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a b s t r a c t

When sample sizes are small, it becomes challenging for an asymptotic test requir-
ing diverging sample sizes to maintain an accurate Type I error rate. In this paper,
we consider one-sample, two-sample and ANOVA tests for mean vectors when data
are high-dimensional but sample sizes are very small. We establish asymptotic t-
distributions of the proposed U-statistics, which only require data dimensionality to
diverge but sample sizes to be fixed and no less than 3. The proposed tests maintain
accurate Type I error rates for a wide range of sample sizes and data dimensionality.
Moreover, the tests are nonparametric and can be applied to data which are normally
distributed or heavy-tailed. Simulation studies confirm the theoretical results for the
tests. We also apply the proposed tests to an fMRI dataset to demonstrate the practical
implementation of the methods.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Testing for population means is a classical problem in statistics, which has a wide range of applications in clinical
trails, case-control and financial studies. In the univariate case, the Student’s t-test can be applied to test whether a
population mean equals a claimed value when the sample mean follows a normal distribution, sample variance follows
a �2 distribution and the sample mean and sample variance are independent. In the traditional multivariate setting,
Hotelling’s T 2 test [9] can be applied to test a population mean vector when dimension p is fixed and dimension p and
sample size n satisfy the relation p  n � 1. The Student’s t-test and Hotelling’s T 2 test are exact tests for finite sample
sizes if data are normally distributed. If data are non-normally distributed, they are asymptotic tests as relatively large
sample sizes are required to approximate sample means by a normal distribution.

With the development of high-throughput technologies, high-dimensional data characterized by the ‘‘large p and small
n’’ situation have been widely observed in functional magnetic resonance imaging (fMRI), microarray, next-generation
sequencing (RNA-Seq), and genome-wide association (GWA) studies. When p > n � 1, the Hotelling’s T 2 test becomes
infeasible due to singularity of the sample covariance matrix. Even when p is close to n � 1, the Hotelling’s T 2 test loses
its power as revealed by [2]. Many approaches have been proposed to modify the Hotelling’s T 2 test for high-dimensional
data. Some were constructed to discard or stabilize the inverse of sample covariance matrix. Examples include [2,5–
7,11,16,20]. Some were proposed to reduce the noise contributed by non-signal bearing components for sparse signal
detection. Examples include the maximum type test proposed in [3] and the thresholding tests in [4,22]. Some were
developed to utilize advantages of both maximum type and sum-of-squares type tests to achieve better power against
both sparse and dense alternatives. Examples include [8,21]. Others were proposed to project the classical Hotelling’s T 2

statistic to a low-dimensional space. Examples include [13,17,19]. Except the aforementioned methods, there are many
other contributions on testing high-dimensional means. We refer the readers to [10] for a recent review.
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Most proposed tests for high-dimensional means are asymptotic procedures, in the sense that they require both
dimensionality and sample sizes to diverge to infinity even though dimensionality can be much larger than sample sizes.
In many biological and financial studies, high dimensional data with very small sample sizes often occur due to ethical
and cost reasons. In hypothesis testing, a primary requirement for a proposed test is to maintain its accurate type I error
rate. As demonstrated by the simulation studies in Section 4, when sample sizes are very small and the null hypothesis
is true, tests established by requiring diverging sample sizes tend to reject the null hypothesis with a probability higher
or lower than a preselected nominal significance level. They thus cannot control type I error rate accurately.

To propose a robust test which maintains type I error rate accurately especially for small sample sizes, we estab-
lish the asymptotic normality of a one-sample U-statistic standardized by its standard deviation only requiring data
dimensionality to diverge to infinity but sample sizes to be fixed. In practice the standard deviation of the U-statistic
is unknown and cannot be consistently estimated when sample size is small. By analogy with the univariate Student’s
t-statistic, we propose an estimator for the variance of the U-statistic, which is not needed to be consistent but shown
to be asymptotically �2 distributed and independent to the U-statistic under the null hypothesis. The result enables us
to establish the asymptotic t-distribution of the U-statistic standardized by the sample standard deviation. The test can
be applied to high-dimensional data with any finite sample size no less than 3, and maintains accurate Type I error rate.
Moreover, it is nonparametric and can be applied to normally distributed or heavy-tailed data. We further extend the
test to the two-sample and ANOVA testing problems. It is worth mentioning that the current work is not the only one to
propose a finite sample t-test for high-dimensional testing problems. In [18], the authors developed a modified distance
correlation statistic for the problem of testing the independence of high-dimensional random vectors. As the dimension
diverges, the test statistic was shown to converge to a t-distribution for any sample size greater than 3 and an approximate
standard normal when the sample size is greater than 9.

The rest of the paper is organized as follows. Section 2 introduces the one-sample U-statistic and establishes its
asymptotic t-distribution. Extension to the two-sample and ANOVA problems is provided in Section 3. Simulation and case
studies are presented in Sections 4 and 5. Section 6 concludes the paper with discussion. Technical proofs of theorems
are relegated to the Appendix.

2. One-sample test

Let {X1, . . . , Xn} be independent and identically distributed p-dimensional random vectors with mean µ = E Xi and
covariance matrix ⌃ = Var Xi. The hypotheses we are interested in are

H0 : µ = 0 versus H1 : µ 6= 0. (1)

The hypotheses are general. If one wants to test whether µ = µ0 with a non-zero vector µ0, we can convert the problem
into the above hypotheses after subtracting each Xi by µ0.

To test the hypotheses, we consider the following U-statistic

Un =
2

n(n � 1)

nX

i<j

X>

i Xj. (2)

A two-sample version of the U-statistic was considered in [6], where the authors established its asymptotic normality
by requiring both dimensionality and sample size to diverge to infinity. In this paper we establish the asymptotic t-
distribution of the standardized Un via Theorems 1–3 which only require dimensionality to diverge. The technical details
can be seen in the Appendix. We outline some main ideas of the proofs as follows. To start with, we notice that the
hypotheses (1) are equivalent to

H⇤

0 : µ>µ = 0 versus H⇤

1 : µ>µ > 0,

which allows us to obtain an equivalent univariate sample {X>

i Xj, i < j}ni,j=1 of size n(n � 1)/2 from the original sample
{Xi, 1  i  n}. Each univariate random variable X>

i Xj has the expectation µ>µ, which is zero under H⇤

0 but positive
under H⇤

1 . The U-statistic is therefore the sample mean of {X>

i Xj, i < j}ni,j=1, or an unbiased estimator of the population
mean µ>µ. In Theorem 1, we derive an asymptotic normal distribution of Un by applying the martingale central limit
theorem where we only require dimensionality to diverge but sample size n to be finite. Most importantly, we show
that the random variables {X>

i Xj, i < j}ni,j=1 are asymptotically mutually independent and normally distributed under
the null hypothesis. In Theorem 2, we further establish an asymptotic �2 distribution for the scaled sample variance
of the asymptotically mutually independent and normally distributed random sample {X>

i Xj, i < j}ni,j=1 under the null
hypothesis. By analogy with the Student’s t-statistic, we also show that the sample variance is independent of Un which
is the sample mean of the random sample {X>

i Xj, i < j}ni,j=1. Combining the results in Theorems 1 and 2, we finally establish
an asymptotic t-distribution of Un standardized by its sample standard deviation under the null hypothesis in Theorem 3.

