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In the context of proofs, researchers have distinguished between syntactic reasoning and 

semantic reasoning; however, this distinction has not been well-explored in areas of 

mathematics education below formal proof, where student reasoning and justification are also 

important. In this paper we draw on theories of cognitive load and syntactic versus semantic 

proof-production to explicate a definition for syntactic reasoning outside the context of formal 

proof, using illustrative examples from algebra. 
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In this paper we outline a framework for analyzing student reasoning in mathematics, using 

the distinction between syntactic and semantic reasoning. This distinction has been a helpful 

framework for analyzing proof construction (Weber & Alcock, 2004) but has rarely been used as 

a framework for analyzing reasoning or justification in other mathematical domains where 

formal proof is not common. Even when syntactic reasoning is referred to directly in the context 

of proof, it is often conflated with manipulation of symbols without understanding. In this paper, 

we explicate a definition for syntactic reasoning outside the context of formal proof, presenting it 

as a form of reasoning that is distinct from rote “symbol pushing”. We then use one example 

from school algebra to illustrate: 1) how syntactic and semantic reasoning play critical and 

complementary roles in this context; 2) how leveraging syntactic reasoning can reduce cognitive 

load; and 3) how preferences for syntactic or semantic reasoning approaches may relate to prior 

knowledge and schema. Our aim is to start a conversation about the potential affordances of 

more explicitly attending to syntactic reasoning in task and curriculum design and instruction.  

Syntactic and Semantic Reasoning 

In the literature on student proof construction, a number of studies have explored syntactic 

versus semantic reasoning during proof production. Weber and Alcock (2004) define syntactic 

proof production as drawing “inferences by manipulating symbolic formulae in a logically 

permissible way” and semantic proof production as using “instantiations of mathematical 

concepts to guide the formal inferences that [the prover] draws”. In some work these categories 

are binary and assigned to a whole proof production, but in other work (e.g., Weber and Mejia-

Ramos, 2009) syntactic and semantic reasoning are conceptualized as describing different steps 

in a students’ reasoning process, where students may switch back and forth between different 

approaches; the latter is the approach we aim to take.  

We also point out two key distinctions between our definitions of syntactic reasoning and 

those that have been used in proof literature. In particular, Weber and Alcock’s (2004) definition 

of syntactic reasoning as drawing “inferences by manipulating symbolic formulae in a logically 

permissible way” is for us incomplete—we are not only interested in the result of a student’s 

calculations, but also in their reasoning1. A second key distinction is that while Alcock & Inglis 

 
1 We note that in other work, Weber (2005) distinguishes between syntactic and procedural proof production (the 

latter being based more on imitation of particular proof “templates” without necessarily understanding why they are 

valid)—this distinction is similar to, but different from our distinction between syntactic reasoning and symbolic 

manipulation that is not grounded in syntactic reasoning.   



(2008) classify reasoning as syntactic if it takes place within the “representation system of 

proof,” we discuss a context in which syntactic reasoning can occur beyond proof production, 

which we call an “abstract symbolic system.” 

Abstract Symbolic Systems 

We situate our definition of syntactic reasoning within abstract symbolic systems: self-

contained systems in which the symbolic objects are what Tall et al. (1999) describe as axiomatic 

objects, or objects that arise “from specifying criteria (axioms or definitions) from which 

properties are deduced by formal proof” (p.239). This is also related to, but more narrowly 

defined than, what Goldin (1998) termed a symbolic system—a set of conventions and implicit 

or explicit axioms for the use of mathematical symbols which is: 

1. Abstract, in the sense that it does not necessarily have any “real world” or alternative 

representations beyond what is specified by the axioms in the system.  

2. Self-contained, in the sense that one has all the tools one needs already within the 

system to be able to identify or generate equivalent objects.  

Our Definitions. Syntactic reasoning is reasoning which justifies mathematical work by 

referring back to conventions and axioms within the abstract symbolic system. Semantic 

reasoning involves justifying mathematical work by connecting it to representations or concept 

images outside the abstract symbolic system (e.g., the concept image of multiplication as area).  

