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K nowing how and when people interact with their surroundings is crucial for constructing dynamic 
and intelligent environments. Despite the importance of this problem, an attainable and simple 
solution is still lacking. Current solutions often require powered sensors on monitored objects or users 
themselves. Many such systems use batteries [1-3], which are costly and time consuming to replace. 

Some powered systems connect to the grid, which may save swapping batteries, but at the price of restricted 
placement options. Other solutions use passive tags on monitored objects or require no tags at all, but many  
of these systems have prohibitive characteristics. For instance, camera-based systems [4,5] generally will  
not work if their view is occluded. Many other systems that rely on passive tags or do not use tags require 
direct line-of-sight or close proximity to work. As such, our goal was to design and develop small, cheap,  
easy-to-install tags that do not require any batteries, silicon chips or discrete electronic components, which 
can be monitored without direct line-of-sight. 
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Instrumenting Mechanical “Heartbeats” 
on Everyday Objects for User Interaction 

BUILDING MechanoBeat: 
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We propose MechanoBeat, which provides a 
solution that leverages the sensing capabilities 
of ultra-wideband (UWB) radar to detect 
unique harmonic oscillations or “heartbeats” 
produced by ultra-low-cost tags. These 
tags can be mounted on various stationary 
or movable objects and are monitored 
remotely by UWB radar boxes, which sense 
when a tag is activated. We explore various 
oscillation-based tag designs that allow for 
both stationary and mobile use cases. All of 
our tags can be printed on hobbyist grade 
3D printers using various plastic filaments 
and can be adapted easily for injection 
molding. Our proposed tag designs can be 
manufactured for well below a dollar and 
require no power and minimal maintenance. 

The proposed tags can be classified 
into two categories: stationary tags and 
mobile tags. Stationary tags can be used to 
detect interactions with stationary objects, 
for instance, kitchen appliances (freezers, 
microwaves, cabinets, drawers, etc.), washing 
machines, water faucets, and so on. These 
interactions are important for creating life 
logs, smarter homes, smarter workplaces, 
and potentially facilitate ambient assisted 
living. On the other hand, mobile tags can 
be attached to pill bottles, sugar jars, water 
bottles, etc., to track individuals’ medication 
routines, sugar intake, and hydration status, 
respectively. To learn when and where tags 
are activated, we develop a deep learning 
classification pipeline, which takes radar 
data as input and outputs the tags that are 
currently active. We show empirically that 
our pipeline is robust to environmental noise 
and capable of inferring tag activity even 
when the radar is obscured. Furthermore, 
we demonstrate the versatility of our deep 
learning pipeline to detect a variety of tags  
in many potential use cases.

MechanoBeat:  
SYSTEM OVERVIEW
Design Considerations
Before explaining our technical approach,  
let us discuss a few specific design considera- 
tions that went into the development of the 
MechanoBeat tag and sensor system.

1. 	We aimed to design and develop a low 
burden mechanism for recognizing 
interactions between humans and 
everyday objects with simple, low-cost 
tags and contactless sensors. 

2. 	We required the tags to trigger a specific 
oscillation pattern with unique spectral 
characteristics at the moment of human-
object interaction for a short period. 
Moreover, a reset mechanism can mark 
the end of the interaction and allow 
differentiation between two consecutive 
interactions with the same object. 

3. 	Our goal was to make low-cost tags 
with small form factors that are scalable. 
Commodity desktop 3D printers offer 
readily scalable solutions for printing 
mechanical tags with cheap materials. 
The tags should be compatible and easily 
attachable to different everyday objects of 
interest. Lastly, the tags should be durable 
and reusable, which can provide us with 
a sustainable and a long-lasting human-
object interaction tracking solution. 

4. 	The sensing system should not require 
additional instrumentation of the user’s 
body. The system should be able to 
detect active tags during human-object 
interaction in noisy and real-world 
conditions. Most importantly, in a real-
world setting, there is no guarantee that 
a direct line-of-sight can be established 
between the sensor and the tags. Thus, 

our system should be able to have high 
accuracy even when the tags are obscured 
(non-line-of-sight scenario).