To make the proposed test nonparametric, we follow the idea in [2,6] to model the sequence of p-dimensional random
vectors {Xi, 1  i  n} by a linear high-dimensional time series

Xi = µ + � Zi, i 2 {1, . . . , n}, (3)

2
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where µ is the p-dimensional population mean, � is a p⇥qmatrix with q � p satisfying � � > = ⌃ , and Zi = (zi1, . . . , ziq)>
so that {zi`}

q
`=1 are mutually independent and satisfy E zi` = 0, Var zi` = 1 and E z4i` = 3 + ⌘ for some finite constant ⌘.

As discussed in [6], the model (3) includes normally distributed zi` if ⌘ = 0 and other distributions such as heavy-tailed
or skewed zi` if ⌘ 6= 0. It is worth mentioning that different from [6], we assume all the components of Zi are mutually
independent rather than pseudo-independent. As shown in the proof of Theorem 1, such an assumption allows us to apply
the martingale central limit theorem to establish the asymptotic normal distribution of the U-statistic, when dimension
p diverges to infinity but sample size n is finite. To implement the martingale central limit theorem, we assume the
following condition for the covariance matrix ⌃ .

(C1). As p ! 1, tr(⌃4) = o{tr2(⌃2)}.

The condition is automatically satisfied if all the eigenvalues of ⌃ are bounded, but it also allows partial eigenvalues
to be unbounded (see [6] for detailed discussion). We establish the asymptotic normality of the U-statistic as follows.

Theorem 1. Assume the model (3) and the condition (C1). For any finite sample size n � 2,

Un � µ>µ

�n

d
�! N(0, 1), p ! 1,

where

� 2
n =

2
n(n � 1)

tr(⌃2) +
4
n
µ>⌃µ.

Especially, under H0 of (1),
Un

�n,0

d
�! N(0, 1), p ! 1,

where

� 2
n,0 =

2
n(n � 1)

tr(⌃2).

While dropping the requirement that n ! 1 sheds some light on proposing a test workable for small sample sizes,
it becomes technically challenging to estimate the unknown tr(⌃2) in order to implement a testing procedure. If we
allow the sample size n to diverge to infinity, tr(⌃2) can be estimated consistently by an unbiased estimator in [6] or a
U-statistic in [12]. Slutsky’s theorem then shows that the asymptotic normality of Un with the estimated �n,0 still holds
under the null hypothesis. However, we consider the sample size to be fixed and a consistent estimator of tr(⌃2) is thus
not achievable.

It turns out that constructing a consistent estimator is not necessary. Note that Un is the sample mean of the sample
{X>

i Xj, i < j}ni,j=1. From the proof of Theorem 1, we show that the random variables {X>

i Xj, i < j}ni,j=1 are asymptotically
mutually independent and each component has the variance tr(⌃2) under the null hypothesis. Based on {X>

i Xj, i < j}ni,j=1,
we therefore estimate the unknown variance tr(⌃2) by the sample variance

\tr(⌃2) =
1

n(n � 1)/2 � 1

nX

i<j

⇢
X>

i Xj �
2

n(n � 1)

nX

i<j

X>

i Xj

�2

. (4)

By analogy with the Student’s t-statistic, the scaled \tr(⌃2) is �2 distributed and asymptotically independent of the sample
mean Un.

Theorem 2. Let the degrees of freedom k = n(n � 1)/2 � 1. Assume the model (3) and the condition (C1). For any finite
sample size n � 3 and under H0 of (1),

k \tr(⌃2)
tr(⌃2)

d
�! �2(k), p ! 1.

After replacing tr(⌃2) by the estimator \tr(⌃2), we estimate � 2
n,0 by

�̂ 2
n,0 =

2
n(n � 1)

\tr(⌃2).

We establish the asymptotic t-distribution of Un/�̂n,0 as follows.

Theorem 3. Assume the same conditions in Theorem 2. For any finite sample size n � 3 and under H0 of (1), as p ! 1,
Un

�̂n,0

d
�! t, k = n(n � 1)/2 � 1 degrees of freedom.

3
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Fig. 1. Histogram of Un/�̂n,0 plus the fitted density curve (blue dashed line) versus the theoretical t-curve (red solid line). In the upper row, the
sample size n = 3, and data dimension p 2 {30, 100, 1000}. The theoretical t-curve has the degrees of freedom equal to 2; In the lower row, the
sample size n = 6, and data dimension p 2 {30, 100, 1000}. The theoretical t-curve has the degrees of freedom equal to 14.

To put the above result into a visual inspection, we simulate data from N(0, ⌃) where ⌃ = (�ij) = (0.6|i�j|). Fig. 1
demonstrates the histogram of Un/�̂n,0 plus the corresponding fitted density curve (blue dashed line) versus the theoretical
t-curve (red solid line), based on 1000 iterations with different sample sizes n and data dimensionality p. In the upper
row, the sample size n is fixed to be 3 and the data dimension is increased from 30 to 1000. According to Theorem 3,
the theoretical t-curve has 2 degrees of freedom. Since the asymptotic t-distribution is established as p ! 1, the fitted
density curve (blue dashed line) is skewed when p = 30 but closer to the t-curve (red solid line) when p becomes larger.
Especially when p = 1000, the two density curves are nearly identical. Similar results can be observed in the lower row
where the theoretical t-curve has 14 degrees of freedom. The visual inspection demonstrates the beneficial impact of the
increasing dimension on the null distribution of the proposed test statistic.

Based on Theorem 3, the proposed test with a nominal ↵ significance level rejects H0 if Un/�̂n,0 � t↵(k), where t↵(k)
is the upper ↵ quantile of t-distribution with k = n(n � 1)/2 � 1 degrees of freedom. Moreover, the power function of
the test when µ = µ0 6= 0 is

B1(kµ0k
2) = Pr

⇢
Un

�̂n,0
� t↵(k)|µ = µ0

�
= 1 � Pr

⇢
Un � kµ0k

2

�n
<

�̂n,0

�n
t↵(k) �

kµ0k
2

�n
|µ = µ0

�

= 1 � �

⇢
�̂n,0

�n
t↵(k) �

p
n(n � 1)kµ0k

2
q
2tr(⌃2) + 4(n � 1)µ>

0 ⌃µ0

�
, p ! 1,

where kµ0k
2 = µ>

0 µ0, �n is given in Theorem 1 and �(·) is the cumulative distribution function of the standard normal.
To see how the power B1(kµ0k

2) evolves with the sum-of-squares signal strength kµ0k
2, we first derive

E �̂ 2
n,0 =

2
n(n � 1)

tr(⌃2) +
4

n(n + 1)
µ>

0 ⌃µ0.

4
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Then from the Markov inequality, we obtain �̂n,0/�n = Op(1) as p ! 1. This indicates that the power B1(kµ0k
2) is largely

determined by the signal-to-noise ratio

SNR1 =

p
n(n � 1)kµ0k

2
q
2tr(⌃2) + 4(n � 1)µ>

0 ⌃µ0

.

A direct observation shows that B1(kµ0k
2) ! 1 if SNR1 ! 1 as p ! 1. However, the test may lose its power when

µ0 is sparse. To appreciate this, we consider ⌃ = Ip which is the p ⇥ p identity matrix, and let p1�� be the number of
non-zero components in µ0 and � be the value of each non-zero component. Clearly � controls the sparsity of signals in
the sense that a larger value of � leads to smaller numbers of nonzero signals. Based on the setup, we observe that when
the sample size n and signal strength � are fixed, SNR1 = O(p1/2�� ) = o(1) if � > 1/2 representing the case of sparser
signals. Even if �2 grows with p at the rate that o(p��1/2), we still obtain SNR1 = O(�2p1/2�� ) = o(1). On the other hand,
when the sample size n and signal strength � are fixed, SNR1 = O(p1/2�� ) ! 1 if � < 1/2 representing the case of
denser signals.

