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Here we explore how college students across different courses may conceptualize symbolic algebraic 

properties. This work draws on the theory of Grundvorstellungen (GVs) as a tool to analyse how 

learner conceptions do or do not align with some desired goals of instruction. In analysing interviews, 

several categories of conceptions, or descriptive GVs, emerged, which may be a helpful first step in 

understanding learners’ thinking and improving instruction on algebraic properties.  
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Mathematical properties justify transformation across mathematical domains, particularly those that 

rely on symbolic representation such as algebra. However, learners often do not use them in 

mathematically valid ways (e.g., Hoch & Dreyfus, 2004; Mok, 2010) and instruction may not address 

properties explicitly enough (e.g., Barnett & Ding, 2019), despite the central role that algebraic 

properties play in mathematical transformation. In this paper we focus on learners’ ability to identify 

parallel syntactic structure between symbolic properties and mathematical objects such as 

expressions, and we explore how this may relate to their conception of symbolic properties in algebra.  

Properties and forms 

Here we define a property as any mathematical statement that may be used to transform a symbolic 

object into an equivalent one with a different form. Thus, two examples are: 1) the definition of 

negative exponents, written, e.g., as: 𝑥−𝑛 =
1

𝑥𝑛 for 𝑥 ≠ 0; and 2) the statement about two equivalent 

equations: 𝐴 − 𝐵 = 𝐶 ↔ 𝐴 = 𝐵 + 𝐶. The key point is that 1) could be used to replace an expression 

of the form 𝑥−𝑛 with one of the form 
1

𝑥𝑛 (or vice versa), and 2) could be used to replace an equation 

of the form 𝐴 − 𝐵 = 𝐶 with one of the form 𝐴 = 𝐵 + 𝐶 (or vice versa). The term symbolic properties 

denotes properties as represented by symbolic representations. Properties are made up of smaller sub-

structures (e.g., each side of a formal property statement can be viewed as a separate object), which 

are often referred to colloquially during instruction as “forms” (e.g., the “form” 𝑥−𝑛, 
1

𝑥𝑛, 𝐴 − 𝐵 = 𝐶, 

and 𝐴 = 𝐵 + 𝐶, in properties (1) and (2) above).  

Our work addresses a gap in the literature about learners’ use of mathematical properties. Existing 

research has focused on classifying what types of errors learners make when using properties to 

simplify or solve (e.g., Hoch & Dreyfus, 2004; Mok, 2010); on learners’ justifications for why 

properties are true; or on learners’ ability to derive properties from arithmetic patterns (e.g., Hunter 

et al., 2022). Some limited work has focused on learners’ structure sense for specific properties, such 

as the distributive property (e.g., Schüler-Meyer, 2017), but here we aim to describe conceptions of 

properties and forms more generally. This is important because using and understanding symbolic 

properties and forms is a critical skill for transforming symbolic representations (Kieran, 2011).  
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Theoretical framework 

Grundvorstellungen 

We approach symbolic properties from the lens of prescriptive and descriptive Grundvorstellungen 

(GVs) (“fundamental conceptions”). Prescriptive GVs describe conceptions that we hope for learners 

to acquire from instruction (vom Hofe, 1995); whereas descriptive GVs describe conceptions that 

learners actually hold. Comparing these two types of GVs is intended to guide curriculum/instruction 

(Greefrath et al., 2016), by considering how prescriptive and descriptive GVs align after instruction. 

Neither descriptive nor prescriptive GVs are intended to be static, nor to present a monolithic view 

of what it means to learn a concept; rather, GVs are intended to evolve with research over time. We 

begin by describing two related prescriptive GVs for symbolic properties (Figure 1).  

