,(z) is set such as the census unit or geographic
unit. In other words, the fidelity function, £, is localized at m,(z) scale. As depicted in
Figure 1b, instead of approximating a simpler local model, GLIME advocates for seg-
menting the complex model based on geographic units, particularly when the model
deals with geospatial events or phenomena affected by characteristics like spatial
dependence and heterogeneity. By doing so, GLIME significantly enhances the spatial
interpretability of neural network models. It evaluates local fidelities through compari-
sons to the global model, using well-known geographic units such as states and coun-
ties as reference points. This approach sheds light on the intricate spatial relationships
between input features and model predictions.

We conducted a comprehensive evaluation of the locally varied impacts of each
input variable group by perturbing the model. Intentionally perturbing the inputs
serves as a post-hoc model-agnostic approach to test the sensitivity of the model. For
instance, if the classification accuracy significantly decreases when a particular input
feature decreases, compared to other features, it indicates that said feature holds
greater importance for the model. Applying this indirect approach enabled us to
understand the relative impacts of input variables. Building upon GLIME's ability to
provide a geographic local framework for interpreting complex models, we extended
the sensitivity test to GLIME. By doing so, we identified the different local impacts of
input features in a spatially explicit manner, enhancing our understanding of how the
model responds to changes in specific input variables.

4. Data

The data used in this study contained trajectories of 1,126,678 households in the US
from 2012 to 2019. The LSTM model was trained to predict the mobility type based
on a multivariate time series dataset of 18 factors grouped into five categories. The
dataset comprised various attributes, including move history, categorized into four
types (represented as dummy variables), six neighborhood factors, a state-related fac-
tor accounting for 50 states (represented as a dummy variable), 10 individual factors,
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and one housing status-related factor with six types (also represented as dummy varia-
bles). All of these attributes were recorded on an annual basis (Table 1).

The residential mobility trajectories of households and their associated socioeco-
nomic variables were provided by the Data Axle Historical Consumer Database. The
database contains the socioeconomic status and residential address of households,
tracked by a unique identification number (household ID) with variables captured
annually for 155 million households in the US (Data Axle 2021). While the data is con-
structed for business use (e.g., advertising campaigns), academic researchers have
used it to examine residential mobility in relation to neighborhood change (Greenlee
2019), neighborhood type (Pan et al. 2020), location preferences (Wang et al. 2021),
and land cover change (Park et al. 2022). It covers a large sample of individual house-
holds (i.e., 15.4% of undercoverage rate, Kennel and Li 2009) with address information
at a finer scale and is much less vulnerable to selection bias.

In this study, we compiled a longitudinal dataset comprising 60,773,935 households
continuously present from 2012 to 2019. Among these households, 10,971,745 experi-
enced at least one relocation during the 7-year period. The dataset exhibited class
imbalance, with a significant proportion of households maintaining the same address
over time, while long-distance moves were more infrequent than short-distance moves
(Cadwallader 1992, Kaplan and Schulhofer-wohl 2017).

To rectify the class imbalance, which can adversely affect deep learning models, we
employed random undersampling (Estabrooks and Japkowicz 2001, Mohammed et al.
2020). This technique randomly eliminates instances from the majority class.
Specifically, we sampled 281,688 households based on the number that moved from
one state to another between 2018 and 2019. Subsequently, we randomly selected an
equal number of instances for the other three classes. To ensure data integrity, house-
holds with missing values were removed from the dataset. As a result, we obtained a
balanced dataset containing 1,126,678 households and 7,886,746 observations
(1,126,678 households x 7 years) to be used in our model.

From the Data Axle Database, we selected ten factors that capture individual
household characteristics and reflect changes in their life course. These factors were
primary family (yes: 1, no: 0), age of household head, length of residence, number of
children, household wealth, household income, housing tenure, home value, marriage
status, and purchasing power. To account for move history, we introduced a dummy
variable representing movement types in the previous year: no move, intra-county
move, inter-county move, and inter-state move. Additionally, housing type was incor-
porated as a dummy variable, encompassing different kinds of physical structures:
Multiple Family Dwelling Unit (MFDU), Single Family Dwelling Unit (SFDU), nursing
home, and retirement home. While some variables were estimated rather than directly
reported, they were found to be strongly correlated with the American Community
Survey (ACS) data at the census tract level (Park et al. 2022).

