260

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

Machine Learning-Aided Efficient Decoding of
Reed—Muller Subcodes

Mohammad Vahid Jamali™', Member, IEEE, Xiyang Liu, Ashok Vardhan Makkuva,

Hessam Mahdavifar™, Member, IEEE,

Abstract—Reed-Muller (RM) codes achieve the capacity of
general binary-input memoryless symmetric channels and are
conjectured to have a comparable performance to that of ran-
dom codes in terms of scaling laws. However, such results are
established assuming maximum-likelihood decoders for general
code parameters. Also, RM codes only admit limited sets of
rates. Efficient decoders such as successive cancellation list (SCL)
decoder and recently-introduced recursive projection-aggregation
(RPA) decoders are available for RM codes at finite lengths. In
this paper, we focus on subcodes of RM codes with flexible rates.
We first extend the RPA decoding algorithm to RM subcodes. To
lower the complexity of our decoding algorithm, referred to as
subRPA, we investigate different approaches to prune the pro-
jections. Next, we derive the soft-decision based version of our
algorithm, called soft-subRPA, that not only improves upon the
performance of subRPA but also enables a differentiable decod-
ing algorithm. Building upon the soft-subRPA algorithm, we then
provide a framework for training a machine learning (ML) model
to search for good sets of projections that minimize the decod-
ing error rate. Training our ML model enables achieving very
close to the performance of full-projection decoding with a sig-
nificantly smaller number of projections. We also show that the
choice of the projections in decoding RM subcodes matters sig-
nificantly, and our ML-aided projection pruning scheme is able
to find a good selection, i.e., with negligible performance degra-
dation compared to the full-projection case, given a reasonable
number of projections.

Index Terms—Reed-muller (RM) codes, machine learning,
low-complexity decoding, recursive projection-aggregation (RPA)
decoding, projection pruning.

Manuscript received 15 January 2023; revised 30 April 2023 and 12
June 2023; accepted 17 July 2023. Date of publication 25 July 2023; date
of current version 10 August 2023. This work was supported in part by
the National Science Foundation (NSF) under Grants under Grant CCF-
1941633, Grant CCF-2312752, Grant CNS-2002932, and Grant CCF-2312753
and in part by the Office of Naval Research (ONR) under Grant W911NF-
18-1-0332. This paper was presented in part at the IEEE International
Symposium on Information Theory (ISIT), Melbourne, Victoria, Australia,
July 2021 [DOI: 10.1109/1S1T45174.2021.9517885]. (Corresponding author:
Mohammad Vahid Jamali.)

Mohammad Vahid Jamali and Hessam Mahdavifar are with the Electrical
Engineering and Computer Science Department, University of Michigan, Ann
Arbor, MI 48109 USA (e-mail: mvjamali@umich.edu; hessam @umich.edu).

Xiyang Liu and Sewoong Oh are with the Paul G. Allen School of Computer
Science and Engineering, University of Washington, Seattle, WA 98195 USA
(e-mail: xiyangl@cs.washington.edu; sewoong @cs.washington.edu).

Ashok Vardhan Makkuva is with the School of Computer
and Communication Sciences, EPFL, 1015 Lausanne, Switzerland
(e-mail: ashok.makkuva@epfl.ch).

Pramod Viswanath is with the Department of Electrical and Computer
Engineering, Princeton University, Princeton, NJ 08540 USA (e-mail:
pramodv @princeton.edu).

Digital Object Identifier 10.1109/JSAIT.2023.3298362

Sewoong Oh™, and Pramod Viswanath

I. INTRODUCTION

EED-MULLER (RM) codes are among the first fam-
Rilies of error-correcting codes, invented almost seven
decades ago [2], [3]. They have received significant renewed
interest after the breakthrough invention of polar codes [4],
given the close connection between the two classes of codes.
The generator matrices for both RM and polar codes can
be obtained from the same square matrices — the Kronecker
powers of a 2 x 2 matrix — though by different rules for
selecting the rows. In fact, such a selection of rows for polar
codes is channel-dependent but the RM encoder picks the
rows with the largest Hamming weights, resulting in a uni-
versal construction. RM codes are also conjectured to have
characteristics similar to those of random codes in terms of
both weight enumeration [5] and scaling laws [6]. Moreover,
Reeves and Pfister have recently shown that RM codes achieve
the capacity of general binary-input memoryless symmetric
(BMS) channels [7] under the bit maximum-a-posteriori (bit-
MAP) decoding. This solves a long-standing open problem in
coding theory while leaving the problem of finding efficient
decoders for RM codes to provably achieve (or perform close
to) such an excellent performance open.

Among the earlier results on decoding RM codes [2], [8],
[9], [10], [11], [12], [13], Dumer’s recursive list decoding
algorithm [8], [9], [10] provides a trade-off between the decod-
ing complexity and the error probability. In other words, it
is capable of achieving close to the maximum likelihood
decoding performance for large enough, e.g., exponential in
blocklength, list sizes. Recently, Ye and Abbe [14] proposed
a recursive projection-aggregation (RPA) algorithm for decod-
ing RM codes. The RPA algorithm first projects the received
corrupted codeword onto its cosets. It then recursively decodes
the projected codes to, finally, construct the decoded codeword
by properly aggregating the intermediate decoding results.
Building upon the projection pruning idea in [14], a method for
reducing the complexity of the RPA algorithm has also been
explored in [15]. Moreover, a framework for encoding and
decoding RM codes based on the product of smaller RM code
components has been explored in [16], with potential appli-
cations to low-capacity channels [17]. Furthermore, building
upon the computational tree of RM (and polar) codes, a class
of neural encoders and decoders has been proposed in [18] via
deep learning methods.

Besides lacking an efficient decoder in general, the structure
of RM codes does not allow choosing a flexible rate. To clarify

2641-8770 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5007-0221
https://orcid.org/0000-0001-9021-1992
https://orcid.org/0000-0002-8975-8306

JAMALI et al.: ML-AIDED EFFICIENT DECODING OF RM SUBCODES

this, let £ and n denote the code dimension and blocklength,
respectively. Due to the underlying Kronecker product struc-
ture of RM codes, the code blocklength is a power of two,
i.e., n = 2" where m is a design parameter. Additionally, RM
codes posses another parameter r, that stands for the order of
the code, where 0 < r < m. Given the code blocklength n,
one can then only construct RM codes with m + 1 possible
values for the code rate, each corresponding to a given code
order r.

This research is inspired by the aforementioned two critical
issues of RM codes. More specifically, we target subcodes of
RM codes (with flexible rates that can take any code dimension
from 1 to n), and our primary goal is to design low-complexity
decoders for the RM subcodes. To this end, we first extend
the RPA algorithm to what we call “subRPA” in this paper.
Similar to the RPA algorithm, subRPA starts by projecting
the received corrupted codeword onto the cosets. However,
since the projected codes are no longer RM codes of lower
orders, their corresponding generator matrices have different
ranks (i.e., different code dimensions). SubRPA applies the
MAP decoder at the bottom layer, which is feasible and effi-
cient given the low dimension of the projected codes at that
layer. It then aggregates the results back to recursively decode
the received codeword.

A major focus of this work is on reducing the complex-
ity of our proposed decoding algorithms by pruning many
of redundant projections. Through exploring different projec-
tion pruning strategies, we empirically show that the choice of
projections can significantly impact the decoding performance
of RM subcodes. We first propose a method, referred to as
the minRank projection pruning scheme (incurring the low-
est decoding complexity, given a number of projections), that
is observed to deliver a very good performance in a vari-
ety of scenarios. However, our results show that there are
cases where even a random pruning scheme may outperform
the minRank selection, especially when the number of pro-
jections used for the decoding are significantly smaller than
the full number of projections. Motivated by these obser-
vations, we leverage the recent advances in channel coding
via machine/deep learning [18], [19], [20], [21], [22], [23],
[24], [25] to pick the optimal sets of projections via train-
ing a machine learning (ML) model. To this end, we first
derive the soft-decision based version of the subRPA algo-
rithm, called “soft-subRPA”, that not only improves upon the
performance of the subRPA algorithm but also provides a dif-
ferentiable version of our decoding algorithm. Enabled by our
differentiable soft-subRPA algorithm, we train an ML model
to search for the good sets of projections. We find out that
carefully training our ML model provides the possibility to
find the best sets of projections that achieve very close to the
performance of full-projection decoding with much smaller
number of projections.

We would like to highlight that our work also adds to the
rich literature on soft-decision decoding of algebraic codes,
including the celebrated work by Koetter and Vardy on soft-
decision decoding of Reed-Solomon codes [26], which is also
used for soft-decision decoding of other algebraic codes such
as Hermitian codes [27] and elliptic codes [28], as well as

261

the work by Vardy and Be’ery on soft-decision decoding
of BoseChaudhuriHocquenghem (BCH) codes [29], among
others.

Finally, besides designing efficient decoding algorithms,
we also provide some insights on encoding RM subcodes
by empirically investigating their performance. Our results
show that constructing the code generator matrix with respect
to a lower complexity for our algorithms results in a supe-
rior performance compared to a higher complexity generator
matrix. Also, our empirical results for pruning projections
mostly suggest a superior performance for the projection sets
incurring a lower decoding complexity. This together with our
observation on the encoding part unravels a two-fold gain for
our proposed algorithms: a better performance for a lower
complexity.

The rest of the paper is organized as follows. In Section II,
we provide some preliminaries on RM codes and RPA decod-
ing. In Section III, we present the subRPA and soft-subRPA
algorithms for decoding RM subcodes. We empirically inves-
tigate encoding of RM subcodes and present several ad-hoc
projection pruning schemes in Section IV. Section V is
devoted to our ML-aided projection pruning algorithm, and
Section VI concludes the paper.

II. PRELIMINARIES

In this section, we briefly review RM codes and the RPA
algorithm. The reader is referred to [14] for additional details
on the RPA algorithm.

