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Instrumenting Mechanical “Heartbeats”
on Everyday Objects for User Interaction

nowing how and when people interact with their surroundings is crucial for constructing dynamic

and intelligent environments. Despite the importance of this problem, an attainable and simple

solution is still lacking. Current solutions often require powered sensors on monitored objects or users

themselves. Many such systems use batteries [1-3], which are costly and time consuming to replace.
Some powered systems connect to the grid, which may save swapping batteries, but at the price of restricted
placement options. Other solutions use passive tags on monitored objects or require no tags at all, but many
of these systems have prohibitive characteristics. For instance, camera-based systems [4,5] generally will
not work if their view is occluded. Many other systems that rely on passive tags or do not use tags require
direct line-of-sight or close proximity to work. As such, our goal was to design and develop small, cheap,
easy-to-install tags that do not require any batteries, silicon chips or discrete electronic components, which
can be monitored without direct line-of-sight.
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We propose MechanoBeat, which provides a
solution that leverages the sensing capabilities
of ultra-wideband (UWB) radar to detect
unique harmonic oscillations or “heartbeats”
produced by ultra-low-cost tags. These
tags can be mounted on various stationary
or movable objects and are monitored
remotely by UWB radar boxes, which sense
when a tag is activated. We explore various
oscillation-based tag designs that allow for
both stationary and mobile use cases. All of
our tags can be printed on hobbyist grade
3D printers using various plastic filaments
and can be adapted easily for injection
molding. Our proposed tag designs can be
manufactured for well below a dollar and
require no power and minimal maintenance.
The proposed tags can be classified
into two categories: stationary tags and
mobile tags. Stationary tags can be used to
detect interactions with stationary objects,
for instance, kitchen appliances (freezers,
microwaves, cabinets, drawers, etc.), washing
machines, water faucets, and so on. These
interactions are important for creating life
logs, smarter homes, smarter workplaces,
and potentially facilitate ambient assisted
living. On the other hand, mobile tags can
be attached to pill bottles, sugar jars, water
bottles, etc., to track individuals’ medication
routines, sugar intake, and hydration status,
respectively. To learn when and where tags
are activated, we develop a deep learning
classification pipeline, which takes radar
data as input and outputs the tags that are
currently active. We show empirically that
our pipeline is robust to environmental noise
and capable of inferring tag activity even
when the radar is obscured. Furthermore,
we demonstrate the versatility of our deep
learning pipeline to detect a variety of tags
in many potential use cases.

MechanoBeat:

SYSTEM OVERVIEW

Design Considerations

Before explaining our technical approach,
let us discuss a few specific design considera-
tions that went into the development of the
MechanoBeat tag and sensor system.

1. We aimed to design and develop a low
burden mechanism for recognizing
interactions between humans and
everyday objects with simple, low-cost
tags and contactless sensors.
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FIGURE 1. Stationary tag design: (a) Pendulum-
based tag and (b) linear spring-mass tag.
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FIGURE 2. Mobile tag design: (a) Tourbillon
bottle tag explosion view and (b) assembly view.

TABLE 1. Different combinations of arm lengths to generate different frequencies for the

pendulum-based tag.

T=2n é Single Ball Double Ball
Version A B C E [F G H / J
Long Arm (mm) 40 60 80 28 42 40 60 80 100 | 100
Short Arm (mm) 0 0 0 0 28 42 56 70 80
Gravity Ratio (y) 1 1 1 1 0.3 0.3 0.3 0.3 0.2
Frequency (Hz) 25 20 1.8 3.0 24 1.4 1.1 1.0 0.9 0.7

2. We required the tags to trigger a specific
oscillation pattern with unique spectral
characteristics at the moment of human-
object interaction for a short period.
Moreover, a reset mechanism can mark
the end of the interaction and allow
differentiation between two consecutive
interactions with the same object.

3. Our goal was to make low-cost tags
with small form factors that are scalable.
Commodity desktop 3D printers offer
readily scalable solutions for printing
mechanical tags with cheap materials.
The tags should be compatible and easily
attachable to different everyday objects of
interest. Lastly, the tags should be durable
and reusable, which can provide us with
a sustainable and a long-lasting human-
object interaction tracking solution.

