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Abstract. The Kahn—Saks inequality is a classical result on the number of linear extensions
of finite posets. We give a new proof of this inequality for posets of width two and both
elements in the same chain using explicit injections of lattice paths. As a consequence we
obtain a g-analogue, a multivariate generalization and an equality condition in this case.
We also discuss the equality conditions of the Kahn—Saks inequality for general posets and
prove several implications between conditions conjectured to be equivalent.

Keywords. Poset inequality, Stanley’s inequality, Kahn—Saks inequality, log-concavity, g-
analogues, equality conditions, lattice paths

Mathematics Subject Classifications. 05A15, 05A19, 05A20, 05A30, 06A07

1. Introduction

1.1. Foreword

The study of linear extensions of finite posets is surprisingly rich as they generalize permutations,
combinations, standard Young tableaux, etc. By contrast, the inequalities for the numbers of
linear extensions are quite rare and difficult to prove as they have to hold for all posets. Posets of
width two serve a useful middle ground as on the one hand there are sufficiently many of them to
retain the diversity of posets, and on the other hand they can be analyzed by direct combinatorial
tools.

In this paper, we study two classical results in the area: the Stanley inequality (1981), and
its generalization, the Kahn—Saks inequality (1984). Both inequalities were proved using the
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geometric Alexandrov—Fenchel inequalities and remain largely mysterious. Despite much effort,
no combinatorial proof of these inequalities has been found.

We give a new, fully combinatorial, proof of the Kahn—Saks inequality for posets of width
two and both elements in the same chain. In this case, linear extensions are in bijection with
certain lattice paths, and we prove the inequality by explicit injections. This is the approach first
pioneered in [CFG80, GY'Y80] and more recently extended by the authors in [CPP22a]. In fact,
Chung, Fishburn and Graham [CFG80] proved Stanley’s inequality for width two posets and their
conjecture paved a way to Stanley’s paper [Sta81]. The details of our approach are somewhat
different, but we do recover the Chung—Fishburn—Graham (CFG) injection as a special case.
The construction in this paper is quite a bit more technical and is heavily based on ideas in our
previous paper [CPP22a], where we established the cross-product conjecture in the special case
of width two posets.

Now, our approach allows us to obtain g-analogues of both inequalities in the style of the
q-cross-product inequality in [CPP22a]. More importantly, it is also robust enough to imply
conditions for equality of the Kahn—Saks inequalities for the case of posets of width two and
both elements in the same chain. The corresponding result for the Stanley inequality in the
generality of all posets was obtained by Shenfeld and van Handel [SvH22] using technology of
geometric inequalities. Most recently, a completely different proof was obtained by the first two
authors [CP21]. Although the equality condition in the special case of the Kahn—Saks inequality
is the main result of the paper, we start with a special case of the Stanley inequality as a stepping
stone to our main results.

1.2. Two main inequalities

Let P = (X, <) be a finite poset. A linear extension of P is a bijection L : X — [n], such
that L(z) < L(y) for all x < y. Denote by £(P) the set of linear extensions of P, and
write e(P) := | £(P)|. The following are two key results in the area:

Theorem 1.1 (Stanley inequality [Sta81, Thm 3.1]). Ler P = (X, <) be a finite poset, and
let v € X. Denote by N(k) the number of linear extensions L € E(P), such that L(x) = k.
Then:

N(k)*> > N(k —1)N(k + 1) for all integer k. (1.1)

In other words, the distribution of values of linear extensions on x is log-concave.

Theorem 1.2 (Kahn-Saks inequality [KS84, Thm 2.5]). Let x,y € X be distinct elements
of a finite poset P = (X, <). Denote by F(k) the number of linear extensions L € E(P), such
that L(y) — L(x) = k. Then:

F(k)®> > F(k —1)F(k +1) forall integer k. (1.2)

Note that the Stanley inequality follows from the Kahn—Saks inequality by adding the mini-
mal element 0 to the poset P, and letting x <— 0 and y < .
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1.3. The g-analogues

From this point on, we consider only posets PP of width two. Fix a partition of P into two
chains C;,Cy C X, where C; NCy = @. Let C; = {av,...,a,} and Co = {f1, ..., Bp} be these
chains of lengths a and b, respectively. The weight of a linear extension L € £(P) is defined
in [CPP22a] as

a

wt(L) = Y L) (1.3)

i=1
Note that the definition of the weight wt (L) depends on the chain partition (C, C2). We can now
state our first two results.

Theorem 1.3 (¢—Stanley inequality). Let P = (X, <) be a finite poset of width two, let © € X,
and let (Cy,Cy) be the chain partition as above. Define

Then:
N,(k)* = Ny (k—1)N,(k+1) forall integer k, (1.4)

where the inequality between polynomials in q is coefficient-wise.

The following result is a generalization, sice we can always assume that element y = Tisin
the same chain as element x.

Theorem 1.4 ((—-Kahn-Saks inequality). Let x,y € X be distinct elements of a finite poset
P = (X, <) of width two. Suppose that either x,y € Cy, or x,y € Cs. Define:

Fq(k) = Z QWt(L)-
Le&(P) : L(y)—L(z)=k

Then:
F (k) > Fy(k— 1)F,(k+1) forall integer k. (1.5)

where the inequality between polynomials in q is coefficient-wise.

In Section 7, we give a multivariate generalization of both theorems. Note that the assump-
tion that z and y belong to the same chain in the partition (C;, Cs) are necessary for the conclusion
of Theorem 1.4 to hold, as shown in the next example.

Example 1.5. Let P = (54 (5 be the disjoint sum of two chains with three elements. Denote
these chains by C; := {ay, as, a3} and Cy := {1, (2, B3}. For elements = = a3 and y = [,
we have:

F,(1) = ¢"*, F,2) =2¢"® and F,(3) = 3¢ +q'".

We conclude:

Fe(2)* — Fy(1)Fy(3) = ¢* —¢® % 0.
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1.4. Equality conditions

Let x = o, € C;. We say that x satisfies a k-pentagon property if

Qr1 = Br—r < Br—ryr < app and || Br—r 5 o ||Br—rt1

where u||v denotes incomparable elements u,v € X. In other words, the subposet of P re-
stricted to

{ar—la Ay Olpy 1, 5]@—7"7 /Bk—r—i-l}

has a pentagonal Hasse diagram, see Figure 1.1. For x = (3, € C, the k-pentagon property is
defined analogously.

Bk-r

Bk—r—%—l

Figure 1.1: The k-pentagon property for + = «, € C;. The arrows x — y in the diagram
indicate that z is covered by y in the poset.

Theorem 1.6 (Equality condition for the ¢-Stanley inequality, cf. Theorem 8.1). Let
P = (X, <) be a finite poset of width two. Fix v € X, and let N(k), N, (k) be defined as
above. Suppose that k € {1,...,n — 1} and N(k) > 0. Then the following are equivalent:

(a) N(k)? = N(k—1)N(k+1),

(b) N(k) = N(k+1) =N(k — 1),

(©) Ny(k)? = Ny(k—1)Ny(k + 1),

(d) Ny(k) = ¢°Ny(k—1) = ¢ =Ny (k+1), wheree = 1forz € Ciand e = —1 forz € Cy,
(e) = satisfies a k-pentagon property.

The equivalence (a) < (b) was recently proved by Shenfeld and van Handel [SvH22] for
general posets via a condition implying (e), see Theorem 8.1 and the discussion that follows.
Conditions (c) and (d) are specific to posets of width two. The following result is a generalization
of Theorem 1.6 and the main result of the paper:
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Theorem 1.7 (Equality condition for the ¢-Kahn-Saks inequality). Ler z,y € X be distinct
elements of a finite poset P = (X, <) of width two. LetF(k), F,(k) be defined as above. Suppose
that either x,y € Cy or x,y € Cy. Also suppose that k € {2,...,n — 2} and F(k) > 0. Then
the following are equivalent:

(2) F(k)? = F(k —1)F(k +1),

(b) F(k) = F(k+1) = F(k — 1),

(©) F (k)2 = F,(k —1)F,(k+1),

d) F (k) = ¢Fy(k — 1) = ¢ F,(k + 1), for some ¢ € {£1},

(e) there is an element z € {x,y}, such that for every L € E(P) for which L(y) — L(z) = k,
there are elements u,v € X which satisfy ul|z, v||z, and L(u)+1= L(z) = L(v) — 1.

Note that conditions (c) and (d) are specific to posets of width two. While conditions (a)
and (b) do extend to general posets, the equivalence (a) < (b) does not hold in full
generality. Even for the poset P = (5 + (5 of width two given in Example 1.5, we
have F(2)? = F(3)F(1) = 4, even though F(1) =1, F(2) =2 and F(3) = 4.

We should also mention that the F(k) > 0 assumption is a very weak constraint, as the
vanishing can be completely characterized for general posets (see Theorem 8.5). We refer to
Section 8 for further discussion of general posets, and for the k-midway property which gener-
alizes the k-pentagon property but is more involved.

1.5. Proof discussion

As we mentioned above, we start by translating the problem into a natural question about directed
lattice paths in a row/column convex region in the grid (cf. §9.4). From this point on, we do not
work with posets and the proof becomes purely combinatorial enumeration of lattice paths.

While the geometric proofs in [KS84, Sta81] are quite powerful, the equality cases of the
Alexandrov—Fenchel inequality are yet to be fully understood. So proving the equality conditions
of poset inequalities is quite challenging, see [SvH22, CP21] and §9.1. This is why our direct
combinatorial approach is so useful, as the explicit injection becomes a bijection in the case of
equality.

In the case of Stanley’s inequality the CFG injection is quite simple and elegant, leading to
a quick proof of the equality condition. For the Kahn—Saks inequality, the direct injection is a
large composition of smaller injections, each of which is simple and either generalizes the CFG
injection or is of a different flavor, all influenced by the noncrossing paths in the Lindstrom—
Gessel—Viennot lemma [GV89] (see also [GJ83, §5.4]). Consequently, the equality condition of
the Kahn—Saks inequality is substantially harder to obtain as one has to put together the equalities
for each component of the proof and do a careful case analysis.