3. Two-sample and ANOVA tests

Let i 2 {1, 2} and {Xi1, . . . , Xini} be two independent and identically distributed p-dimensional random samples with
mean µi and covariance matrix ⌃i. The two-sample testing problem considers the hypotheses

H0 : µ1 = µ2 versus H1 : µ1 6= µ2. (5)

If the two samples have the same sample size n, we can directly extend the one-sample statistic (2) to the two-sample
case by replacing Xi with X1i � X2i, i 2 {1, . . . , n}. However, two sample sizes are different in many cases. Without loss of
generality, we assume n1  n2 and consider

Yi = X1i �

r
n1

n2
X2i +

1
p
n1n2

n1X

j=1

X2j �
1
n2

n2X

j=1

X2j, i 2 {1, . . . , n1}. (6)

This procedure for the difference of two samples was first suggested by [15] in the univariate case to construct the
confidence intervals by using the t-distribution. It was extended by [1] in the multivariate case to obtain the generalized
Hotelling’s T 2 statistic. We adopt the same procedure to propose the two-sample statistic

Vn1n2 =
2

n1(n1 � 1)

n1X

i<j

Y>

i Yj, (7)

which is similar to (2) but we replace Xi with Yi.
Note that Ȳ = n�1

1
Pn1

i=1 Yi = n�1
1

Pn1
i=1 X1i � n�1

2
Pn2

i=1 X2i. We can write

Vn1n2 =
n1

n1 � 1
Ȳ>Ȳ �

1
n1(n1 � 1)

n1X

i=1

Y>

i Yi,

where the first term on the right hand side uses the difference of the two sample means n�1
1

Pn1
i=1 X1i�n�1

2
Pn2

i=1 X2i, which
is the most relevant to µ1 � µ2. We subtract the second term from the first term so that E Vn1n2 = (µ1 � µ2)>(µ1 � µ2).

Similar to (3), we model the two independent and identically distributed p-dimensional random samples by the linear
high-dimensional time series

Xij = µi + �i Zij, i 2 {1, 2}, j 2 {1, . . . , ni}, (8)

where �i is a p ⇥ qi matrix with qi � p satisfying �i�
>

i = ⌃i, and Zij = (zij1, . . . , zijqi )
> so that {zij`}

qi
`=1 are mutually

independent and satisfy E zij` = 0, Var zij` = 1 and E z4ij` = 3 + ⌘ for some finite constant ⌘.
By analogy with (C1), we consider the following condition for the two covariance matrices ⌃1 and ⌃2.

(C2). As p ! 1, tr(⌃i⌃j⌃k⌃`) = o[tr2{(⌃1 + ⌃2)2}], i, j, k, ` 2 {1, 2}.

Under H0 of (5), the variance of Vn1,n2 is

� 2
n1n2,0 =

2
n1(n1 � 1)

� 2
Y>Y ,0, � 2

Y>Y ,0 = tr(⌃2
1 ) +

n2
1

n2
2
tr(⌃2

2 ) +
2n1

n2
tr(⌃1⌃2)

is the variance of Y>

i Yj for i < j. Similar to the proof of Theorem 1, {Y>

i Yj, i < j}n1i,j=1 can be shown to be a sequence of
n1(n1 � 1)/2 independent random variables under H0 of (5). We therefore estimate � 2

Y>Y ,0 by

�̂ 2
Y>Y ,0 =

1
n1(n1 � 1)/2 � 1

n1X

i<j

⇢
Y>

i Yj �
2

n1(n1 � 1)

n1X

i<j

Y>

i Yj

�2

, (9)

5
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which is similar to (4) but we replace n and Xi by n1 and Yi, respectively.
As a result, the unbiased estimator of � 2

n1n2,0 is

�̂ 2
n1n2,0 =

2
n1(n1 � 1)

�̂ 2
Y>Y ,0. (10)

The following theorem establishes the asymptotic t-distribution of Vn1n2/�̂n1n2,0, which is a direct extension of
Theorem 3.

Theorem 4. Assume the model (8) and the condition (C2). For any finite sample sizes n2 � n1 � 3 and under H0 of (5), as
p ! 1,

Vn1n2

�̂n1n2,0

d
�! t, k2 = n1(n1 � 1)/2 � 1 degrees of freedom.

Based on Theorem 4, the proposed test with a nominal ↵ level of significance rejects H0 if Vn1n2/�̂n1n2,0 � t↵(k2), where
t↵(k2) is the upper ↵ quantile of t-distribution with k2 = n1(n1 � 1)/2 � 1 degrees of freedom. Moreover, as p ! 1, the
power of the two-sample test is

B2(kµ1 � µ2k
2) = 1 � �

⇢
�̂n1n2,0

�n1n2
t↵(k2) � SNR2

�
,

where the signal-to-noise ratio

SNR2 =

p
n1(n1 � 1)kµ1 � µ2k

2
q
2tr{(⌃1 +

n1
n2

⌃2)2} + 4(n1 � 1)(µ1 � µ2)>(⌃1 +
n1
n2

⌃2)(µ1 � µ2)
. (11)

Similar to the one-sample test, the power of the two-sample test is largely determined by SNR2, the analysis of which
demonstrates that the proposed test is powerful in detecting dense and strong differences between µ1 and µ2, but
encounters a power loss when differences between µ1 and µ2 are sparse and weak.

When there are more than two populations, the ANOVA problem is to test whether µ1 = · · · = µm, where µ` and
⌃` are the population mean and covariance matrix of the `th population for ` 2 {1, . . . ,m}. It is equivalent to testing
whether kµ2 � µ1k

2 + kµ3 � µ1k
2 + · · · + kµm � µ1k

2 = 0, where kµ` � µ1k
2 can be estimated by the two-sample

statistic (7) based on the `th and first samples.
Let ` 2 {1, . . . ,m} and {X`1, . . . , X`n`

} be an independent and identically distributed random sample from the `th
population. Without loss of generality, we assume the sample sizes n1  n2  · · ·  nm. The proposed multiple-sample
statistic is

Wm =
2

n1(n1 � 1)

n1X

i<j

mX

`=2

Y>

`i Y`j,

where Y`i is the difference of `th and first samples given by (6) with X2i replaced by X`i. Similar to the two-sample statistic
(7), Wm can be shown to be unbiased to kµ2 � µ1k

2 + kµ3 � µ1k
2 + · · · + kµm � µ1k

2. Moreover, similar to (9) and (10),
the variance of Wm under the null can be estimated by

�̂ 2
m,0 =

2
n2
1(n1 � 1)2/2 � n1(n1 � 1)

n1X

i<j

⇢ mX

`=2

Y>

`i Y`j �
2

n1(n1 � 1)

n1X

i<j

mX

`=2

Y>

`i Y`j

�2

.

To establish the asymptotic t-distribution of Wm/�̂m,0, we can directly extend the model (8) to

X`j = µ` + �`Z`j, ` 2 {1, . . . ,m}, j 2 {1, . . . , n`}, (12)

where �` is a p ⇥ q` matrix with q` � p satisfying �`�
>

` = ⌃`, and Z`j = (z`j1, . . . , z`jq`
)> so that {z`jh}

q`
h=1 are mutually

independent and satisfy E z`jh = 0, Var z`jh = 1 and E z4`jh = 3 + ⌘ for some finite constant ⌘.
We also directly modify (C2) to the following condition.