A. RM Codes

Let £ and n denote the code dimension and blocklength,
respectively. Also, let m = log, n. The r-th order RM code
of length 2", denoted by RM(m, r), is then defined by the
following set of vectors as the basis

m(A) © AC [m], |A] <1}, ey

where [m] := {1, 2, ..., m}, |A| denotes the size of the set A,
and v, (A) is a row vector of length 2 whose components are
indexed by binary vectors z = (z1, 22, -- ., zm) € {0, 1} as

vm(A,2) =[] 2 2)
ieA
with the convention of [[; .,z := 1. It follows from (1) that
RM(m, r) has the dimension of

=3 (7).)
i=0

Given the basis in (1), the (codebook of) RM(m, r) code
is defined as the following set of binary vectors

RMm, =1 Y u(Ayn(A) : u(A) € {0, 1} VAL
AcC[m],|Al<r

4)

Therefore, considering a polynomial ring F2[Z;, Zs, ..., Zy]

of m variables, the components of v,,(A) are the evaluations of

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

262

the monomial [;. 4 Z; at points z in the vector space E := [F}'.
Moreover, each codeword ¢ = (¢(z),z € E) € RM(m,r),
that is also indexed by the binary vectors z, is defined as the
evaluations of an m-variate polynomial with degree at most r
at points z € E.

B. RPA Decoding Algorithm

The RPA algorithm is comprised of the following three main
phases.

1) Projection: The RPA algorithm starts by projecting the
received corrupted binary vector (in the case of BSC) or the
log-likelihood ratio (LLR) vector of the channel output (in the
case of general binary-input memoryless channels) onto the
subspaces of E. Considering B as a s-dimensional subspace
of E, with s < r, the quotient space E/B contains all the cosets
of B in E. Each coset 7 € E/B has the form 7 =z + B for
some z € E. Then, in the case of BSC, the projection of the
channel binary output y = (y(z),z € E) onto the cosets of B
is defined as

v =M. TeE/MB), s.t. yu=Pra. ©
zeT

where € denotes the coordinate-wise addition in F;. For the
binary-input memoryless channels the RPA algorithm works
on the projection of the channel output LLR vector /. In the
case of a one-dimensional subspace B, the projected LLR
vector can be obtained as I/ := (I;5(T), T € E/B), where

Ip(T)=1In (exp (Zl(z)) + 1) —In (Z exp(l(z))). (6)
zeT zeT

In the case of a general s-dimensional subspace B, the quotient

space E/B contains 2"~ cosets T each of size 2°. Then, one

can follow a similar approach to the proof of [14, eq. (13)]

to prove that I;g(7), for each coset 7, can be obtained
1 + CXp(l/B(']’lzzs—l) + I/B(7—1+25*1;25))

recursively as
) (7
exp(l/]}]; (7—1:2:—1)) + eXp(l/B (7-1+2s71 :2,?))

where the notation 7;; is used to denote the subset of 7~ con-
taining all the elements from index i to j. For the base case of
the recursive equation (7) one can use s = 1 to obtain (6) as
the base case. Alternatively, we can set s = 0 as the base case
with the convention of I;g(T) := I(z) for a set T containing
a single element z. In the latter case, we can derive (6) as a
special case of (7) by setting s = 1.

2) Decoding the Projected Outputs: Once the decoder
projects the channel output (y or), it starts recursively decod-
ing the projected outputs, i.e., it projects them onto new
subspaces and continues until the projected outputs corre-
spond to order-1 RM codes. The decoder then applies the fast
Hadamard transform (FHT) [30] to efficiently decode order-1
codes. By using the FHT algorithm, one can implement the
MAP decoder for the first-order RM codes with the complex-
ity O(nlogn) instead of O(n*). Once the first-order codes are
decoded, the algorithm aggregates the outputs (as explained
next) to decode the codes at a higher layer. The decoder may
also iterate the whole process, at each middle decoding step,
several times to ensure the convergence of the algorithm.

Lg(T) = ln<

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

3) Aggregation: At each layer in the decoding process (and
each node in the decoding tree), the decoder needs to aggre-
gate the output of the channel at that node with the decoding
results of the next (underneath) layer to update the channel
output. Note that the channel output at a given node can be
either the actual channel output (y or I) or the projected ones,
depending on the depth of that node in the decoding tree of
the recursive algorithm. Several aggregation algorithms are
presented in [14] for one- and two-dimensional subspaces.
We refer the reader to [14] for the details on the aggregation
methods.

III. EFFICIENT DECODING OF RM SUBCODES
A. Problem Setting

An equivalent description of the RM encoder can be
obtained through the so-called polarization matrix. Indeed, the
generator matrix of an R M (m, r) code, denoted by Ggx,,, can
be obtained by choosing rows of the following matrix that have
a Hamming weight of at least 2"~ ":

1 0]®"
annzl:l 1i| 5

where F®™ is the m-th Kronecker power of a matrix F. The
resulting generator matrix Gix, can then be partitioned into
sub-matrices as

®)

Go
G

Gixn = s
G,
G,

€))

where Gy is a length-n all-one row vector, and G is an m x n
matrix that lists all the n = 2 unique length-m binary vectors
{0, 1} as the columns. Moreover, G;, for 1 < i < r, is an
(') x n matrix whose each row is obtained by the element-
wise product of a distinct selection of i rows from G [31].
Accordingly, Gy, has exactly (':1) rows with the Hamming
weight n/2', for 0 <i <r.

As seen, the RM encoder does not allow choosing any
desired code dimension; it should be of the form k = Y_/_ (/)
for some r € {0,1,...,m}. Suppose that we want to con-
struct a subcode of RM (m, r) with a dimension k such that
ki < k < ky, where k== Y120 (") and k, == Y1y (7) for
some r € [m]. Given that the construction of RM codes corre-
sponds to picking rows of P, ., that have the highest Hamming
weights, the first k; rows of the generator matrix Gy, will
be the same as the generator matrix of the lower-order RM
code, i.e., RM(m,r — 1), that has a Hamming weight of at
least 2~"*1 1t then remains to pick extra k — k; rows from
Pyxn. These will be picked from the additional k, — k; = ()
rows in G, since they all have the same Hamming weight
of 2™7", which is the next largest Hamming weight. In a
sense, we limit our attention to RM subcodes that, roughly
speaking, sit between two RM codes of consecutive orders.
More specifically, they are subcodes of RM(m, r) and also
contain RM(m,r — 1) as a subcode, for some r € [m]. The
question is then how to choose the extra k — k; rows out of

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

JAMALI et al.: ML-AIDED EFFICIENT DECODING OF RM SUBCODES

those (") rows of weight 2"~ to construct an RM subcode
of dimension k as specified above. This important question
requires a separate follow-up work and is beyond the scope
of this paper. In the meantime, we provide some insights
regarding the encoding of RM subcodes in Section IV-A after
describing our decoding algorithms in Sections III-B and III-C
with respect to a generic generator matrix Gyix,. Our results
show that randomly selecting a subset of those rows is not
always good. Indeed, some selections are better that the oth-
ers, and also the set of good rows can depend on the underlying
decoding algorithm.

B. SubRPA Decoding Algorithm

Before delving into the description of our decoding algo-
rithms, we first need to emphasize some important facts.

Remark 1: The result of the projection operation corre-
sponds to a code with the generator matrix that is formed by
merging (i.e., binary addition of) the columns of the original
code generator matrix indexed by the cosets of the projec-
tion subspace. This is clear for the BSC model, as formulated
in (5). Additionally, for general BMS channels, the objective
is to estimate the projected codewords ¢;g(7)’s, T € E/B,
based on the channel (projected) LLRs [14]; hence, the same
principle follows for any BMS channels.

Proposition 1: Let C be a subcode of RM(m,r) with
dimension k such that k; < k < k,, where k; := Zl:(i)
and k, ==Y [, (':1) for some r € [m]. The projection of this
code onto s-dimensional subspaces of E, 1 < s < r—1, results
in subcodes of RM(m — s, r — 5). It is also possible for the
projected codes to be RM (m—s, r—s) or RM(m—s, r—1—s)
codes.

Proof: Please refer to Appendix A. |

Hereafter, for the sake of brevity, we simply say that the
projections of a subcode of RM(m,r) code onto the s-
dimensional subspaces of E are subcodes of RM (m—s, r—s);
however, we still mean the precise statement in Proposition 1.
Now, we are ready to present our decoding algorithms for
RM subcodes. Our algorithms are based on projecting onto
one-dimensional (1-D) subspaces. However, they can be gen-
eralized to the case of s-dimensional subspaces by following
a similar approach.

As schematically shown in Fig. 1, the subRPA algorithm
proceeds in a similar way to the RPA algorithm. More
precisely, it first projects the code C, that is a subcode of
RM(m, r), onto 1-D subspaces to get subcodes of RM (m—1,
r—1) at the next layer. It then recursively applies the subRPA
algorithm to decode these projected codes. Next, it aggregates
the decoding results of the next layer with the output LLRs of
the current layer (similar to [14, Algorithm 4]) to update the
LLRs. Finally, it iterates this process several times to ensure
the convergence of the algorithm, and takes the sign of the
updated LLRs to obtain the decoded codewords.

The main distinction between the subRPA and RPA algo-
rithms, however, is the decoding of the projected codes at
the bottom layer. Based on Proposition 1, after » — 1 lay-
ers of 1-D projections, the decoder ends up with subcodes of
RM(m—r+1,1) at the bottom layer. These projected codes
can have different dimensions though all are less than or equal

263

Subcode
=2m-1
......... 1-D projections

suonoafoxd (-1 Jo s10ke| T — 4

RM(m—-r+11) e o o
— Subcode

RM(m—r+11)

Subcode
Apply (soft-) MAP decoding at the bottom layer

Fig. 1. Schematic diagram of the subRPA and soft-subRPA algorithms.

to m — r 4+ 2. Therefore, the subRPA algorithm, manageably,
applies the MAP decoding at the bottom layer.

Given that the projected codewords at the bottom layer are
not all from the same code, the MAP decoding should be care-
fully performed. Based on Remark 1, the projected codes at
the bottom layer can be obtained from the so-called projected
generator matrices of dimension k x 2"~" +1 after r— 1 times
(binary) merging of the 2" columns of the original generator
matrix Gyx,. However, many of these k rows of the projected
generator matrices are linearly dependent. In fact, all of these
matrices have ranks (i.e., code dimensions) of less than or
equal to m — r + 2. In order to facilitate the MAP decoding
at the bottom layer, we can pre-compute and store the code-
book of each projected code at the bottom layer. Particularly,
let R; be the rank of the 7-th projected generator matrix G;,’)
at the bottom layer, ¢t € [T], where T is the total number of
projected codes at the bottom layer (which depends on the
number of layers as well as the number of projections per
layer). We can then pre-compute the codebook C,gt) that con-
tains the 2% length-(n/2"~!) codewords c[(f,)ii, i; € [2%], of the
t-th projected code at the bottom layer. Now, given the pro-
jected LLR vector l[(f) of length n/2"~! at the bottom layer,

we pick the codeword ",(7[)1* that maximizes the MAP rule for
BMS channels [14], i.e.,

s _ .0

Vi =€y, St i* = argmax

® ®
_ (10, 1-2¢0). 0)
ie[2F]

where (-, -) denotes the inner (dot) product of two vectors. An
efficient algorithm for computing CS) given Gé,’) is presented
in Algorithm 2 in Section III-C.