Distinguishing syntactic reasoning from “symbol pushing” 

We have observed a tendency in the mathematics education community to frame syntactic 

reasoning as normatively undesirable, and semantic reasoning as normatively superior (see e.g., 

Easdown, 2009; Weber & Alcock, 2004). This is likely a reaction to approaches to teaching in 

which students are taught to manipulate symbols without connecting them to relevant underlying 

mathematical reasoning (e.g., Stacey, 2010). However, it is important to distinguish between 

syntactic reasoning versus symbolic manipulation that is disconnected from relevant logical 

reasoning.2 We contend that the former is an essential component of mathematical reasoning, 

complementary to semantic reasoning, and necessary to manage the cognitive load of 

syntactically complex tasks. In our framework, syntactic and semantic reasoning are viewed as 

two essential and complementary components of mathematical reasoning.  

For our definition of syntactic reasoning, it is not enough that a student manipulates symbols, 

even correctly—they must show evidence of reasoning within an abstract symbolic system. For 

example, a student may correctly transform with the distributive property in the following way: 

2(3𝑥 + 5) = 2 ⋅ 3𝑥 + 2 ⋅ 5. However, what reasoning this student has used is not clear from this 

work alone. Here are some examples of explanations that we would and would not consider to be 

syntactic reasoning (these examples are fictional, but have been written to mimic common forms 

of explanation that college students have provided in other empirical work): 

1. Student 1 (neither syntactic reasoning nor semantic reasoning): You take whatever 

is on the outside of the parentheses, and put it next to each thing inside the 

parentheses.  

2. Student 2 (syntactic reasoning): 2(3𝑥 + 5) has the form 𝑎(𝑏 + 𝑐) if we let 𝑎 = 2, 

𝑏 = 3𝑥 and 𝑐 = 5. We know from the distributive property that 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐, 

 
2 We use the modifier “relevant” because students who are “symbol pushing” often use complex or abstract forms of 

reasoning that are not connected to the relevant mathematical-logical justification.  



so we know that 2(3𝑥 + 5) = 2 ⋅ 3𝑥 + 2 ⋅ 5 by substituting 2, 3𝑥 and 5 into the 

correct variables in the distributive property.  

3. Student 3 (semantic reasoning): When you have two terms that are doubled, it 

doesn’t matter if you add first and then double the result or double each term 

separately. Because either way you are still doubling each individual term.  

Student 1 describes a procedure but does not draw on any conventions or axioms of the 

abstract symbolic system in their justification, so this is not considered syntactic reasoning by 

itself. Student 2, in contrast, is drawing only on conventions and axioms given in the abstract 

symbolic system to justify their work. Unlike the others, Student 3 has drawn on meanings for 

multiplication and addition that go beyond what is given in the axiomatic system; this student is 

using other definitions of addition (e.g., as combining parts or terms) and multiplication (e.g., as 

doubling) to justify their work. Some readers may prefer the semantic explanation to the 

syntactic one or vice versa. We note only that both draw on distinct forms of reasoning, and that 

each approach directs cognitive resources towards something different. The syntactic approach 

directs resources in working memory towards parsing complex syntax so that a learner can view 

complex expressions as “having the form” 𝑎(𝑏 + 𝑐). On the other hand, the semantic approach 

directs cognitive resources towards understanding why the distributive property can be derived 

from specific conceptions of addition and multiplication. However, the working memory 

resources necessary to process this semantic explanation may increase significantly as the 

subexpressions which represent 𝑎, 𝑏 and 𝑐 become progressively more syntactically complex. 

We likely do not expect students to justify the distributive property every single time that they 

use it, just as we do not expect students to semantically justify every sum or product every time 

that they calculate. Ideally, students would be able to employ both forms of reasoning when 

solving problems, switching back and forth between them strategically, in ways that both 

maximize their understanding of the underlying mathematics, and keep the cognitive load of a 

particular problem to manageable levels.  

Cognitive Load and Strategic Selective Attention 

There are several key features of cognitive load theory. Firstly, it characterizes learning as 

the process of encountering novel information, processing it in working memory, and then (to the 

extent that it is perceived as useful) encoding it in some way into long term memory (see e.g., 

Kalyuga, 2010). During this process of learning novel material, elements which are encountered 

during learning are encoded into mental schema3, which vary in size and complexity based on 

the learner’s expertise in a specific knowledge domain (de Groot, 2014; Ericsson & Kintsch, 

1995; Sweller et al., 2019). The number of elements that can be held in working memory does 

not vary for “novices” vs. “experts” in a given domain; rather, it is the complexity of the mental 

schema that make up the individual elements which varies based on a learner’s level of expertise 

in a particular area (de Groot, 2014; Ericsson & Kintsch, 1995; Sweller et al., 2019).  