(C3). As p ! 1, tr(⌃i⌃j⌃k⌃`) = o[tr2{(
Pm

h=1 ⌃h)2}], i, j, k, ` 2 {1, . . . ,m}.
The asymptotic t-distribution of Wm/�̂m,0 can be established as follows.

Theorem 5. Assume the model (12) and the condition (C3). For any finite sample sizes nm � · · · � n2 � n1 � 3 and under
the null hypothesis µ1 = · · · = µm, as p ! 1,

Wm

�̂m,0

d
�! t, k2 = n1(n1 � 1)/2 � 1 degrees of freedom.

Based on Theorem 5, the proposed test with a nominal ↵ level of significance rejects the null hypothesis µ1 = · · · = µm
if Wm/�̂m,0 � t↵(k2), where t↵(k2) is the upper ↵ quantile of t-distribution with k2 = n1(n1 �1)/2�1 degrees of freedom.

6
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Table 1

Empirical sizes of Chen and Qin’s test (CQ), Bai and Sarandasa’s test (BS), Srivastava and Du’s test (SD), and the proposed test (New), based on 1000
replications with normally distributed and t-distributed Zi in (3) under models (a) and (b) for the covariance matrix ⌃ , respectively. The nominal
significance level ↵ = 0.05. The sample size n 2 {4, 6, 15, 30} and the dimension p 2 {200, 400, 1000}.

p = 200 p = 400 p = 1000
n = 4 6 15 30 n = 4 6 15 30 n = 4 6 15 30

Normally distributed Zi
Model (a)

CQ 0.129 0.088 0.055 0.058 0.122 0.086 0.062 0.061 0.134 0.078 0.062 0.052
BS 0.088 0.080 0.056 0.056 0.090 0.084 0.061 0.064 0.095 0.059 0.059 0.053
SD 0.217 0.149 0.055 0.047 0.205 0.118 0.046 0.038 0.213 0.072 0.018 0.024
New 0.056 0.062 0.051 0.055 0.059 0.059 0.058 0.058 0.058 0.052 0.059 0.050

Model (b)
CQ 0.138 0.079 0.044 0.057 0.112 0.080 0.067 0.059 0.119 0.070 0.050 0.057
BS 0.099 0.069 0.047 0.057 0.064 0.079 0.062 0.060 0.090 0.061 0.049 0.058
SD 0.218 0.157 0.043 0.035 0.192 0.114 0.042 0.036 0.227 0.101 0.014 0.033
New 0.067 0.049 0.042 0.057 0.040 0.063 0.064 0.059 0.046 0.053 0.048 0.055

t-distributed Zi
Model (a)

CQ 0.145 0.076 0.066 0.062 0.130 0.074 0.054 0.060 0.116 0.089 0.054 0.056
BS 0.072 0.043 0.047 0.042 0.053 0.034 0.032 0.044 0.040 0.038 0.028 0.037
SD 0.193 0.089 0.033 0.032 0.187 0.070 0.018 0.031 0.175 0.047 0.007 0.014
New 0.064 0.053 0.061 0.059 0.048 0.049 0.051 0.058 0.049 0.065 0.051 0.054

Model (b)
CQ 0.143 0.085 0.067 0.052 0.141 0.069 0.076 0.044 0.128 0.064 0.050 0.069
BS 0.051 0.039 0.038 0.039 0.062 0.033 0.048 0.025 0.049 0.023 0.021 0.049
SD 0.157 0.106 0.038 0.028 0.169 0.080 0.030 0.021 0.148 0.034 0.006 0.017
New 0.056 0.058 0.061 0.052 0.068 0.049 0.068 0.043 0.059 0.046 0.048 0.069

4. Simulation studies

4.1. One-sample test

We compare the proposed one-sample t-test with the one-sample version CQ test in [6], the BS test in [2], and the SD
test in [16]. To generate random samples, we considered two types of innovations in (3): the Gaussian Zi ⇠ N(0, Ip) and
the standardized t-distribution with 4 degrees of freedom for each component of Zi, where the latter has heavier tails
than the former used to demonstrate nonparametric performance of the proposed test. Under H0, we simply assumed
µ = 0. Under H1, we considered µ to have [p1�� ] non-zero entires which were randomly selected from {1, . . . , p}. Here
[a] denotes the integer part of a. The value of each non-zero entry was r . From the simulation setup, the two parameters
� > 0 and r > 0 were chosen to control the sparsity and strength of signals, respectively. We also considered the
following two structures for the covariance ⌃ , where model (a) specifies a bandable structure of ⌃ and Model (b) leads
to a sparse ⌃ .

(a) AR(1) model: �j1j2 = 0.6|j1�j2| for 1  j1, j2  p.
(b) Random sparse matrix model: first generate a p ⇥ p matrix � each row of which has only four non-zero element

that is randomly chosen from {1, . . . , p} with magnitude generated from Unif(1, 2) multiplied by a random sign.
Then ⌃ = � � > + Ip where Ip is the p ⇥ p identity matrix.

All the simulation results were based on 1000 replications with the nominal significance level ↵ = 0.05.
Table 1 displays the empirical sizes of the four tests with normally distributed and t-distributed Zi in (3) under models

(a) and (b) for the covariance matrix ⌃ , respectively. The sample size and dimension were chosen to be n 2 {4, 6, 15, 30}
and p 2 {200, 400, 1000}. While the CQ, BS and SD tests were able to maintain the empirical sizes close to the nominal
significance level ↵ = 0.05 when sample sizes were relatively large, they encountered size distortion especially when
sample size was very small (n = 4). Unlike the competitors, the proposed test always had the empirical sizes close to
the nominal significance level for both normally distributed and t-distributed Zi. The results confirm Theorem 3 that the
proposed testing procedure was established without requiring the diverging sample size and without assuming Gaussian
distribution of data.

Due to the size distortion of the CQ, BS and SD tests when sample sizes are small, we compared the power performance
of the four tests with relatively large sample sizes n 2 {15, 30}. Table 2 demonstrates the empirical powers of the four
tests with respect to different signal strength r when the sparsity of signal � = 0.4. As we can see, the powers of the four
tests were increased as the signal strength r increased. The proposed test performed similarly to the other three tests.
This is not surprising as the four tests were all proposed based on similar sum-of-squares type statistics. The powers
of the proposed test were less than the CQ when n = 15 and only slightly less than the CQ when n = 30. The power
loss can be explained by the higher value of �̂n,0 in the proposed test statistic Un/�̂n,0 than the corresponding �̂ ⇤

n,0 in the
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Table 2

Empirical powers of Chen and Qin’s test (CQ), Bai and Sarandasa’s test (BS), Srivastava and Du’s test (SD), and the proposed
test (New), based on 1000 replications with normally distributed and t-distributed Zi in (3) under models (a) and (b) for the
covariance matrix ⌃ , respectively. The nominal significance level ↵ = 0.05. The sample size n 2 {15, 30} and the dimension
p = 400. The signal strength r 2 {0.1, 0.2, 0.3, 0.4} and the signal sparsity � = 0.4.