C. Soft-SubRPA Algorithm

In this section, we derive the soft-decision version of the
subRPA algorithm, referred to as soft-subRPA in this paper.
As schematically shown in Fig. 1, the soft-subRPA algorithm
obtains soft decisions at the bottom layer instead of perform-
ing hard MAP decodings; this process is called soft-MAP in

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

264

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

Algorithm 1 Soft-MAP Algorithm for the AWGN Channel
Input: The LLR vector I,; the generator matrix Gp; the
codebook Cp; and the matrix U of the information sequences
Qutput: Soft decisions (i.e., the updated LLR vector) 1

k < number of rows in G,

linf < Or > initialize l;,y as a length-k all-zero vector

C<1-2C > C is the codebook matrix (in binary)

I« lpE’T > matrix mul. of [, with the transpose of c

fori=1,2,...,kdo > obtaining inf. bits LLRs
if U(:, i) # 0 (i-th column is not frozen to 0) then

L) < max I0) — max L)
‘ 7 e(i:U(i ,i)=0} TelitUG,)=1)
8: end if

9: end for
n’ < number of columns in G,
2 lepe < 0, > initialize I. - as a length-n’ all-zero vector
Initialize I, as an all-zero vector of length n’
i L < repeat(liTnf, 1,n) > make n’ copies of liTnf
V«<LOG, > element-wise matrix multiplication
cforj=1,2,...,n do
v <— vector containing nonzero elements of V(:, j)
lenc() < [1; sign((i")) x miny [v(7)|
end for
: i < le ne
return /

A A R s

this paper. Additionally, the decoder applies a different rule to
aggregate the soft decisions obtained from the next layers with
the LLRs available at the current layer; we refer to this aggre-
gation process as soft-aggregation. The soft-subRPA algorithm
not only improves upon the performance of the subRPA but
also replaces the hard MAP decodings at the bottom layer with
a differentiable operation that, in turn, enables training an ML
model as delineated in Section V.

The soft-MAP algorithm for making soft decisions on the
projected codes at the bottom layer, that are subcodes of first-
order RM codes, is presented in Algorithm 1 for the case
of the additive white Gaussian noise (AWGN) channel. The
process is comprised of two main steps: 1) obtaining the LLRs
of the information bits, and 2) obtaining the soft decisions
(i.e., LLRs) of the coded bits using that of information bits.
Note that we invoke max-log and min-sum approximations, to
be clarified later, in Algorithm 1. For the sake of brevity, let
us drop the superscript ¢. Particularly, let R be the rank of
the projected generator matrix G, of a projected code at the
bottom layer with codebook C,. Also, assume a 2R « k matrix
U that lists all 2R length-k sequences of bits that generate the
codebook C, (through modulo-2 matrix multiplication UG),).

An efficient algorithm for computing matrix U and code-
book C,, for a given projected generator matrix G, is presented
in Algorithm 2. In Algorithm 2, gfrank(A, 2) is a function
that computes the rank of the matrix A over the binary
field. Moreover, de2bi(a : b, m) is a function that outputs
a (b —a+ 1) x m matrix whose rows are the length-m binary
representations of all the integers from a to b. The algorithm
first iterates over the rows of Gy, to find the index of the (first) R
linearly independent rows, i.e., the index of the rows forming a

Algorithm 2 Matrix U and codebook C, Finder

Input: The projected generator matrix G,
Output: Matrix U of the information sequences; and codebook

Cp of the projected code
1: k <= number of rows in G,
2: Uing < {} > initialize Uipg as an empty set
3:r<0
4 Gy] > initialize G,™> as an empty matrix
5: R < gfrank(Gy, 2)
6: 1« 1
7: while i < k and r < R do > iterate over the rows of G,
$: Add the i-th row of G, to G,
9: i<—i+1
10: if gfrank(G;,mp, 2) > r then
11: r<—r—+1
12: Add i to Uing
13: end if
14: end while
15: U < Oyry; > initialize U as an all-zero 28 x k matrix
16: U(:, Uing) < de2bi(0:2F — 1, R) > fill
out the columns in U indexed by the set Uinq with the 2R
distinct binary vectors of length R
17: C <~ UG, mod 2 > matrix multiplication over I,
18: Cp < rows of C > list all rows of C in C,
19: return U and C,

basis for G,. The algorithm stops iterating over the remaining
rows as soon as R linearly independent rows are found (i.e.,
when r = R) to avoid unnecessary work. Once the set Uijpg of
those indices is found, the 2% x k matrix U is formed by insert-
ing all distinct binary vectors of length R in the R columns of
U indexed by the set Ufi,q, and freezing the remaining k — R
columns to zero. Finally, the codebook C, is obtained by the
matrix multiplication of UG, over F>. The memory required
to store the projected generator matrices and codebooks at the
bottom layer is quantified in Appendix B.

Given that only R indices of the length-k sequences in U
contain the information bits (and the remaining bit positions
are frozen to 0), the objective of the first step of the soft-
MAP algorithm is to obtain the LLRs of the R information bits
using the available projected LLR vector I,. This can be done,
using (16) in Appendix C invoking max-log approximation,
as described in Algorithm 1. Note that the LLRs of the k — R
indices that do not carry information are set to zero.

Once the LLRs of the information bits are calculated, they
can be combined according to the columns of G, to obtain
the LLRs of the encoded bits . c. The codewords in C, are
obtained by the multiplication of UG, i.e., each j-th coded
bit, j € [1'], where 1’ is the code length, is obtained based on
the linear combination of the information bits u;’s according
to the j-th column of G,. Therefore, we can apply the well-
known min-sum approximation to calculate the LLR vector of
the coded bits as lene = (lenc(j),j € [7]), where

lenc () =]_[sign(linf (1)) X ,IQIAIJI lint (D)1, (11

i€A;

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

JAMALI et al.: ML-AIDED EFFICIENT DECODING OF RM SUBCODES

where A; is the set of indices defining the nonzero elements in
the element-wise multiplication of lj,¢ (to skip the frozen bit
positions under the formulation of this paper) with the j-th
column of G,. This process is summarized in Algorithm 1
in an efficient way. The decoder may also iterate the whole
process several times to ensure the convergence of the soft-
MAP algorithm.

Finally, given the soft decisions at the bottom layer,
the decoder needs to aggregate the decisions with the cur-
rent LLRs. In the following, we first define the “soft-
aggregation” scheme as an extension of the aggregation
method in [14, Algorithm 4] for the case of soft decisions.

Definition 1 (Soft-Aggregation): Let I be the vector of the
channel LLRs, with length n = 2™, at a given layer. Suppose
that there are Q 1-D subspaces B, g € [Q], to project this LLR
vector at the next layer (in the case of full-projection decoding,
there are n — 1 1-D subspaces, hence Q = n — 1). Also, let [,
denote the length-n/2 vector of soft decisions of the projected
LLRs according to Algorithm 1. The “soft-aggregation” of [
and l s is defined as a length-n vector 1=(dG@).z € F%)
where

Iz) = Ztanh (=
where z, is the nonzero vector of the 1-D subspace B, and
[z + B,] is the coset containing z for the projection onto IB,.

In order to observe (12), recall that the objective of the
aggregation step is to update the length-n channel LLR vector /
tol given the soft decisions of the projected codes. i ¢(z+B,D
serves as a soft estimate of the binary addition of the coded
bits at positions z and z ® z,. Hence, by following similar
arguments to [14], if that combined bit is O, then the updated
LLR at position z should take the same sign as the channel
LLR at position z&z,. Note that this happens with probability
ap = 1/[1 + exp(—iq([z + By41))]. Similarly, with probability
ar = 1/[1 + exp(,([z + B,]))] the combined bit is 1, and
hence the updated LLR at position z and I(z @z,) should have
different signs. Therefore, given a projection subspace B, one
can update the channel LLR as ag x I(z®zy) +a1 x —1(zDz,).
Taking the average over all Q projections then results in the
soft-aggregation rule in (12).

It is worth mentioning that one can also update the channel
LLR as

/2)(z D zg). (12)

) 0 I ([+Bq]) +(z62,)
1 1+4¢
h@ =35 Zln< ela([2+Bq]) 4 l(z®2,)) "

q=1
The rationale behind (13) follows by similar arguments
as above and then deriving the LLR of the sum of two
binary random variables given the LLRs of each of them.
Therefore, (13) is an exact expression assuming indepen-
dence among the involved LLR components. Our empirical
observations, however, suggest almost identical results for
either aggregation methods. Therefore, given the complexity
of computing expressions like (13), one can reliably apply our
proposed soft-aggregation method in Definition 1.
Remark 2: The subRPA and soft-subRPA decoding algo-
rithms reduce to the original RPA decoding algorithm [14]

265

and its soft version, respectively, when applied to an RM
code instead of an RM subcode (i.e., when the code dimen-
sion k, for a given m, follows Eq. (3)). The only difference
is the decoding at the bottom layer, where the FHT decoding
can then be directly applied given that all projected codes
are order-1 RM codes. Therefore, the proposed ML train-
ing approach in Section V can be readily applied to the RM
codes as well. However, we will empirically establish (see
Fig. 10) that the performance of a pruned-projection decod-
ing of an RM code is (almost) the same regardless of the
selection of the projections. Therefore, not much (if any) gain
can be expected from ML training for projection selection
in RPA decoding of RM codes, and simply a random selec-
tion of the projections may be sufficient for RPA decoding of
RM codes.

Before concluding this section, in the following proposi-
tion, we characterize the complexity of our proposed decoding
algorithms under different settings

Proposition 2: The decoding complexity of our proposed
(soft-) subRPA algorithm in decoding a subcode of an
RM(m, r) code, r > 1, is O~ 'C(m — r + 1, 1)), where
C(m', 1) stands for the complexity of decoding a subcode of an
RM(m', 1) code. Assuming (soft-) MAP at the bottom layer,
Cm —r+1,1) = O®?*/2*73), and the overall decoding
complexity simplifies to O(n'*!). The decoding complexity
reduces to O(n?) for pruned-projection decoding with factor
B = O(1/n). The overall complexity further reduces to O(n)
if 28 = O(1), Vt € [T], in addition to B = O(1/n), where
R, stands for the rank of the #-th projected generator matrix at
the bottom layer.