In summary, our proof of the main result (Theorem 1.7) is like an elaborate but delicious
dish: the individual ingredients are elegant and natural, but the instruction on how they are put
together is so involved the resulting recipe may seem difficult and unapproachable.
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1.6. Structure of the paper

We start with an introductory Section 2 on posets, lattice paths, and lattice path inequalities. This
section also includes some reformulated key lemmas from our previous paper [CPP22a], whose
proof is sketched both for clarity and completeness. A reader very familiar with the standard
definitions, notation and the results in [CPP22a] can safely skip this section.

In the next Section 3, we introduce key combinatorial lemmas which we employ throughout
the paper: a criss—cross inequality (Lemma 3.1), and two equality lemmas (Lemma 3.2 and
Lemma 3.3). In a short Section 4, we prove both the Stanley inequality (Theorem 1.1) which
easily extends to the proof of the ¢-Stanley inequality (Theorem 1.3), and the equality conditions
for Stanley’s inequality (Theorem 1.6). Even though these results are known in greater generality
(except for Theorem 1.3 which is new), we recommend the reader not skip this section, as the
proofs we present use the same approach as the following sections.

In Sections 5 and 6, we present the proofs of Theorems 1.4 and 1.7, respectively, by combin-
ing the previous tools together. These are the central sections of the paper. In a short Section 7,
we give a multivariate generalizations of our g-analogues. Finally, in Section 8, we discuss
generalizations of Theorem 1.7 to all finite posets. We state Conjecture 8.7 characterizing the
complete equality conditionsi and prove several implications in support of the conjecture using
the properties of promotion-like maps (see §9.6). We conclude with final remarks and open
problems in Section 9.

2. Lattice path inequalities

2.1. Basic notation

Weuse [n] = {1,...,n},N=1{0,1,2,...},and P = {1, 2,...}. Throughout the paper we use ¢
as a variable. For polynomials f, g € Z[q], we write f < g if the difference (¢ — f) € NJq], i.e.
if (g — f) is a polynomial with nonnegative coefficients. Note the difference between relations

r<y, a<b and f <y,

for poset elements, integers and polynomials, respectively.

2.2. Lattice path interpretation

Let P = (X, <) be a finite poset of width two and let (C;, Cy) be a fixed partition into two chains.
Denote by 0 = (0, 0) the origin and by €; = (1,0), e, = (0, 1) two standard unit vectors in Z>.

For a linear extension L € &(P), define the North—East (NE) lattice path ¢(L) obtained
from L by interpreting it as a sequence of North and East steps corresponding to elements in C;
and Cy, respectively. Formally, let ¢(L) := (Z,)1<i<n in Z* from 0 = (0,0) to (a, b), be the
path defined recursively as follows:

Ly if L7(t)eC
Z():O, Zt = t 1+e1 1 1()6 1y
thl + €9 if L~ (t) S CQ.
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Denote by C(P) the set

Cun(P) = {(h—
Cann(P) = { (-

Let Fy,(P) and Fyown(P) be the set of unit squares in [0, a] x [0, b] whose centers are in Cy,(P)
and Cgown (P), respectively. Note that the region F,,,(P) lies above the region Fyown (), and their
interiors do not intersect. Let Reg(P) be the (closed) region of [0, a] x [0, b| that is bounded from
above by the region Fy,(P), and from below by the region Fyown(P), see Figure 2.1. It follows
directly from the definition that Reg(P) is a connected row and column convex region, with
boundary defined by two lattice paths. Moreover, the lower boundary of Reg(P) is the lattice
path corresponding to the C;-minimal linear extension (i.e. assigning the smallest possible values
to the elements of C;), and the upper boundary corresponds to the C;-maximal linear extension.

1
7/{:——)ER2 : Oéh-<ﬂk,1<h<3,1<k<b}a

1
,k——)eR2 : ah>ﬁk,1<h<a,1<k<b}.

12 ar b7 14
11 ae Ge 13
9 as s 10
8 g Ba T
5 Q3 53 6
3 o2 By 4
2 g 51 1
(a) (b)

Figure 2.1: (a) The Hasse diagram of a poset P, and a linear extension L of P (written in red).
(b) The corresponding region Reg(P), with F,,(P) in green and Fiyows (P) in blue, and the lattice
path ¢(L) in red.

Lemma 2.1 ([CFGS80, §2] and [CPP22a, Lem 8.1]). The map ¢ described above is a bijection
between E(P) and NE lattice paths in Reg(P) from 0 to (a,b).

Remark 2.2. It is not hard to see the regions Reg(P) which appear in Lemma 2.1 have no other
constraints. Formally, for every region I' C Z? between two noncrossing paths 7,7 : 0— (a, b),
there is a poset P of width two with a partition into two chains of sizes a and b, such
that I' = Reg(P). We leave the proof to the reader, see also §9.4.

2.3. Inequalities for pairs of paths

We will use the lattice path inequalities from [CPP22a] and prove their extensions. In order to
explain the combinatorics, we will briefly describe the proofs from [CPP22a]. Informally, they
state that there are more pairs of paths which pass closer to the inside of the region than to the
outside of the region.
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Let A, B € Reg(P). Denote by K(A, B) the set of NE lattice paths ( : A — B, such
that ¢ € Reg(P). Similarly, denote by K, (A, B) the polynomial

K¢(A,B) = Z q**

CEK(A,B)
and we write K(A, B) := K;(A4, B) (i.e., when ¢ = 1).

Lemma 2.3 ([CPP22a, Lem 8.2]). Let A, A", B', B € Reg(P) be on the same vertical line

— —3

with A above A’ such that AA' = —BB' and A’ on or above B, i.e. a; = a} = by = b}
and as — ay = bly — by with aly > by. Let C, D € Reg(P) be on a vertical line to the right of the
line AB, and such that al, — by > ¢y — ds. Then:

K, (A, C) - K,(B',D) > K,(A,C) - K (B, D).

=—C N 7 C

B —
A A

D
o,
B B

Figure 2.2: The proof of Lemma 2.3: The injection s takes the blue paths A — C, B — D,
translates the B — D path up to form the green path A’ — D’ (second picture), intersects
it with the blue A — C path at E, and then forms the red path A’ — C (by following the
green A’ — F and then switching to the blue £ — C. The other red path is obtained by
translating the blue/green A — E — D’ down.

El 'C/ J E/ O/

/
AR

N lﬁ
[

Proof outline. We exhibit an injection s from pairs of paths v : A — C’ d: B — DinReg(P)

to pairs of paths v : A’ — C, ¢ : B — D in Reg(P). Letv = BA’ and § = § + v be the
translated path 9, which starts at A’ = B + v and ends at D" = D + v, lying on or above C' by
the condition in the Lemma. Then v and & must intersect, and let F be their first (closest to A)
intersection pomt R

Now, let 7/ = 6(A’ E)ovy(E,C),s0v : A" — C. Similarly, let 6’ = y(A, E)od(E,D")—v,
s08 : B' — D. Then v/ C Reg(P) since 4 is on or above § C Reg(P) (because ay > b) and is
strictly below 7 C Reg(P) since E is the first intersection point. Similarly, v(A, E') — v is also
between «y and § and hence in Reg(P). The other parts of 7', " are part of the original paths v, &
and so are also in Reg(P). Then s is clearly an injection. Since the paths are composed of the
same pieces, some of which are translated vertically with zero net effect, the total ¢-weight is
preserved. [
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3. Lattice paths toolkit expansion

3.1. Criss-cross inequalities
Here we consider inequalities between sums of pairs of paths.

Lemma 3.1 (Criss-cross lemma). Ler A, A", B')B € Reg(P) be on the same vertical
line, with A the highest and B the lowest points. In addition, let C,C’', D, D’ € Reg(P)
be on another vertical line, with C' the highest and D the lowest points, and such

that CC' = —DD' = AA" = —BB'. Finally, let 1@ = @ Then we have:

K,(A,C) - Ky(B,D) + K, (A, C") - K,(B',D")

3.1
> K, (A4, C) - K,(B',D) + K,(A,C") - K, (B, D). G-1)
0
r C
- e
v P
A B D’
A D
B’
5
Figure 3.1:  Illustration of the proof of Lemma 3.1. Here we show points E, F' and

paths v,~/, 9,0’ 7 (in red) and p (in blue). The green path 7, is formed by following ~' then p
and then ¢’ and translating the resulting path by v, so it is a path B — D. The orange path 7, is
also shown.

Proof. The idea is to consider the pairs of paths counted on each side, and show that each pair
(after the necessary transformation) is counted less times on the RHS than on the LHS, where
the number of times it could appear on each side is 0, 1, 2.

To be precise, given two points £ and F' in Reg(P) between the lines AB and C'D, and
paths (7, p) with endpoints F and F, let

S(E,F) = {(7,7,0,8)|v:A=E,~:A—E . F—-C§:F—C}.

Here we have 4-tuples of paths with the given endpoints, such that their only intersection points
are the endpoints, namely v N~' = {E} and 0N ¢ = {F}. Connecting the paths in S(E, F)
with (7, p), we can obtain four different pairs of paths from the points A, A’ to C, C’. We now
count how often each such pair is counted in LHS and RHS of the desired inequality in (3.1),

after we translate one of the paths by v := AB' = A’'B=C'D = CD.
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Fix points E, F' as above, paths 7, p : E — F, and 4-tuple (v,7,9,d') € S(E, F'). These 6
paths can be combined in different ways to give 2 paths from A, A’ to C, C’, and after translating
one by v obtain pairs appearing in (3.1). The pairs are:

(1 := yomod, G1:A—=C, m = (Y opod)+v, m:B— D,
(o = omod, G:A = M = (yopod)+v, m:B =D
(3 ;== yomold, G:A—C, Nz == (Y opod)+, ns: B — D',
(4 = 7Y omod, G: A = C, n = (yopod)+v, ny: B'— D.

Case 1: Note that at least one of (3,73 is not (entirely contained) in Reg(P), and at least one
of (4, n4 is not in Reg(P). Thus none of these pairs of paths is counted in the RHS of (3.1), and
the contribution to the RHS is 0.

Case 2: Both pairs of paths ((3,74) and ({4, n4) are contained in Reg(P). This implies that all
the components and their translates are in Reg(P), and hence (1, (2,171,172 C Reg(P). So the
contribution from these paths is 2 on both LHS and RHS.