We retrieved neighborhood factors from the American Community Survey (ACS) 5-
year estimates for each year, ranging from ACS 2008-2012 to ACS 2014-2018, based
on the address information before households made the decision to move. The
selected neighborhood factors were population density, the proportion of the white
population, the proportion of the African American population, the proportion of
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families with children, median household income, and median rent. These factors
allowed us to examine the influence of socioeconomic characteristics at the census
tract level on household relocations. To account for variations in policy environments
across different states such as housing provision and tax policies, we incorporated
dummy variables representing each state. All continuous variables were standardized
using z-scores to ensure a consistent scale for comparison.

5. Results and discussions
5.1. Model specification

We built the LSTM model with two hidden layers of LSTM and a fully connected layer
to predict four types of residential movement for each year. The LSTM model has 75
input variables' over seven years from 2012 to 2018 (i.e., input size = # of samples *
7 * 75) and output classes over seven years from 2013 to 2019 (i.e., output size = # of
sample * 7 * 4). In the two LSTM layers, we set the hidden units to 64 to facilitate cal-
culation efficiency, so the number of parameters for each hidden layer is 35,584
(4*(75%64 + 647)) and 32,768 (4*(64*64 + 64%)). We also set the dropout regularization
with a dropout rate of 20% between LSTM layers to reduce overfitting and to ensure
a better generalization. At the final layer, a fully connected layer, the sigmoid function
was used as an activation function that synthesizes all information passing through
LSTM layers. With a learning rate of 0.01, the model was trained on 70% of the data
(788,674 observations) until the accuracy was no longer improved using an early-stop
method that reduced computational burdens. Although there was a risk that the
model would be stuck in local optima, the method enabled feasible computation. The
model produced the optimum outputs in 28 iterations (i.e., 28 epochs). Training time
was approximately 200 seconds per epoch with our chosen CPU (Intel Core i5-1135G7)
and 16GB RAM, rather than GPU. An RNN model and multinomial logistic regression
model were developed for comparison.

5.2. Model evaluation

From the model-loss graph of the LSTM model, the train losses were reduced at the
first few epochs but increased slightly at the end of epochs (Figure 2a). As we chose
the early stopping method to avoid model inefficiency, the model stopped its iteration
when the loss keeps increasing. The validation losses were more stable than train
losses over epochs, which implies that the model is successfully handling overfitting.
The model-accuracy graph (Figure 2b) shows that both the training and validation
accuracies were close to 80% at the end of training while being stable over epochs.
The stability observed stemmed largely from the nature of classification problems. For
instance, when a model predicted movement types with probabilities of 0.6 and 0.9,
the calculation of loss values differed for these two predictions. However, accuracy,
being a binary measure of correctness, treated both cases equally. In both scenarios,
where the probabilities exceeded 0.5, they were classified as accurate predictions.

The non-normalized confusion matrix in Tables 2-4 gives the actual number of cor-
rectly and incorrectly classified cases for the four types of residential mobility. The
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Figure 2. The performance comparison of the LSTM and RNN on the test and validation sets: loss
(left) and accuracy (right).

Table 2. Confusion matrix of the LSTM model.

True | Pred No move Intra-county Inter-county Inter-state Total
No move 6,180,989 10,525 12,775 10,972 6,215,261
Intra-county 508,855 79,878 76,907 43,307 708,947
Inter-county 290,504 39,629 125,413 44,534 500,080
Inter-state 257,675 34,187 83,228 87,368 462,458
Total 7,238,023 164,219 298,323 186,181 7,886,746
Precision 0.85 0.49 0.42 0.47 0.56
Recall 0.99 0.1 0.25 0.19 0.39

F1 Score 0.92 0.18 0.31 0.27 0.42
Accuracy 0.821
Balanced Accuracy 0.387
The grey shade values indicate the number of correctly classified objects by the model.

Table 3. Confusion matrix of the RNN model.