4. The sensing system should not require
additional instrumentation of the user’s
body. The system should be able to
detect active tags during human-object
interaction in noisy and real-world
conditions. Most importantly, in a real-
world setting, there is no guarantee that
a direct line-of-sight can be established
between the sensor and the tags. Thus,
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our system should be able to have high
accuracy even when the tags are obscured
(non-line-of-sight scenario).

Based on these design considerations,
we aimed to design, develop, and validate
an approach that uses electronics-free 3D
printable simple mechanical oscillators along
with a UWB radar-based contactless sensor
array. MechanoBeat leverages the P440 UWB
radar operating at 3.1-4.8 GHz frequency
that can see through different objects and
detect human-object interactions happening
behind a wooden or cardboard partition
and even behind walls. We leverage multiple
UWRB radar units placed at different locations
to observe human-object interactions from
multiple points of view. The complementary
signals are then fused to achieve better
detection accuracy.

MechanoBeat Tag: Harmonic Oscillator
The simple harmonic oscillator designs that
we explored in this work as MechanoBeat
tags can broadly be classified into two types:
stationary and mobile tags. The stationary
tags are appropriate for tagging stationary
objects, such as a drawer, door, or cabinet.

FIGURE 3. (a) P440 MRM radar module with an absorber behind the antenna.
(b) Top view of the radar with an absorber. (c) Radar Box with Raspberry Pi and a hard disk drive.
(d) Enclosed radar box.

On the other hand, the mobile tags can be
used to tag objects that move with the user,
such as a pill bottle, water bottle, or a sugar jar.

Stationary Tags: Since the user-object
interaction mechanism for stationary
objects (e.g., a drawer is opened and closed
by applying outward or inward horizontal
force) does not change over time, simple
oscillators including a pendulum and a
spring-mass can be used with an easy
mounting technique. Another advantage

is that once these simple tags are mounted
to a fixed location, the direction of

gravity does not change over time. As a
result, simple tags that are comprised of a
pendulum or spring mass oscillator maintain
their periodic cycles. Figure 1a shows a
pendulum-type tag design which includes
two arms with length I. To tag multiple
objects with this pendulum design, we
need a scalable approach to design unique
oscillation frequencies. To this end, we can
either use a single ball option by attaching
a weight to the lower arm and keeping the
other arm free, or we can have a double
ball option with weights at both arms. Both
options offer unique oscillation frequencies.
Table 1 illustrates examples of different
pendulum-based tags and associated design

parameters to produce unique frequencies in
the range of 0.7 Hz to 3 Hz. The oscillation
frequency is calculated as the inverse of
the time-period found in T'= 27:\/% .The
gravity ratio y comes into play when we
create a double ball tag with different arm
lengths and can be calculated as (long —
short)/long. This factor reduces the effect
of gravity and increases the length of the
period causing lower oscillation frequencies
for tags with weights in two arms compared
to the single ball option. Pendulum-based
tags with both a single ball and double balls
provide us with the opportunity to create
distinguishable tags in a variety of oscillation
frequencies.

Figure 1b shows another stationary tag,
a linear spring-mass design (upside down).
We attach a magnet to the bottom of the
object we want to interact with (pill bottle,
sugar jar, water bottle, etc.) and place it on
top of the tag. The metallic ball at the center
of three springs will be attracted to the top.
The tag activates when the object is taken off
the surface of the tag, causing the metal ball
to oscillate at a unique frequency determined
by the spring constant (k) and mass (m) of
the ball T'=2n \/% Using different springs
with varying spring constants, we can design
more tags for large scale use.
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MECHANOBEAT
LAYS THE
FOUNDATION