Model (a) Model (b)
r = 0.1 0.2 0.3 0.4 r = 0.1 0.2 0.3 0.4

Normally distributed Zi with p = 400, � = 0.4, n = 15
CQ 0.067 0.141 0.307 0.634 0.084 0.170 0.347 0.695
BS 0.070 0.142 0.307 0.627 0.083 0.174 0.351 0.688
SD 0.038 0.098 0.215 0.470 0.054 0.124 0.255 0.569
New 0.067 0.137 0.295 0.627 0.077 0.168 0.343 0.684

Normally distributed Zi with p = 400, � = 0.4, n = 30
CQ 0.099 0.292 0.709 0.990 0.095 0.310 0.796 0.999
BS 0.098 0.290 0.711 0.990 0.094 0.311 0.795 0.999
SD 0.062 0.211 0.596 0.972 0.058 0.237 0.726 0.991
New 0.097 0.288 0.705 0.991 0.094 0.307 0.794 0.999

t distributed Zi with p = 400, � = 0.4, n = 15
CQ 0.082 0.158 0.328 0.630 0.063 0.158 0.377 0.684
BS 0.041 0.098 0.239 0.510 0.043 0.104 0.272 0.571
SD 0.025 0.051 0.155 0.370 0.026 0.076 0.189 0.495
New 0.074 0.152 0.318 0.624 0.065 0.154 0.366 0.684

t distributed Zi with p = 400, � = 0.4, n = 30
CQ 0.097 0.290 0.728 0.985 0.093 0.296 0.792 0.996
BS 0.068 0.241 0.650 0.953 0.060 0.233 0.728 0.978
SD 0.039 0.170 0.535 0.906 0.033 0.175 0.672 0.986
New 0.096 0.287 0.724 0.985 0.090 0.290 0.792 0.996

CQ test statistic Un/�̂
⇤

n,0 under the alternative, although both test statistics employ the same Un. From [6], the variance
estimator �̂ ⇤2

n,0 is ratio consistent to 2n�1(n � 1)�1tr(⌃2) under both the null and alternative hypotheses. On the other
hand, according to Theorem 2, the proposed variance estimator �̂ 2

n,0 is unbiased to 2n�1(n � 1)�1tr(⌃2) under the null
hypothesis but the expectation becomes 2n�1(n � 1)�1tr(⌃2) + 4n�1(n + 1)�1µ>

0 ⌃µ0 under the alternative hypothesis.
The extra term 4n�1(n + 1)�1µ>

0 ⌃µ0 reduces the power of the proposed test but it diminishes as sample size n increases.
To further investigate how the power of the proposed test varies with different sample sizes and data dimensionalities,

we chose a range of sample sizes n 2 {3, 6, 12} and data dimensionalities p 2 {30, 100, 400, 1000} with normally
distributed Zi under model (a). For each of the sample sizes, the empirical powers of the proposed test were obtained with
respect to a range of signal strength r from 0.2 to 1 and a range of dimensionalities p from 30 to 1000. As illustrated in the
first row of Fig. 2, when signals were denser (� = 0.4), the powers of the proposed test increased as the signal strength
r increased for each sample size n, and as the sample size increased for each signal strength r . Moreover, for each fixed
sample size n, the powers increased as data dimensionality p increased especially with relatively large signal strength r . For
example, when � = 0.4, n = 6 and r = 0.8, the powers were 0.674, 0.755, 0.848 and 0.928 for p 2 {30, 100, 400, 1000},
respectively. When signals were sparser (� = 0.6), we still observed that the powers increased as the signal strength
r increased for each sample size n, and as the sample size increased for each signal strength r . However, for each fixed
sample size n, the powers decreased as data dimensionality p increased. For example, when � = 0.6, n = 6 and r = 0.8,
the powers were 0.324, 0.255, 0.234 and 0.220 for p 2 {30, 100, 400, 1000}, respectively. The simulation studies confirm
the theoretical results in the end of Section 2 that for each fixed sample size, the proposed test can enhance its power as
dimensionality p increases if the signal sparsity � < 0.5, but loses its power if � > 0.5.

4.2. Two-sample and ANOVA tests

Under H0 of the two-sample testing problem, we compared the size performance of the proposed test with the two-
sample version CQ test in [6], the maximum type CLX test in [3], the multi-level thresholding CLZ test in [4] and a
permutation test based on the proposed test statistic. The permutation test is obtained by first calculating the observed
two-sample test statistic Vn1n2/�̂n1n2,0 from the two samples. Next, the observations of the two samples are pooled.
For each permutation of the pooled sample, the test statistic Vn1n2/�̂n1n2,0 is calculated from the two samples of first
n1 observations and remaining n2 observations. At last, the p-value is calculated as the proportion of the test statistics
from the permuted two samples greater than the observed test statistic from the original two samples. To reduce the
computational cost, we considered 1000 random permutations. The random samples were generated from two types of
innovations in (8). The Gaussian Z1j ⇠ N(0, Ip) and Z2j ⇠ N(0, Ip), and the standardized t-distribution with 4 degrees of
freedom for each component of Z1j and Z2j. For simplicity, we assigned µ1 = µ2 = 0, and considered ⌃1 = ⌃2 modeled
by the AR(1) structure (a) in Section 4.1.

Table 3 displays the empirical sizes of the five tests. The dimensions of random vector were p 2 {200, 400, 1000}.
The sample size n2 = 30, and the sample size n1 2 {4, 6, 15, 30}. The sample sizes are unbalanced when n1 2 {4, 6, 15}.
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Fig. 2. Empirical powers of the proposed test with respect to signal strength r and signal sparsity � by choosing different sample sizes and
dimensionalities. In the upper row, the signal sparsity � = 0.4 (denser signals). In the lower row, the signal sparsity � = 0.6 (sparser signals).

Table 3

Empirical sizes of Chen and Qin’s test (CQ), Cai, Liu and Xia’s test (CLX), Chen, Li and Zhong’s test (CLZ), the proposed test (New), and the proposed
permutation test (New-perm), based on 1000 replications with normally distributed and t-distributed Z1j and Z2j in (8) under model (a) for the
covariance matrices ⌃1 = ⌃2. The nominal significance level ↵ = 0.05. The sample size n2 = 30, and the sample size n1 2 {4, 6, 15, 30}. The
dimension p 2 {200, 400, 1000}.
n2 = 30 p = 200 p = 400 p = 1000

n1 = 4 6 15 30 n1 = 4 6 15 30 n1 = 4 6 15 30
Normally distributed Z1j and Z2j

CQ 0.108 0.084 0.064 0.068 0.085 0.069 0.060 0.060 0.106 0.067 0.059 0.054
CLX 0.971 0.599 0.046 0.014 0.994 0.763 0.062 0.024 1 0.934 0.076 0.003
CLZ 0.998 0.869 0.113 0.036 1 0.980 0.168 0.025 1 1 0.236 0.015
New 0.054 0.062 0.055 0.066 0.058 0.053 0.059 0.059 0.057 0.060 0.055 0.061
New-perm 0.044 0.041 0.048 0.053 0.048 0.051 0.052 0.050 0.057 0.052 0.054 0.058

t-distributed Z1j and Z2j
CQ 0.095 0.054 0.052 0.060 0.096 0.060 0.063 0.062 0.089 0.066 0.054 0.051
CLX 0.968 0.582 0.060 0.006 0.996 0.745 0.058 0.008 1 0.929 0.081 0.001
CLZ 0.999 0.849 0.137 0.034 1 0.973 0.166 0.019 1 1 0.266 0.011
New 0.055 0.050 0.054 0.061 0.056 0.048 0.065 0.061 0.049 0.059 0.063 0.050
New-perm 0.047 0.053 0.046 0.056 0.057 0.051 0.044 0.053 0.055 0.049 0.056 0.055

From Theorem 4, the asymptotic t-distribution of the proposed test statistic holds under the null hypothesis as long as
the smaller sample size is no less than 3. For all the cases including the unbalanced sample sizes, the proposed test and
permutation test maintained the empirical sizes close to the nominal significance level ↵ = 0.05. However, the CQ, CLX
and CLZ tests had inflated sizes when the sample size n1 was extremely small at 4.