Thus, during the process of problem solving, how much cognitive load a particular task 

requires will vary based on the existing mental schema of the learner. A task that is perceived to 

have a dozen elements by a “novice” might be perceived as all fitting into a single mental 

schema for an “expert” in that domain (and thus from a cognitive load perspective, would take 

up only one element of working memory for the “expert”). In addition, the information encoded 

in mental schema may be automated, so that it is no longer processed consciously. This reduces 

 
3 We note that the term “schema” is used differently in cognitive load literature and should not be conflated with 

more specific usage in mathematics education research (e.g., APOS theory [Dubinsky, 1991]).   



the cognitive load for the learner, but also removes much of the work of solving problems from 

their conscious mental awareness (Cooper & Sweller, 1987; Sweller, 2011). This may have 

consequences for both learners and instructors: for instructors who have automated particular 

complex schema, attempting to explain these processes which they no longer execute 

consciously can significantly increase their cognitive load during instruction (Lee & Kalyuga, 

2014), and also make it difficult for instructors to accurately gauge the cognitive load that a 

“novice” (who does not have these automated schema) might experience from the same problem.  

Strategic selective attention 

Because syntactic and semantic approaches can have different implications for cognitive 

load, switching back and forth between these two approaches may be one way of strategically 

managing cognitive load within a single task. This could be described by theories of selective 

attention. Selective attention is a measure of the extent to which someone is able to filter out 

irrelevant information during the problem-solving process and focus only on the aspects of the 

problem that are salient to the task at hand (Broadbent, 1958; Treisman, 1964). Research has 

established that selective attention may be a key skill in mathematical problem-solving and is 

related to students’ working memory (see e.g., Arán Filippetti & Richaud, 2016; Campos et al., 

2013). Most use of selective attention in the mathematics education literature focuses on it as a 

learner’s ability to filter out completely irrelevant information (e.g., on a one-step problem about 

red apples, ignoring information about green apples), but we focus on a related but slightly 

different aspect of selective attention, which we term strategic selective attention: a student’s 

ability to temporarily ignore information that is not relevant to the current step in solving a 

problem (but which may be relevant at another step, or to interpreting the answer, etc.). For 

example, a student may temporarily ignore concept images that are helpful for reasoning 

semantically during a problem-solving step that is focused on syntactic reasoning (or vice versa), 

in order to lower their cognitive load.  

Because strategic selective attention allows a student to temporarily ignore information that 

is not relevant to the current step, it narrows the amount of information that must be held and 

processed in working memory and can therefore be critical once mathematical problems become 

more complex. Thus, learning to work in valid ways with abstract symbolic systems by focusing 

on syntactic reasoning could be key to helping students reduce the cognitive load of many 

standard mathematics problems. To illustrate how strategic use of syntactic reasoning could help 

to reduce the cognitive load of mathematical problems, we present a few examples of how a 

standard algebra problem might be justified. We do not contend that any particular choice of 

when to reason syntactically versus semantically is right or wrong—this may vary for different 

people in different contexts.  

Illustrative Example 

As a starting point for discussion, we consider the following problem, which is a standard 

question in school algebra, typically introduced in 8th or 9th grade in the U.S.: 

Example 1. Simplify 
6𝑥2+2𝑥

2𝑥
 completely (assume 𝑥 ≠ 0). 

We have chosen this example because it is fairly accessible, but student errors are 

nonetheless quite common, often involving invalid “cancelling” procedures, for example (Malle, 

1993): 

6𝑥2 + 2𝑥

2𝑥
= 6𝑥2 



Researchers have explained this invalid form of ‘cancelling’ in a variety of ways: 

generalizing from a limited set of examples where this heuristic holds to contexts where it no 

longer holds (Matz, 1982, p.26), and attending to visual similarities and patterns on the page 

(Erlwanger, 1973; Kirshner & Awtry, 2004). We note that if a student is performing this 

cancelling approach, they are not drawing on important syntactic meanings within this abstract 

symbolic system. For example, one critical syntactic meaning is that the numerator 6𝑥2 + 2𝑥 is a 

single unified object, and cannot be partially canceled, as is done in the work above. Another 

critical syntactic meaning is that canceling represents the replacement of a single fraction of the 

form 
𝑎

𝑎
 with the equivalent expression 1 (assuming 𝑎 ≠ 0); it does not represent a 

“disappearance” of the objects being “cancelled”.  