FOR DEVELOPING
PHYSICS-INFORMED
DESIGNS OF
ELECTRONICS-FREE
TAGS

MOBILE TAG EXPERIMENTS
Although pendulum and spring-mass tags
are reliable for stationary setups, they are
not robust to mechanical disturbances,
such as a sudden change of position or
orientation. Thus, they are not suitable for
mobile settings where the tagged object may
shift its 3D location in the environment.
Our mobile tag draws great inspiration
from a tourbillon design, which has been
used in mechanical watches for centuries
to maintain accuracy against drag due to
gravity. A basic tourbillon design (Figure 2a)
has a holding cage, a wind-up spring, and a
core revolving structure including a balance
wheel, a pallet fork, an escape wheel, and a
hairspring. The balance wheel is the “beating
heart” of the tourbillon, which is analogous
to the pendulum or spring-mass in the
stationary tag design. It oscillates around
its axis and is regulated by the connected
hairspring. The key to the tourbillon design
is to make the balance wheel revolve around
the central axis of the entire holding cage,
canceling the applied gravity effect. This is
achieved by connecting the balance wheel
to an escape wheel via a pallet fork. While
the balance wheel oscillates on its own axis,
the rotational motion is transmitted to the
escape wheel, which drives the entire core
structure to revolve around the holding
cage, one tick at a time. The energy of the
constant ticking motion is from the wind-
up spring. Figure 2b shows our design,
which integrates a printed tourbillon tag
(based on Thingiverse Thing ID: 2751917)
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to a threaded pill bottle lid. The tourbillon’s
holding cage serves as the bottle lid and the
wind-up spring can be fixed to the inner
wall of the bottle body when the bottle lid
is put on. When the lid is opened or closed,
the twisting motion of the lid will wind the
spring, driving the tourbillon to revolve.
Note that different unique oscillation
frequencies can be ensured by adjusting
the balance wheel, the hairsprings, and

the ticking steps of the escape wheel.

MechanoBeat Sensor:

UWB Radar

MechanoBeat uses PulsON 440 (P440)
ultra-wideband radar [6] in monostatic
mode. The operating frequency of the

radar ranges from 3.1 to 4.8 GHz with the
center frequency at 4.3 GHz. Due to wide
bandwidth and therefore extremely short
pulse duration (nanosecond level), UWB
radars have very high range resolutions,
which make them appropriate for fine-grain
sensing applications like monitoring vital
signs and sensing harmonic oscillations.

As shown in Figure 3a, the P440 unit has a
transmitter and a receiver antenna. To scan
a target living space, the transmitter antenna
repeatedly transmits a low energy, short-
duration impulse signal, which gets reflected
by different stationary objects (e.g., furniture
and other static clutter), moving objects (e.g.,
MechanoBeat tags, fan), and the human
body. The backscattered impulse signal is
received by the receiver antenna and the
time-of-flight (ToF) of these received pulses
is estimated from the round-trip propagation
delay, which is then used to calculate the
target’s distance by multiplying with the
speed of light. The backscattered impulse
signal from multiple scans is stacked together
to form a two-dimensional radargram, which
is used to detect the oscillation of different
active MechanoBeat tags. Figure 4 illustrates
a sample radargram signal in the form of

an image. The oscillating pendulum based
MechanoBeat tag was placed at roughly one
meter from the radar, which corresponds

to the 55th range bin. Here, the horizontal
axis indicates the distance or range bin
number, also known as the fast time. Along
the vertical axis from top to bottom, the
scan number increases. This axis is also
known as slow time (in seconds). The raw
radargram signal captures reflections from
all the objects (both moving and stationary)
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FIGURE 4. Radargram of a pendulum based MechanoBeat tag oscillation.
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FIGURE 5. Deep learning classification pipeline.

at different distances or ranges. If we observe
closely (between the onset and the end of
oscillation in Figure 3), we can see periodic
changes due to the active MechanoBeat tag.
The radar antennas are omnidirectional,
so a microwave absorbing material of
dimension 8.5"x 4.5”x 1.13" is placed at
the back of the antennas to attenuate the
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signals from behind the radar. The absorber
material we used is a commercially available
LF75 absorber, which provides attenuation
of -20 dB for a frequency range of 2.5 GHz
to 40 GHz. The PulsON 440 UWB radar
unit, the absorber material, a Raspberry

Pi unit, and a hard disk drive to store the
data locally are placed in a 3D printed T

Cabinet Tag

Radar Box \

Microwave Tag
Freezer Tag

Refrigerator Tag

Drawer Tag

[MAKERS]

FIGURE 6. (a) Side view and (b) front view of the kitchen with instrumented pendulum-based tags.

shaped box as shown in Figure 3b-d. The
radar data collection program written in C is
run on the Raspberry Pi in the background
and stores each minute of data locally with
corresponding timestamps.

MechanoBeat Sensing Pipeline

The sensing pipeline starts from the radargram
data (as shown in Figure 4), which contains
reflections from both stationary (e.g., walls,
furniture) and moving objects (e.g., Mechano-
Beat tags, fan, human movements) in the
living space. Each column of the radargram
matrix can be considered as a time series
signal corresponding to a single range bin.
This time domain signal contains reflection
information from different stationary and
moving objects at that particular range bin.
To get rid of the stationary components

as well as the unwanted higher frequency
oscillation from different machines or
appliances (e.g., fan or air-conditioner),

we apply a bandpass IIR filter on the time
domain signals of each range bin across
different scan numbers or slow time. Thus,
the filtered radargram only preserves the
operating frequency range of the tags and
removes all undesirable frequencies.