Based on these design considerations, 
we aimed to design, develop, and validate 
an approach that uses electronics-free 3D 
printable simple mechanical oscillators along 
with a UWB radar-based contactless sensor 
array. MechanoBeat leverages the P440 UWB 
radar operating at 3.1-4.8 GHz frequency 
that can see through different objects and 
detect human-object interactions happening 
behind a wooden or cardboard partition 
and even behind walls. We leverage multiple 
UWB radar units placed at different locations 
to observe human-object interactions from 
multiple points of view. The complementary 
signals are then fused to achieve better 
detection accuracy.

MechanoBeat Tag: Harmonic Oscillator
The simple harmonic oscillator designs that 
we explored in this work as MechanoBeat 
tags can broadly be classified into two types: 
stationary and mobile tags. The stationary 
tags are appropriate for tagging stationary 
objects, such as a drawer, door, or cabinet.  
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On the other hand, the mobile tags can be 
used to tag objects that move with the user, 
such as a pill bottle, water bottle, or a sugar jar.

Stationary Tags: Since the user-object 
interaction mechanism for stationary 
objects (e.g., a drawer is opened and closed 
by applying outward or inward horizontal 
force) does not change over time, simple 
oscillators including a pendulum and a 
spring-mass can be used with an easy 
mounting technique. Another advantage 
is that once these simple tags are mounted 
to a fixed location, the direction of 
gravity does not change over time. As a 
result, simple tags that are comprised of a 
pendulum or spring mass oscillator maintain 
their periodic cycles. Figure 1a shows a 
pendulum-type tag design which includes 
two arms with length 1. To tag multiple 
objects with this pendulum design, we 
need a scalable approach to design unique 
oscillation frequencies. To this end, we can 
either use a single ball option by attaching 
a weight to the lower arm and keeping the 
other arm free, or we can have a double 
ball option with weights at both arms. Both 
options offer unique oscillation frequencies.  
Table 1 illustrates examples of different 
pendulum-based tags and associated design 

parameters to produce unique frequencies in 
the range of 0.7 Hz to 3 Hz. The oscillation 
frequency is calculated as the inverse of 
the time-period found in T = 2π 1

gγ√  .The 
gravity ratio γ comes into play when we 
create a double ball tag with different arm 
lengths and can be calculated as (long — 
short)/long . This factor reduces the effect 
of gravity and increases the length of the 
period causing lower oscillation frequencies 
for tags with weights in two arms compared 
to the single ball option. Pendulum-based 
tags with both a single ball and double balls 
provide us with the opportunity to create 
distinguishable tags in a variety of oscillation 
frequencies.

Figure 1b shows another stationary tag, 
a linear spring-mass design (upside down). 
We attach a magnet to the bottom of the 
object we want to interact with (pill bottle, 
sugar jar, water bottle, etc.) and place it on 
top of the tag. The metallic ball at the center 
of three springs will be attracted to the top. 
The tag activates when the object is taken off 
the surface of the tag, causing the metal ball 
to oscillate at a unique frequency determined 
by the spring constant (k) and mass (m) of 
the ball T = 2π m

k√ . Using different springs 
with varying spring constants, we can design 
more tags for large scale use.

MOBILE TAG EXPERIMENTS
Although pendulum and spring-mass tags 
are reliable for stationary setups, they are 
not robust to mechanical disturbances, 
such as a sudden change of position or 
orientation. Thus, they are not suitable for 
mobile settings where the tagged object may 
shift its 3D location in the environment.