Case 3 and 4: Exactly one pair is in Reg(P), say (3,73 C Reg(P) and at least one of (4,74
is not in Reg(P). Then ~,d',v" + v,0 + v C Reg(P). Since +' is between 7 and ' + v, both
of which are contained in Reg(P), and since Reg(P) is simply connected, we conclude that
is also in Reg(P). Thus, (; C Reg(P). Similarly, since v + v is between 7 and v + v, we
have v + v C Reg(P). Thus, (5,72 C Reg(P). Hence these paths are counted once in the RHS
and at least once in the LHS.

To finish the proof, we need to show that we have indeed considered all possible pairs of paths
which can arise in the RHS. Let ¢ € (A, C), n € K(B’', D), so (n, () is a pair of paths counted
in the first term on the RHS. Let 7 = n — v : A — (", it has to intersect (. Let F be the first
intersection point (closest to A/A’) and let F' be the last intersection point. Set 7 = ((E, F)),
p=nEF)and v = ((A,E),y = (A E), § = n(F,C") and § = ((F,C). Then, fix-
ing these F, F,m,p and (v,7,6,0") € S(E,F) we recover ( = (4 and = n4. Similarly,
given ¢ € K(A,C") and n € K(B, D) we recover ((3,73).

Moreover, these constructions reassign portions of the same paths on the RHS and LHS,
total translated areas cancel out, so the g-weights are preserved and the inequality holds for the
q-weighted paths. This completes the proof. [

3.2. Equalities

Here we describe the cases when equalities in the lattice path lemmas from Section 2 are achie-
ved. The following is an easy generalization of the [CPP22a, Lemma 8.4].

Lemma 3.2 (Equality lemma). Let A, B, A’, B',C, D € Reg(P) be as in Lemma 2.3. We then
have the following conditions for equalities in Lemma 2.3: If al, — by > ¢y — do, then

K(A',C) - K(B',D) = K(A,C) - K(B, D)
if and only if either both sides are zero, or

K (A, C) = K(A,C) and K (B,D) = K,(B,D).
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¢ o
AN id C
n E
D
E/
N S
A/
B E
B

Figure 3.2: The proof of Lemma 3.2.

Furthermore, if ay > a!, and the segment C D lies strictly to the right of segment AB, then the
segment AB is part of the lower boundary of Reg(P).

Proof. We assume that ay > a5, and the segment C'D lies strictly to the right of AB, as otherwise
the lemma is straightforward. The equality in Lemma 2.3 implies that the map s« is a bijection.
Let £ : B' — D be the highest possible path in Reg(P) and 7 : A" — C' be the lowest possible

path in Reg(P), see Figure 3.2. Then these p&ths must be in the image of s, and their preimages
are £:B— D and7j: A— C.Let v=BA

Following the construction of <!, we see that the paths 1 and ¢ 4+ v must intersect, with F
the closest intersection point to A. By the minimality of 7 and maximality of £ in Reg(P), we
have that £ 4+ v is on or above 7). Since the endpoints of £ + v (i.e. A and D’) are strictly above
the endpoints of 7 (i.e. A’ and C') by assumptions, we have E is contained in lower boundary
of Reg(P). Since £ is below £ + v and is above the lower boundary of Reg(P), we have E is
contained in . Next, we observe that if £ ¢ AB, then 7j( A, E) is strictly above (B’, E), which
contradicts the maximality of £ in Reg(P). Thus F is contained in AB and is on or above A,
and so the lower boundary of Reg(P) contains the segment AB. This completes the proof. [

The following Lemma treats the special case when A’ = B in the Equality Lemma 3.2.
The inequality itself reduces directly to Lindstrom—Gessel-Viennot lemma as the translation
vector v = 0.

Lemma 3.3 (Special equality lemma). Ler A, B € Reg(P) be two points on the same vertical
line with A above B, and C,D € Reg(P) points on another vertical line with C above D to
the east of the line AB. Then:

K,(A,C) - Ky(B,D) > K,(B,C) - K,(A, D)

with equality if and only if there exists a point E for which every path counted here must pass
through, i.e.,

Kq(A7C) = Kq(A?E)'Kq(E>C)7 Kq(B7D) = Kq(BuE)'Kq(EaD)v
K,(B,C) = K,(B,E)-K,(E,C), K,(A,D) = K, (A, E)-K,(E, D).

Furthermore, if CD lies strictly to the right of AB, then one of the three conditions hold:
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(a) E = A is part the lower boundary of Reg(P),
(b) E = D is part of the upper boundary of Reg(P),
(c) E is part of the upper and lower boundary of Reg(P).

Proof. We assume that segment C'D lies strictly to the right of AB, as otherwise the lemma is
straightforward. First, observe that the inequality follows from Lemma 2.3 by setting A’ < A,
B+ B and A «+ B, B < A. In that case the translation vector is zero and we apply the
intersection argument directly to the paths A — C, B — D.

To analyze the equality, we notice that Lemma 3.2 does not apply anymore, so a differ-
ent argument is needed. The “only if” part of the claim is clear. We now prove the if part.
Let v : A — C be the highest path within Reg(P) from A — C, and let 0 : B — D be the
lowest possible path within Reg(P) from B to D. Since the injection s in Lemma 2.3 is now
a bijection, it follow that v and ¢ intersects at a point E. If F is contained in the segment AB
(resp. C'D), then the segment AB (resp. C'D) is contained in the lower (resp. upper) boundary
of Reg( P) and thus every path counted here must pass through £ = A (resp. £ = D). If E'is not
contained in the segment AB or C'D, then FE is an intersection of the upper and lower boundary
of Reg(P), and every path in Reg(P) must pass through E. This completes the proof. [

4. Stanley’s log-concavity

Theorem 1.3 is a direct Corollary of Theorem 1.4 when setting x to be a 0 element in the poset.
But its proof via lattice paths is much more direct, and illustrative, so we discuss it separately
here first.

4.1. Proof of Theorem 1.3

Without loss of generality, assume =z € Cy, so x = «,. for some r. Let y k) = (r—1,k—r),
so that the lattice paths corresponding to linear extensions L with L(x) = k pass through
Api=Y® and A" = YR fe. Let A = Y Lo = A +ey, A = Y,
By := YU B:.= B, +e;. Then the paths with L(2) = k + 1 pass through A4;, A and
the paths with L(x) = k — 1 pass through By, B. We can then write the difference between the
left and right hand sides of inequality (1.4) in terms of lattice paths as

A = Ny(k)? = Ny(k—1)-Ny(k+1) = RIGOIEEIN

“4.1)
X KQ(O7A/1)2K¢I(A/7Q)2 - KQ(07BI)KQ<O7A1)KQ<B7Q)KQ<A7 Q) :

We now apply Lemma 2.3 twice as follows. Let B} = A} and C' = D = 0. Observe that
this configuration matches the configuration in the Lemma by rotating Reg(P) by 180°. Note

that we can apply the lemma since AlAi = —B1B]=—ey and a), — by =1>0=cy — ds.
Thus:
KQ(Ov A/1)2 = KQ(07 All) ) Kq(07 Bi) > KQ(07 Al) ) KQ(07 Bl)'
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Q
Ay A
Br—r+1 Al A’
kar Bl B
0 Qr—1 OQp Qpqq

Figure 4.1: The equality case in Stanley’s Theorem 1.3 leading to the statement in Theorem 1.6,
for the element = o, and A} = B} = Y ¥ The lattice paths equality Lemma 3.2 (after 180°
rotation) implies that all paths passing through A; also pass through B;, so A, B; is part of the
upper boundary of Reg(P) (shaded in gray). Similarly for the paths passing through A, B. We
see that the square centered at (r — 1 + 1,k — r + 1) & Reg(P), which means that o, || B5_,11,
and similarly we derive the other conditions.

Similarly, on the legr side we a[_)Blz/> the lemma with A’ = B and C = D = (), satisfying the
conditions since AA" =e; = —BB’ and a, —by =1 > 0 = ¢y — dy. Thus:

Kq(AlyQ)Q - Kq(Ava) ’ KQ(B/’Q) > KQ(A>Q) ’ KQ(B7Q)'

Multiplying the last two inequalities we obtain the desired inequality A > 0. [

4.2. Proof of Theorem 1.6

Itis clear that (d) = (¢), (d) = (b), (¢c) = (a), and (b) = (a). We now show that (a) = (d). In the
proof of the Stanley inequality, notice that the equality is achieved exactly when all applications
of Lemma 2.3 lead to equalities. For the equality in the first application of Lemma 2.3, we have:

K, (0, A1) K, (0, BY) = K,(0, A1) Ky(0, By).

This equality case is covered by Lemma 3.2 (after 180° rotation), which implies that the seg-
ment A;B; is part of the upper boundary of Reg(P) (which is the condition after rotating
by 180°). The second application of Lemma 2.3 implies that AB is part of the lower boun-
dary of Reg(P). Thus every path 0 — () passes on or below B; and on or above A.
Hence ¢N,(k — 1) = N, (k) = ¢ 'N,(k — 1), where the factors of ¢ arise from the differ-
ent horizontal levels of the path passing from the A; B, segment to the AB segment.