To train a user-object interaction
classifier based on the tag frequency, first
we window the radargram signal across the
slow time or scans. Instead of using all the
range bins, we focus on a specific window
of range bins (i.e., focus range region). Since
each tag is located in a small portion of the

range covered by the radar and the tag’s
oscillation signal is subtle in nature, focusing
on a window of range bins allows the subtle
tag frequency to be preserved. Moreover,
similar to the windowing across slow time,
which allows the classifier to detect an active
tag over time, the windowing across fast time
or range allows the classifier to automatically
locate the position of the tag.

Modeling with Deep Learning
Approach

As single range bin inputs have only

one dimension, time, we adopted a one-
dimensional convolution neural network
(1D CNN) architecture. Our 1D CNN
model has a total of six 1D convolutional
layers. Each layer contains 64 kernels, uses
a ReLU activation function, and has a stride
length of 1. The convolutional layers are split
into two sections that are separated by a
mean pool layer. The first section has kernels
of length 3, 5, and 7. The mean pool layer
has a pool size of 2 and a stride length of 2.
The second section has kernels of length 9,
13, and 27. After the second convolutional
section, there is a second mean pool with

a size of 2 and stride of 2, then a flatten
layer followed by a fully connected layer
with a ReLU activation function and size
128. A final fully connected prediction
layer consists of a softmax or sigmoid
activation function and a size equal to

the number of classes. We use softmax

for all experiments except the multiple

tag classification experiment, in which we
use sigmoid. The loss is categorical cross
entropy for all experiments except for
multi-tag classification, in which the loss is
binary cross entropy. For all experiments,
the optimizer is Adam using the default
parameters in TensorFlow.

A minimal stride length is used to
preserve as much information as possible
in each layer. We found that 64 kernels gave
us minimal overfitting while still providing
low validation and test loss. In order to
reduce further over-fitting, we introduced
spatial dropout with a dropout rate of 0.1
between the first and second convolutional
layers, as well as a spatial dropout with a
dropout rate of 0.05 between the second
and third convolutional layers in both
convolutional sections.

Input is a single range bin for a given
time window of length N. The small time-
window allows the model to detect short
lived oscillations enabling greater freedom
in tag design and future applications. After
the single range bin model is trained, the
prediction layer is removed and all layers
are frozen. At this point the model outputs
an embedding of length 128 for each range
bin inputted. The embedding for each range
bin in each time window is then combined
to get a 128 x M embedding for the entire
time window.

The second step of our deep learning
pipeline takes a 128 x M embedding as
input and outputs the final tag class. For
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this step a simple fully connected neural
network model is used, which we will refer
to as the mutli-range bin model. The first
layer in the model is a flatten layer, followed
by three dense layers of size 128, 128, and
64 each with a ReLU activation function.
Between each of these layers is a dropout
layer with a dropout rate of 0.1. The final
layer is a prediction layer with a softmax
activation function and a size equal to the
number of classes. The loss for the multi-
range bin model is categorical cross entropy
and the optimizer is Adam using the default
parameters in TensorFlow.

REAL WORLD DEPLOYMENT

WITH STATIONARY TAGS

To test MechanoBeat in a real-world scenario,
we deployed MechanoBeat tags in a kitchen
environment. We outfitted a drawer, cabinet,
freezer, refrigerator, microwave, and counter-
top with pendulum and spring-mass based
tags. Each tag has a unique oscillation fre-
quency, which was achieved by varying the
arm length (i.e., 40, 60, 70, 80, and 100 mm)
and spring-mass weight.

One UWB radar box was placed on the
stove-side wall and a second radar box was
placed on the wall opposite to the kitchen
hallway. Both radars were placed a distance
of at least one meter away from the closest
tag. The location of each tag and UWB radar
boxes can be seen in Figure 6. Figure 7a-c
shows how each pendulum-based tag was
attached to a given appliance, cabinet or
drawer. Figure 7d shows a condiment storage
rack instrumented with a spring-mass-based
tag and a magnetic reset mechanism.