Due to the size distortion of the CLX and CLZ tests, it is not reasonable to compare their powers with the proposed
test when sample sizes are small. We therefore compared the proposed test with the CQ and the permutation test. Under
H1, µ1 = 0 but µ2 had [p1�� ] non-zero entires which were randomly selected from {1, . . . , p}. The value of each non-
zero entry was r . Similarly to the setup under H0, the random samples were generated from two types of innovations.
The Gaussian Z1j ⇠ N(0, Ip) and Z2j ⇠ N(0, Ip), and the standardized t-distribution with 4 degrees of freedom for each
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Table 4

Empirical powers of Chen and Qin’s test (CQ), the proposed test (New) and the proposed permutation test (New-perm), based on 1000 replications
with normally distributed and t-distributed Z1j and Z2j in (8) under model (a) for the covariance matrices ⌃1 = ⌃2. The nominal significance
level ↵ = 0.05. The dimension p = 400, and the sample sizes (n1, n2) = (6, 15), (15, 15), (6, 30), (15, 30), (6, 40) and (15, 40). The signal strength
r 2 {0.4, 0.6, 0.8, 1}.

r = 0.4 0.6 0.8 1 r = 0.4 0.6 0.8 1
Normally distributed Z1j and Z2j

(n1 = 6, n2 = 15) (n1 = 15, n2 = 15)
CQ 0.170 0.367 0.713 0.951 0.245 0.695 0.982 1.000
New 0.137 0.319 0.648 0.913 0.247 0.681 0.976 1.000
New-perm 0.115 0.294 0.625 0.900 0.217 0.655 0.974 1.000

(n1 = 6, n2 = 30) (n1 = 15, n2 = 30)
CQ 0.192 0.450 0.795 0.979 0.398 0.902 0.999 1.000
New 0.169 0.392 0.724 0.966 0.379 0.889 0.999 1.000
New-perm 0.153 0.363 0.702 0.952 0.354 0.870 0.999 1.000

(n1 = 6, n2 = 40) (n1 = 15, n2 = 40)
CQ 0.208 0.484 0.817 0.981 0.424 0.934 1.000 1.000
New 0.175 0.409 0.763 0.971 0.397 0.921 1.000 1.000
New-perm 0.155 0.381 0.731 0.968 0.378 0.913 1.000 1.000

t-distributed Z1j and Z2j
(n1 = 6, n2 = 15) (n1 = 15, n2 = 15)

CQ 0.161 0.382 0.718 0.950 0.281 0.701 0.985 0.999
New 0.152 0.335 0.624 0.906 0.272 0.696 0.984 0.999
New-perm 0.124 0.300 0.596 0.893 0.247 0.675 0.977 0.999

(n1 = 6, n2 = 30) (n1 = 15, n2 = 30)
CQ 0.196 0.410 0.795 0.972 0.383 0.890 0.999 1.000
New 0.163 0.363 0.736 0.958 0.375 0.875 0.999 1.000
New-perm 0.147 0.332 0.709 0.944 0.344 0.854 0.998 1.000

(n1 = 6, n2 = 40) (n1 = 15, n2 = 40)
CQ 0.178 0.479 0.822 0.979 0.433 0.928 1.000 1.000
New 0.152 0.417 0.781 0.963 0.418 0.916 1.000 1.000
New-perm 0.131 0.379 0.756 0.956 0.384 0.908 1.000 1.000

component of Z1j and Z2j. Again, we considered ⌃1 = ⌃2 modeled by the AR(1) structure (a) in Section 4.1. All the
simulation results were based on 1000 replications with nominal significance level ↵ = 0.05.

As we can see in Table 4, the powers of the CQ test, the proposed test and permutation test increased as the signal
strength r increased for each combination of n1 and n2. From Theorem 4, the power of the proposed two-sample test is
largely determined by the signal-to-noise ratio (11), which can also be written as

SNR2 =
kµ1 � µ2k

2
q

2n1
n1�1 tr{(

⌃1
n1

+
⌃2
n2

)2} + 4(µ1 � µ2)>(⌃1
n1

+
⌃2
n2

)(µ1 � µ2)
.

The expression shows that the power of the proposed two-sample test increases as either n1 or n2 increases even though
the two sample sizes could be unbalanced. This is confirmed by the results in Table 4 where n1 was fixed and n2 was
increased from 15 to 40 (rows 1 to 3), and n2 was fixed and n1 was increased from 6 to 15 (columns 1 to 2) for both
normally and t distributed Z1j and Z2j. However, the unbalanced sample sizes could affect the power of the proposed test
as the degrees of freedom rely on the smaller sample size n1 rather than the combined sample size n1 + n2. When n1
is extremely small, say n1 = 6, the degrees of freedom equal n1(n1 � 1)/2 � 1 = 14 and the corresponding quantile
t0.05(14) = 1.761. It is therefore harder for the proposed test to reject the null hypothesis than any other testing rule
based on the combined sample size or the asymptotic normal approximation. This is why the power of the proposed
test is less than the CQ test when n1 = 6. Similar to the one-sample case, another reason for the power loss of the
proposed two-sample test is that it involves the higher value of �̂n1n2,0 in the proposed test statistic Vn1n2/�̂n1n2,0 than the
corresponding variance estimator in the CQ test statistic under the alternative. From [6], the variance estimator of the CQ
statistic is ratio consistent to 2n�1

1 (n1 � 1)�1tr(⌃2
1 ) + 2n�1

2 (n2 � 1)�1tr(⌃2
2 ) + 4n�1

1 n�1
2 tr(⌃1⌃2) under both the null and

alternative hypotheses. However, the proposed variance estimator �̂ 2
n1n2,0 is only unbiased under the null hypothesis but

has an additional term 4n�1
1 n�1

2 (µ1 � µ2)>(⌃1 + ⌃2)(µ1 � µ2) under the alternative hypothesis. The extra term reduces
the power of the proposed test but it diminishes as either n1 or n2 increases.

It is worth mentioning that when the two high dimensional mean vectors differ only in sparse coordinates and the
differences are faint, the CLX and CLZ tests were proposed to improve power performance of the CQ test. It is therefore not
surprising that they perform better than the proposed test for sparse and faint signal detection. But we need to emphasize
that such a superior performance relies on the requirement of relatively large sample sizes.

At last, we conducted simulation studies to demonstrate the empirical performance of the proposed ANOVA test. We
considered testing the equality of three mean vectors. Three random samples were generated from the model (12) with
two types of innovations: one is Gaussian Z`j ⇠ N(0, Ip) and another is the standardized t-distribution with 4 degrees
of freedom for each component of Z`j. For simplicity, we chose µ1 = µ2 = µ3 = 0 under H0. Under H1, µ1 = µ2 = 0
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Table 5