A “semantic” reasoning approach 

We now present a semantic reasoning approach, shown in Figure 1. However, we first note that 

no approach to this problem in its current form can be 100% semantic, because at a minimum, 

syntactic reasoning is necessary to read the symbolic expression. (For example, we need to know 

that when a number is written next to a letter, it means multiplication.) Therefore, because no 

approach justifying mathematics written using symbolic representations is 100% semantic, we 

write the word semantic in quotes for this overall example.  

 
Step 1     

6𝑥2+2𝑥

2𝑥
  

 

=
6𝑥2

2𝑥
+

2𝑥

2𝑥
  

Semantic reasoning: Fractions can be thought of as parts of a whole, where the 
top number represents the number of pieces and the bottom number represents 
the size of the pieces. So, if we want to split these two subexpressions into two 
separate fractions, it will have the same meaning as long as we use the same 
denominator for both fractions, using the denominator that was in the original 
fraction.  

Step 2 =
(2𝑥)(3𝑥)

2𝑥
+

2𝑥

2𝑥
  Syntactic reasoning: Because of the generalized associative/commutative property 

of multiplication, we can perform multiplication using any order or grouping (as 
long as only multiplication is involved). So 6𝑥2 = 6 ⋅ (𝑥 ⋅ 𝑥) = (2𝑥) ⋅ (3𝑥).  

Step 3 =
2𝑥

2𝑥
⋅ (3𝑥) +

2𝑥

2𝑥
  Semantic reasoning: Dividing by a number is the same as multiplying by the 

reciprocal of that number because both dividing by 𝑐 and multiplying by 
1

𝑐
 can be 

thought of as breaking the original number up into 𝑐-many equally-sized groups, 
and then taking the size of just one of those groups.  

Syntactic reasoning: Combining this semantic reasoning with the generalized 

commutative/associative property of multiplication, we can replace 
(2𝑥)(3𝑥)

2𝑥
 with 

2𝑥

2𝑥
(3𝑥).  

Step 4 = 1 ⋅ (3𝑥) + 1  Semantic reasoning: Dividing anything by itself will always be 1, because 

everything goes into itself only once, so 
2𝑥

2𝑥
= 1 as long as 𝑥 is not zero.  

Step 5 = 3𝑥 + 1  Semantic reasoning: Multiplying anything by 1 is just like taking it one time, so it 
does not change it.  

Figure 1: Using “Semantic” Reasoning  

In Figure 1, the reader will notice the label “syntactic reasoning” for the two areas where the 

generalized commutative/associative property of multiplication is used. Students may be asked to 

justify this property semantically in specific cases, but are not expected to justify the general case 

semantically (i.e., that when multiplying any number of factors, neither the order nor the 

grouping matters). The generalized case is typically justified formally using proof by induction, 

which is by definition a syntactic justification that is not appropriate for most K-12 (or even 



college) students.  Thus, most students who use the generalized commutative/associative 

property of multiplication are using it syntactically, as a stated axiom within the abstract 

symbolic system within which they are working.   

Hidden forms of syntactic reasoning in our “semantic” example  

Embedded within each step labeled ‘semantic reasoning’ is hidden syntactic reasoning which 

is necessary in order for the semantic reasoning to be connected to the symbolic representations. 

In Figure 2, we now fill in some of that reasoning, making the implicit more explicit for Step 1.  

 
Step 1     

6𝑥2+2𝑥

2𝑥
  

=
6𝑥2

2𝑥
+

2𝑥

2𝑥
  

Syntactic reasoning: In this expression, we can treat 6𝑥2 and 2𝑥 at the top of the 
fraction and 2𝑥 at the bottom of the fraction each as a unified subexpression, because 
of the convention that the top and bottoms of fractions should be treated as unified 
subexpressions, and because according to the order of operations, exponents and 

multiplication come before addition. So, we can think of this as 
𝑎+𝑏

𝑐
 where 𝑎 represents 

6𝑥2, 𝑏 represents 2𝑥, and 𝑐 represents 2𝑥.  
Semantic reasoning: Fractions can be thought of as parts of a whole, where the top 
number represents the number of pieces and the bottom number represents the size of 
the pieces. So, addition involving two subexpressions at the top of a fraction (𝑎 + 𝑏) 
represents addition of one number of pieces of the same size from another. So, if we 
want to split these two subexpressions into two separate fractions, it will have the same 
meaning as long as we use the same denominator for both, using the denominator in 
the original fraction.  

Figure 2: First Step of Expanded “Semantic” Reasoning Example, with “Hidden” Semantic Reasoning Added 

There are several interesting things to note about the expanded example in Figure 2. Firstly, 

in each step, the semantic reasoning is dependent upon some underlying syntactic reasoning. 