 

Figure 1: Two Related Prescriptive GVs for Symbolic Properties 

Operational vs. Structural Conceptions and Extracted vs. Stipulated Definitions 

In this paper we describe how we have analysed student interview data qualitatively in order to 

generate descriptive GVs for symbolic properties. In describing learners’ conceptions, this work was 

also influenced by an initial theoretical stance that focused on attending to operational vs. structural 

conceptions (Sfard, 1992) and extracted vs. stipulated definitions (Edwards & Ward, 2004). A learner 

with an operational conception views properties as a process of computation, while a learner with a 

structural conception views them as abstract objects (e.g., canonical representations of particular 

algebraic structures). A learner with a structural conception sees objects as reified processes (e.g., the 

form 𝑎(𝑏 + 𝑐) is seen as an object, and not just as the process of adding 𝑏 and 𝑐 and then multiplying 

𝑎 by the result), however when learners view something as an object that is not the reification of any 

process, this is called a pseudostructural conception (Sfard, 1992, p. 75). The operational/structural 

distinction is related to the prescriptive Mapping GV of Symbolic Properties, which focuses on a 

learner’s ability to conceptualize forms within a property structurally as an object.  

Extracted definitions are created to describe observed usage of a term (e.g., a learner may extract a 

meaning for a property from how it is used during computation in instruction). In contrast, stipulated 

definitions are stated explicitly—to determine if something fits the definition one must consult the 

definition directly (Edwards & Ward, 2004). This distinction is related to the Equivalence-Preserving 

GV of Symbolic Properties, as one key stipulated feature of properties is that they preserve 

equivalence (and the type of equivalence that is preserved is also based on a stipulated definition).  

Methods 

Cognitive interviews were conducted on items from the Algebra Concept Inventory (Wladis et al., 



 

 

2018).  102 interviews were conducted with college students in the US in 18 different courses ranging 

from elementary algebra (which focuses on mathematical objects from Algebra I in secondary school) 

to linear algebra; many different courses were included with the aim of capturing as broad a range of 

GVs as possible. In addition, subjects were diverse in terms of gender, race/ethnicity, national origin, 

and English language learner status.  Interviews were analysed using thematic analysis (Braun & 

Clarke, 2006). This analysis was influenced by an initial theoretical stance focused on noticing how 

students’ responses may reflect extracted vs. stipulated definitions (Edwards & Ward, 2004) and 

operational vs. structural (Sfard, 1992) conceptions, as well as the extent to which students appeared 

to show evidence of Equivalence-Preserving or Mapping GVs. Analysis of interviews led to a more 

nuanced emergent framework of learners’ conceptions, or descriptive GVs, of symbolic properties.  

Results and discussion 

Analysis of student interviews led to the generation of a framework that describes descriptive GVs 

of symbolic properties (Figure 2). In this two-by-two framework, operational vs. structural 

conception categories relate to how closely learners’ GVs align with a Mapping GV and extracted vs. 

stipulated definition categories relate to how closely their GVs align with an Equivalence-Preserving 

GV (Figure 1). We now illustrate the framework by presenting a few examples.  

 

Figure 2: Framework to Categorize Descriptive GVs for Symbolic Properties 

Operational conceptions 

In this section, we present some brief examples of interviews in which the learner appeared to be 

drawing on operational conceptions of symbolic properties. This first student, Iota, was enrolled in 

an introductory statistics course that had school algebra as a pre-requisite, and was given a series of 

seven questions with the form given in Figure 3, each presenting a different type of expression.  

Expressions used in other versions of this item included: Q1: (2𝑥 + 1)2; Q2: 𝑥 − (2𝑥 + 1); Q3: 

2(2𝑥 ÷ 1); Q4: 2(𝑥 ⋅ 𝑦); Q5: (2𝑥 + 1)2; and Q7: 2(𝑥𝑦). 