We now show that (a) = (e). Since the lattice paths and Reg(P) correspond to the poset
structure, we can restate the above conditions on the poset level. The fact that A, B; is an upper
boundary of Reg(P) implies that the element [j_, > a,_;. The fact that BB;, AA; C Reg(P)
implies that [y ,, Or_,.4+1 are not comparable to «,. Finally, AB on the lower boundary
of Reg(P) implies .1 > Sri1_r-

We now show (e) = (b) (cf. Proposition 8.8 for a proof of the analogous implication for
Kahn-Saks equality for general posets). Denote N(i) := {L € &(P) : L(x) = i}, so
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that N(i) = |N(i)|]. Let L € N (i). It follows from (e) that L(Sy_,) = k — 1 and z|| Bk,
Thus there is an injection A (k) — N (k — 1) by relabeling z <> (;_,, so that L(z) = k — 1
and L(B,_,) = k. Thus, N(k) < N(k — 1). Similarly, we obtain N(k) < N(k + 1) by
relabeling * <> [r_,.1. However, by the Stanley inequality (Theorem 1.1), we
have N(k)? > N(k — 1)N(k + 1), implying that all inequalities are in fact equalities. O

5. Proof of Theorem 1.4

For a given integer w € N, let F,(w; k) be the ¢-weighted sum
Fy(wik) == Y ¢,
L

where the sum is over all linear extensions L € £(P), such that L(z) = w and L(y) = w + k.
By definition,

Fy(k) = ) Fy(wsk).
weN
We can thus express the difference
A 1= F, (k) -Fy(k) — Fy(k—1)-Fy(k+1)
= Z F,(v;k)-F,(v'; k) — Fy(v;k—1)-F,(v;k+ 1)

v, v' €L (51)
1
= S(u;w) + = S(u;w),

where we have grouped the terms in the expansions of products of F,(x; %) using

S(u;w) =Fy(u; k) -Fy(w; k) + Fy(w — 1; k) - Fy(u+ 1; k) (5.2)

— Fy(u;k+1) -Fy(w;k—1) — Fylu+1;k—1)-Fy(w—1;k+1). '
In order to verify the identity (5.1), let u > w — 1. Note that by setting v < w, v/ < u
into the first term, and setting v < u + 1, v < w — 1 into the second term of (5.2), we
cover the cases v' > v — 1 and v > v/ + 1 in the positive summands in (5.1), where the double
appearance of v = v — 1 is balanced out by the factor % Similarly, for the negative terms,
setting v’ <— u, v < w covers the terms v’ > v — 1, and setting v' +— w — 1, v < u + 1 covers
the terms v — 1 > v’. Formally, we have:

> Fy(usk) - Fy(w; k) + Fy(w — 1;k) - Fy(u+ 1;k)

u>w—1

= 3B (0ik) - Fy(sk) + 3 Fy(vik) - Fy(o's k)

v'>v v>v' 42
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Cy Q
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<U + /,{'> V(u’+k>
Aut+1) 4 (w + k) ‘
A/l . o D/. D/l Y<“+1> V(u+k)

(u) D Dy
B, ()| p Yt
By [ . B
(w=1)
0 0
(a) (b)

Figure 5.1: The proof of Theorem 1.4 in the case when z,y € C;. Not all paths in S(u;w) are
drawn to avoid overcluttering. Figure (b) shows the paths involved in S(u; w + 1), which is the
difference between the ¢g-weighted sum of (red, blue) pairs minus the g-weighted sum of (green,
brown) pairs.

Similarly, we have:

Z F,(u;k+1)-Fy(w;k—1) + Fy(u+1;k—1)-F,(w—1;k+1)
u>w—1

= Z F,(v;k+1)-Fy(v;k—1) + Z F,(v;k —1)-F,(v';k+ 1),

v'>v v>v'+2

and the remaining case of v' = v — 1 comes from 15(u;u + 1).

We now prove that S(u;w) > 0 forall u > w— 1 appearing in (5.1). Suppose x,y € C; so
r=a,and y = ag,. Foru € Z,let Y™ := (s—1,u—s) and V¥ := (s+r—1,u—(s+7)),
that is, if a linear extensions has L(z) = w then its lattice path passes through Y ) Y + e,
and if L(y) = w + k then it passes through V (W+k) V(wtk) e

In terms of lattice paths, we have:

Fq(w’ k) _ q(a;1)+2w+k Kq(O, Y(w)) Kq (Y<w> + e, V(lu-i—k)) Kq(v(w—i—k) + e, Q)
Let first u > w — 1 and for simplicity label the following points A; = Y{+D A = Y+l 4 e,
By = Y~V B = B + e, and their shifts by +e, as 4] = Y, A" = A —e, = A| + e,
By = Y™ and B' = B, + e, = B+ e,. Similarly, let C = V@D O = O + e,
C'=C - €y = V<u+k>, Ci = Cl — €9 and D = V<w+k_1>, D' =D+ €9, D1 =D+ (1
and Dll = D1 + eo.

Thus, letting ¢ = 2(”;1) + 2u + 2w + 2k, we can expand S(u; w) and regroup its terms as
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follows:

S(u; w)qie = KQ<0> Al) KQ(()? Bl) KQ(A7 C) KQ(Bv D) KtI(Ch Q) KQ(D17 Q)
K, (0,4) K, (0, B) K, (A, C') K, (B, D) K,(C}, Q) K, (D}, Q)
- KQ(()? Al) K(I(07 Bl) KQ(A’ Cl) KQ(Bv Dl) KQ(OL Q) KQ(D/D Q)
— K, (0, A)) K, (0, B)) K, (A", C)K,(B', D)K,(C1,Q) K, (D1,Q)  (5.3)
= A(0; Ay /AY, B/ By) Ay(A, B';C/C", D'/ D; Q)
K,(0, A1) K, (0, By) A(A/A", B'/B; C", D) Ay (C/C", D'/ D; Q)
+ K,(0,A4;) K, (0, By) Ay (A, B; C, D)K,(Cy, Q) K, (Dy, Q).
Here the A notation means that we take differences of paths passing through either F or £ when
using the F//E’, and A, plays the role of a second derivative. Specifically, the restructured terms
above are given as follows, they are each nonnegative by our lattice paths lemmas:
A1(0; Ay /AL, B /By) = K,(0,A47)K,(0,B]) — K;(0,4;)K,(0,B1) Zrema3 0,
A(A', BC[C", D'[D;Q) = Ky(A', ", Q)Ky(B', D', Q) — Ky(A',C,Q)Ky(B', D, Q)

>(see below) 0

Al(cl/C{?Dll/DhQ) = (Cia )Kq(D/1>Q - Kq<ClaQ)Kq(D17Q) >Lem2.3 07
A(AJA',B'/B;C", D) = K (A, C"K,(B',D') — K,(A,C")K (B D) Zrem23 0,
As(A, B;C, D) = Ky(A, C)Ky(B, D) + Ky(A, C")Ky(B', D)

- KQ(Aa C/) ( ) ) - q(Alac) Q(BlaD) >Lem 3.1 O
Here the second inequality follows by applying Lemma 2.3 twice:

K, (A, C") K, (B, D')
Ky(C1, Q) Ko(D1, Q)

Nowletu=w—1,wesetY :=Y®™ fe;and V:=Y ™ + e, =Yt f e, =Y’ + e,
and V' := V{+k) and V .= V{uthtl) — V' 1 e, Then:

K, (A", C)K,(B',D) and
Kq(cla Q) Kq(Dlu Q)

VoWV

1
§S(u;u +1) = F(u; k) Fy(u+1;k) — Fy(u; b+ 1)Fy(u+ 1;k — 1)

— q2(342¢1)+4u+2+2k Kq(o)y(w)) K (O Y ) (V+61,Q) (V/ +e1,Q) >
x KL V)R (V) = KoY V) Ky, V)] St 0.

(54)
This completes the proof. ]
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6. Proof of Theorem 1.7

6.1. Setting up the proof

It is clear that (d) = (c), (d) = (b), (¢) = (a), and (b) = (a).

For (e) = (d), we adapt the proof of Proposition 8.8 below, of the analogous implication
for general posets. Without loss of generality, we assume that z = x and x € C;. Then (e)
implies that, given a linear extension L € £(P) with L(y) — L(z) = k, we can obtain a lin-
ear extension L' € E£(P) with L'(y) — L'(z) = k — 1, and a linear extension L” € £(P)
with L (y) — L"(x) = k + 1, by switching element = with the succeeding and preceding ele-
ment in L, respectively. This map is clearly an injection that changes the ¢g-weight by a factor
of ¢*!, so we have

F,(k—1) > ¢F(k) and F,(k+1) > q 'F(k).

Since we also have F,(k)* > F,(k — 1)F,(k + 1) by Kahn—Saks Theorem 1.4, we conclude
that equality occurs in the equation above, which proves (d).

The proof of (a) = (e) will occupy the rest of this section. Together with the implications
above, this implies the theorem.

6.2. Lattice paths interpretation

Suppose that x = o, and y = a,y,. We will assume without loss of too much generality
that » > 1, so that the boundary between the region of z and the region of y does not overlap.
This allows us to apply the combinatorial interpretation in Lemma 3.2 and Lemma 3.3. We
remark that the method described here still applies to the case » = 1 (by a slight modification of
Lemma 3.2 and Lemma 3.3), and we omit the details here for brevity.

The idea of the proof is as follows. Informally, we will show that condition (a) implies that
the regions above x or y is a vertical strip of width 1, that is the upper and lower boundary
above x and above y are at distance 1 from each other, see Figure 4.1. These strips extend to
the levels for which there exist a linear extension L € £(P) with L(y) — L(xz) = k £ 1 (see
the full proof for precise description in each possible case). In order to show this, we analyze
the proof of Theorem 1.4 in Section 5. In order to have equality we must have S(u;w) = 0
for every u > w — 1. So we apply the equality conditions from Lemmas 3.2 and 3.3 for every
inequality involved in the proofs of S(u;w) > 0. These equality conditions impose restrictions
on the boundaries of Reg(P), making them vertical at the relevant levels above = and y, and
ultimately drawing the width-1 vertical strip. This analysis requires choosing special points u
and w from Section 5, and the application of the equality Lemmas requires certain conditions.
Thus there are several different cases which need to be considered.

In order to apply this analysis we parameterize Reg(P) above = and y as follows. Let u, be
the smallest possible value L(z) = L(a,) can take,ie. (Y0 Y{u0) 1 e/) isasegment in the
lower boundary of Reg(P), see Figure 6.1. Let u; — 1 be the largest possible value that L (1)
can take, i.e. (Y1) —e;,Y{")) isa segment in the upper boundary of Reg(P). Let uy + 1
be the smallest possible value L(c, ) can take, i.e. (Y2 + e, Y2 1 2e;) is a segment
in the lower boundary of Reg(P). Finally, let uz be the largest possible value L(x) can take,
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so (Y{u) y(us) 4 e)) is a segment in the upper boundary of Reg(P). Clearly we have uo < u;
and uy < ugz. Similarly, let wg + k be the smallest possible value L(y) can take, so this gives the
level of the lower boundary of Reg(P) above y. Finally, let w; + k& — 1 be the largest possible
value L(o,1s 1) can take, let wy + k + 1 be the smallest possible value L(a,1s11) can take,
and w3 + k be the largest possible value L(y) can take. Clearly, we have wy < w; and wy < ws.