Although this reasoning is hidden, it is still needed to complete the problem. Thus, many 

semantic explanations provided to students during instruction and in curriculum may actually be 

more syntactic than they seem and may hide key parts of justifications from students.  

Secondly, this explanation reads as quite long, because it combines the necessary syntactic 

reasoning with added semantic explanations which are, in a sense, justifications of the properties 

that need to be used when justifying syntactically (in a purely syntactic example these properties 

might be treated as axioms that do not require justification). Thus, there is increased cognitive 

load needed to provide both semantic and syntactic justification simultaneously. This increased 

load may be desirable in some cases and undesirable in others, depending on factors which will 

vary from one problem-solver to another, and from one instructional context to another.  

The role of cognitive load in choices to implement syntactic vs. semantic reasoning 

Many readers who are “experts” in algebra (e.g., algebra instructors, mathematicians) may 

prefer the short “semantic” justification in Figure 2 and feel that the expanded “semantic” 

justification in Figure 3 carries a higher cognitive load, because it contains significant amounts 

of “extraneous” information. For these experts, the syntactic reasoning that has been explicitly 

given and broken down in detail in the expanded explanation represents prior knowledge that 

they have already reified into unified schema and automated. Thus, unpacking this prior 

knowledge by breaking it down and making it conscious requires more cognitive effort.  

On the other hand, for a problem-solver who lacks some of these schema, or who has not 

automated them (or has automated non-normative syntactic meanings), the additional 

information given in the expanded explanation may be helpful, or even essential, to 



understanding the “semantic” example. Including these additional details may make the 

“semantic” justification accessible in a way that it was not before. This contrast between how an 

“expert” and a “novice” might experience worked examples with additional explanatory 

information is similar to patterns that have been found in the research literature, in which 

additional explanatory information improved the performance of “novices” but slowed down 

“experts” who did not need it (the “expertise reversal effect”; see e.g., Kalyuga, 2007; Kalyuga 

et al., 1998). We note, however, that the cognitive load in the expanded “semantic” justification 

is still quite high. We see this expanded “semantic” justification as a useful tool for unpacking 

many of the different kinds of knowledge that are necessary for understanding the justification of 

the short “semantic” example; it is not intended to be presented as a useful example of how this 

might be taught to students.  

We are left with the challenge of how to teach justification without overloading students’ 

working memory, even in cases where they have not yet acquired the necessary schema and 

automated syntactic knowledge to parse a short “semantic” justification. One option is to break 

down the complex network of interacting information into isolated elements which can be 

learned separately, each with a lower cognitive load individually. Studies that have employed 

this kind of approach in other contexts have shown that it can help students to learn complex 

interdependent types of knowledge which would have a too high cognitive load if learned all at 

once (see e.g., Pollock et al., 2002). Further research is necessary to determine the best methods.  

Conclusion 

In this paper we have described how syntactic reasoning could be defined for mathematical 

contexts that do not use formal proof. Our definition of syntactic reasoning is distinct from mere 

“symbol pushing.” It requires not just manipulation of symbols, but reasoning behind symbolic 

manipulation that draws on specific syntactic meanings of the abstract symbolic system in which 

the manipulations are being conducted. Thus, in our framework, semantic reasoning does not 

have to be present for productive and authentic mathematical reasoning to occur.  

We have illustrated how syntactic and semantic approaches to problems may impact the 

cognitive load of particular tasks differently, particularly with respect to the existing schema of 

the problem-solver. We deconstructed one particular algebra task in order to illustrate many of 

the hidden ways in which semantic reasoning depends on syntactic reasoning as soon as algebra 

is written symbolically. This “hidden” syntactic reasoning may relate to the difference in 

cognitive load that “experts” and “novices” experience. “Experts” may have already automated 

much of the syntactic reasoning that they use, whereas “novices” may have no awareness of the 

role that syntactic reasoning plays. “Experts” may also be unaware of their own unconscious 

automated processes, which may perpetuate implicit, rather than explicit, handling of syntactic 

reasoning in curriculum and instruction. This suggests that to maximize rich understanding and 

minimize cognitive load for all learners, more research is needed to understand how syntactic 

reasoning can best be taught to learners with varied levels of prior knowledge, and to tease out 

how students and instructors can leverage strategic selective attention to switch between 

syntactic and semantic modes of reasoning.  
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