 

 

Figure 3: Task discussed with Iota during the interview 

For each item, Iota stated that the distributive property could be used to rewrite the expression: They1 

correctly chose d for Q6, and equivalent expressions that could be conceptualized as the result of the 

distributive property for Q1 (2𝑥 ⋅ 2 + 1 ⋅ 2) and Q2 (𝑥 − 2𝑥 − 1); but they also incorrectly chose 

“results” of the distributive property for Q3 (2 ⋅ 2𝑥 ÷ 2 ⋅ 1), Q4 (2𝑥 ⋅ 2𝑦), Q5 ((2𝑥)2 + 12) and Q7 

(2𝑥2𝑦). The specific answers Iota chose suggest that they may have an operational conception of the 

distributive property, perhaps something like “The distributive property is an instruction to take what 

is outside the brackets and apply it to each ‘thing’ inside the brackets”. However, Iota’s ability to 

conceptualize (𝑥 + 2) as a unified subexpression within (𝑥 + 2)(3𝑥 + 7) that could be “distributed” 

to each term in 3𝑥 + 7 is an unusual and syntactically sophisticated skill, suggesting that Iota is also 

capable of thinking structurally. When asked about their thinking on Q4 (2(𝑥 ⋅ 𝑦)), Iota explained 

“Because obviously two can distribute [makes motion with fingers as though moving two from left 

to right twice] with the one in parentheses. So two in the front can distribute to 2𝑥 multiply by 2𝑦. 

So it's gonna be 2𝑥 multiply by 2𝑦 [repeats distributive motion with fingers]—that's the result.” In 

this excerpt, Iota is focused on describing computation, but is not considering a potential need to 

verify or justify the mathematical validity that computation, which is consistent with an operational 

GV. Thus, at this moment, Iota appears to be drawing on a pseudo-process GV. We see more of this 

when, later in the interview, the interviewer asks Iota what the distributive property is: 

Interviewer:  What is the distributive property?  

Iota:  Distribute property is like that you can use the main number or main groups to 
distribute to each of another number or another groups. 

Interviewer:  So is that like here [highlighting (𝑥 + 2) in Q6], is 𝑥 + 2 the main number?  

Iota:  It's a main group. Yes. 

Interviewer:  And then you apply that to each of the ones [motions to 3𝑥 and 7 in Q6]  

Iota:  Yes. 

Interviewer:  Okay. So I noticed that this one [highlights + in expression (3𝑥 + 7) in Q6] has a 
plus sign in between them. Is the distributive property only for the plus sign or could 
it also be subtraction? Could it be multiplication or division?  

Iota:  So, yeah, it could be subtraction, multiplication... Could be any sign, but when you 
calculate, when you are doing it, you have to do with that own sign.  

Here Iota again appears to view the distributive property as a process, in which whatever is outside 

the brackets is multiplied by each “group” inside the brackets, with the original operation between 

the multiple “groups” inside the brackets preserved. Here again Iota appears to be drawing on a 

pseudo-process GV of the distributive property. In contrast, when Iota was interviewed about Q7 

(2(𝑥𝑦)), they start to reveal some evidence of a process view: 

 
1 In this paper we use the pronoun “they” as a singular non-gendered pronoun, as the gender of the subject is not the focus 

of this research.  This use of the term “they” is an accepted use in English (see e.g., Merriam-Webster., n.d.). 



 

 

Iota:  Sometimes when I see these kind of questions, at first I may think its right answer is 
A (2𝑥2𝑦), but what I normally do is I double check the answer. So I create some 
equations and I double check it, it's incorrect. So for this case, I create like 𝑥 is 3. 
Okay, let me type it now, 𝑦 is 2.      
 

 
I think it's wrong. So I say no.... I don't know why, but this is very tricky question for 
me... So x and y multiply each other should be do before multiply the one outside. …I 
don't know, it's not look like a distributive property for me. It's look like the way to 
calculate is you do the 𝑥𝑦 first because in parentheses, and after you get the result of 
𝑥𝑦 you do with the number 2. So I don't think this one is like a distributive property... 
to be honest, I don't know why. I don't think it's A, but I just feel it's not. 

Interviewer:  This strategy that you were doing, replacing x and y with numbers and seeing if they 
were the same: if you did that for number 6, for example, would get the same answers?  