Here we are only concerned with effectively possible values of u, i.e. values for which there
exist linear extensions with L(z) = w and L(y) — L(z) € [k — 1,k + 1]. We can thus re-
strict our region above x and y, as follows. If we had wy — uy > 1, then F(ugp;j) = 0
for j € {k —1,k,k+ 1}, since L(y) < up+ k+ 1 < wy + k. Thus we can assume that
the region above x starts at L(z) = wo — 1. Similarly, if wy — ug < —1, we can restrict the re-
gion above y accordingly. Thus we can assume |wy — ug| < 1. Similarly, we can apply the same
argument to the upper boundaries, and assume that |ws; —ug| < 1. Finally, let vy, be the largest
integer such that F(vy,; k) > 0, and let v,,;, be the smallest integer such that F(vy,; k) > 0.
Note that vy, = min{us, w3} and vy, = max{ug, wo}.

Q
V(‘wg +k)
V(wz+k)
y {us) Y (with)
Y ()] Y (wotk)
y ()
y (uo)
0 T Y

Figure 6.1: The structure of Reg(P) in the analysis of the Kahn-Saks equality. Here & = 5,
u0:5,u1:6,u2:7,u3:8,andw0:5,w1 :6,’(1)2:8,’(1}3:9.

In the language of lattice paths, condition (e) follows from showing either of the following:

(S1) Forevery v € [Viin, Vmax)» We have Y "1 is contained in the upper boundary of Reg(P),

and Y "+ 4 e, is contained in the lower boundary of Reg(P).

(S2) For every v € [Vmin, Vmax)» We have Y "=V ig contained in the upper boundary of
Reg(P), and Y *+*¥+1 4 e, is contained in the lower boundary of Reg(P).

Note that these condition imply the width-1 vertical strip above x or y for all relevant values.
It also implies that L~'(v+1) € C, and that L' (v+1)]||z since Y+ Y+l e, € Reg(P).

For the rest of the section, we write A’ := Y B’ .= Y and let the notations A, B,
Ay, B, AL B, C,D,C D', Cy, Dy, Cy, D} be as in the proof of Theorem 1.4 in Section 5.
The choices of v and w will be chosen separately for each case of consideration. We also
write m := us — up and m’ := w3 — wy.

We split the proof into different cases, depending on the values of m, m/, u; — ug, w3 — wo,
Ug — Wo, and Uz — Ws.
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6.3. The cases m > 2, uy < u; or m’ > 2, wy < ws.

We will now prove that (S2) holds for the first case. The second case is analogous, after 180°
rotation of the configuration, and leads to (S1).

Note that F(ug + 1;k) > 0 since there is a linear extensions L(x) = wuy + 1
and L(y) = uo + k + 1 € [wy + k, w3 + k]. We then have:

U € Vmin < U+ 1 < uy and u+1 < Vipax < us.

We now turn to the proof of the inequality in Section 5, and notice that equality in (1.2)
would be achieved only if S(u;w) = 0. Let u := vpay and w := vyip. Since S(u;w) = 0, this
means that

Al(O, Al/All,Bi/Bl) =0 or Al(A/,B/,C/C,7D,/D,Q) = 0.

Now note that by Lemma 3.2 we must have A, (0; A, /A!, B{/B;) > 0, since the condition
of A, B being part of Reg(P)’s boundary is not satisfied: B; = Y {“~1 is not part of the upper
boundary of Reg(P) since w < uy. Thus we must have A, (A’, B'; C/C’, D'/ D; Q) = 0. This
implies that

K(4',C')K(B', D')K(C}, Q)K(D}. Q) = K(A,C)K(B', D)K(C1, Q) K(D1, Q). (6.1)

Let us show that every terms in the left side of (6.1) is nonzero. Suppose otherwise,
that K(A’,C") = 0 (the other cases are treated analogously). By the monotonous boundaries
of Reg(P), we must have A" or C’ not in Reg(P), contradicting the choice of u since there are
linear extensions with L(x) = wand L(y) = y + k.

Therefore, we must have equality in both applications of Lemma 2.3, so we can apply
the Equality Lemma 3.2 to both terms in (6.1) (one after 180° rotation). These equalities
imply that CD = Y {(Vme+k+D) y v +k=1) jg part of the upper boundary of Reg(P), and
that Oy Dy = (Y Ve TE+D 4 g)) (Y {vmm +5=1) 4 e,) is part of the lower boundary of Reg(P).
This implies (S2).

For the rest of the proof, we can assume that wy = w3 if m’ > 2 and vy = uy if m > 2.

6.4. The case m > 2, ug = uy, us > w3

Since us > ws, we have that w3 = vy and us = vpax +1. Let 4 := v and w = Vipax.
Since m > 2 we have that A;, B; € Reg(P), and since w3 < ug we have that CC; ¢ Reg(P).
Thus we have:

K(0,4,), K(0, B), K(C},Q), K(D},Q) > 0 and  K(A,C)=K(A,C) = 0.

We will first show that the segment AB is contained in the lower boundary of Reg(P).
Since S(u;w) = 0, the vanishing of the second summand in (5.3) implies that either

K(O7A1) . I((O7 B1> = O, or Al(cl/ciaD/l/DlaQ) = 0, or Al(A/A/,B//B;C/,D,) =0.
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The first product is nonzero from above. Below we show that A,(C,/C}, D}/D1;Q) # 0,
implying that A, (A/A’, B'/B;C’,D") = 0.

Note that the expression for S(u; w) is implicitly over paths containing the entire horizontal
segments above x, y. That is, in equation 5.3, there is a summand containing K(x, C') if and only
if it also contains K(C1, Q), because the whol/e\: expression counts paths passing through C'C}.

Thus, we can replace K(C, Q) everywhere by K(C, Q) := K(C, Cy, Q). With this replacement
we have that K(C, Q) = 0 since C' ¢ Reg(P) and so:

K(C1.Q) - K(D},Q) > 0 = K(C1,Q) - K(Dy,Q).

This implies that A,(C,/C7, D}/ Dy; Q) # 0, and, therefore, Ay(A/A", B'/B;C", D) = 0.
This in turn implies that AB is contained in the lower boundary of Reg(P) by the Equality
Lemma 3.2.

Now note that, since AB is in the lower boundary of Reg(P), every path in Reg(P) must pass
through A = Y (vmat1) @, = Y{u3) 4 e,. Also note that, since uy = uq, we have Y (40 y (uo+1)
is in the upper boundary of Reg(P), so every path in Reg(P) must pass through Y (%), These
two properties imply that paths differ only by the level of their horizontal segment above x and
SO

F(v;k—1) = F(lv—1;k) forevery v € [ug+ 1,us],

6.2
F(v;k+1) = Flv+ 1;k) forevery v € [ug, uz — 2J. 62)
We will use (6.2) to show that v, = ug + 1.
Suppose first that v, = ug. Then (6.2) gives us
us3 us3 uz—1
F(k—1) = > F(sk—1) = > Fu—1k) = Y F(uk) = F(k),
v=ug+1 v=ug+1 v=ug
uz—2 uz—2 uz—1
F(k+1) = Y F(u;k+1) = > Fw+1;k) = Y  Fuik) < F(k).
v=ugQ v=ugQ v=ug+1
So we have F(k)? > F(k — 1)F(k + 1), a contradiction.
Then suppose that v, = ug — 1. Then (6.2) gives us
u3 u3
F(k—1) = Y Fik—1) = >  F—1;k) + Flug;k — 1)
v=ug v=ug+1
uz—1
= Z F(v; k) + F(ug; k — 1) = F(k) + F(ug; k — 1),
v=ug
uz—2 uz—2 uz—1
F(k+1) = Y Fyik+1) = > Flu+1L;k) = > F(uk) = F(k) — Flue; k).
v=ug v=ug v=ug+1

On the other hand, since v, = ug — 1 and vy, = us — 1, we then have m/ = m > 2, so we can
without loss of generality assume that w, = w3 from the conclusion of the previous subsection.
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Since wy = w3, we then have:

F(up; k —1) < F(ug; k).
Combining these two equations, we then have

F(k—1)-F(k+1) = [F(k) 4+ F(uo; k — 1)] - [F(k) — F(uo; k)]
< F(k)* — F(ug; k)* < F(k)?,

which is another contradiction. Hence, since vy, € [ug — 1, ug + 1], we conclude that we must
have v, = ug + 1.

Now recall that the combinatorial properties say that Y {“0) = Y (vma=1) j5 contained in the
upper boundary of Reg(P), and Y "m»+1 1 e, is contained in the lower boundary of Reg(P).
This implies (S1), as desired.

An analogous conclusion can be derived for the case uy > wy by applying the same argu-
ment. Finally, by the 180° rotation, an analogous conclusion can be drawn for the case us < ws
and/or uy < wy. Hence for the rest of the proof we can assume that uy = wy and ug = ws
ifm > 2.

6.5. The case m > 2, ug = u1, Wy = W3, Ug = Wo, Uz = W3

Note that in this case m = uz — ug = w3 — Wy = M/, Vmin = Up = Wy and Vpux = Uz = Ws3.
We will show that this case leads to a contradiction.

Claim 6.1. Either the segment (Y<Vm‘“> + e, Y {vmin) 4 ey) is contained in the lower boundary
of Reg(P), or the segment (V max+k) 'V vmin +k)Y g contained in the upper boundary of Reg(P).

To prove the claim, let first u := v —1 and w := vpux. Since S(u; u+1) = 0, we get from
equation (5.4) that

K(Y,V)-KY', V') = KY',V)-K(Y, V'),

where ¥ = Y e, Y/ = YD fe and V = Vimath 17 = plmacth=l) ¢
then follows from Special Equality Lemma 3.3 that there exists a point £ for which every path
counted here must pass through, and there are three subcases:

(i) Eisequalto A := Y =) | e, and is contained in the lower boundary of Reg(P),
(ii) F isequal to D := V{"=) and is contained in the upper boundary of Reg(P),

(iii) £ is contained in the upper and lower boundary of Reg(P) (which then necessarily inter-
sect).
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Case (iii). Suppose that F is contained in the upper and lower boundary of Reg(P), and in
particular every path in Reg(P) must pass through £. We now change our choice of u and w
to U := Vpax —1 and w := vy, +1. Note that here AB = (Y<Vmax> + ey, Y (vmn) 4 e)
and C'D = (V{vmaxtk) 1/ (vmin+k)) - Observe that from m > 2 we have u > w. It follows
from S(u;w) = 0 and equation (5.3) that Ay(A, B;C, D) = 0. Rewriting As(A, B;C, D)
using the intersection point £, we get

AZ(Aa B; Ca D) = [K(A7 E)K(B> E) - K(A/v E)K(B/v E)}
- [K(E,C)K(E, D) — K(E,C"K(E, D")].
One of the factors must be zero, so suppose that
K(A,F)-K(B,E) — K(A,F)-K(B',E) = 0.