Proof: Please refer to Appendix D. |

IV. ENCODING INSIGHTS AND AD-HOC
PROJECTION PRUNING

A. Encoding Insights

Although the main objective of this paper is to develop low-
complexity schemes for decoding RM subcodes, meanwhile,
in this subsection, we provide some insights on how the design
of the encoder can affect the decoding complexity as well as
the performance. Throughout the paper, we define the signal-
to-noise ratio (SNR) as SNR := 1/ (202) and the energy-per-
bit Ej; to the noise ratio as Ep/Ny = n/(2k02), where o2 is
the noise variance. Additionally, the number of outer iterations
for our recursive algorithms is set to Npmax = 3 to ensure
the convergence of the algorithms. In this section, we mainly
present the results for relatively short RM subcodes in order to
have the ability to obtain the MAP decoding performance for
additional insights and comparison. In Section V, we present
the results for relatively larger RM subcodes.

First, in order to further highlight the efficiency of RM sub-
codes, in Fig. 2, we compare the block error rate (BLER)
performance of RM subcodes with the performance of time-
sharing (TS) between RM codes under the optimal MAP
decoding. We consider two RM subcodes with parameters
(n, k) = (64, 14) and (64, 18). The generator matrix construc-
tion for these codes is based on having the largest ranks for
the projected generator matrices (i.e., Gmax) Which will be

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

266
10! E
=
=
—
fa
o 1072 e
g
<
= .
8 N
> O
103 [—RM(6,2), MAP e \':k\\(\ |
8 — — RM(6,2), RPA, full-projection ~ NS NS
= —0- (64,14) RM subcode, MAP e | N
—o~ (64,18) RM subcode, MAP RS \\ *J
— % - Rate 14/64 with time-sharing N
10~ % L |—»- Rate 18/64 with time-sharing \q \
s \ \ \ \ s s s) L
-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1
Signal-to-noise ratio (SNR) [dB|
Fig. 2. Simulation results for the BLER of various codes under the MAP

decoding. The comparison with the time-sharing scheme between RM (6, 1)
and RM(6, 2) to achieve the same rates 14/64 and 18/64 is also included.

clarified at the end of this subsection. The TS performance
is obtained by assuming that the transmitter employs an
RM(6,2) encoder in « fraction of time and an RM(6, 1)
encoder in the remaining (1 — «) fraction. In this experiment,
we set « = 7/15 and 11/15 to achieve the same code rates
of 14/64 and 18/64, respectively, as the RM subcodes. It is
observed that the RM subcodes with the rates 14/64 and 18/64
achieve more than 1 dB and 0.4 dB gains, respectively, com-
pared to the TS counterparts. Also, the performance of the
RM subcode with rate 18/64 is almost 0.2 dB better than the
performance of the lower rate code with TS. Note that all
the simulation results in this paper are obtained from more
than 10° trials of random codewords (except RM(6, 2) under
the MAP decoding that has 10* trails).

As discussed earlier, our decoding algorithms perform the
MAP or soft-MAP decoding at the bottom layer. Also, the
dimension of the projected codes at the bottom layer (i.e.,
the rank of the projected generator matrices) can be different.
This is in contrast to the RM codes that always result in the
same dimension for the projected codes at the bottom layer.
Therefore, an immediate approach for encoding RM subcodes
to achieve a lower decoding complexity is to construct the
code generator matrix such that the projected codes at the
bottom layer have smaller dimensions, and thus the decodings
at the bottom layer have lower complexities. In other words,
let L == Z;T=1 2R represent a rough evaluation of the decoding
complexity at the bottom layer, i.e., the decoding complexity
at the bottom layer is roughly a constant times L. Then, among
all (’Z’__]S’) possible selections of the generator matrix Ggx,, we
can choose the ones that achieve a smaller L. This encoding
scheme leads to reduction in the decoding complexity of our
algorithms but it can also affect the performance.

In order to investigate the effect of the aforementioned
encoding methodology, in Fig. 3, we consider four different
selections of the generator matrix for the (64, 14) RM subcode.
In particular, Gpax and Gpaxo have the first and second largest
values of L = 2568 and 2532, respectively, among all possible
selections, while G, having the minimum value of L = 1482.
Also, Gpip,15 has the minimum value of Zt 2R =108 on 15
projections but a relatively large value of L = 2412 on all 63

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

107!

A

—
(=]
o
T

MAP; Guin
— — MAP, Guin1s
—-—- MAP, Guax
e MAP, Ginax

SubRPA, full-proj., Gy,
—B~ SubRPA, full-proj., Guin1s ‘§~\ N\
—{-- SubRPA, full-proj., Guax2 AEN
- %+ SUbRPA, full-proj., Gax s ~\\ ?

I i I | | |

Block error rate (BLER)
G

10744

2 2.5 3 3.5 4

Ey/Ny [dB]

Fig. 3. Simulation results for the (64, 14) RM subcodes under the MAP
and subRPA decoding given four different selections of the generator matrix
Gixn-

projections. Fig. 3 suggests a slightly better performance under
the MAP decoder for larger values of L. However, surpris-
ingly, our decoding algorithm exhibits a completely opposite
behavior, i.e., a better performance is achieved for our subRPA
algorithm with smaller values of L. This is then a two-fold
gain: a better performance for an encoding scheme that results
in a lower complexity for our decoding algorithm. We did
extensive sets of experiments which all confirm this empirical
observation. However, still, further investigation is needed to
precisely characterize the performance-complexity trade-off as
a result of the encoding process.

B. Ad-Hoc Projection Pruning

One direction for reducing the complexity of our decod-
ing algorithms is to prune the number of projections at each
layer. Particularly, let us assume that, at each layer and node
in the decoding tree, the complexity of decoding each branch
(that corresponds to a given projection) is the same. This
is not precisely true given that the projected codes at the
bottom layer may have different dimensions. Now, assuming
the complexity of the aggregations performed at each layer
is the same, pruning the number of projections by a factor
B € (0,1) is roughly equivalent to reducing the complexity
by a factor of B at each layer. In other words, if we have
a subcode of RM(m, r), then there are r — 1 layers in the
decoding tree and hence, the projection pruning exponentially
reduces the decoding complexity by a factor of g"~!. This is
essential to make the decoding of higher order RM subcodes
practical. One can also opt to choose a constant number of
projections per layer (i.e., prune the number of projections at
upper layers with smaller B°s) to avoid high-degree polynomial
complexities.

Given that the projected codes at the bottom layer can
have different dimensions (in contrast to RM codes), the pro-
jection subspaces should be carefully selected to reduce the
complexity without having a notable effect on the decod-
ing performance. Our empirical results show that the choice
of the sets of projections can significantly affect the decod-
ing performance of RM subcodes. To see this, in Fig. 4, we

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

JAMALI et al.: ML-AIDED EFFICIENT DECODING OF RM SUBCODES

x1073

w oo

—+—-MAP

—— SubRPA, full-proj.

L — =—- Soft-subRPA, full-proj.

—z— SubRPA, 15 projs., maxRank

—a— SubRPA, 15 projs., minRank
SubRPA, 15 projs., ML training

104 | —v— Soft-subRPA, 15 projs., maxRank

..o+ Soft-subRPA, 15 projs., minRank
Soft-subRPA, 15 projs., ML training

I

Block error rate (BLER)

0 1 2 3 4 5 6
E[,/N[] [dB]

Fig. 4. Performance of subRPA and soft-subRPA under full-projection decod-
ing as well as different projection pruning schemes, i.e., picking according to
the minimum ranks, maximum ranks, and training a machine learning model.
The generator matrix Gpp, 15 is considered for the encoding process of a
(64, 14) RM subcode.

consider the generator matrix Gpin 15 for encoding a (64, 14)
RM subcode. In addition to full-projection decoding (i.e., 63
1-D subspaces), we also evaluate the performance of subRPA
and soft-subRPA with 15 projections picked according to three
different projection pruning schemes.

First, we consider a subset of 15 subspaces that results in
maximum ranks for the projected generator matrices at the
bottom layer. In this setting, denoted by “maxRank” in Fig. 4,
all the 15 projections result in the same rank of 6. It is observed
that this selection of the projections significantly degrades the
performance (almost 1 dB gap with full-projection decoding).
Our extensive simulation results with other generator matrices
and code parameters also confirm the same observation that,
although it requires a higher complexity for the MAP or soft-
MAP decoding of the projected codes at the bottom layer,
the maxRank selection fails to achieve a good performance
compared to the other considered projection pruning schemes.

Next, we consider the other extreme of projection selection,
i.e., we select 15 subspaces that result in minimum ranks for
the projected codewords. This proposed method for the selec-
tion of projections is referred to as the “minRank” scheme
in this paper. In this case, three of the ranks are equal to
2 and the remaining are equal to 3. Therefore, the decoder
in this case can perform the MAP and soft-MAP decodings
at the bottom layer almost 9 times faster than the maxRank
selection (note that L = 108 and 960 for the minRank and
maxRank selections, respectively). Surprisingly, despite its
lower complexity compared to the maxRank selection, the
minRank selection is capable of achieving very close to the
performance of the full-projection decoding (= 0.1 dB gap
in the case of both the subRPA and soft-subRPA decoding).
Our additional simulation results — some of which presented in
Section V — mostly confirm the same observation and suggest
a promising performance for the minRank projection pruning
scheme or schemes that result in relatively low L’s (if not the
minimum L).

Even though the minRank selection scheme is capable of
achieving very close to the performance of full-projection

267

decoding, one cannot guarantee that it is the best selection in
terms of minimizing the decoding error rate. In practice, we
may want to prune most of projections per layer to allow effi-
cient decoding at higher rates (equivalently, higher order RM
subcodes) with a manageable complexity. In such scenarios,
we may, inevitably, have a meaningful gap with full-projection
decoding, more than what we observed here for minRank
selection (i.e., &~ 0.1 dB). Therefore, one needs to ensure that
the sets of the selected projections are the ones that mini-
mize the decoding error rate, i.e., the gap to the full-projection
decoding. As we will show in Section V, there are scenarios
where the performance of the minRank selection significantly
diverges from that of the full-projection decoding performance,
and it may even perform worse than a random selection of
the projections. The failure of the ad-hoc projection pruning
schemes in guaranteeing a good performance is the major
motivation behind our ML-aided projection pruning scheme
presented in the next section.