Our mobile tag draws great inspiration 
from a tourbillon design, which has been 
used in mechanical watches for centuries 
to maintain accuracy against drag due to 
gravity. A basic tourbillon design (Figure 2a) 
has a holding cage, a wind-up spring, and a 
core revolving structure including a balance 
wheel, a pallet fork, an escape wheel, and a 
hairspring. The balance wheel is the “beating 
heart” of the tourbillon, which is analogous 
to the pendulum or spring-mass in the 
stationary tag design. It oscillates around 
its axis and is regulated by the connected 
hairspring. The key to the tourbillon design 
is to make the balance wheel revolve around 
the central axis of the entire holding cage, 
canceling the applied gravity effect. This is 
achieved by connecting the balance wheel 
to an escape wheel via a pallet fork. While 
the balance wheel oscillates on its own axis, 
the rotational motion is transmitted to the 
escape wheel, which drives the entire core 
structure to revolve around the holding 
cage, one tick at a time. The energy of the 
constant ticking motion is from the wind-
up spring. Figure 2b shows our design, 
which integrates a printed tourbillon tag 
(based on Thingiverse Thing ID: 2751917) 

FIGURE 1. Stationary tag design: (a) Pendulum-
based tag and (b) linear spring-mass tag.

FIGURE 3. (a) P440 MRM radar module with an absorber behind the antenna.  
(b) Top view of the radar with an absorber. (c) Radar Box with Raspberry Pi and a hard disk drive. 
(d) Enclosed radar box.

FIGURE 2. Mobile tag design: (a) Tourbillon 
bottle tag explosion view and (b) assembly view.

	  	 Single Ball	 Double Ball

Version	 A	 B	 C	 D	 E	 F	 G	 H	 I	 J

Long Arm (mm)	 40	 60	 80	 28	 42	 40	 60	 80	 100	 100

Short Arm (mm)	 0	 0	 0	 0	 0	 28	 42	 56	 70	 80

Gravity Ratio (γ)	 1	 1	 1	 1	 1	 0.3	 0.3	 0.3	 0.3	 0.2

Frequency (Hz)	 2.5	 2.0	 1.8	 3.0	 2.4	 1.4	 1.1	 1.0	 0.9	 0.7

TABLE 1. Different combinations of arm lengths to generate different frequencies for the 
pendulum-based tag.

(c) (d)

(a) (b)
(a) (a)(b) (b)

T = 2π 1
gγ√

MECHANOBEAT  
LAYS THE 
FOUNDATION  
FOR DEVELOPING 
PHYSICS-INFORMED 
DESIGNS OF 
ELECTRONICS-FREE 
TAGS 
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to a threaded pill bottle lid. The tourbillon’s 
holding cage serves as the bottle lid and the 
wind-up spring can be fixed to the inner 
wall of the bottle body when the bottle lid 
is put on. When the lid is opened or closed, 
the twisting motion of the lid will wind the 
spring, driving the tourbillon to revolve. 
Note that different unique oscillation 
frequencies can be ensured by adjusting  
the balance wheel, the hairsprings, and  
the ticking steps of the escape wheel.

MechanoBeat Sensor:  
UWB Radar
MechanoBeat uses PulsON 440 (P440) 
ultra-wideband radar [6] in monostatic 
mode. The operating frequency of the 
radar ranges from 3.1 to 4.8 GHz with the 
center frequency at 4.3 GHz. Due to wide 
bandwidth and therefore extremely short 
pulse duration (nanosecond level), UWB 
radars have very high range resolutions, 
which make them appropriate for fine-grain 
sensing applications like monitoring vital 
signs and sensing harmonic oscillations. 
As shown in Figure 3a, the P440 unit has a 
transmitter and a receiver antenna. To scan 
a target living space, the transmitter antenna 
repeatedly transmits a low energy, short-
duration impulse signal, which gets reflected 
by different stationary objects (e.g., furniture 
and other static clutter), moving objects (e.g., 
MechanoBeat tags, fan), and the human 
body. The backscattered impulse signal is 
received by the receiver antenna and the 
time-of-flight (ToF) of these received pulses 
is estimated from the round-trip propagation 
delay, which is then used to calculate the 
target’s distance by multiplying with the 
speed of light. The backscattered impulse 
signal from multiple scans is stacked together 
to form a two-dimensional radargram, which 
is used to detect the oscillation of different 
active MechanoBeat tags. Figure 4 illustrates 
a sample radargram signal in the form of 
an image. The oscillating pendulum based 
MechanoBeat tag was placed at roughly one 
meter from the radar, which corresponds 
to the 55th range bin. Here, the horizontal 
axis indicates the distance or range bin 
number, also known as the fast time. Along 
the vertical axis from top to bottom, the 
scan number increases. This axis is also 
known as slow time (in seconds). The raw 
radargram signal captures reflections from 
all the objects (both moving and stationary) 

at different distances or ranges. If we observe 
closely (between the onset and the end of 
oscillation in Figure 3), we can see periodic 
changes due to the active MechanoBeat tag.