All tags were attached to a stationary
part of their corresponding appliance. Each
tag was activated when its application door
was opened, or in the drawer’s case when
the drawer was pulled out. Opening an
application’s door releases the oscillator arm,
thus activating the tag. After the interaction
is over, we have a reset mechanism to stop
the oscillation. When the cabinet/drawer is
closed the oscillator arm is held in place by
the door/drawer. The freezer and refrigerator
use a secondary part called a reset arm which
attaches to the freezer/refrigerator door.
When the door is closed, the piece holds
the pendulum up so it cannot swing. When
the condiment is taken away from the rack,
the spring-mass oscillation is activated for
a period of time until it dies out. As soon as

(0 (d)

FIGURE 7. The (a) cabinet, (b) microwave, and (c) refrigerator are instrumented with
pendulum-based tags. (d) A condiment bottle is instrumented with a linear spring-mass tag.
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FIGURE 8. Confusion matrix for the stationary kitchen tags.

the condiment bottle is replaced in the rack,
a magnet attached to the bottom of the bottle
attracts the mass back to its initial position.
Each experiment started with 10 seconds
in which no tag was active. Then the tagged
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appliances were interacted with for 10 rounds.
Interaction with the appliances involves
opening and closing the appliance door.

On average, the interaction duration (time
span between opening and closing) was
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FIGURE 9. A sample recording.
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FIGURE 10. Confusion matrix for the stationary kitchen tags in a NLOS scenario.

approximately 10 seconds. We refer to each
round of appliance interaction as a cycle,
i.e,, collecting 10 cycles of data means

10 independent interactions with that
appliance. We recorded the start time, end
time, tag location, and interaction time for
each cycle so that we have ground truth data
for use in evaluation and training of the tag
activation detection and classification model.

Tag Detection and Classification

We fine-tuned a 1D CNN that had been
pre-trained on data collected from pendulum
and spring experiments. The multi-range bin
model was trained from scratch. In order

to incorporate data from both radars in our

model, we average the concatenated single
range bin embeddings before passing them
to the multi-range bin model. We used a
three-second time window with a one second
shift to convert our continuous time series
data to discrete instances, which we provide
to our model. For each instance, we provided
the model with range bins starting at the

tag location minus 50 and ending at the tag
location plus 50.

When training the entire pipeline, we
used leave-one-cycle-out cross-validation,
wherein one cycle from each tag was held
out for testing and another cycle held out
for validation. All other cycles were used
for training. We calculated the confusion
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matrix for each held out test cycle and
summed all confusion matrices to get the
results in Figure 8.

Our results show that MechanoBeat is
able to accurately differentiate the various
tags despite their close proximity to one
another. Additionally, MechanoBeat could
distinguish between no tag and tags with
good accuracy. It is important to keep in
mind that there is some lag between when
a participant is instructed to start and end
an interaction with an appliance and when
the interaction starts and stops. As such,
some instances that we labeled as no tag
may have contained an active tag and vice
versa. Thus, what is more important than
the absolute accuracy compared with our
ground truth is that for each instance
MechanoBeat is able to detect the correct
tag and shows no tag before and after the
instance. We demonstrate this characteristic
for a single recording in Figure 9 in which
our system is able to infer the correct tag
at the right moment and has instances of
no tag between each sequence attributed
to a tag. As the figure shows, there is
generally a slight decrease in the probability
of the tag towards the end of the active
period. We attribute this to the decreasing
displacement of the oscillating tag arm
over time.

Through Wall Sensing

In the real world, it is not always convenient
or possible for a radar box to have a clear
view of a given tag. Obstructions are
common in indoor environments and can
include walls, furniture, and people. In order
to show that MechanoBeat is robust to such
occlusions, we conducted the stationary

tag experiment in an NLOS scenario. To
simulate a non-line-of-sight situation, we
placed the radar boxes behind 9 inches

of material similar to that used in home
walls. The NLOS scenario was conducted

in an identical fashion to the line-of-sight
scenario except for the added material. The
confusion matrix for the non-line-of-sight
scenario can be seen in Figure 10. The recall,
precision, and F1 score for both the line-of-
sight and non-line-of-sight scenarios can be
seen in Table 2. We can see that in the NLOS
scenario MechanoBeat performs similarly
well to the line-of-sight scenario, which
indicates our system is capable even when
obstructed.
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MOBILE TAG EXPERIMENTS
Stationary MechanoBeat tags have a wide
range of potential uses, but they are limited
to a static location, which may hinder some
potential utilizations. In this section, we
explore the design and results of a mobile
MechanoBeat tag. We attach a mobile
tag to a pill bottle to test one of the likely
applications of such a tag. Tag oscillation
is triggered when the lid of the pill bottle is
twisted open. This oscillation can then be
detected by the UWB radar and machine
learning pipeline. Figure 2 shows the
prototype mobile tag design.