In the next section, we shed light on how the proposed soft-
subRPA algorithm enables training an ML model to search
for the optimal set of projections. This will then establish
the fact that the combination of our soft-subRPA decoding
algorithm with our ML-aided projection pruning framework
enables efficient decoding (in terms of both decoding error
rate and complexity) of RM subcodes. To see the potentials
of this scheme, in Fig. 4 the results of our decoding algorithms
with 15 projections picked by training our ML model are also
included. It is observed that the trained model also has the
tendency to pick projections that result in smaller ranks for
the projected generator matrices, i.e., 3 rank-2, 6 rank-3, and
6 rank-4 projections are picked by the ML model (resulting
in L = 156). Fig. 4 demonstrates identical performance to
full-projection decoding, for both subRPA and soft-subRPA
algorithms, which is the best one can hope for with the
pruned-projection decoding. Additionally, it is observed that
the soft-subRPA algorithm can improve upon the performance
of the subRPA algorithm by almost 0.1 dB.

V. ML-AIDED PROJECTION PRUNING

As mentioned earlier, the goal is to train an ML model to
find the best subset of projections. To do so, as schematically
shown in Fig. 1, we assign a weight metric w, to each g-th
projection such that w, € [0, 1] and Z§=1 wy = 1, where Q
is the number of full projections for a given (projected) code
in the decoding process. The objective is then to train an ML
model to pick a subset of Qg projections (i.e., prune the num-
ber of projections by a factor 8§ = Qp/Q) that minimize the
training loss. Building upon the success of stochastic gradi-
ent descent methods in training complex models, we want to
use gradients for this search. In other words, the ML model
updates the weight vector w := (wy, g € [Q]) such that pick-
ing the Qo projections corresponding to the largest weights
results in the best performance.

There are two major challenges in training the afore-
mentioned ML model. First, the MAP decoding that needs
to be performed at the bottom layer (see (10)) is not
differentiable since it involves the argmax(-) operation which

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

268

Batch of noisy

. codewords ¥
Batch of input

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

Soft-subRPA decoding with weighted aggregation

Channel

X

ML Model

BCE Loss |
L (W)= 1(X, X))
[}

______ o

| Backpropagation
+

1
— —
1

Optimizer
(update weights)

Fig. 5. The training procedure of the proposed ML-aided projection pruning

is not a continuous function. Therefore, one cannot apply
the gradient-based training methods to our subRPA algorithm.
However, the proposed soft-subRPA algorithm overcomes this
issue by replacing the non-differentiable MAP decoder at the
bottom layer with the differentiable soft-MAP decoder.! The
second issue is that the combinatorial selection of Qg largest
elements of the vector w is not differentiable. To address
this issue, we apply the SOFT (Scalable Optimal transport-
based diFferenTiable) top-k operator, proposed very recently
in [32], to obtain a smoothed approximation of the top-k oper-
ator whose gradients can be efficiently approximated. It is
worth mentioning that the SOFT top-k function is a gener-
alization of the soft-max function, which is a soft version of
the argmax function. In other words, the SOFT top-k function
can be viewed as a soft version of the top-k function.

The training procedure is schematically shown in Fig. 5,
and is briefly explained next. We use the PyTorch library of
Python to first implement our soft-subRPA decoding algorithm
in a fully differentiable way for the purpose of the gradient-
based training.We initialize the weight vector as wp
1/0,...,1/0), i.e., equal weights for all the projections.
For each training iteration, we randomly generate a batch of
B codewords of the RM subcode, and compute their corre-
sponding LLR vectors given a carefully chosen training SNR.
Then we input these LLR vectors to the soft-subRPA decoder
to obtain the soft decisions at each layer. During the soft-
aggregation step, instead of unweighted averaging of (12), the
weighted averages of the soft decisions at all Q projections
are computed as

Q
i) =Y wytanh (Iy([z+B,))/2l(z ®2). (14)
q=1

Note that the soft-MAP algorithm involves max(-) function which, unlike
argmax(-), is a continuous function. Also, the derivative of the function
max(0, x) is defined everywhere except in x = 0 which is a rare event to
happen. Accordingly, advanced training tools, such as PyTorch library (that is
used in this research), easily handle and treat max(-) as a differentiable func-
tion. For example, the rectified linear unit function ReLU(x) := max(0, x) is
a widely used activation function in neural networks.

Batch of decoded
codewords X

scheme for decoding RM subcodes.

Ideally, the top-k operator should return nonzero weights
only for the top Qg elements. However, due to the smoothed
SOFT top-k operator, all Q elements of w may get nonzero
weights though the major accumulation of weights will be
on the largest Qp elements once the training is completed.
Therefore, the above weighted average is approximately equal
to the weighted average over the largest Qg weights (i.e., (14)
represents a proper approximation of the aggregation in the
case of the pruned-projection decoding). Note that we apply
the same procedure for all (projected) RM subcodes at each
node and layer of the recursive decoding algorithm while we
define different weight vectors (and possibly different Qg’s)
for each sets of projections corresponding to each (projected)
codes. We also consider fixed weight vectors for decoding all
B codewords at each iteration.

Once the soft decoding of the codewords are obtained, the
ML model updates all weight vectors at each iteration to iter-
atively minimize the training loss. To do so, we apply the
“Adam” optimization algorithm [33] to minimize the train-
ing loss while using “BCEWithLogitsLoss” [34] as the loss
function, which efficiently combines a sigmoid layer with
the binary cross-entropy (BCE) loss. By computing the loss
between the true labels from the generated codewords and the
predicted LLRs from the decoder output, the optimizer then
moves one step forward by updating the model, i.e., the weight
vectors.

Finally, once the model converges after enough number of
iterations, we save the weight vectors to perform optimal pro-
jection pruning. Note that in order to reduce the decoding
complexity and the overload of training process, we only train
the model for a given, properly chosen, training SNR. In other
words, once the training is completed, we fix the decoder by
picking only the subsets of projections according to the largest
values of the weight vectors. We then test the performance of
our algorithms given the fixed decoder (i.e., the fixed subsets
of projections) for all codewords and across all SNR points.
One can apply the same procedure to train the model for each
SNR point, or even actively for each LLR vector, to possibly

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

JAMALI et al.: ML-AIDED EFFICIENT DECODING OF RM SUBCODES

Soft-subRPA with
10-1 L several random selections
E of 15 projections
=
=
ST 4
o
=
IS
-
21001 .
5}
o
3}
2 N\
M o) [-5—MAP i
—#— Soft-subRPA, full-projection decoding
—G~ Soft-subRPA, 15 projs., ML training
Soft-subRPA, 15 projs., random selection
10°° I I I I I ®
0 1 2 3 4 5 6
E,/Ny [dB]

Fig. 6. Performance comparison of the MAP decoder with full- and pruned-
projection soft-subRPA decoding for a (64, 14) RM subcode encoded using
the generator matrix Gyip,15. The performance of the ML-aided projection
pruning is also compared to several random selections of projections.

improve upon the performance of our fixed projection pruning
scheme at the expense of increased model complexity and
training overload.

The training SNR, which will be used to generate
noisy codewords as training data, is an important hyper-
parameter that needs to be carefully chosen to ensure a good
performance. In the context of training models for channel
coding, it is conventional to consider a smaller training SNR
for the decoder training schedule compared to the encoder
training schedule, as the former is often a more challenging
task than the latter. It is also possible to consider a range of
training SNR to further help the single trained model to gen-
eralize and perform well across a wide range of SNR during
the inference phase (see, e.g., [35] for a thorough empiri-
cal investigation on how the training SNR affects the training
performance of channel encoders and decoders). In this paper,
we use a single SNR point (not a range) for training the model
to prune the decoding projections. We use the result of the full-
projection pruning as a benchmark to select the training SNR
point (by considering the pruning effect). Specifically, if the
full-projection pruning requires y dB to achieve the BLER of
1073, we pick the training SNR as y + ¢ dB, for some posi-
tive offset € that needs to be adjusted according to the pruning
factor (i.e., € is larger if a larger fraction of projections are
pruned). Note that this heuristic approach is to pick a start-
ing training SNR, and the final training SNR may need to be
adjusted by further hyper-parameter tuning.

Fig. 6 demonstrates the potentials of our ML-aided soft
decoding algorithm, i.e., soft-subRPA with ML-aided pro-
jection pruning, in efficiently decoding RM subcodes. In
this experiment, Gmin,15 is used to encode a (64, 14) RM
subcode.” It is observed that our ML-based projection pruning

2We should emphasize that the proposed decoding algorithms and the ML-
aided projection pruning scheme are presented in general forms and are not
restricted to low rates and lengths. While decoding a higher-order RM sub-
code requires a higher complexity, the ML-aided pruning scheme reduces
the complexity by a factor of B” -1 ensuring the best decoding performance
given a pruning factor. In our numerical experiments, we focus on subcodes
of order-2 RM codes that correspond to relatively small code dimensions (i.e.,
low rates). This should not be interpreted as a limitation of our schemes.

269
& o
% &
1019 1
=
=
—2
a 10 E
[}
=
=
2 10-3 ~.
g 10 g‘\ E
() ’\
4 X
= N N
B 10~ L[——MAP ® b -
—¥— Full-projection decoding N,
—O~ ML training, P=7 \ L
— - MinRank, P=7 \
10—° I I I Xy \J I
1 2 3 4 5 6 7
E,/Ny [dB]
Fig. 7. Performance comparison of the MAP decoder with the soft-subRPA

decoding for a (64, 14) RM subcode encoded using the generator matrix G-
Full-projection decoding and pruning with P = 7 projections are considered.

scheme, with only 15 projections, is able to achieve an
almost identical performance to that of the full-projection
soft-subRPA decoding with 63 projections. This is equiva-
lent to reducing the complexity by a factor of more than 4
without sacrificing the performance. Our low-complexity ML-
based pruned-projection decoding has then only about 0.25 dB
gap with the performance of the MAP decoding. For com-
parison, the performance of the pruned-projection decoding
under several random selections of 15 projections is also pro-
vided. As seen, the choice of the projections can significantly
impact the decoding performance of RM subcodes, and ran-
domly selecting the subsets of projections cannot guarantee a
competitive performance.