By applying the Equality Lemma 3.2, we then have that AB = (Y Vmx) 4 ), Y Vmin) + e)) is
contained in the lower boundary of Reg(P), as desired. The case

K(E,C) K(E,D) — K(E,C") - K(E,D') = 0.

uses a similar argument. In that case, we conclude that (V{mx+k) 1/ (vmn+k)) ig contained in
the upper boundary of Reg(P) instead, which proves the claim.

Case (i). Suppose that F is equal to A = Y "»») 1 ¢; and is contained in the lower boundary
of Reg(P). Then it follows that the segment (Y Vm) 4, Y Vmn) 4 e,) is contained in the lower
boundary of Reg(P), as desired.

Case (ii). Suppose that F is equal to D = V{"m=x+k=1) and is contained in the upper bound-
ary of Reg(P). This implies that (1 (Vmsx+k) 1/ (vux +k=1)) s contained in the upper boundary
of Reg(P). By 180° rotation and using the same argument, we can without loss of generality
also assume that (Y (vmn+1) e, Y {vmn) te,) is contained in the lower boundary of Reg(P). Now
let u := Ve —1 and w := v, +1. It again follows from S(u; w) = 0 that Ay(A, B; C, D) = 0.
Since (V {vmx+k) 1/ (vmx +k=1)) j5 contained in the upper boundary of Reg(P), we have:

K(A',C") = K(A', ), K(A,C") = K(A, Q).

Since (Y {vmn 1) @, Y (vmn) + e,) is contained in the lower boundary of Reg(P), we have:
K(B',D") = K(B,D'), K(B',D) = K(B, D).

It then follows that Ay(A, B; C, D) can be rewritten as

Ay(A,B;C,D) = K(A,C)-K(B,D) + K(A,C)-K(B,D')
— K(A,C)-K(B,D") — K(4,C)-K(B, D)
= (K(A,C) —K(4',0)) (K(B,D) — K(B', D)).
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Without loss of generality, assume that K(A, C') — K(A’,C) = 0. This implies that the seg-
ment AA’ = (Y V) e, Y Vmx—1) 1 e)) is contained in the lower boundary of Reg(P), which
in turn implies that (Y (mx) 4 e, Y{("mn) 1 e,) is contained in the lower boundary of Reg(P).
This concludes the proof of the claim.

Applying the claim, let (Y Vmx) 4 e;, Y {"mn) 4+ ;) be contained in the lower boundary
of Reg(P), the other case are treated analogously. Note that we also have that (Y (Vmax) |y (vmin))
is contained in the upper boundary of Reg(P) since uy = w;. This implies that

F(v;k+1) = Flv+ 1;k) forevery v € [Viin, Vinax —1],
F(v;k —1) = Flv—1;k) forevery v € [Viin +1, Viax)-

We then have

Vmax —1 Vmax —1 Vmax
F(k+1) = Y Flyk+1) = > F+1Lk) = >  Fk) < Fk),
V=Vmin V=Vmin V=Vpin +1
Vmax Vmax Vmax —1
F(k—1) = Y  Fsk-1) = > Fu-Lk = Y Fuk) < F(k).
V=Vpin +1 V=Vpin +1 V=Vmin

So we have F(k)? > F(k —1)F(k+1), a contradiction. Hence this case does not lead to equality.

6.6. The case m < 2 and m’ < 2

We now check the last remaining cases of Theorem 1.7.
We first consider the case m = 0. We have L(x) = u = uy = us is the unique possible
value. Then, for every k£ € N, we have:

F(k) = N(k + us),

where N(j) is the number of linear extensions L € £(P) for which L(y) = j. It then follows
from the combinatorial description of Theorem 1.6 that (S2) holds. By the same argument, we
get an analogous conclusion for the case m’ = 0.

We now consider the case m = m’ = 1. First note that, if either wy = ug+1 or wy = ug—1,
then we either have F(k—1) = 0 or F(k+1) = 0, which contradicts the assumption that F(k) > 0.
So we assume wy = ug. Let u := ug and w := ug + 1. By using S(u;u+ 1) = 0, from this part
of the proof in Section 5, we have an application of Lemma 3.3. By its equality criterion we see
that there exists a point £ for which every path counted here must pass through. We now set for
brevity

a = K(0,4,,A,F), b = K(0,By,B,F),
c = K(E,C,C,Q), d:= K(E,D,Dq,Q).

Using this notation, we have

F(k) = ac+bd, F(k+1) = be, Flk—1) = ad.
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Then
F(k)? — F(k+1)-F(k—1) = (ac)? + (bd)? + achd.

This equation is equal to zero only if ac = bd = 0, which implies that F(k) = 0, a contradiction.
This completes the proof of (a) = (e), and finishes the proof of Theorem 1.7. ]

7. Multivariate generalization
The g-weights in the introduction can be refined as follows. Let q := (¢i,...,q,) be formal
variables. Define the multivariate weight of a linear extension L € £(P) as

a

Lai—Lozi_
ab = [ b,

=1

where we set L(ag) := 0. In the language of lattice paths we see that the power of ¢; is equal to
one plus the number of vertical steps on the vertical line passing through (i — 1,0).

Theorem 7.1 (Multivariate Stanley inequality). Ler P = (X, <) be a finite poset of width two,
let (Cy,Cs) be the chain partition of P, and let x € C;. Define

Ny (k) = Z q”.

Le&(P) : L(z)=k

Then:
Ng(k)? = Ng(k —1)Ng(k +1) for all integer k, (7.1)
where the inequality between polynomials in the variables q = (q1, .. .,qa) is coefficient-wise.
When ¢; = ¢2 = ... = ¢, we obtain Theorem 1.3. Similarly, the following result generalizes

both Theorem 1.4 and Theorem 7.1.

Theorem 7.2 (Multivariate Kahn—Saks inequality). Let P = (X, <) be a finite poset of width
two, let (Cy,Cs) be the chain partition of P, and let x,y € Cy be two distinct elements. Define:

Fo(k) := > q.

Le&(P) : L(y)—L(x)=k

Then:
Fq(k)? > Fq(k — 1)Fq(k+ 1) for all integer k, (7.2)

where the inequality between polynomials in the variables q = (q1, . . ., qa) is coefficient-wise.

For the proof, note that in the case x,y € Ci, the lattice paths lemmas in Subsections 2.3
and 3.1 rearrange and reassign pieces of paths via vertical translation. Thus, we preserve the
total number of vertical segments above each (i, 0) in each pair of paths. Therefore, the resulting
injections preserve the multivariate weight q”, and both theorems follow. We omit the details.
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Remark 7.3. Note that, in general, this function is not quasi-symmetric in ¢, o, . . ., much less
symmetric. This generalization is different from the quasisymmetric functions associated to P-
partitions, see e.g. [Sta81, §7.19]. Still, the multivariate polynomials in the theorems can be
expressed in terms of the (usual) symmetric functions in certain cases.

For example, let P be the parallel product of two chains C; and C, of sizes a and b, respec-

tively. Clearly, e(P) = (a;rb ) in this case. Fix = o, and y = a,.;,. Then we have:

Fq(k> = Z hj (Qh oo aQS) hk*?’(qsﬁ’l? R 7QS+7") hbfk+rfj(QT+s+17 oo >Qa>7
J

where h;(zq,...,xy) is the homogeneous symmetric function of degree i, see e.g. [Sta81, §7.5].
Similarly, from Section 5, we have:
1
és(ua u + 1) = hu(qh s 7Qs) hu—i—l(Qla BRI 7q.9> hk—l—r—u(q.s+r+l7 s 7qe) X
X hk—r—u(Qs—i—r—l—la cee 7Qa) S(k—r)2<QS+17 o 7Q5+r>~

The A terms involved in the other S(u;w) can be similarly expressed in terms of Schur func-
tions s, as in the formula above. We leave the details to the reader.

8. General posets

8.1. Equality conditions in the Stanley inequality

As in the introduction, let P = (X, <) be a poset on n elements. Denote by
flu):=|{ve X :v=<u} and g(u) =={ve X : v u}|

the sizes of lower and upper ideals of u € X, respectively, excluding the element u.

Theorem 8.1 (Equality condition for the Stanley inequality [SvH22, Thm 15.3]). Let
P = (X, =) be a finite poset, and let v € X. Denote by N(k) the number of linear exten-
sions L € E(P), such that L(x) = k. Suppose thatk € {1,...,n— 1} and N(k) > 0. Then the
following are equivalent:

(@) N(k)?2=N(k - DNk + 1),
(b) N(k) =N(k+1)=N(k—1),
© f(y) >kforally =z, and g(y) >n—k+1, forally < x.

Proposition 8.2. For posets of width two, condition (c) in Theorem 8.1 is equivalent to the k-
pentagon property of x, which is condition (e) in Theorem 1.6.

The proof is a straightforward case analysis and is left to the reader. Of course, the proposi-
tion also follows by combining Theorem 1.6 and Theorem 8.1.
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Proposition 8.3 ([SVvH22, Lemma 15.2]). Let P = (X, <) be a poset with n elements,
letx € Xand1 < k <n. ThenN(k) > 0ifandonlyif f(x) <k—1 and g(x) <n—k.

Corollary 8.4. Let P = (X, <) be a poset on | X | = n elements, and let v € X. Then, deciding
whether N(k)*> = N(k — 1)N(k + 1) can be done in poly(n) time.

Here and everywhere below we assume that posets are presented in such a way that testing
comparisons “x < y” has O(1) cost, so e.g. the function f(z) can be computed in O(n) time.

Proof of Corollary 8.4. Clearly, we have the equality for all N(k) = 0. By Proposition 8.3, this
condition can be tested in polynomial time. Similarly, condition (c) in Theorem 8.1 implies that
equality in the Stanley inequality can be tested in polynomial time in the remaining cases. [

8.2. Vanishing conditions in the Kahn-Saks inequality

The following result is a natural generalization of Proposition 8.3.