In our experiment, a pill bottle tag
is held in the participant's hand while
walking to four different chairs located
in various locations within a 3m x 3.5m
space. Participants began by walking from
a designated starting point to chair 1 while
holding the pill bottle. While seated, the
participant opened the pill bottle starting
the tourbillon’s oscillation, which continued
for approximately 10 seconds. Next, an
activity simulating drinking water from a

cup (available near the chair) was performed

to create a realistic medicine intake event.
The same protocol was maintained for the
rest of the chairs/locations sequentially from
chair 2 through chair 4. The entire event
was repeated 10 times.

The MechanoBeat sensor received strong
reflections from the moving body of the

participant as well as the subtle motions
from the tag’s oscillation. Leveraging two
UWSB radars placed at two adjacent walls

in the room, we can track the movement of
a user by applying a standard localization
algorithm [7,8]. Figure 11 illustrates the
motion trajectory of a person in the room
superimposed with the locations where the
pill bottle tag was activated. The MechanoBeat
system is able to localize and track the user
in the room from the starting position to
each of the chair’s location accurately. The
inferred trajectory also matches the ground
truth (green dash line) well. Moreover, the
pill bottle interactions were correctly detected
at locations near the chair locations. Figure 12
shows the model's probability that the

mobile tag is active against the ground truth,

which clearly shows the models capability to
distinguish active tag instances from non-
active instances in the presence of moderate
level of external body motion. By fusing

the tag activation and location information,
the MechanoBeat system can not only find
when a mobile tag has been activated, but
also its location in space.

DISCUSSION AND

FUTURE WORK

We present MechanoBeat, a system that
employs electronics-free tags that can be
used to instrument everyday objects,a UWB
radar array, and a novel sensing technique

that leverages a 1D CNN classification
model. We have shown that MechanoBeat
fills a void in existing activity recognition
and object interaction systems. Unlike
other systems, MechanoBeat is capable of
detecting tag activation without line-of-
sight and shows strong performance even
with non-static tags. In addition, we have
designed various oscillation tags that can
be made with common and affordable
materials. We have tested MechanoBeat in
a kitchen environment with two radars and
multiple tags. However, more experiments
can be conducted to better understand
how MechanoBeat performs in complex
scenarios, such as environments with
multiple people interacting with multiple
tags. The tags were kept on their respective
stationary appliances for a few months
to simulate everyday use. In that period,
the tags produced the same oscillation
frequencies throughout. A long-term
deployment of MechanoBeat could further
validate our system against mechanical
wear and tear and allow us to examine the
durability of our system over an extended
time frame. Such a deployment would also
provide us with additional data, which
could be used to train our detection model,
further improving accuracy.

MechanoBeat lays the foundation for
developing physics-informed designs of
electronics-free tags. In future iterations,

TABLE 2. The model performance in line-of-sight and non-line-
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FIGURE 11. Movement trajectory predicted
with the MechanoBeat system.

Time Windows

FIGURE 12. Probability that the mobile tag is active over time.
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we plan to design tags by leveraging the
material’s shape, size, and electromagnetic
scattering properties. We aim to build a
novel computational design framework
that uses an electromagnetic simulator

and evolutionary algorithm to determine
the shape and position of 3D printed tags
within the target object. More specifically,
by utilizing radar-cross-sections of different
omnidirectional corner reflectors and their
arrangements within the target object’s
body, optimized by genetic search, we

can encode unique identifiers in the form
of scattering patterns. These optimized
physics-informed designs with the help of
sophisticated machine learning algorithms
can fuse dynamic back-scattered signals
captured by multiple ultra-wideband radars
to contactlessly identify and track user
interactions with the electronics free tags.
These tags can support contactless and
unobtrusive identification, tracking, and user
interaction detection of mobile objects to
further facilitate assisted living. W

N.B: This article is based on the original
article of MechanoBeat [9] by the same authors.
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