True | Pred No move Intra-county Inter-county Inter-state Total
No move 6,007,451 30,124 7622 170,064 6,215,261
Intra-county 562,022 14,655 2095 130,175 708,947
Inter-county 350,258 12,125 1720 135,977 500,080
Inter-state 306,039 11,220 1524 143,675 462,458
Total 7,225,770 68,124 12,961 579,891 7,886,746
Precision 0.83 0.22 0.13 0.25 0.36
Recall 0.97 0.02 0.00 0.31 0.33

F1 Score 0.89 0.04 0.01 0.28 0.31
Accuracy 0.782
Balanced Accuracy 0.325

The grey shade values indicate the number of correctly classified objects by the model.

LSTM model, employed to classify residential mobility patterns, demonstrated superior
predictive performance with an accuracy of 82.1%, outperforming the RNN model with
78.2% accuracy. In contrast, the multinomial logistic regression model exhibited the
lowest balanced accuracy of 25%, as it overwhelmingly classified 99.9% of all residents
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Table 4. Confusion matrix of the multinomial logistic regression model.

True | Pred No move Intra-county Inter-county Inter-state Total
No move 6,213,984 906 259 112 6,215,261
Intra-county 708,161 706 65 15 708,947
Inter-county 499,757 177 142 4 500,080
Inter-state 462,207 193 19 39 462,458
Total 7,884,109 1982 485 170 7,886,746
Precision 1.00 0.00 0.00 0.00 0.25
Recall 0.79 0.34 0.31 0.21 0.41

F1 Score 0.88 0.00 0.00 0.00 0.22
Accuracy 0.788
Balanced Accuracy 0.250

The grey shade values indicate the number of correctly classified objects by the model.

(a) (b)

Balanced Accuracy Diff. to Global
0.39-0.40 -0.05 - 0.00
0.41-041 3 0,01 - 0.01

042 - 0.42 0,02 - 0.03

043 -0.42 0,04 - 0.05

043 044 0,06 - 0.08

Figure 3. (a) Local balanced accuracy by state and (b) local differences to global balanced accuracy
by state.

as “no move” type in Table 4. The balanced accuracy value was comparable to a ran-
dom guess.

The RNN model’s lower accuracy arose from its inability to predict intra- and inter-
county moves and overestimation of “no move” and inter-state moves. The LSTM
model showed improved performance with precision for all classes being two times
higher than those of the RNN except for the “no move” type. Although the precisions
for the three types of moves (other than “no move”) did not reach the desired levels,
the LSTM model excelled in distinguishing moves based on distance. For instance, a
significant proportion of inter-state moves were misclassified as inter-county moves,
and false negative cases of intra-county moves were more commonly misclassified as
inter-county rather than inter-state moves.

5.3. Interpretation of LSTM model through GLIME

With the aid of GLIME, which uses a geographical framework, we interpreted the
LSTM model predicting residential mobility at the state level. This interpretation
became accessible when the overarching complex model was partitioned based on
geographical neighborhoods, such as states. Figure 3a presents the spatial distribu-
tions of local balanced accuracy at the state level. The Mideast and Northeast regions
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of the United States exhibited higher accuracy than the West and Southwest regions.
The areas characterized by higher accuracy suggested that residential movement pat-
terns can be more reliably predicted using the provided input datasets which have
been constructed based on insights from the residential mobility literature, emphasiz-
ing the influence of neighborhood and individual factors.

However, certain regions in the Western United States displayed lower accuracy, indi-
cating that these areas were less predictable using the given datasets. A similar spatial
pattern of contrast between the western and (mid)eastern regions was also evident

(b)

History

0.0167 - 0.0237
0 0.0238 - 0.0293
[ 0.0294 - 0.0326
. 0.0327 - 0.0412
. 0.0413 - 0.0492

(©) (d)
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0.0001 - 0.0005
0.0006 - 0.0010
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Individual
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0.0004 - 0.0009 0.0002 - 0.0004
1 0.0010 - 0.0015 1 0.0005 - 0.0011
10,0016 - 0.0024 10,0012 - 0.0022
10,0025 - 0.0039 10,0023 - 0.0035