Iota:  Oh, that's a good question. I don't... Yeah. Right. I don't know... I didn't... I didn't try. 
But... I mean, I'm just, I'm looking at it right now. Yeah, it should be the same. Because 
it should be only one value. Mm-hmm. 

We see evidence of both process and pseudo-process GVs. Here, for the first time Iota shows evidence 

of the prescriptive Equivalence-Preserving GV, plugging in numbers to check whether the expression 

resulting from their distributive property computation in Q7 produces the same output as the original 

expression, at least for one value. When they see that it does not, they question their use of the 

distributive property to replace 2(𝑥𝑦) with 2𝑥2𝑦. Thus, this appears to be evidence of a process GV. 

However, their approach still draws on extracted meanings and some pseudo-process GVs: they speak 

several times about “feeling” that the distributive property is not right here or about whether the 

expression “looks like” the distributive property should be used. They do not call on their process 

GV on the other six distributive property questions, but once the interviewer asks them whether this 

would be true for those questions as well, Iota is then able to draw on their knowledge of the 

distributive property as an equivalence-preserving transformation to see that this would be relevant 

for the other questions, too. Interestingly though, those items, because of the way that they “look”, 

appear to have cued for Iota a pseudo-process rather than process GV, which would have drawn on 

their knowledge of the fact that the distributive property should be equivalence-preserving. It may be 

that Iota, and learners like them, would benefit from instruction, tasks, and assessments that focus 

more on checking and justifying calculation, and that aim to link the equivalence-preserving GV 

about properties to actual calculation procedures; future research is needed to explore this possibility.  

Pseudo-object GV 

We now present an interview with an elementary algebra student (whom we call Eta), where they 

were asked to interpret whether (2𝑥 + 1)(3𝑥 − 5) could be viewed as equal to the form (𝑎 + 𝑏)𝑐.   

 

Figure 4: Eta considering whether (𝟐𝒙 + 𝟏)(𝟑𝒙 − 𝟓) can be seen as having the form (𝒂 + 𝒃)𝒄  

Eta:  2𝑥 could be 𝑎 then the one would be 𝑏, then the 𝑐 would be 3𝑥… if 𝑐 is equal to 3𝑥 



 

 

then it would make sense…. I'm just doing it by order by the first number, second 
number, third number. Maybe that's not the best way, but that's what I was doing. 

Interviewer:  What’s being multiplied in each case [pointing to the expression]?  

Eta:  Two is being multiplied by three. Two is also being multiplied by the negative five. 
The same thing for the one, the one is being multiplied by three and then the one is 
also being multiplied by the negative five.  

We see evidence of Eta drawing on a pseudo-object GV by mapping subexpressions to variables in 

the form “in order”: mapping the “first subexpression” to the first variable, etc., without attending to 

grammatical meaning. In (2𝑥 + 5)(3𝑥 − 5), Eta initially appears not to see the second set of brackets 

(or not recognize them as indicating grouping) as they map subexpressions to the form (𝑎 + 𝑏)𝑐; 

however, further questioning reveals that Eta knows that each term in (3𝑥 − 5) will eventually be 

multiplied by each term in (2𝑥 + 1). This suggests that Eta’s pseudo-object GV of properties does 

not stem directly from a failure to recognize the syntactic role of the second set of brackets. Rather, 

there appears to be a disconnect between Eta’s syntactic meanings of expressions, and the information 

they focus on when mapping to a form. Eta does not identify the current syntactic meaning of (2𝑥 +

1)(3𝑥 − 5) as 2𝑥 + 1 and 3𝑥 − 5 being multiplied, but rather as something like 2 ⋅ 3 ⋅ 𝑥2 + 2 ⋅ −5 +

1 ⋅ 3 ⋅ 𝑥 + 1 ⋅ 5. This computational view of the syntactic meaning of (2𝑥 + 1)(3𝑥 − 5) (perceiving 

it as the result of expansion rather than its literal meaning) may obscure the structure needed to map 

this expression to the form (𝑎 + 𝑏)𝑐. Thus, a computational view of syntactic structure may be 

impacting Eta’s GV for symbolic properties. It may be that Eta, and learners like Eta, would benefit 

from instruction that explicitly highlights differences in syntactic structure of different expressions, 

and links this explicitly to form mapping—this may enable Eta to draw on existing knowledge of 

syntax, symbolic structures, and forms as objects; future research is needed to explore this.  