Fig. 7 presents the performance of a (64, 14) RM subcode
encoded using the generator matrix Gpj,. Pruned-projection
soft-subRPA decoding with very small number of projec-
tions, i.e., P = 7, is considered. The ML-aided projection-
pruned decoding, with 9 times smaller number of projec-
tions, is observed to have less than 0.4 dB gap with the
full-projection decoding. However, the minRank selection sig-
nificantly degrades the performance, resulting in more than
1 dB gap with the ML-aided pruning scheme at the BLER
of 10~*. To train the ML model in Fig. 7, Qo was set to
5 during the training phase but P = 7 projections cor-
responding to the largest 7 weights were selected for the
testing. The rationale behind this selection was that nearly
20% of the weights were distributed outside the largest 5
weights (due to the SOFT top-k function), as the sorted
weight vector after training was wgoreq = [0.2012, 0.1781,
0.1519, 0.1444, 0.1279, 0.1277, 0.0689, 0.0000, ..., 0.0000].
Out of 63 projected generator matrices of Gp;p, there are 1
with rank 1, 2 with rank 2, 28 with rank 4, and 32 with
rank 5. Therefore, the projections picked by the minRank
selection scheme result in the set of ranks {1, 2,2, 4,4, 4, 4}.
The ML-based selection scheme, however, is observed to
pick projections that result in the set {2,4,4,4,4,4,4}
of ranks, implying that some useful information may be
lost if the decoder just picks the projections corresponding
to minimum ranks (and thus some higher-rank projections

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

270

101N 1
=
= .
= 1072]
g
2
]
—
51078 J
=
()
24
o
=]
m 104 L |—9—MAP
—%— Full-projection
—G~ ML training, P=12
— - MinRank, P=12
10-° I I I I I I I X7
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
E,/Ny [dB]

Fig. 8. Performance of the full- and pruned-projection (P = 12 projections)
soft-subRPA decoding of a (64, 14) RM subcode encoded using Gyjp-

are needed) when a significant fraction of projections are
pruned.’

Fig. 8 shows the performance of a (64,14) RM sub-
code, encoded using Gpin, under the MAP and soft-subRPA
decoding. The ML training was performed under Qg = 7
projections. However, since there were 12 projections with
much larger weights, P = 12 projections are considered for
the testing plots of the pruned-projection decodings in Fig. 8.
It is observed that both the minRank and ML-aided prun-
ing schemes achieve very close to the performance of the
full-projection decoding, with the ML-aided scheme slightly
improving upon the minRank selection at higher SNRs (note
that 5 x 103 codewords were used to simulate the performance
at each SNR point). In terms of the rank statistics, it is
observed that both selection schemes pick the projections that
result in the minimum ranks, i.e., 1 rank-1, 2 rank-2, and 9
rank-4 projections are picked by both schemes. However, the
set of the selected projections are still different, as the two
schemes only have 6 projections in common, out of the total
12 projections. In this case, we can think of the ML model
breaking ties among the projections that result in the same
rank.

Note that the parameter Qo is in general a hyper-parameter
that needs to be tuned during the training. However, our
experiments show that it is not very sensitive, i.e., a model
trained for a given Qp may work well for different values of
P (i.e., the number of projections during testing/inference).
In an ideal case, to use a fixed number P of projections
for pruned-projection decoding, one can set the parameter
Qo = P for training. However, this choice may not be the
best option. First, due to the SOFT top-k operator, we may
not observe a sharp drop of trained weights after exactly Qg
largest weights. Second, it is possible that some projections
are equally good/bad and it is hard for the ML model to

3We should emphasize that this does not mean that the ML-based selec-
tion scheme favors higher rank projections. Indeed, our extensive experiments
suggest that the ML-based selection mostly favors smaller-rank projections.
Specifically, it either results in the same set of ranks as the minRank selection
or only substitutes some very low-rank projections with (slightly) higher-rank
projections.

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

T T T
Soft-subRPA with several

random selections of 9

projections

10714
=
=
KN
AT
g
<
-
-
2 .. _3 | |—*— Full-projection
g 107 ¢ —Q~ ML training, P=9
) — - MinRank, P=9
) Random sel., P=9
/M .|| =0~ ML training, P=44
107" H — o~ MinRank, P=44 Polar, CA-SCL,
—w Polar, SC L =32, CRC=4
— — Polar, SCL, L=2
_|[|—»= Polar, SCL, L > 4 N
1077 : : L L -
1 1.5 2 2.5 3 3.5 4 4.5 5
Ey/Ny [dB]

Fig. 9. Performance of the full- and pruned-projection soft-subRPA decoding
of a (256,30) RM subcode generated through the G, encoding. P = 9
and 44 projections are considered for the pruned-projection decoding under
the minRank, ML-aided, and random pruning schemes. The plots for the
performance of the polar (256, 30) code under successive cancellation (SC)
decoding, SC-list (SCL) decoding, and cyclic redundancy check (CRC) aided
SCL (CA-SCL) are also included.

perfectly distinguish among them, so the ML model may end
up assigning similar weights to such projections. Therefore, to
use a fixed P, one can train ML models for some larger/smaller
values of Qg than P, in addition to Qy = P. However, our vari-
ous training experiments (not presented here) suggest that this
hyper-parameter tuning does not much affect the performance
of the trained model. In the following figure, we use a single
model trained for Qp = 20 for the selection of both P = 9
and P = 44 projections in an RM subcode of parameters
(256, 30).

Fig. 9 presents the results for a medium-length RM subcode
of parameters n = 256 and k = 30 constructed according to
the Gmin encoding. To train the ML-aided projection-pruning
model, Qg was set to 20. However, two different values of
P =9 and 44 are used as the number of projections for testing
the performance. These selections for P were made by taking
into account the profile of the weights after training (picking
a P if there is a sharp drop in the value of the next largest
weight), and to study two extreme scenarios: 1) a relatively
small number of projections such that there is a significant
gap to the full-projection decoding; and 2) a relatively large
P where the performance of the ML-aided pruned-projection
decoding is close to that of the full-projection decoding.

When P = 9, where the projections are heavily pruned by
a factor of more than 28, the minRank training is observed
to significantly diverge from the full-projection decoding
performance (e.g., nearly 3 and 4 dB gaps at the BLERs
of 1072 and 10™%, respectively). However, training the ML
model is shown to enable achieving a significantly better
performance. Moreover, the performance of several random
selections of the projections are also tested, where, similar
to Fig. 6, it is observed that the random projection pruning
scheme fails to guarantee achieving the best performance for a
given value of P. On the other hand, when P = 44 projections
are used, both the minRank and ML-aided projection pruning

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

JAMALI et al.: ML-AIDED EFFICIENT DECODING OF RM SUBCODES

schemes are observed to achieve very close to the performance
of the full-projection decoding, with the ML-aided scheme
slightly outperforming the minRank scheme at the higher
SNRs.

Fig. 9 also compares the performance of the RM subcode
with that of the polar (256, 30) code under successive cancel-
lation (SC) decoding and SC-list (SCL) decoding. To construct
the polar code, the Tal-Vardy code construction method is
used to pick the k bit-channels with the smallest BERs [36].
The performance of the cyclic redundancy check (CRC) aided
SCL (CA-SCL) decoding of the polar code is also included.
We note, however, that the comparison to the CA-SCL may
not be fair as one can also do RM-CRC and consider RPA-
type decoding algorithms together with Chase list decoding
(see, e.g., [14]). Indeed, the comparison of plain codes with
plain decoders is more meaningful, and polar with CRC is
essentially a concatenated design. The following are the main
conclusions drawn from this figure.

« First, the polar code under SC decoding fails to provide a
comparable performance to that of the RM subcode, even
under P = 7 projections.

o The performance of the polar code under SCL quickly
saturates with respect to the list size L such that only a
very minimal improvement is observed with increasing
L, ie., some gains from L = 1 to L = 2, very little gain
from L =2 to L = 4, and no gain from L = 4 to larger
L’s. This is while the RM subcode is able to achieve a
much better performance by increasing P from 9 to 44.

o The RM subcode under P = 44 is able to achieve a
significantly better performance than the polar code under
SCL decoding with any list size. Even with P = 9, the
RM subcode beats the polar code under SCL for BLERs
smaller than ~ 7 x 1074,

It is worth noting that, as seen in Fig. 3, the performance of
an RM subcode, for a given k and n, highly depends on the
selection of the rows, i.e., the encoder design. Therefore, the
objective of the paper is not to have a better performance than
other classes of codes (which necessitates the best design of
the RM subcode encoder) but to deliver the best performance
given an RM subcode encoder (that, as shown above, has the
potential to beat other classes of codes). We shall emphasize
that the low latency of our decoding algorithms is another
major advantage compared to polar codes as all decoding
branches in the decoding tree (see Fig. 1) can be executed
in parallel.

In Fig. 10, the (soft-) subRPA decoding algorithm is applied
to an RM(6,2) code (that has k = 22 and n = 64). As
discussed in Remark 2, in this case, our decoding algorithm
reduces to the original RPA decoding of RM codes [14]. By
evaluating the performance of many different random selec-
tions of P = 12 projections, it is observed that the performance
of a pruned-projection decoding of an RM code, for a given
P, is (almost) the same regardless of the selection of the pro-
jections. This empirical observation then suggests that not
much (if any) gain can be expected from ML training for
projection selection in RPA decoding of RM codes. As such,
our ML-based projection selection as well as the minRank

271

H
<

20 random selections
of 12 projections

H
S5
&
:

—#— Full-projection
—— MAP

Random selection, P=12
— - MinRank, P=12

Block error rate (BLER)
=

107* || —o~ ML training, P=12
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Ey/Ny [dB]
Fig. 10. Performance of the full- and pruned-projection soft-subRPA (that

reduces to the soft-version of RPA) decoding of an RM (6, 2) code. P = 12
projections are considered for the pruned-projection decoding under the
minRank, ML-aided, and random pruning schemes.

107!

%
3
*
i
%
3
¥
b
*
ol
2
+
X
%
E
¥
E
3
k-

H
<
L

Bk AT ks IO FORR AR ORI b g s e et gy g F ATy

1057 T

Encoded bit error rate

P et

Ey/Ny=1,15,2,...,4.5 dB

104 I I I I I I
0 10 20 30 40 50 60

Bit index

Fig. 11. Encoded bits error rate profile for the (64, 14) RM subcode under
ML-aided projection selection.

scheme achieved the same performance as random selection
of projections. This further suggests that the selection of pro-
jections is strongly tied to the rank profile/properties of the
so-called projected generator matrices. We believe the theo-
retical study of this behavior, on both encoding and decoding
of RM subcodes, is an interesting direction for future research.