Theorem 8.5. Let P = (X, <) and let x < y, where x,y € X. Denote
hz,y) = [{fue X 1z <u=<y}.
Then ¥(k) > 0 if and only if

h(z,y) < k < n— f(x)—g(y).

Proof. Forthe “only if” direction, let L. € £(P) be alinear extension such that L(y) — L(z) = k.
By definition, we have f(z) < L(z) — 1 and g(y) < n — L(y), which implies

f(x)+g9(y) < L(z)—1+n—Ly) =n—k—1

Furthermore, condition L(y) — L(z) = k implies that h(x,y) < k — 1, as desired.

For the “if” direction, let ¢ := min{n — g(z),n — k — g(y)}. Note that g(z) < n — ¢
and g(y) < n —c— k. We also have f(z) < n — g(x) — 1 by definition of upper and lower
ideals, and f(x) < n — k — g(y) — 1 by assumption. Combining these two inequalities, we
get f(x) <c— 1.

Since f(z) < ¢—1and g(x) < n—c, by Proposition 8.3, there is a linear extension L € £(P)
such that L(x) = c¢. We are done if L(y) = ¢ + k, so suppose that L(y) # ¢ + k. We split the
proof into two cases.

(1) Suppose that L(y) < ¢+ k. Since g(y) < n — ¢ — k, there exists w € X such that w||y
and L(w) > L(y). Let w be such an element for which L(w) is minimal, leta := L(y) and
b := L(w). The minimality assumption implies thatevery u € {L"*(a),..., L7 (b — 1)}
satisfies u > y, which gives u||w.

Define a new linear extension L' € £(P), obtained from L by setting

L'(w) := L(y), L'(y) .= L(y)+1, L'(u) = L(u)+1 forall u € X s.t. a<L(u)<b—1,
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and setting L'(v) := L(v) for all other elements v € X. Note that L'(x) = L(x) by
definition.

Denote by ® : L — L’ the resulting map on £(P). From above, ¢ increases the differ-
ence L(y) — L(x) by one when defined. Iterate ¢ until we obtain a linear extension L°
that satisfies L°(y) — L°(z) = (¢ + k) — ¢ = k, as desired.

(2) Suppose that L(y) > ¢ + k. This implies that L(y) — L(z) > k. Proceed analogously
to (1). Since h(x,y) < k, there exists w € X such that L(z) < L(w) < L(y), and
either w||z or w||y. Assume that w||z, and let w be such an element for which L(w)
is minimal. Let a := L(z) and b := L(w). This minimality assumption implies that
everyu € {L"(a),..., L7 (b — 1)} satisfies u = x, which gives ul|w.

Define L' € £(P), obtained from L by setting
L'(w) := L(z), L'(z) := L(z)+1, L'(u) = L(u)+1 forall u € X s.t. a<L(u)<b—1,

and setting L'(v) := L(v) for all other elements v € X. Note that L'(y) = L(y) by
definition.

Denote by V¥ : L — L’ the resulting map on £(P). From above, U decreases the
difference L(y)— L(x) by one when defined. Iterate W until we obtain a linear extension L°
that satisfies L°(y) — L°(z) = k, as desired.

The case w||y is completely analogous. This completes the proof of case (2), and the “if”
direction. n

Corollary 8.6. Let P = (X, <) be a poset on | X| = n elements, let k > 0, and let x,y € X be
distinct elements. Then deciding whether F(k) > 0 can be done in poly(n) time.

8.3. Complete equality conditions in the Kahn-Saks inequality

As we discuss in the introduction, the equivalence (a) = (b) in Theorem 1.7 does not extend to
general posets. However, the condition (b) which states F(k) = F(k + 1) = F(k — 1) is of
independent interest and perhaps can be completely characterized. Below we give some partial
results in this direction.
First, observe that the equality condition (c) in Theorem 8.1 is remarkably clean when com-
pared to our condition (e) in Theorem 1.7. This suggests the following natural generalization.
Let P = (X,<)and let z,y € X. We write h(z,y) :=|{u € X : 2 < u < y}|. We say
that (x, y) satisfies k-midway property, if
o f(z)+g(y) >n—k forevery z € X such that z < z and z ¥ y,
o h(z,y) >k forevery z < z, and f(y) > k.
Note that the last condition f(y) > k is equivalentto h(z,y) > k for z = 0, i.e. can be
dropped when the element 0 is added to P.
Similarly, we say that (z, y) satisfies dual k-midway property, if:
o g(z)+ f(z) >n — k forevery z € X such that z < y and z £ z,
o h(z,z) >k forevery z >y, and g(z) > k.
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By definition, pair (x,y) satisfies the k-midway property in the poset P = (X, <), if and
only if pair (y, =) satisfies the dual k-midway property in the dual poset P* = (X, <*), obtained
by reversing the partial order: © < v < v <* u, for all u,v € X.

Conjecture 8.7 (Complete equality condition for the Kahn—-Saks inequality). Ler x,y € X
be distinct elements of a finite poset P = (X, <). Denote by F(k) the number of linear exten-
sions L € E(P), such that L(y) — L(x) = k. Suppose that k € {2,...,n — 2} and F(k) > 0.
Then the following are equivalent:

() F(k)=F(k+1)=F(k—1),

(b) there is an element z € {x,y}, such that for every L € E(P) for which L(y) — L(x) = k,
there are elements u,v € X which satisfy ul|z, v||z, and L(u)+1= L(z) = L(v) — 1,

(c) the pair (z,vy) satisfies either the k-midway or the dual k-midway property.

Below we prove three implications, which reduce the conjecture to the implica-
tions (a) = (c).

Proposition 8.8. In the notation of Conjecture 8.7, we have (b) = (a).

Proof. What follows is a variation on the argument in §6.1. Without loss of generality, assume
that = = z. Denote F(i) := {L € E(P) : L(y) — L(x) = i}, so that F(i) = |F(i)].
Condition (b) implies that there is an injection F (k) — F(k + 1) given by relabeling x <> u,
so that L(y) — L(z) = k+ 1 and L(u) = L(x) + 1. Thus, F(k) < F(k + 1). Similarly,
we obtain F(k) < F(k — 1) by relabeling = <> v. However, by the Kahn—Saks inequality
(Theorem 1.2), we have F(k)? > F(k — 1)F(k + 1), implying that all inequalities are in fact
equalities. [

Theorem 8.9. In the notation of Conjecture 8.7, we have (b) < (c).

In other words, condition (b) in Conjecture 8.7, which is the same as condition (e) in Theo-
rem 1.7, can be viewed as a stepping stone towards the structural condition (c) in the conjecture.
We omit it from the introduction for the sake of clarity.

Proof of Theorem 8.9. For (c) = (b), let (z,y) be a pair of elements which satisfies the k-
midway property. We prove (b) by setting z < z. Let L € £(P) such that L(y) — L(z) = k.
Note that L(z) > 1 as otherwise L(y) = k+ 1, which contradicts the assumption that f(y) > k.
Let u € X be such that L(u) = L(z) — 1. Suppose to the contrary that u < x. It then follows
from k-midway property that h(u,y) > k. On the other hand, since L(u) = L(z) — 1 =
L(y) — k — 1, we have h(u,y) < k, and gives us the desired contradiction.

Now, let v € X be such that L(v) = L(x) + 1. We will again show that v||xz. Suppose
to the contrary that v > z. Note that v % y since L(v) < L(y). It then follows from k-
midway property that f(v) > n — g(y) — k. On the other hand, since L(v) = L(z) + 1, we
have f(v) < L(z) = L(y) — k. We then obtain L(y) — k > n — g(y) — k, which contradicts
the fact that L(y) < n — g(y).
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Thus, the pair of elements (u, v) are as in (b), as desired. The case when (x, y) satisfies the
dual k-midway property leads analogously to (b) by setting z < y.

For (b) = (c), suppose that in (b) we have z = x. Now let w € X be such that w > =z
and w % y. The proof is based on the following

Claim 8.1. There exists a linear extension L € E(P), such that

L(y) — L(z) =k, L(y)=n—g(y), and L(w)= f(w)+L1.

Proof. Since F(k) > 0, there exists a linear extension L € F(k), i.e. such that L(y) — L(z) = k.
The claim follows if L(y) = n — g(y) and L(w) = f(w) + 1. So suppose that L(y) < n— g(y).
Then there exists p € X such that p||y and L(p) > L(y), and let p be such an element for
which L(p) is minimal. Let @ := L(y) and b := L(p). This minimality assumption implies that
every g € {L7'(a),..., L7 (b— 1)} satisfies ¢ = y, which implies ¢||p.
Now, by (b) there exists v € X such that v||x and L(v) = L(z) + 1. Define L' € £(P) by
setting

L'(p) ==L
L'(q) =1L

setting L'(q) := L(q) for all other elements ¢ € X. Note that L' (y) — L'(z) = k,so L' € F(k).

Denote by € : L — L’ the resulting map on F(k). From above, €2 increases L(y) by
one when defined. Iterate (2 until we obtain a linear extension that satisfies L(y) — L(z) = k
and L(y) =n — g(y).

We will now show that we can modify the current L to additionally satisfy L(w) = f(w) + 1.
We are done if this is already the case, and since L(w) > f(w) + 1 by definition of f, we can
without loss of generality assume that L(w) > f(w) + 1. We will find a new L/,
which preserves L(x) and L(y) while decreasing L(w) by 1. Note that L(z) < L(w) < L(y)
since < w ¥ y and L(y) is at its maximal value. Since L(w) > f(w) + 1, there exists p € X
such that p||w and L(p) < L(w), and let p be such an element for which L(p) is maximal. By
the same argument as in the previous paragraph, we can then create a new linear extension L’
by moving p to the right of w, i.e.,

L'(p) == L(w), L'(w) = L(w) — 1,
L) = {L(q) — 1 if L(p) < Llq) < L(w)

(y), L'(y):=Ly)+1, L(x):=Lx)+1, L(v):=L(x),
(q)+1 forall g€ X st a<L(p)<b—1, and

L(q) if L(q) > L(w) or L(q) < L(p).