Empirical sizes and powers of the proposed ANOVA test, based on 1000 replica-
tions of three random samples with normally distributed and t-distributed Z1j, Z2j
and Z3j in (12). The covariance matrices ⌃1 and ⌃2 were the model (a), and ⌃3
was the model (b). The nominal significance level ↵ = 0.05. Empirical sizes were
obtained with the signal strength r = 0, and empirical powers were obtained with
r 2 {0.6, 0.8, 1.0} for different combinations of (p, n1, n2, n3).
(p, n1, n2, n3) Size Power

r = 0.6 r = 0.8 r = 1.0
Normally distributed Z1j , Z2j and Z3j

(200,3,15,30) 0.046 0.089 0.121 0.176
(200,15,15,30) 0.049 0.453 0.842 0.989
(200,30,30,30) 0.066 0.864 1 1
(400,3,15,30) 0.049 0.104 0.108 0.187
(400,15,15,30) 0.066 0.479 0.882 0.998
(400,30,30,30) 0.062 0.900 0.999 1
(1000,3,15,30) 0.041 0.095 0.134 0.199
(1000,15,15,30) 0.058 0.556 0.941 1
(1000,30,30,30) 0.053 0.957 1 1

t-distributed Z1j , Z2j and Z3j
(200,3,15,30) 0.063 0.089 0.135 0.172
(200,15,15,30) 0.059 0.445 0.839 0.982
(200,30,30,30) 0.060 0.878 1 1
(400,3,15,30) 0.056 0.104 0.119 0.175
(400,15,15,30) 0.049 0.490 0.878 0.995
(400,30,30,30) 0.068 0.904 0.997 1
(1000,3,15,30) 0.057 0.100 0.130 0.202
(1000,15,15,30) 0.048 0.551 0.938 1
(1000,30,30,30) 0.051 0.964 1 1

and µ3 had [p0.6] non-zero entries of equal value r , which were uniformly allocated among the p components of µ3. The
covariance matrices ⌃1 and ⌃2 were chosen to be the model (a), and ⌃3 was the model (b) specified in Section 4.1.

Table 5 displays the empirical sizes and powers of the proposed ANOVA test subject to different values of p, n1, n2,
n3 and r . For all the cases, the empirical sizes were quite close to the nominal significance level of 0.05. Moreover, for
each specific (p, n1, n2, n3), the powers of the ANOVA test were increased as the signal strength r was increased. For each
specific r and p, the powers were increased as sample sizes were increased.

5. Application to fMRI dataset

To demonstrate the practical use of the proposed tests, we consider the StarPlus fMRI data in [14], which is publicly
available from Carnegie Mellon University’s Center for Cognitive Brain Imaging. The original data consist of different trials
and we use a subset in which each of six human subjects was provided a sentence first for four seconds, followed by a
blank screen for four seconds. The subject was then provided a picture for four seconds, followed by answering whether
the sentence correctly described the picture. At last, the subject was given a rest for fifteen seconds. There are in total
55 images collected every 0.5 s. At each time point, the image is marked with 25–30 anatomically defined regions called
regions of interest (ROIs). In fMRI, ROI analysis is a useful method of selecting a cluster of voxels for exploring patterns
of activation across stimuli.

Our interest is to identify the ROIs which react differently to a sentence and a picture. To accommodate high
dimensionality, we consider the ROIs with the number of voxels greater than 60. The names of these ROIs are described in
Table 6. We let µ1i and µ2i be the population means of the ith ROI with respect to a picture and a sentence, respectively.
The null hypotheses of interest are H0i : µ1i = µ2i, i 2 {1, . . . , 15}, where 15 is the number of ROIs. Since the dataset
has a very small sample size 6, it is more appropriate to apply the proposed test rather than other competitors requiring
diverging sample sizes. For each ROI, we computed the difference between the fMRI image at 29 s and that at 9 s. The two
time points are the ends of the time intervals during which the picture and the sentence were presented, respectively.
We applied the proposed test to obtain the p-values of the 15 ROIs displayed by Fig. 3. By further applying the Bonferroni
correction to control the family-wise error rate at 0.05, the two ROIs named LIPS and LT were identified to be significant
as their p-values were less than 0.05/15. The functions of LIPS are related to directing eye movements and reaching and
visual attention. On the other hand, LT, which is the most dominant in people, is associated with understanding language
and remembering verbal information.

6. Conclusions

Many existing asymptotic tests for high-dimensional data require both dimensionality and sample sizes to diverge.
Type I error rate may not be accurately controlled when sample sizes are very small. We addressed the one-sample,
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Table 6

The 15 ROIs (left column) and the corresponding full names (right
column) from the StarPlus dataset. Each ROI consists of at least 60
voxels in order to accommodate high dimensionality. The proposed
two-sample test is applied to select the ROIs which react differently
to a sentence and a picture.
ROI Full name
CALC Calcarine Sulcus
LDLPFC/RDLPFC Left/Right Dorsolateral Prefrontal Cortex
LIPL Left Inferior Parietal Lobule
LIPS/RIPS Left/Right Intraparietal Sulcus
LIT/RIT Left/Right Inferior Temporal Lobe
LOPER/ROBER Left/Right Opercularis
LSPL/RSPL Left Superior Parietal Lobe
LT/RT Left/Right Temporal Lobe
LTRIA/RTRIA Left/Right Triangularis
SMA Supplementary Motor Area

Fig. 3. Bar plot of the p-values for the 15 ROIs. The p-value for each ROI is the probability of the t random variable with 14 degrees of freedom
greater than the two-sample test statistic Vn1n2/�̂n1n2,0 calculated from the fMRI images at 29 s and at 9 s.

two-sample and ANOVA testing problems for high-dimensional means with new proposed tests, which only require
dimensionality to diverge but sample sizes to be fixed no less than 3. Without requiring relatively large sample sizes,
the tests can be applied to the high-dimensional data such as fMRI, microarray, RNA-Seq, and GWA data with very small
sample sizes due to ethical and cost reasons. Except maintaining accurate type I error rate, the tests are nonparametric
without assuming normal distributions of data.

The proposed tests are of sum-of-squares type. Similar to other sum-of-squares type tests, the tests are powerful when
mean difference of all data components is dense and sum-of-squares signal strength is strong, but not very powerful if
mean difference is sparse and signal strength is weak. Some sophisticated technicals such as thresholding and random
projection may be applied to the proposed approach for power improvement. Note that in hypothesis testing, maintaining
an accurate type I error is the primary requirement before seeking a better power performance. The proposed tests made
an attempt on this direction and extending the current approach for power improvement provides an interesting direction
for future work.

The proposed tests are computationally inexpensive. For the proposed one-sample test, the test statistic can be quickly
computed as the ratio of the sample mean to the sample standard deviation, once the equivalent univariate sample
{X>

i Xj, i < j}ni,j=1 of size n(n � 1)/2 is obtained from the original sample {Xi, 1  i  n}. Similar ideas are applied
to the proposed two-sample and ANOVA tests. To provide a quantitative evaluation, we compared the computational
time of the proposed one-sample test with the one-sample CQ test for the samples with different sample sizes and data
dimensionalities. The computations were executed on a 12-core 2.1 GHz Intel processor with 32 GB RAM. In general, the
proposed one-sample test was faster than the CQ test. For example, the average execution time of the proposed one-
sample test was 3.07 ⇥ 10�5, 8.42 ⇥ 10�5, 7.34 ⇥ 10�5 and 5.06 ⇥ 10�4 seconds, respectively when the corresponding

12
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(n, p) = (3, 100), (3, 1000), (30, 100) and (30, 1000). On the other hand, the average execution time of the one-sample
CQ test was 4.83 ⇥ 10�5, 1.07 ⇥ 10�4, 3.40 ⇥ 10�4 and 7.05 ⇥ 10�4 seconds, respectively for the same combinations of
n and p.
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Appendix. Technical details

Proof of Theorem 1. From {Xi, 1  i  n}, we construct a sequence of n(n � 1)/2 random variables {X>

i Xj, i < j}ni,j=1.
To establish the asymptotic normality of Un, we need to show that the sequence {X>

i Xj/
p
tr(⌃2) + 2µ>⌃µ, i < j}ni,j=1

converges to a joint multivariate normal distribution as p ! 1. According to the Cramér–Wold device, we only need to
show that

Pn
i<j cijX

>

i Xj/
p
tr(⌃2) + 2µ>⌃µ is asymptotically normal as p ! 1, where {cij, i < j}ni,j=1 are some constants

and at least one of them is nonzero.
We first establish the asymptotic normality of

Pn
i<j cijX

>

i Xj/
p
tr(⌃2) under the null hypothesis. From (3), we see that

Xi = � Zi. Based on that,
nX

i<j

cijX>

i Xjp
tr(⌃2)

=

nX

i<j

cijp
tr(⌃2)

Z>

i � >� Zj =

pX

k=1

pX

`=1

nX

i<j

cijp
tr(⌃2)

(� >� )k`zikzj`.