The radar antennas are omnidirectional, 
so a microwave absorbing material of 
dimension 8.5” x 4.5” x 1.13” is placed at 
the back of the antennas to attenuate the 

FIGURE 6. (a) Side view and (b) front view of the kitchen with instrumented pendulum-based tags.

range covered by the radar and the tag’s 
oscillation signal is subtle in nature, focusing 
on a window of range bins allows the subtle 
tag frequency to be preserved. Moreover, 
similar to the windowing across slow time, 
which allows the classifier to detect an active 
tag over time, the windowing across fast time 
or range allows the classifier to automatically 
locate the position of the tag. 

Modeling with Deep Learning 
Approach
As single range bin inputs have only 
one dimension, time, we adopted a one-
dimensional convolution neural network 
(1D CNN) architecture. Our 1D CNN 
model has a total of six 1D convolutional 
layers. Each layer contains 64 kernels, uses 
a ReLU activation function, and has a stride 
length of 1. The convolutional layers are split 
into two sections that are separated by a 
mean pool layer. The first section has kernels 
of length 3, 5, and 7. The mean pool layer 
has a pool size of 2 and a stride length of 2. 
The second section has kernels of length 9, 
13, and 27. After the second convolutional 
section, there is a second mean pool with 
a size of 2 and stride of 2, then a flatten 
layer followed by a fully connected layer 
with a ReLU activation function and size 
128. A final fully connected prediction 
layer consists of a softmax or sigmoid 
activation function and a size equal to 
the number of classes. We use softmax 
for all experiments except the multiple 

tag classification experiment, in which we 
use sigmoid. The loss is categorical cross 
entropy for all experiments except for 
multi-tag classification, in which the loss is 
binary cross entropy. For all experiments, 
the optimizer is Adam using the default 
parameters in TensorFlow. 

A minimal stride length is used to 
preserve as much information as possible  
in each layer. We found that 64 kernels gave 
us minimal overfitting while still providing 
low validation and test loss. In order to 
reduce further over-fitting, we introduced 
spatial dropout with a dropout rate of 0.1 
between the first and second convolutional 
layers, as well as a spatial dropout with a 
dropout rate of 0.05 between the second 
and third convolutional layers in both 
convolutional sections.

Input is a single range bin for a given 
time window of length N. The small time-
window allows the model to detect short 
lived oscillations enabling greater freedom 
in tag design and future applications. After 
the single range bin model is trained, the 
prediction layer is removed and all layers  
are frozen. At this point the model outputs 
an embedding of length 128 for each range 
bin inputted. The embedding for each range 
bin in each time window is then combined 
to get a 128 x M embedding for the entire 
time window.

The second step of our deep learning 
pipeline takes a 128 x M embedding as 
input and outputs the final tag class. For 

shaped box as shown in Figure 3b-d. The 
radar data collection program written in C is 
run on the Raspberry Pi in the background 
and stores each minute of data locally with 
corresponding timestamps.

MechanoBeat Sensing Pipeline
The sensing pipeline starts from the radargram 
data (as shown in Figure 4), which contains 
reflections from both stationary (e.g., walls,  
furniture) and moving objects (e.g., Mechano- 
Beat tags, fan, human movements) in the 
living space. Each column of the radargram 
matrix can be considered as a time series 
signal corresponding to a single range bin. 
This time domain signal contains reflection 
information from different stationary and 
moving objects at that particular range bin. 
To get rid of the stationary components 
as well as the unwanted higher frequency 
oscillation from different machines or 
appliances (e.g., fan or air-conditioner), 
we apply a bandpass IIR filter on the time 
domain signals of each range bin across 
different scan numbers or slow time. Thus, 
the filtered radargram only preserves the 
operating frequency range of the tags and 
removes all undesirable frequencies.