Figure 4. Local impacts of variable groups at state level: (a) relative importance of variable groups
in each state; (b) history; (c) neighborhood; (d) state; (e) individual; and (f) house type.
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in the work of Robinson and Dilkina (2018), where they estimated county-to-county resi-
dential mobility using an ANN model. This consistent spatial pattern suggests that our
model encountered challenges in comprehensively capturing the intricate dynamics of
residential mobility within those geographic areas. For instance, the presence of a grow-
ing Hispanic and Latino American population in the South and West could lead to a var-
iety of decisions concerning their new places of residence (Parisi et al. 2019). Certain
states exhibiting positive net-migration trends, such as North Carolina, Oregon, Utah,
Texas, and Florida, where population growth results from inter-state moves and inter-
national migration, displayed noteworthy deviations in balanced accuracy from the
national average (U.S. Census Bureau 2023) (Figure 3b).

Figure 4 presents the relative importance of input variable groups and their impact
on the model at state level. Through the perturbation of model input variables by
group, we quantified the importance of these variables. The history of moves emerged
as a major determinant with considerable influence on the model’s predictive out-
comes. The observation is depicted by the dominant red bars in Figure 4a, which rep-
resent the highest importance scores across all states. This finding underscores the
significance of path dependence as a robust driver of move decisions (Hassler et al.
2005). Most people without prior experience of relocating tend to favor staying in
their current residence. While previous studies employing conventional statistical mod-
els indicated that the length of residence, serving as a proxy for path dependency,
influenced future behaviors (Bailey 1993, Hassler et al. 2005, Orvin and Fatmi 2022),
our LSTM model, empowered by longitudinal data, revealed that past residential
mobility had a significant impact on future mobility patterns through the learning of
temporal dependencies.

The neighborhood variable group and state factor exhibited more pronounced
effects than the individual- and house-type factors. The outcome diverged from previ-
ous research suggesting that residents’ dissatisfaction with their neighborhood was
less likely to prompt actual moves (Clark and Huang 2003, Clark and Ledwith 2006).
Several reasons underlie this discrepancy, warranting further investigation. First, our
findings align with the proposition that dissatisfaction with neighborhoods is a moti-
vating factor for residents to seek alternatives (Kearns and Parkes 2003, Bailey and
Livingston 2008). Factors related to neighborhood quality, amenities, or social dynam-
ics might prompt them to consider moving to more desirable locations. Second, the
influence of spatial factors becomes more prominent when individual move history is
considered separately from individual-specific factors. Additionally, geographical con-
siderations such as proximity to workplaces, availability of essential services, or access
to recreational facilities, are likewise pivotal in shaping decisions on residential move-
ments, alongside neighborhood characteristics that our model considered. Third, the
relatively short (7-year) duration of the longitudinal data might limit its ability to
reflect individuals’ complete life cycles and long-term mobility motivations.
Consequently, individual motivations for relocation within the timeframe could poten-
tially be underestimated, as factors influencing more extended periods of residence
are not fully captured.

The results indicate that local effects of variables are geographically heterogeneous.
An examination of North Carolina and Delaware revealed that the effects of
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neighborhood and state variables appeared more pronounced in these states than in
others. This suggests that North Carolina and Delaware residents are attuned to the
characteristics of their immediate neighborhood environment and the statewide poli-
cies that govern residential mobility decisions. These distinctive patterns of influence
may be linked to the varying policy frameworks across states. Diverse state-level poli-
cies, encompassing matters such as statewide tax incentives, housing affordability pro-
grams, or urban development initiatives, potentially contribute to the divergent
impact of state factors on residential mobility determinations. State-level policies and
programs can significantly shape the attractiveness of specific neighborhoods or
regions (Stoll 2013, Bell Policy Center 2018, Li et al. 2020), consequently influencing
the relocation choices of potential movers and amplifying the spatial heterogeneity
observed in the patterns of influence.