Object GV 

We now present an interview with an elementary algebra student (whom we call Theta), where they 

were asked to interpret whether 
2𝑥2(𝑦−1)

2
 could be viewed as equal to the form 

(𝑎𝑏)

𝑐
 (where 𝑐 ≠ 0).   

 

 

 

Figure 5: Theta mapping a multi-term expression to a variable in a form 

Theta:   I felt like D was the best option because looking at 𝑎 and 𝑏 over 𝑐 the first equation 
fit that like 𝑎 could be 2𝑥2 and 𝑏 could be 𝑦 − 1 and 𝑐 could be 2.  

Interviewer:  Did the parentheses impact your decision?  

Theta:  Yes. 

Interviewer:  How? 

Theta:  Because I saw that the 𝑦 − 1, I saw it as separate from 2𝑥2. And I know that looking 
at the second one that 𝑎 and 𝑏 in order for them to be multiplied they would most 
likely have to have parentheses around them. And I saw 𝑦 − 1 in parentheses so I 
just... looking at them all as substitutes, as soon as I saw 𝑎 and 𝑏 over 𝑐 like I was 
just putting in my head okay, 2𝑥2 is 𝑎, 𝑦 minus 1 is 𝑏, and the two is equal to 𝑐.  

Here Theta shows evidence of drawing on an object GV. They identify mathematically valid 



 

 

subexpressions in 
2𝑥2(𝑦−1)

2
, and identify which of these should map to which variable in the form to 

preserve the structure. After this excerpt, the interviewer asked Theta to identify various syntactic 

structures in the expression, and Theta was able to do so accurately without further prompting.  Theta 

also specifically talks about brackets from an object view (as a grouping mechanism rather than a cue 

to a procedure [see Wladis et al, 2022a]) because they “separate” the 2𝑥2 from the 𝑦 − 1.  This 

suggests that Theta has an object view of syntactic structure that they are able to successfully leverage 

into object view of symbolic properties, because it allows them to identify the subexpression 

structures that will produce a one-to-one mapping from the expression 
(2𝑥2)(𝑦−1)

2
 to the form 

𝑎𝑏

𝑐
 in a 

way that correctly preserves the syntactic structure. Theta specifically mentions substitution in 

discussing how the subexpressions relate to the properties form: this suggests that Theta’s notions of 

substitution and substitution equivalence may be related to their conceptions of properties (see Wladis 

et al., 2022b). Theta’s discussion of this question is unusually structural compared to other students 

in the sample (including those in algebra as well as higher-level courses such as calculus). While we 

can draw no causal conclusions based on this evidence, Theta’s responses indicate that, with explicit 

instruction, some algebra students are capable of reasoning structurally about symbolic properties. 

Theta was part of an intervention that was focused on explicitly teaching students the prescriptive 

GVs presented here (as well as others related to syntactic structure and equivalence), so this may have 

influenced their GV formation; ongoing research is underway to better explore this possibility.  

Conclusion 

In the three vignettes presented here, all three students have prior knowledge that may be productive 

when using symbolic properties to transform algebraic expressions or equations. However, in some 

cases the learners were able to draw on that prior knowledge in robust ways, and in other cases, that 

prior knowledge was not cued or viewed as relevant in the moment by the learners as they answered 

questions about how they make sense of forms and symbolic properties. It is thus important for future 

research to better understand the relationship between prior knowledge and different conceptions or 

GVs of symbolic properties as well as syntactic structure, substitution, and equivalence, since these 

different types of knowledge are all connected during algebraic transformation (Wladis et al., 2023).  
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