Note that L'(w) = L(y) since L(p) and L(w) are less than L(y) by assumption.
If L(z) < L(p), then L'(xz) = L(x) and we are done. Otherwise, let v be the element of P such
that L(v) = L(z) + 1 and v||x, which exists by (b). Now exchange the values of L’ at v and z,
so L'(v) = L(x) + 1 and L'(z) = L(v) — 1 = L(x). This is so that the resulting linear exten-
sion L' always satisfies L'(y) — L'(z) = k. Also note that L' (w) = L(w) — 1 and L'(y) = L(y)
by construction.

We thus obtain amap © : L — L’ such that L'(w) = L(w) — 1, while preserving the values
of the linear extensions at y and z, i.e. L'(y) =n — g(y) and L'(y) — L'(z) = k. Iterate O until
we obtain a linear extensions that satisfies L(w) = f(w) + 1, and the proof is complete. O
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‘We now have
flw)+1 = L(w) > Lx)+1 =n—gy) —k+1,

where the equalities are due to the claim above, while the inequality is due to applying (b) to
conclude that L(w) # L(x) 4 1 since w # v. This shows that f(w) > n — g(y) + k.

Now let w € X such that w < 2. By an analogous argument, we conclude that
there exists a linear extension L € &(P) such that L(y) — L(z) = k, L(y) = f(y) + 1,
and L(y) — L(w) = h(w,y) + 1. On the other hand, we have

h(w,y) +1 = L(y) — L(w) = k+ L(z) — L(w) > k+ 2,

where the equalities are due to the claim above, while the inequality is due to applying (b) to w.
This shows that h(w,y) > k + 1. Now note that L(z) > 1 by (b), so it then follow that

fly) = Ly)—1 =L(z) +k—1> k.

We thus conclude that (z, y) satisfies the k-midway property.

Finally, suppose that z = y. In this case we obtain that (z,y) satisfies the dual k-midway
property. This follows by taking a dual poset P*, and relabeling = <+ y, f <> g in the argument
above. This completes the proof of the theorem. [

Remark 8.10. Our proof of the (c) = (b) implication in Theorem 8.9, is a variation on the
proof of the implication (c¢) = (b) in Theorem 8.1, given in [SvH22, §15.1]. Of course, the
details are quite a bit more involved in our case.

8.4. Back to posets of width two

For posets of width two, the k-midway property is especially simple, and can be best understood
from Figure 8.1.

Proposition 8.11. In notation of Conjecture 8.7, let P = (X, <) be a poset of width two, and
let (C1,Cs) be partition into two chain as in the introduction. Let (x,y) be a pair of elements
in Cy, where © = o, and y = avsy,. Then (x,y) satisfies k-midway property if and only if there
are integers 1 < ¢ < d < n, such that:

0o Qg1 < ﬁcfs <... = Bdfs = Oy,

© ﬁchkfrfs = Qg < 5d+kfr73y

o agl|Be—sy - asl|Pas and

© as—l—r“ﬂc—i—(k—r—s)-{—lu s 7as+7“’|6d+(k:—r—s)—l-

The proposition follow directly from the proof of Theorem 1.7 in Section 6, where we
let ¢ := viin and d := v +1. We omit the details. Note also that when y = 1 is the max-
imal element, we obtain the (n — k)-pentagon property.

Remark 8.12. Figure 8.1 may seem surprising at first due to its vertical symmetry. So let us
emphasize that in contrast with the k-pentagon property, the k-midway property is not invariant
under poset duality due to the asymmetry of the labels. This is why it is different from the dual
k-midway property even for posets of width two.
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Os—1
Be_s Betk—r-s
L] L]
g @ ° Qg+r °
L] L]
Ba-s Bdrk-r—s
Ot

Figure 8.1: The k-midway property for the pair (o, asy,). The arrows point from smaller to
larger poset elements.

9. Final remarks and open problems

9.1.

Finding the equality conditions is an important problem for inequalities across mathematics, see
e.g. [BB65], and throughout the sciences, see e.g. [Dah96]. Notably, for geometric inequalities,
such as the isoperimetric inequalities, these problems are classical (see e.g. [BZ88]), and in
many cases the equality conditions are equally important and are substantially harder to prove.
For example, in the Brunn—Minkowski inequality, the equality conditions are crucially used in
the proof of the Minkowski theorem on existence of a polytope with given normals and facet
volumes (see e.g. §7.7, §36.1 and §41.6 in [Pak09]).

For poset inequalities, the equality conditions have also been studied, see e.g. an overview
in [Win86]. In fact, Stanley’s original paper [Sta81] raises several versions of this question.
In recent years, there were a number of key advances on combinatorial inequalities using alge-
braic and analytic tools, see e.g. [CP21, Huh18], but the corresponding equality conditions are
understood in only very few instances.!

9.2.

In a special case of the Kahn—Saks inequality, finding the equality conditions in full generality
remains a major challenge. From this point of view, the equivalences (a) = (b) = (c) in
Theorem 1.7 combined with Theorem 8.9 is the complete characterization in a special case of
width two posets with two elements in the same chain. As we mentioned in the introduction,
this result is optimal and does not extend even to elements in different chains.

We should also mention that both Stanley’s inequality (Theorem 1.1) and the equality condi-
tions in Stanley’s inequality inequality (Theorem 8.1) was recently proved by elementary means
in [CP21]. Despite our best efforts, the technology of [CP21] does not seem to translate to the
Kahn-Saks inequality, suggesting the difference between the two. In fact, the close connection

'See a MathOverflow discussion here: https://mathoverflow.net/questions/391670.
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between the inequalities and equality conditions in the proofs of [CP21] hints that perhaps the
equality conditions of the Kahn—Saks inequality are substantially harder to obtain.

9.3.

From the universe of poset inequalities, let us single out the celebrated XYZ inequality, which
was later proved to be always strict [Fis84] (see also [Win86]). Another notable example in
the Ahlswede—Daykin correlation inequality whose equality was studied in a series of papers,
see [AK95] and references therein.

The Sidorenko inequality is an equality if and only if a poset is series—parallel, as proved in
the original paper [Sid91]. The latter inequality turned out to be a special case of the conjectural
Mabhler inequality. It would be interesting to find an equality condition of the more general mixed
Sidorenko inequality for pairs of two-dimensional posets, recently introduced in [AASS20].

In our previous paper [CPP22a], we proved both the cross—product inequality as well the
equality conditions for the case of posets of width two. While in full generality this inequality
implies the Kahn—Saks inequality, the reduction does not preserve the width of the posets, so the
results in [CPP22a] do not imply the results in this paper. Let us also mention some recent work
on poset inequalities for posets of width two [Chel8, Sah21] generalizing the classical approach
in [Lin84].

94.

The bijection in Lemma 2.1, see also Remark 2.2, is natural from both order theory and enumer-
ative combinatorics points of view. Indeed, the order ideals of a width two poset P with fixed
chain partitions (C;,C,) are in natural bijection with lattice points in a region Reg(P) C Z2.
Now the fundamental theorem for finite distributive lattices (see e.g. [Stal2, Thm 3.4.1]), gives
the same bijection between £(P) and lattice paths 0 — (a, b) in Reg(P).

9.5.

As we mentioned in the introduction, the injective proof of the Stanley inequality (Theorem 1.3)
given in Section 4, does in fact coincide with the CFG injection given in [CFG80]. The latter
is stated somewhat informally, but we find the formalism useful for generalizations. In a differ-
ent direction, our breakdown into lemmas allowed us a completely different generalization of
the Stanley inequality to exit probabilities of random walks, which we discuss in a follow up
paper [CPP22c].

9.6.

Maps &, U, Q, © on £(P) used in the proofs of Theorem 8.5 and Theorem 8.9, are closely related
to the promotion map heavily studied in poset literature, see e.g. [Stal2, §3.20] and [Sta09].
We chose to avoid using the known properties of promotion to keep proofs simple and self-
contained. Note that the promotion map can also be used to prove Proposition 8.3 as we do in
greater generality in the forthcoming [CPP22b].
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9.7.

A completely different approach to g-analogues of the number e(P) of linear extensions was
given in [CPP22b] using order polynomial and the FKG inequality.

9.8.

Recall that computing e(P) is #P-complete even for posets of height two, or of dimension two;
see [DP20] for an overview. The same holds for N(%), which both a refinement and a generaliza-
tion of e(P). Following the approach in [Pak09], it is natural to conjecture
that T(x, k) := N(k)> — N(k + 1)N(k — 1) is #P-hard for general posets. We also conjec-
ture that T(z, k) is not in #P even though it is in GAPP> by definition. From this point of view,
Corollary 8.4 is saying that the decision problem whether T(x, k) = 0 is in P, further compli-
cating the matter.

9.9.

There is an indirect way to derive both Corollaries 8.4 and 8.6 without explicit combinatorial
conditions for vanishing of N(k) and F(k), given in Proposition 8.3 and Theorem 8.5, respec-
tively. In fact, the vanishing problem is in P by the following general result:

Theorem 9.1. Let P = (X, <) be a finite poset with |X| = n elements, let xy...,x; € X

be distinct poset elements, and let aq,...,ar € {1,...,n} be distinct integers. Finally,
let N(ay,...,ay) be the number of linear extensions L € E(P) such that L(x;) = a; for
all 1 < i < i. Then, deciding whether N(ay,...,a;) =0 can be done in poly(n) time.

Proof. Tt was shown by Stanley [Sta81, Thm 3.2], that N(ay, ..., ax)/(n — k)! is equal to the
mixed volume of certain polytopes K; given by explicit combinatorial inequalities. In the termi-
nology of [DGH98, p. 364], these polytopes K; are well-presented, so by [DGH98, Thm 8] the
vanishing of the mixed volume can be decided in polynomial time. [

To see the connection between the theorem and condition F(k) = 0, note that for every
fixed z,y € X, we have F(k) = N(1,k +1) + ... + N(n — k,n). In the same way, the
vanishing F(k,¢) = 0 in the cross—product inequality (see [CPP22a]) can also be decided in
polynomial time.

Note that the proof in [DGH98, Thm 8] involves a classical but technically involved matroid
intersection algorithm by Edmonds (1970). Thus, finding an explicit combinatorial condition
for vanishing of N(ay, ..., az) is of independent interest.>

ZMost recently, the authors were able to obtain such conditions by a technical algebraic argument, see [CPP22b].
Most recently, these explicit vanishing conditions were reproved in [MS22] by a geometric argument, together with
the equality conditions for the generalized Stanley inequality.
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