In contrast, the states of Utah, North Dakota, and Washington demonstrated stron-
ger impacts of individual factors, including individual characteristics and housing
types. This distinction suggests that residents in these states are more influenced by
their personal attributes and housing preferences when making decisions about resi-
dential moves. These states may have populations with unique preferences and prior-
ities when it comes to housing and lifestyle choices. For instance, Utah has a younger
population and a significant number of families, which may influence the importance
of individual and housing-related factors in their relocation decisions.

6. Conclusions

Our research has showcased the effectiveness of deep neural models and the signifi-
cance of the GLIME approach in understanding complex geospatial processes, which
play a crucial role in decision-making within our society. By applying the GLIME
approach to a two-layered LSTM model, we explored the applicability of explainable
deep learning techniques to human mobility over larger spatial and temporal extents,
focusing on individual-level residential mobility patterns across the United States from
2012 to 2019. The LSTM model outperformed the traditional multinomial logistic
regression model and the RNN model regarding balanced accuracy for the imbalanced
dataset. Moreover, GLIME enabled spatially explicit interpretations and evaluated local
impacts that generates new hypotheses for future study. Our findings highlighted the
importance of considering path dependency of households in understanding residen-
tial mobility.

The inherent complexity of human geographic phenomena and social sciences
manifests in the unpredictable and irregular patterns characterizing socioeconomic
behaviors. While deep neural networks have demonstrated remarkable proficiency in
image classification tasks, where patterns are discernible and straightforward, they
encounter difficulties in accurately predicting human decision-making processes. This
is primarily attributed to the significant uncertainties and outliers prevalent in such
data, reflecting the intricate and multifaceted nature of human choices.

Our research represents a pioneering effort in applying deep learning techniques to
the analysis of long-term and large-scale human mobility, particularly in the context of
residential movements. Such mobility entails a multitude of unplanned and
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unexpected events, adding to the challenges of modeling. Despite the inherent com-
plexities and uncertainties, there remains room to enhance the performance of the
model. With continued refinement of and advances in deep learning methodologies,
the potential for improved accuracy and insights into human mobility patterns
remains promising.

Moreover, this research introduced a novel approach to geographically interpret-
able deep learning models. With GLIME, our study allowed for a comprehensive under-
standing of complex models at specific geographic units, which proved invaluable in
the context of geospatial applications of deep learning. However, the significance of
the modifiable areal unit problem (MAUP) becomes evident when addressing geo-
graphically explainable Al. In our research, movement types were classified based on
administrative units, which may not align with practical areal units for certain cases.
For instance, the New York metropolitan area spans three states (New York, New
Jersey, and Connecticut), and residents may not consider relocation within the region
as an inter-state move. Consequently, this study may not fully elucidate the complex-
ities underlying such moves.

In response to the concern, embracing geographical contexts such as metropolitan
statistical areas or urban-suburban-rural distinctions has the potential to bolster pre-
diction accuracy and facilitate more comprehensive investigations. Accounting for
these spatial delineations will enable a finer-grained analysis of residential mobility
patterns, leading to improved model performance and a more nuanced understanding
of geospatial dynamics.

While the Data Axle dataset used in this study offers valuable information about
individual households, it does have certain limitations. Most variables are estimated
and provided as interval values, which can hinder the accurate assessment of their
individual impacts on the model. There exists a potential for interdependencies
between variables, leading to reduced variance in individual characteristics and poten-
tially underestimating their influence on the model’s predictions. Additionally, the
absence of racial information is a significant limitation, as race can be an important
determinant of residential patterns in the United States. Access to more detailed data,
including racial information, would allow for deeper investigations into the effects of
individual characteristics on mobility.

By employing geographically explainable deep neural networks, our research has not
only improved the prediction of residential mobility but has also shed light on
the complex mechanisms underlying this phenomenon. GLIME has proven valuable
in enhancing our understanding of the geographical aspects of human mobility.
The research contributes to the broader literature on residential mobility by showcasing
the potential of combining multiple variables nonlinearly and by advocating for deeper
explorations of path dependency and spatial heterogeneities. As we continue to refine
our models and access more comprehensive datasets, we can further advance our know-
ledge of human mobility and its implications for decision-making.

Note

1. We have 75 variables in total as categorical variables including state and housing type are
input as dummy variables into the models.
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