To train a user-object interaction 
classifier based on the tag frequency, first 
we window the radargram signal across the 
slow time or scans. Instead of using all the 
range bins, we focus on a specific window 
of range bins (i.e., focus range region). Since 
each tag is located in a small portion of the 

signals from behind the radar. The absorber 
material we used is a commercially available 
LF75   absorber, which provides attenuation 
of -20 dB for a frequency range of 2.5 GHz 
to 40 GHz. The PulsON 440 UWB radar 
unit, the absorber material, a Raspberry 
Pi unit, and a hard disk drive to store the 
data locally are placed in a 3D printed T 

(a) (b)

Cabinet Tag

Radar Box

Microwave Tag

Freezer Tag

Refrigerator Tag

Drawer Tag

FIGURE 5. Deep learning classification pipeline.

FIGURE 4. Radargram of a pendulum based MechanoBeat tag oscillation.
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FIGURE 10. Confusion matrix for the stationary kitchen tags in a NLOS scenario.

the condiment bottle is replaced in the rack, 
a magnet attached to the bottom of the bottle 
attracts the mass back to its initial position.

Each experiment started with 10 seconds 
in which no tag was active. Then the tagged 

appliances were interacted with for 10 rounds.  
Interaction with the appliances involves 
opening and closing the appliance door. 
On average, the interaction duration (time 
span between opening and closing) was 

approximately 10 seconds. We refer to each 
round of appliance interaction as a cycle, 
i.e., collecting 10 cycles of data means 
10 independent interactions with that 
appliance. We recorded the start time, end 
time, tag location, and interaction time for 
each cycle so that we have ground truth data 
for use in evaluation and training of the tag 
activation detection and classification model.

Tag Detection and Classification
We fine-tuned a 1D CNN that had been  
pre-trained on data collected from pendulum 
and spring experiments. The multi-range bin 
model was trained from scratch. In order 
to incorporate data from both radars in our 

model, we average the concatenated single 
range bin embeddings before passing them 
to the multi-range bin model. We used a 
three-second time window with a one second 
shift to convert our continuous time series 
data to discrete instances, which we provide 
to our model. For each instance, we provided 
the model with range bins starting at the 
tag location minus 50 and ending at the tag 
location plus 50.

When training the entire pipeline, we 
used leave-one-cycle-out cross-validation, 
wherein one cycle from each tag was held 
out for testing and another cycle held out 
for validation. All other cycles were used 
for training. We calculated the confusion 

matrix for each held out test cycle and 
summed all confusion matrices to get the 
results in Figure 8.

Our results show that MechanoBeat is 
able to accurately differentiate the various 
tags despite their close proximity to one 
another. Additionally, MechanoBeat could 
distinguish between no tag and tags with 
good accuracy. It is important to keep in 
mind that there is some lag between when  
a participant is instructed to start and end  
an interaction with an appliance and when 
the interaction starts and stops. As such, 
some instances that we labeled as no tag 
may have contained an active tag and vice 
versa. Thus, what is more important than 
the absolute accuracy compared with our 
ground truth is that for each instance 
MechanoBeat is able to detect the correct 
tag and shows no tag before and after the 
instance. We demonstrate this characteristic 
for a single recording in Figure 9 in which 
our system is able to infer the correct tag 
at the right moment and has instances of 
no tag between each sequence attributed 
to a tag. As the figure shows, there is 
generally a slight decrease in the probability 
of the tag towards the end of the active 
period. We attribute this to the decreasing 
displacement of the oscillating tag arm  
over time.