To simplify notation, we define

Aij,k` =
cijp

tr(⌃2)
(� >� )k`,

if k > `, and if k = `,

Aij,kk =
cij

2
p
tr(⌃2)

(� >� )kk.

Then, using the symmetry, we can write
nX

i<j

cijX>

i Xjp
tr(⌃2)

=

pX

k=1

kX

`=1

nX

i<j

Aij,k`(zikzj` + zi`zjk) =

pX

k=1

Vk,

where Vk =
Pk

`=1
Pn

i<j Aij,k`(zikzj` + zi`zjk). Let Sh =
Ph

k=1 Vk. Since we have E(Sq|Sh) = Sh for any q > h, we see
that Sh is a martingale. We therefore use the martingale central limit theorem to establish the asymptotic normality
of

Pn
i<j cijX

>

i Xj/
p
tr(⌃2). According to the martingale central limit theorem, it is equivalent to proving the following two

results:
pX

k=1

E(V 2
k |Fk�1) �!

nX

i<j

c2ij in probability, (13)

pX

k=1

E{V 2
k I(|Vk| > ✏)|Fk�1} �! 0 in probability, (14)

where Fk�1 is the � algebra generated by {zi1, . . . , zik�1} for i 2 {1, . . . , n}, and ✏ is any small positive number.
To prove (13), we show

Pp
k=1 E V 2

k !
Pn

i<j c
2
ij and Var{

P
k E(V

2
k |Fk�1)} ! 0, respectively. To this end, we notice

V 2
k =

kX

`1=1

kX

`2=1

nX

i1<j1

nX

i2<j2

Ai1j1,k`1Ai2j2,k`2 (zi1kzj1`1 + zi1`1zj1k)(zi2kzj2`2 + zi2`2zj2k).

Then,
pX

k=1

E V 2
k = 2

pX

k=1

kX

`=1

nX

i<j

A2
ij,k` + 2

pX

k=1

nX

i<j

A2
ij,kk =

nX

i<j

c2ij .

13
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Next, it can be seen that

X

k

E(V 2
k |Fk�1) = 4

pX

k=1

X

i<j

A2
ij,kk +

pX

k=1

k�1X

`1=1

k�1X

`2=1

X

i<j1

X

i<j2

Aij1,k`1Aij2,k`2zj1`1zj2`2

+

pX

k=1

k�1X

`1=1

k�1X

`2=1

X

i1<j1

X

i2<i1

Ai1j1,k`1Ai2 i1,k`2zj1`1zi2e`2 +

pX

k=1

k�1X

`1=1

k�1X

`2=1

X

i1<i2

X

i2<j2

Ai1 i2,k`1Ai2j2,k`2zi1`1zj2`2

+

pX

k=1

k�1X

`1=1

k�1X

`2=1

X

i1<j1

X

i2<j1

Ai1j1,k`1Ai2j1,k`2zi1`1zi2`2 .

Taking the expectation of the above, we can show that

E[{
X

k

E(V 2
k |Fk�1)}]2 = (

nX

i<j

c2ij )
2
+ O

⇢
(

nX

i<j

c2ij )
2 tr(⌃4)
tr2(⌃2)

�
.

As a result, when p ! 1,

Var{
X

k

E(V 2
k |Fk�1)} = O

⇢
(

nX

i<j

c2ij )
2 tr(⌃4)
tr2(⌃2)

�
! 0,

because tr(⌃4) = o{tr2(⌃2)} according to the condition (C1).
By Chebyshev Inequality, to prove (14), we only need to show that

pX

k=1

E V 4
k ! 0.

Using Vk =
Pk

`=1
Pn

i<j Aij,k`(zikzj` + zi`zjk), we can show that for some constant C ,
pX

k=1

E V 4
k 

C
tr2(⌃2)

(
X

i<j

cij)4
X

k

X

`1`2

(� >� )k`1 (�
>� )k`1 (�

>� )k`2 (�
>� )k`2


C

tr2(⌃2)
(
X

i<j

cij)4tr(⌃4) ! 0,

because tr(⌃4) = o{tr2(⌃2)} according to the condition (C1).
Based on (13) and (14), we apply the martingale central limit theorem to establish the asymptotic normality ofPn
i<j cijX

>

i Xj/
p
tr(⌃2) under the null hypothesis.

To prove asymptotic normality of
Pn

i<j cijX
>

i Xj under the alternative, we use (3) to write
nX

i<j

cijX>

i Xj =

nX

i<j

cijµ>µ +

nX

i<j

cijµ>� Zj +
nX

i<j

cijµ>� Zi +
nX

i<j

cijZ>

i � >� Zj,

where the last term remains under the null hypothesis and its asymptotic normality has been established. Next, we need to
establish the asymptotic normality of

Pn
i<j cijµ

>� Zj+
Pn

i<j cijµ
>� Zi. By observing that Zi = (zi1, . . . , zip)> and {zk}

p
k=1 are

mutually independent, the asymptotic normality of
Pn

i<j cijµ
>� Zj+

Pn
i<j cijµ

>� Zi can be established from the Lyapunov’s
condition. At last, we can show that

Pn
i<j cijµ

>� Zj+
Pn

i<j cijµ
>� Zi and

Pn
i<j cijZ

>

i � >� Zj are asymptotically independent.
We thus establish the asymptotic normality of

Pn
i<j cijX

>

i Xj under the alternative hypothesis. This completes the proof of
Theorem 1. ⇤

Proof of Theorem 2. In Theorem 1, we show that under the null hypothesis, for 1  i < j  n, (X>

1 X2, . . . , X>

i Xj, . . . ,

X>

n�1Xn)
> follows an asymptotic n(n � 1)/2-variate multivariate normal distribution with mean equal to zero and

covariance matrix equal to tr(⌃2)In(n�1)/2, where In(n�1)/2 is the n(n�1)/2⇥n(n�1)/2 identity matrix. Based on {X>

i Xj, i <
j}ni,j=1, we estimate the unknown tr(⌃2) by the sample variance (4). Since {X>

i Xj, i < j}ni,j=1 are asymptotically independent
and normally distributed random variables, k \tr(⌃2)/tr(⌃2) converges to �2(k) as p ! 1, where k = n(n � 1)/2 � 1.
This completes the proof of Theorem 2. ⇤

Proof of Theorem 3. The statistic Un is the sample mean of {X>

i Xj, i < j}ni,j=1. From the proof of Theorem 2, Un
is asymptotically independent of the sample variance (4). As a result, Un/�̂n,0 converges to a t-distribution with k =

n(n � 1)/2 � 1 degrees of freedom. This completes the proof of Theorem 3. ⇤

14
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Proof of Theorems 4 and 5. Theorems 4 and 5 can be shown by replacing Xi with Yi in the proofs of Theorems 1–3. We
therefore omit it. ⇤
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