Finally, Fig. 11 shows the error probability profile of
encoded bits for the sample (64, 14) RM subcode with P = 12
ML-aided projections that corresponds to the setting in Fig. 8.
The E,/Np is changed from 1 dB to 4.5 dB with the step
size of 0.5 dB. For each Ej;/Ny point, 10° random codewords
are examined and the mismatch of the decoder output with
the encoded codeword is evaluated. It is observed that under
all evaluated Ej,/Ny’s, all encoded bits experience a relatively
uniform/equal error probability.

VI. CONCLUSION

In this paper, we designed efficient decoding algorithms for
decoding subcodes of RM codes. More specifically, we first

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

272

proposed a general recursive algorithm, namely the subRPA
algorithm, for decoding RM subcodes. Then we derived
a soft-decision based version of our algorithm, called the
soft-subRPA algorithm, that not only improved upon the
performance of the subRPA algorithm but also enabled a
differentiable implementation of the decoding algorithm for
the purpose of training a machine learning (ML) model.
Accordingly, we proposed an efficient pruning scheme that
finds the best subsets of projections via training an ML model.

Our simulation results on (64, 14) and (256, 30) RM sub-
codes demonstrate achieving very close the performance of
the full-projection decoding using our ML-aided pruned-
projection decoding algorithm with more than 4 times smaller
number of projections. Our decoding algorithm also inherits
the low-latency and parallelized implementation of the RPA
algorithm; when the training is completed, the set of pro-
jections are fixed, and all branches in the decoding tree can
be executed in parallel. We also provided some insights on
encoding RM subcodes and studied several ad-hoc projection
pruning schemes. Our extensive simulations showed that the
random selection of projections cannot guarantee a compet-
itive performance to that of the ML-aided pruning scheme,
while the proposed minRank pruning scheme being often a
reasonable structured scheme, especially when the projections
are not heavily pruned. On the other hand, when a significant
fraction of projections are pruned, the minRank scheme was
observed to significantly degrade the performance compared
to the ML-aided pruning scheme.

The research in this paper can be extended in several direc-
tions such as training ML models to design efficient encoders
for RM subcodes, and also leveraging higher dimension sub-
spaces for projections to, possibly, further reduce the decoding
complexity.

APPENDIX A
PROOF OF PROPOSITION 1

The projection of RM (m, r) onto a s-dimensional subspace,
I <s<risan RM(m—s,r—s) code [14]. The code C, that
is a subcode of RM (m, r), is constructed by removing k, — k
rows of the generator matrix of RM (m, r) that are not in the
generator matrix of RM (m, r—1). We note that the projection
of RM(m, r—1) onto a s-dimensional subspace, 1 <s < r—1,
is an RM(m — s,r — 1 — 5) code. Now, given that each s-
dimensional projection is equivalent to partitioning n columns
of the generator matrix into n/2° groups of 2° columns and
adding them in the binary field (see Remark 1), the generator
matrices of the projected codes contain rows of the generator
matrix of RM(@m — s,r — 1 — 5) and, possibly, a subset of
the rows of the generator matrix of RM(m — s, r — s) that
are not in the generator matrix of RM(m — s, r — 1 —).
More precisely, if the selected additional k — k; rows do not
contribute in the rank of the merged matrix according to a
given subspace, the projected code onto that subspace is an
RM(m—s,r—1—s) code. On the other hand, if the removed
k, — k rows do not contribute in that rank, the projected code
is an RM(m — s, r — s) code. Otherwise, that projected code
is a subcode of RM(m — s, r — 5). |

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

APPENDIX B
MEMORY REQUIREMENTS TO STORE PROJECTED
MATRICES IN (SOFT-) MAP ALGORITHM

As discussed in Sections III-B and III-C, one can pre-
compute and store the codebook of each projected code at
the bottom layer to facilitate the (soft-) MAP decoding at that
layer. In this appendix, we quantify the memory requirement
for storing such matrices at the bottom layer, and discuss
alternative approaches in applications with limited memory
availability.

Recall that for a subcode of RM(m, r), with r > 1, the
decoding involves » — 1 layers of 1-D projections, resulting in
T =]—L:l] 2%1 —1) = O™ ") projections for full-projection
decoding. This number reduces to T = OB~ 'n""!) for a
pruned-projection decoding with the pruning factor 8 < 1.
After r — 1 layers of 1-D projections, we arrive at subcodes
of RM(@m — r + 1, 1) whose dimension is R, < m —r + 2,
Vt € [T]. Therefore, the so-called projected codebooks CISZ)
will contain 2% (ie., at most 2" "2 = ;/2"2) length-
(n/2"~1) codewords, that can be stored in so-called projected
codebook matrices C? of size at most (n/2"72) x (n/2" 1.
Therefore, O(B~'n*+1/22"=3) bits are required to store all T
projected codebooks. For example, for subcodes of RM (6, 2)
and RM(8,2) with 8 = 7/63 and 9/255 (that correspond to
Figs. 7 and 9, respectively), at most 14,563 and 296,068 bits
(i.e., nearly 1.82 kB and 37 kB) respectively, are needed to
store all codebooks at the bottom layer.

Similarly, O(kp"~'n"/2"~1) bits are needed to store all
T projected generator matrices G,(,’) of dimension k x
2m=r+1_ Finally, since each matrix Ul(,’) is of size 2R x k,
OB~ " /27=2) bits are also needed to store all 7 matrices
U 1()’). Therefore, the memory Mo (in terms of the number of
bits) required to store all matrices Cl(f), U[(f), and Gl(f), vt e [T],
at the bottom layer can be characterized as

Mot = O(ﬁrilnrﬁ/zzr%) + O(kﬁrflnr/2r4>
+ O(kﬁrflnr/2r72>
= O(ﬂ"ln’ [3k + n/2’_2] /2r—1>

= O((nﬂ/2)’[k+n/2’_2]). (15)
Note that the pruning factor S can be essentially O(1/n) so
that the number of projections in each layer, i.e., O(B8n),
becomes a constant. Then (8n)” = O(1) (though with a
large constant) and the overall memory requirement will scale
linearly with n.

Given the above analysis, in applications where this memory
requirement may be hard to satisfy, one can directly apply
Algorithm 2 to compute these matrices during the decoding.
We would like to emphasize that the use of the soft-MAP
decoding at the bottom layer is motivated by the fact that
all projected codewords are subcodes of order-1 RM codes
whose dimensions are R; < m — r 4+ 2. Given that our exper-
iments suggest that projections with smaller R, are favorable
in the decoding process, the above matrices are often sig-
nificantly smaller than the bounds analyzed here, and the

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

JAMALI et al.: ML-AIDED EFFICIENT DECODING OF RM SUBCODES

soft-MAP algorithm can be easily afforded. Nevertheless, one
may extend the lower-complexity fast Hadamard transform
(FHT) decoder of order-1 RM codes to subcodes of order-
1 RM codes, and then apply the extended FHT algorithm
(instead of MAP) in the subRPA or its soft version (instead
of soft-MAP) in the soft-subRPA algorithm or for training the
ML model.

APPENDIX C
LLRS OF THE INFORMATION BITS

Consider an AWGN channel model as y = s + n, where
s = 1—2c ¢ € C, and n is the AWGN vector with
mean zero and variance o2 elements. Then, the LLR of the
i-th information bit u; can be obtained using the max-log
approximation as

Ling(i) *max (I,1 —2¢) — max (I, 1—2c),
ceC? ceCi1

i

(16)

where [:= 2y/o? is the LLR vector of the AWGN channel,
and C? and Ci1 are the subsets of the codewords whose i-th
information bit u; is equal to zero or one, respectively. To see
this, observe that

l1nf(l) T ln(Pr(ui = 1|.Y))

@ . [Lseco exp(=ly —sll3/0?)
Y sect exp(=Ily —sll3/02)

2L minly—sif— % minjy—s2. A7)
N — — _ — 1 — s
o2 ceC!l 2 o2 eCY 2

where step (a) is by applying the Bayes’ rule, the assumption
Pr(u; = 0) = Pr(u; = 1), the law of total probability, and
the distribution of Gaussian noise. Moreover, step (b) is by
the max-log approximation. Finally, given that all s’s have the
same norm, we obtain (16).

APPENDIX D
PROOF OF PROPOSITION 2

It is well known that the decoding complexity of the
full-projection RPA-like decoding of an RM(m, r) code is
O logn) [14]. Similarly, a proof by induction can show
that the decoding complexity of our algorithms for a subcode
of an RM(m,r) code, r > 1, is O 1Cm — r + 1, 1)),
where C(m’, 1) stands for the complexity of decoding a
subcode of an RM(@m', 1) code. We note that (proof by
induction) the above complexity reduces to O((8n)"~'C(m —
r + 1,1)) for pruned-projection decoding with a pruning
factor 8 < 1.

We first note that, assuming (soft-) MAP at the bottom layer,
C(m—r+1, 1) can be characterized as O(n;2%1), where n| =
2m=r+1 s the code length and k; = m — r + 2 is the code
dimension in the bottom layer. Therefore, C(m —r+1,1) =
OQ@m—rtlgm=r+2y — O(n? /22 -3). This complete the proof of
the first part, i.e., the O(n'*!) complexity for full-projection
decoding.

273

Next, as discussed in Appendix B, the pruning factor 8 can
be essentially O(1/n) so that the number of projections in
each layer, i.e., O(Bn), becomes a constant. Then, (,Bn)’_l =
O(1) (though with a large constant) and the overall complexity
reduces to O(C(m—r+1, 1)). This then complete the proof of
the second part, i.e., O(n?) complexity for pruned-projection
decoding with pruning factor 8 = O(1/n).

Finally, as empirically observed in Section V, in most cases
the selected projections by our ML training scheme have very
small (nearly the smallest) ranks R; for the projected genera-
tor matrices. Therefore, the number of codewords 2% = 2R
may be upper bounded by a constant. This then reduces the
complexity to O(n) if 28 = O(1), Vt € [T], in addition to
B =0/n).

We would like to emphasize that the complexity anal-
ysis above my require some large constants (modeled by
O(1)). Therefore, even if the complexity can linearly scale
with n, the involved constants may be large. However, a
major advantage of our decoding algorithms is the reduc-
tion in the latency (e.g., compared to polar codes) as all the
branches involved in the decoding tree (see, e.g., Fig. 1) can
be executed in parallel. We refer the readers to [14] for addi-
tional discussions on latency aspects of RPA-like decoding of
RM codes.