Through Wall Sensing
In the real world, it is not always convenient 
or possible for a radar box to have a clear 
view of a given tag. Obstructions are 
common in indoor environments and can 
include walls, furniture, and people. In order 
to show that MechanoBeat is robust to such 
occlusions, we conducted the stationary 
tag experiment in an NLOS scenario. To 
simulate a non-line-of-sight situation, we 
placed the radar boxes behind 9 inches 
of material similar to that used in home 
walls. The NLOS scenario was conducted 
in an identical fashion to the line-of-sight 
scenario except for the added material. The 
confusion matrix for the non-line-of-sight 
scenario can be seen in Figure 10. The recall, 
precision, and F1 score for both the line-of-
sight and non-line-of-sight scenarios can be 
seen in Table 2. We can see that in the NLOS 
scenario MechanoBeat performs similarly 
well to the line-of-sight scenario, which 
indicates our system is capable even when 
obstructed.

this step a simple fully connected neural 
network model is used, which we will refer 
to as the mutli-range bin model. The first 
layer in the model is a flatten layer, followed 
by three dense layers of size 128, 128, and 
64 each with a ReLU activation function. 
Between each of these layers is a dropout 
layer with a dropout rate of 0.1. The final 
layer is a prediction layer with a softmax 
activation function and a size equal to the 
number of classes. The loss for the multi-
range bin model is categorical cross entropy 
and the optimizer is Adam using the default 
parameters in TensorFlow. 

REAL WORLD DEPLOYMENT  
WITH STATIONARY TAGS
To test MechanoBeat in a real-world scenario, 
we deployed MechanoBeat tags in a kitchen 
environment. We outfitted a drawer, cabinet, 
freezer, refrigerator, microwave, and counter-
top with pendulum and spring-mass based 
tags. Each tag has a unique oscillation fre- 
quency, which was achieved by varying the 
arm length (i.e., 40, 60, 70, 80, and 100 mm) 
and spring-mass weight.

One UWB radar box was placed on the 
stove-side wall and a second radar box was 
placed on the wall opposite to the kitchen 
hallway. Both radars were placed a distance 
of at least one meter away from the closest 
tag. The location of each tag and UWB radar 
boxes can be seen in Figure 6. Figure 7a-c 
shows how each pendulum-based tag was 
attached to a given appliance, cabinet or 
drawer. Figure 7d shows a condiment storage 
rack instrumented with a spring-mass-based 
tag and a magnetic reset mechanism.

All tags were attached to a stationary 
part of their corresponding appliance. Each 
tag was activated when its application door 
was opened, or in the drawer’s case when 
the drawer was pulled out. Opening an 
application’s door releases the oscillator arm, 
thus activating the tag. After the interaction 
is over, we have a reset mechanism to stop 
the oscillation. When the cabinet/drawer is 
closed the oscillator arm is held in place by 
the door/drawer. The freezer and refrigerator 
use a secondary part called a reset arm which 
attaches to the freezer/refrigerator door. 
When the door is closed, the piece holds 
the pendulum up so it cannot swing. When 
the condiment is taken away from the rack, 
the spring-mass oscillation is activated for 
a period of time until it dies out. As soon as 

FIGURE 8. Confusion matrix for the stationary kitchen tags.

FIGURE 9. A sample recording.

FIGURE 7. The (a) cabinet, (b) microwave, and (c) refrigerator are instrumented with  
pendulum-based tags. (d) A condiment bottle is instrumented with a linear spring-mass tag.
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MOBILE TAG EXPERIMENTS
Stationary MechanoBeat tags have a wide 
range of potential uses, but they are limited 
to a static location, which may hinder some 
potential utilizations. In this section, we 
explore the design and results of a mobile 
MechanoBeat tag. We attach a mobile 
tag to a pill bottle to test one of the likely 
applications of such a tag. Tag oscillation 
is triggered when the lid of the pill bottle is 
twisted open. This oscillation can then be 
detected by the UWB radar and machine 
learning pipeline. Figure 2 shows the 
prototype mobile tag design.

In our experiment, a pill bottle tag 
is held in the participant's hand while 
walking to four different chairs located 
in various locations within a 3m x 3.5m 
space. Participants began by walking from 
a designated starting point to chair 1 while 
holding the pill bottle. While seated, the 
participant opened the pill bottle starting 
the tourbillon’s oscillation, which continued 
for approximately 10 seconds. Next, an 
activity simulating drinking water from a 
cup (available near the chair) was performed 
to create a realistic medicine intake event. 
The same protocol was maintained for the 
rest of the chairs/locations sequentially from 
chair 2 through chair 4. The entire event  
was repeated 10 times.

The MechanoBeat sensor received strong 
reflections from the moving body of the 

participant as well as the subtle motions 
from the tag’s oscillation. Leveraging two 
UWB radars placed at two adjacent walls 
in the room, we can track the movement of 
a user by applying a standard localization 
algorithm [7,8]. Figure 11 illustrates the 
motion trajectory of a person in the room 
superimposed with the locations where the 
pill bottle tag was activated. The MechanoBeat 
system is able to localize and track the user 
in the room from the starting position to 
each of the chair’s location accurately. The 
inferred trajectory also matches the ground 
truth (green dash line) well. Moreover, the 
pill bottle interactions were correctly detected 
at locations near the chair locations. Figure 12  
shows the model's probability that the 
mobile tag is active against the ground truth, 
which clearly shows the models capability to 
distinguish active tag instances from non-
active instances in the presence of moderate 
level of external body motion. By fusing 
the tag activation and location information, 
the MechanoBeat system can not only find 
when a mobile tag has been activated, but 
also its location in space.

DISCUSSION AND  
FUTURE WORK
We present MechanoBeat, a system that 
employs electronics-free tags that can be 
used to instrument everyday objects, a UWB 
radar array, and a novel sensing technique 

that leverages a 1D CNN classification 
model. We have shown that MechanoBeat 
fills a void in existing activity recognition 
and object interaction systems. Unlike 
other systems, MechanoBeat is capable of 
detecting tag activation without line-of-
sight and shows strong performance even 
with non-static tags. In addition, we have 
designed various oscillation tags that can 
be made with common and affordable 
materials. We have tested MechanoBeat in 
a kitchen environment with two radars and 
multiple tags. However, more experiments 
can be conducted to better understand 
how MechanoBeat performs in complex 
scenarios, such as environments with 
multiple people interacting with multiple 
tags. The tags were kept on their respective 
stationary appliances for a few months 
to simulate everyday use. In that period, 
the tags produced the same oscillation 
frequencies throughout. A long-term 
deployment of MechanoBeat could further 
validate our system against mechanical 
wear and tear and allow us to examine the 
durability of our system over an extended 
time frame. Such a deployment would also 
provide us with additional data, which 
could be used to train our detection model, 
further improving accuracy.

MechanoBeat lays the foundation for 
developing physics-informed designs of 
electronics-free tags. In future iterations, 

we plan to design tags by leveraging the 
material’s shape, size, and electromagnetic 
scattering properties. We aim to build a 
novel computational design framework 
that uses an electromagnetic simulator 
and evolutionary algorithm to determine 
the shape and position of 3D printed tags 
within the target object. More specifically, 
by utilizing radar-cross-sections of different 
omnidirectional corner reflectors and their 
arrangements within the target object’s 
body, optimized by genetic search, we 
can encode unique identifiers in the form 
of scattering patterns. These optimized 
physics-informed designs with the help of 
sophisticated machine learning algorithms 
can fuse dynamic back-scattered signals 
captured by multiple ultra-wideband radars 
to contactlessly identify and track user 
interactions with the electronics free tags. 
These tags can support contactless and 
unobtrusive identification, tracking, and user 
interaction detection of mobile objects to 
further facilitate assisted living. n

N.B: This article is based on the original 
article of MechanoBeat [9] by the same authors.
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FIGURE 12. Probability that the mobile tag is active over time.

	 Setting	 Recall	 Precision	 F1 Score

	Line-of-sight	 0.89	 0.91	 0.9

	Through Wall	 0.87	 0.93	 0.9

TABLE 2. The model performance in line-of-sight and non-line-
of-sight (i.e., through wall) settings. The model performance was 
measured in terms of recall, precision, and F1 score.

FIGURE 11. Movement trajectory predicted 
with the MechanoBeat system.
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