REFERENCES

[1] M. V. Jamali, X. Liu, A. V. Makkuva, H. Mahdavifar, S. Oh, and
P. Viswanath, “Reed-Muller subcodes: Machine learning-aided design of
efficient soft recursive decoding,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), 2021, pp. 1088-1093.

[2] 1. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” Trans. IRE Prof. Group Inf. Theory, vol. 4, no. 4, pp. 3849,
1954.

[3] D.E. Muller, “Application of boolean algebra to switching circuit design
and to error detection,” Trans. IRE Prof. Group Electron. Comput.,
vol. EC-3, no. 3, pp. 612, Sep. 1954.

[4] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless chan-
nels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073,
Jul. 2009.

[5] T. Kaufman, S. Lovett, and E. Porat, “Weight distribution and list-
decoding size of Reed-Muller codes,” IEEE Trans. Inf. Theory, vol. 58,
no. 5, pp. 2689-2696, May 2012.

[6] H. Hassani, S. Kudekar, O. Ordentlich, Y. Polyanskiy, and R. Urbanke,
“Almost optimal scaling of Reed-Muller codes on BEC and BSC
channels,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2018,
pp. 311-315.

[7]1 G. Reeves and H. D. Pfister, “Reed-Muller codes achieve capacity on
BMS channels,” 2021, arXiv:2110.14631.

[8] I. Dumer, “Recursive decoding and its performance for low-rate Reed-
Muller codes,” IEEE Trans. Inf. Theory, vol. 50, no. 5, pp. 811-823,
May 2004.

[9] 1. Dumer, “Soft-decision decoding of Reed-Muller codes: A simpli-

fied algorithm,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 954-963,

Mar. 2006.

I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Muller

codes: Recursive lists,” IEEE Trans. Inf. Theory, vol. 52, no. 3,

pp. 1260-1266, Mar. 2006.

B. Sakkour, “Decoding of second order Reed-Muller codes with a

large number of errors,” in Proc. IEEE Inf. Theory Workshop, 2005,

pp. 176-178.

R. Saptharishi, A. Shpilka, and B. L. Volk, “Efficiently decoding Reed-

Muller codes from random errors,” IEEE Trans. Inf. Theory, vol. 63,

no. 4, pp. 1954-1960, Apr. 2017.

[10]

[11]

[12]

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

274

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

E. Santi, C. Hager, and H. D. Pfister, “Decoding Reed-Muller codes
using minimum-weight parity checks,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), 2018, pp. 1296-1300.

M. Ye and E. Abbe, “Recursive projection-aggregation decoding
of Reed-Muller codes,” IEEE Trans. Inf. Theory, vol. 66, no. 8,
pp. 4948-4965, Aug. 2020.

D. Fathollahi, N. Farsad, S. A. Hashemi, and M. Mondelli, “Sparse
multi-decoder recursive projection aggregation for Reed-Muller codes,”
2020, arXiv:2011.12882.

M. V. Jamali, M. Fereydounian, H. Mahdavifar, and H. Hassani,
“Low-complexity decoding of a class of Reed-Muller subcodes for low-
capacity channels,” in Proc. IEEE Int. Conf. Commun. (ICC), 2021,
pp. 1-6.

M. Fereydounian, M. V. Jamali, H. Hassani, and H. Mahdavifar,
“Channel coding at low capacity,” in Proc. IEEE Inf. Theory Workshop
(ITW), 2019, pp. 1-5.

A. V. Makkuva, X. Liu, M. V. Jamali, H. Mahdavifar, S. Oh, and
P. Viswanath, “KO codes: Inventing nonlinear encoding and decoding for
reliable wireless communication via deep-learning,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2021, pp. 7368-7378.

T. O’Shea and J. Hoydis, “An introduction to deep learning for the physi-
cal layer,” IEEE Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 563-575,
Dec. 2017.

T. Gruber, S. Cammerer, J. Hoydis, and S. T. Brink, “On deep learning-
based channel decoding,” in Proc. 51st Annu. Conf. Inf. Sci. Syst. (CISS),
2017, pp. 1-6.

Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“Turbo autoencoder: Deep learning based channel codes for point-to-
point communication channels,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), vol. 32, 2019, pp. 2758-2768.

H. Kim, Y. Jiang, S. Kannan, S. Oh, and P. Viswanath, “Deepcode:
Feedback codes via deep learning,” IEEE J. Sel. Areas Inf. Theory, vol. 1,
no. 1, pp. 194-206, May 2020.

H. Kim, S. Oh, and P. Viswanath, “Physical layer communication via
deep learning,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 1, pp. 5-18,
May 2020.

T. Akyildiz, R. Ku, N. Harder, N. Ebrahimi, and H. Mahdavifar, “ML-
aided collision recovery for UHF-RFID systems,” in Proc. IEEE Int.
Conf. RFID, 2022, pp. 41-46.

M. V. Jamali, H. Saber, H. Hatami, and J. H. Bae, “ProductAE:
Toward training larger channel codes based on neural prod-
uct codes,” in Proc. IEEE Int. Conf. Commun. (ICC), 2021,
pp. 1-6.

R. Koetter and A. Vardy, “Algebraic soft-decision decoding of
Reed-Solomon codes,” IEEE Trans. Inf. Theory, vol. 49, no. 11,
pp. 2809-2825, Nov. 2003.

K. Lee and M. E. O’Sullivan, “Algebraic soft-decision decoding of her-
mitian codes,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2587-2600,
Jun. 2010.

Y. Wan, L. Chen, and F. Zhang, “Algebraic soft decoding of ellip-
tic codes,” IEEE Trans. Commun., vol. 70, no. 3, pp. 1522-1534,
Mar. 2022.

A. Vardy and Y. Be’ery, “Maximum-likelihood soft decision decoding
of BCH codes,” IEEE Trans. Inf. Theory, vol. 40, no. 2, pp. 546-554,
Mar. 1994.

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error
Correcting Codes. vol. 16. Amsterdam, The Netherlands: Elsevier,
1977.

A. J. Salomon and O. Amrani, “Augmented product codes and lattices:
Reed-Muller codes and Barnes-wall lattices,” IEEE Trans. Inf. Theory,
vol. 51, no. 11, pp. 3918-3930, Nov. 2005.

Y. Xie et al, “Differentiable top-k with optimal transport,” in
Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 33, 2020,
pp. 20520-20531.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

“BCEWithLogitsLoss.” Accessed: Jan. 26, 2021. [Online]. Available:
https://pytorch.org/docs/stable/generated/torch. nn.BCEWithLogitsLoss.
html

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 4, 2023

[35] M. V. Jamali, H. Saber, H. Hatami, and J. H. Bae, “ProductAE: Toward

deep learning driven error-correction codes of large dimensions,” 2023,
arXiv:2303.16424.

[36] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf.

Theory, vol. 59, no. 10, pp. 6562-6582, Oct. 2013.

Mohammad Vahid Jamali (Member, IEEE)
received the Ph.D. degree in electrical engineering
from the University of Michigan, Ann Arbor, in
2022. He is currently a Senior Research Engineer
at Samsung Semiconductor, Inc., San Diego, CA,
USA. His general areas of research include cod-
ing and information theory, machine learning, and
wireless communications.

Xiyang Liu received the B.Eng. degree in electri-
cal engineering from Shanghai Jiao Tong University
and the M.S. degree from the University of Illinois
at Urbana—Champaign. He is currently pursuing the
Ph.D. degree with the CSE Department, University
of Washington. His research interests include deep
learning, robust statistics, and differential privacy.

Ashok Vardhan Makkuva received the bachelor’s
degree in EE with a minor in mathematics from IIT
Bombay in 2015, and the master’s and Ph.D. degrees
in ECE from the University of Illinois at Urbana—
Champaign in 2017 and August 2022, respectively.
He is a Postdoctoral Associate with EPFL. His
current research interests are in theoretical and algo-
rithmic aspects of machine learning, information
theory, and coding. He is a recipient of the Best
Paper Award from ACM MobiHoc 2019. He is also
a recipient of several graduate student awards and

fellowships, including Joan and Lalit Bahl Fellowship (twice), Sundaram
Seshu International Student Fellowship, and is a finalist for the Qualcomm
Innovation Fellowship 2018.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

JAMALI et al.: ML-AIDED EFFICIENT DECODING OF RM SUBCODES

Hessam Mahdavifar (Member, IEEE) received the
B.Sc. degree in electrical engineering from the Sharif
University of Technology, Tehran, Iran, in 2007, and
the M.Sc. and Ph.D. degrees in electrical engineer-
ing from the University of California San Diego,
La Jolla, in 2009, and 2012, respectively.

He is an Associate Professor with the Department
of Electrical Engineering and Computer Science,
University of Michigan Ann Arbor. He was a Staff
Research Engineer with Samsung U.S. Research and
Development, San Diego, USA, from 2012 to 2016.
His main area of research is coding and information theory with applica-
tions to wireless communications, storage systems, security, and privacy. He
received the NSF Career Award in 2020. He also received Best Paper Award
in 2015 IEEE International Conference on RFID and the 2013 Samsung
Best Paper Award. He also received two Silver Medals at the International
Mathematical Olympiad in 2002 and 2003 and two Gold Medals at Iran
National Mathematical Olympiad in 2001 and 2002.

Sewoong Oh received the Ph.D. degree from
the Department of Electrical Engineering, Stanford
University in 2011, under the supervision of
A. Montanari. He is an Associate Professor with
the Paul G. Allen School of Computer Science and
Engineering, University of Washington. Previous to
joining the University of Washington in 2019, he
has been an Assistant Professor with the Department
of Industrial and Enterprise Systems Engineering,
University of Illinois at Urbana—Champaign since
2012. Following his Ph.D., he worked as a
Postdoctoral Researcher with the Laboratory for Information and Decision
Systems, MIT, under the supervision of D. Shah. His research interest is in
foundations of machine learning in topics including differential privacy, secure
and robust machine learning, and federated learning. He was co-awarded the
ACM SIGMETRICS Best Paper Award in 2015, the NSF CAREER Award in
2016, the ACM SIGMETRICS Rising Star Award in 2017, and the GOOGLE
Faculty Research Awards in 2017 and 2020.

275

Pramod Viswanath is a Forrest G. Hamrick
Professor of Engineering with Princeton University.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on December 23,2023 at 07:16:51 UTC from IEEE Xplore. Restrictions apply.

